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images
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Abstract

In this paper, we propose to study the problem of noisy source coding/denoising. This problem is

challenging since a global optimization is usually difficult to perform as the global fidelity criterion needs

to be optimized in the same time over the sets of both coding and denoising parameters. Most of the

bibliography in this domain is based on the fact that, for a specific criterion, the global optimization

problem can be simply separated into two independent optimization problems: The noisy image should

be first optimally denoised and this denoised image should then be optimally coded. In many applications

however, the layout of the acquisition imaging chain is fixed and cannot be changed, that is a denoising

step cannot be inserted before coding. For this reason, we are concerned here with the problem of global

joint optimization in the case the denoising step is performed, as usual, after coding/decoding. In this

configuration, we show how to express the global distortion as a function of the coding and denoising

parameters. We present then an algorithm to minimize this distortion and to get the optimal values of

these parameters. We show results of this joint optimization algorithm on classical test images and on a

high dynamic range image, visually and in a rate-distortion sense.
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I. INTRODUCTION

Images acquired by imaging systems are most of the time degraded by noise, which mainly comes

from the imperfections of optical instruments. It is well-known that noise decreases the performances of

coding schemes as it reduces the correlation between pixels [1]. This problem is commonly referred as

the noisy source coding problem [2]. Many works have been devoted to address this issue [3], [4], [5],

[6], [7], [8] and [9]. The majority of the mentioned works are based on the study of the global distortion

optimization initially proposed by [5] and refined in [6]. This study states that the global distortion, if

measured by the Mean Square Error (MSE), can be treated as two separated problems. First, the original

source image should be optimally, in the minimum MSE sense, estimated from the noisy data and this

estimate should then be optimally coded [6].

However, adding a supplementary step before coding is not always possible and in many cases the

noisy acquired images are directly encoded without pre-processing. Critical applications such as satellite

imaging can not indeed afford to insert pre-processing steps in the acquisition imaging chain as the on-

board resources are highly limited. But one is still interested in optimizing the global imaging chain to

obtain the best final image. So the imaging chain has to be considered as it is and the global distortion

of this chain needs to be optimized. This is the focus of this paper.

More precisely, we are considering here the problem of optimal joint coding/denoising of a noisy image

and focus on the acquisition imaging chain depicted Fig. 1. We show that, under certain hypotheses

that we will describe, a closed-form expression of the global distortion can be obtained. We propose

then to optimize this distortion, with respect to the coding and the denoising parameters, to reach the

minimum global distortion. The originality of the proposed approach relies on the fact that we propose a

global joint optimization which takes into account all the parameters of the imaging chain. We will also

show that treating the optimization of coding/denoising as two separate problems (as in [7], [8], [9]) is

suboptimal when the denoising is performed after coding. More precisely, we emphasize the necessity

to take into account the denoising step in the rate-distortion allocation of the coder. And, as we will see,

this requirement is confirmed by the results which display a significant improvement in comparison to

the classical method which executes coding and denoising separately.

Fig. 1. Considered acquisition imaging chain.
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The paper is organized as follows. Section II presents the studied imaging chain and introduces

hypotheses and notations. In Section III, we detail the proposed approach and we show how to get

a closed-form expression of the global distortion for the studied case. We detail the joint optimization of

this distortion in Section IV and we present the algorithm to get the optimal parameters of the coding

and the denoising steps. We show results, visually and in a rate-distortion sense, of the proposed joint

optimization algorithm on classical test images and on a remote sensing image, in Section V. We conclude

in Section VI and present perspectives for future works.

II. HYPOTHESES AND NOTATIONS

In the following, the operators applied to the image are denoted with a bold uppercase letter. The

non-bold uppercase letters represent random variables whose realizations are denoted by a lowercase

letter. With this notation, x is a realization of the random variable X . (X)i denotes the ith element of the

random variable X . These variables are multidimensional x ∈ RN where N is the number of pixels. Wx

is a random variable associated to the wavelet transform of x and we denote Wx,j , j ∈ {0, . . . , J −1} (J

being the number of subbands) the jth subband of the random variable Wx. We have wx,j ∈ RNj where

Nj is the size of the subband. Finally, we suppose that a wavelet subband wx,j follows a generalized

centered Gaussian distribution law of parameter αwx,j > 0 and variance σ2
wx,j > 0 [10]. A wavelet

subband probability density function pwx,j can then be modeled as

pwx,j (wx,j) =
A
(
αwx,j

)
σwx,j

e
−
∣∣∣B(αwx,j )

wx,j

σwx,j

∣∣∣αwx,j
, (1)

with

A
(
αwx,j

)
=
αwx,jB

(
αwx,j

)
2Γ
(
1/αwx,j

) (2)

B
(
αwx,j

)
=

√
Γ
(
3/αwx,j

)
Γ
(
1/αwx,j

) , (3)

and Γ is the usual Gamma function. The parameters σ2
wx,j and αwx,j of the distribution law will be

estimated using the kurtosis-based technique proposed in [11]. Note that the same assumption will be

applied to all wavelet transforms in the chain with, of course, different distribution parameters.

As mentioned previously, we study the imaging chain shown Fig. 1. We consider the special case of

coding techniques based on wavelet transforms [12], [13] and [14]. The coding step is then approximately

decomposed in a non-redundant wavelet transform followed by a scalar subband quantizer. Note that this

approximation is actually close to the coding schemes presented in the cited works.
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We also consider that the denoising step is performed in the same wavelet basis than the coding. This

choice may however need further explanations. Usually, an efficient wavelet transform for image denoising

strongly differs from a wavelet transform suited for image coding. Image denoising techniques actually

require redundant wavelet transforms to represent the characteristics of an image such as contours and

oriented details while increasing the number of coefficients in image compression may be problematic

[15]. Hence, a non-redundant wavelet transform used for image compression leads most of the time

to poor denoising results. We are however very confident that using the same basis for both coding

and denoising may provide a decoding-denoising structure gathered in a single fast and low resources

algorithm. Extending the current work to complex denoising schemes such as [16] is a difficult task that

will be addressed in future works.

Based on these considerations, the studied imaging chain is represented in detail Fig. 2.

Fig. 2. Considered imaging chain

In this chain, we consider the instrumental noise z to be independent, identically distributed and

to follow a centered normal distribution with variance σ2
z . W is a wavelet transform, W̃ its inverse.

We denote wx,j and wz,j to be respectively the subband j of the wavelet transform of x and z. Each

quantized subband wỹ,j will be coded using an entropy encoder. As this operation does not introduce

any degradation, it does not appear on the chain displayed figure 2. R is a linear restoration algorithm

which operates independently on the wavelet coefficients of each subband j of the image and writes

wx̂,j = arg min ‖w − wỹ,j‖22 + λj‖w‖22
subject to w ∈ RNj

, (4)

where λj > 0 is a regularizing parameter. The restoration algorithm (4) has a closed-form solution

which writes

wx̂,j =
wỹ,j

1 + λj
. (5)

We are aware of the simplicity of the considered algorithm, it appears however that the linearity

of the restoration algorithm R is required if one wants to write the global distortion in closed-form.
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As mentioned previously, much work need to be addressed to consider the state-of-the-art denoising

algorithms.

The quantizer Q is an infinite mid-tread scalar subband quantizer of step ∆j > 0 and is modeled as

Q(wy,j) = ∆j

⌊
wy,j
∆j

+
1
2

⌋
, (6)

where b c is the floor function which returns the greatest integer less than or equal to its argument. We

now detail the basis of the proposed method to compute a closed-form expression of the global distortion.

Let wb,j be the coding error of the subband j

wb,j = Q(wy,j)− wy,j . (7)

We have

wỹ,j = Q(wy,j) = wy,j + wb,j

= wx,j + wz,j + wb,j

= wx,j + wε,j , (8)

where wε,j = wz,j + wb,j . The originality of the proposed method is to remark that the instrumental

noise z can be explicitly used to decorrelate the first-order moments of the term wε,j to the ones of wx,j ,

that is we consider that for any integer m > 0 and n > 0, we have

E
[
Wm
ε,jW

n
x,j

]
= E

[
Wm
ε,j

]
E
[
Wn
x,j

]
, (9)

where Wε,j and Wx,j are the random variables associated to wε,j and wx,j . This hypothesis is mainly

based on the fact that the quantizing part of the scheme Fig. 2 can be seen as a non-subtractive dithering

system where the Gaussian instrumental noise acts as a dithering noise.

A dithering system consists in inserting a noise with a certain probability density function prior to

quantizing, to improve the decorrelation property [17]. As mentioned in [18], a non-subtractive dithering

system (named non-subtractive as the dithering noise is not substracted after quantizing) allows the

moments of the global error (that is the sum of the coding error and dithering noise) to be fully decorrelated

to the moments of the coding source.

It happens that a Gaussian distribution stands among the probability density functions which allow a

noise to be considered as a dithering noise. The idea here is then to take benefit of the presence of the

instrumental noise by considering it as a dithering noise. With such consideration, we know that the m

first-order moments of the global error are decorrelated to the n first-order moments of the quantizing

source [18], giving the property (9).
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Moreover, if the instrumental noise z meets the dithering noise requirements, we also have [18]

E [Wε,j ] = 0, (10)

E
[
‖Wε,j‖2

]
= Njσ

2
wz,j +Nj

∆2
j

12
, (11)

where σwz,j is the standard deviation of the distribution law of the wavelet transform wz,j . From [17]

we know that a Gaussian noise effectively owns the properties of a dither noise if the standard deviation of

its distribution law is large enough. In the present case, the condition (9) will be verified if the following

statement is true

σwz,j >
∆j

2
. (12)

As the standard deviation of instrumental noise is usually low in imaging systems, the condition (12)

assumes that the proposed approach will be valid only for high coding rate. We will however develop

our method to consider all coding rates.

III. GLOBAL RATE-DISTORTION ANALYSIS

As mentioned in Section II, the studied imaging chain depends on two sets of parameters: The

regularizing parameters λj in (5) and the quantizing steps ∆j in (6), for each j ∈ {0, . . . , J − 1}.

The global rate-distortion joint optimization problem consists in finding the optimal sets of parameters

{λ∗j} and {∆∗j} which minimize the global distortion D under the constraint that the coding rate R does

not exceed the target rate Rc. This can be formalized as the following

{λ∗j}, {∆∗j} = arg min D({λj}, {∆j})

subject to R({λj}, {∆j}) ≤ Rc,

λj > 0, j ∈ {0, . . . , J − 1}

∆j > 0, j ∈ {0, . . . , J − 1}

. (13)

Under this form, the optimization problem (13) is difficult to solve so that it is usually written under

an unconstrained form [19]. Let τ > 0 be a Lagrange mutliplier. The Lagrange dual function L writes

L(τ) = inf D({λj}, {∆j}) + τ (R({λj}, {∆j})−Rc)

λj > 0, j ∈ {0, . . . , J − 1}

∆j > 0, j ∈ {0, . . . , J − 1}

, (14)

Problem (13) can then be written [20]

{λ∗j}, {∆∗j} = max
τ>0

L(τ). (15)
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To solve the global distortion joint optimization problem (15), we need to express the global distortion

D and the global coding rate R as a function of the regularizing parameters {λj} and the quantizing

steps {∆j}.

Proposition 1: If σwz,j verifies hypothesis (12) for each j ∈ {0, . . . , J − 1}, then the global distortion

D of the imaging chain displayed Fig. 2 writes

D({λj}, {∆j}) =
J−1∑
j=0

πjajλ
2
j

(1 + λj)2
σ2
wx,j +

πjaj
(1 + λj)2

σ2
wz,j +

πjaj
(1 + λj)2

∆2
j

12
, (16)

where

aj =
Nj

N
, (17)

is the weight of the subband j in the whole image.

Proof: We start from the fact that the (mean) global distortion writes

D({λj}, {∆j}) =
1
N
E
(
‖X − X̂‖2

)
, (18)

where X̂ is the random variable associated to the output final image x̂. Thanks to the orthogonality

of the wavelet subbands, the global distortion can also be formulated as

D({λj}, {∆j}) =
1
N

J−1∑
j=0

πjE
(
‖Wx,j −Wx̂,j‖2

)
, (19)

where πj are weighting coefficients which depend on the filters and the decimation factors used in

the wavelet transform [21]. Note that these weighting coefficients are only required if one considers

biorthogonal wavelet transforms such as the Cohen-Daubechies-Feauveau (CDF) 9/7 wavelet transform

[22]. They are equal to 1 for an orthogonal wavelet transform.

In the case of the studied imaging chain displayed Fig. 2, the final image is the output of the restoration

and writes

wx̂,j = Rwỹ,j . (20)

Using Eq. (5) and (8), the final image can be expressed as a function of the source and the global error

wx̂,j =
wx,j

1 + λj
+

wε,j
1 + λj

. (21)

From Eq. (19), (21) and using the moments decorrelation hypothesis (9), we deduce the global distortion

D({λj}, {∆j}) =
1
N
E
(
‖X − X̂‖2

)
=

1
N

J−1∑
j=0

πjλ
2
j

(1 + λj)2
E
(
‖Wx,j‖2

)
+

πj
(1 + λj)2

E
(
‖Wε,j‖2

)
. (22)
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Finally, the global distortion (22) can be further developed using the results (11) to obtain the expression

(16).

Note that the global distortion (16) requires the knowledge of the variance of each subband of the

original image σ2
wx,j . This variance is generally unknown but can be roughly deduced from the observed

image. For an orthogonal or a biorthogonal wavelet transform, the variance of the noise in each wavelet

subband j is equal or almost equal (in the biorthogonal case) to the variance of the noise in the image

domain, i.e. σ2
wz,j = σ2

z , which is supposed to be known. Then, σ2
wx,j can be computed during the

rate-allocation of the coder from the observed subband variance σ2
wy,j by

σ2
wx,j = σ2

wy,j − σ
2
z . (23)

The second part of the problem (15) requires the expression of the global coding rate R. This rate can

be expressed as the weighted sum of the rate in each subband Rj

R({λj}, {∆j}) =
J−1∑
j=0

ajRj(∆j), (24)

where aj is given in (17). As mentioned in the hypotheses section, we assume that each quantized

subband is encoded using an entropy encoder. The coding rate of a subband j can then be estimated by

its entropy [23]

Rj(∆j) = −
+∞∑

m=−∞
Pwy,j (m,∆j) log2

(
Pwy,j (m,∆j)

)
, (25)

where Pwy,j (m,∆j) is the probability to get the symbol m which depends on the density probability

function pwy,j , defined in (1), of the subband wy,j and on the quantizing step ∆j

Pwy,j (m,∆j) =
∫ m∆j+

∆j
2

m∆j−
∆j
2

pwy,j (wy,j)dwy,j . (26)

As mentioned in the hypothesis section, we assume that each wavelet subband followed the generalized

centered Gaussian distribution law defined in (1). The density probability function pwy,j is then given by:

pwy,j (wy,j) =
A
(
αwy,j

)
σwy,j

e
−
∣∣∣B(αwy,j )

wy,j

σwy,j

∣∣∣αwy,j
, (27)

with

A
(
αwy,j

)
=
αwy,jB

(
αwy,j

)
2Γ
(
1/αwy,j

) (28)

B
(
αwy,j

)
=

√
Γ
(
3/αwy,j

)
Γ
(
1/αwy,j

) , (29)

and where σ2
wx,j and αwx,j are the parameters of the distribution law, estimated using the kurtosis-based

technique detailed in [11].
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Proposition 2: The global rate-distortion optimization problem (13) can be solved by maximizing

L(τ) = inf φτ ({λj}, {∆j})

λj > 0, j ∈ {0, . . . , J − 1}

∆j > 0, j ∈ {0, . . . , J − 1}

, (30)

with respect to τ > 0 and where

φτ ({λj}, {∆j}) =
J−1∑
j=0

πjajλ
2
j

(1 + λj)2
σ2
wx,j +

πjaj
(1 + λj)2

σ2
wz,j +

πjaj∆2
j

12(1 + λj)2
+ τ

J−1∑
j=0

ajRj(∆j)−Rc

 .
(31)

Proof: This demonstration is straightforward. From Eq. (15), we define

φτ ({λj}, {∆j}) = D({λj}, {∆j}) + τ (R({λj}, {∆j})−Rc) , (32)

and we substitute D and R with their respective expressions (16) and (24). The reformulation of

problem (13) is then obtained using equations (14) and (15).

We detail in the next part how to solve problem (13).

IV. GLOBAL RATE-DISTORTION OPTIMIZATION

Using proposition 2, the optimization problem (13) becomes

{λ∗j}, {∆∗j} = max
τ>0


inf φτ ({λj}, {∆j})

λj > 0, j ∈ {0, . . . , J − 1}

∆j > 0, j ∈ {0, . . . , J − 1}


. (33)

The existence and uniqueness of solutions of problem (33) is not straightforward but we can show

that a solution of problem (33) exists and is unique (see Section VII). We propose a numerical algorithm

to find this minimum. This algorithm is based on the resolution of the simultaneous equations obtained

from the Karush-Kuhn-Tucker (KKT) conditions [24] of problem (33).

Proposition 3: The KKT conditions of problem (33) admits only one solution (λ∗j , τ
∗, ∆∗j ) which

verifies

λ∗j =
σ2
wz,j

σ2
wx,j

+
∆∗j

2

12σ2
wx,j

. (34)

πj∆∗j
6(1 + λj)2

+ τ∗
∂Rj
∂∆j

(∆∗j ) = 0. (35)
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J−1∑
j=0

ajRj(∆∗j ) = Rc (36)

Proof: From the KKT conditions of problem (33), we get ∀j ∈ {0, . . . , J − 1} (see Section VII)

∂ψ(λ∗j ,∆
∗
j ,τ

∗)

∂∆j
= ajπj∆∗

j

6(1+λ∗j )2 + τ∗aj
∂Rj
∂∆j

(∆∗j ) = 0,

∂ψ(λ∗j ,∆
∗
j ,τ

∗)

∂τ =
∑J−1
j=0 ajRj(∆

∗
j )−Rc = 0,

∂ψ(λ∗j ,∆
∗
j ,τ

∗)

∂λj
=

12ajπjλ∗jσ
2
wx,j
−12ajπjσ2

wz,j
−ajπj∆∗

j
2

6(1+λ∗j )3 = 0,

(37)

with

∂Rj
∂∆j

(∆j) = − 1
log(2)

+∞∑
m=−∞

[
1 + log

(
Pwy,j (m,∆j)

)]
×

[
pwy,j

(
m∆j +

∆j

2

)(
m+

1
2

)
− pwy,j

(
m∆j −

∆j

2

)(
m− 1

2

)]
, (38)

and where

ψ({λj}, {∆j}, τ) = φτ ({λj}, {∆j}. (39)

The expressions (34), (35) and (36) of the optimal parameters directly follow from the optimality

conditions (37). The existence and uniqueness of these parameters is much longer and is addressed in

Section VII.

As we can see from (34), (35) and (36), the parameters {∆∗j} and τ∗ can not be computed analytically.

But as mentioned in Section VII, any root-finding algorithms can be used to achieve this goal. For our

simulations, binary search algorithms will be used for the computation of both {∆∗j}, τ∗ and for the sake

of simplicity, each binary search algorithm will be parametrized to the same given precision ρ = 0.1.

The case of the low frequency subband (j = J − 1) will be processed differently as we do not want

to degrade these coefficients. We will only use quantizing to round these coefficients to their nearest

integers. Consequently, we will set

∆∗J−1 = 1, (40)

λ∗J−1 =
σ2
wz,J−1

σ2
wx,J−1

+
1

12σ2
wx,J−1

. (41)

Finally, the overall joint optimization procedure for solving problem (13) is given in the Algorithm 1.

Note that the binary search sub-procedures are not detailled in this process. Algorithm 1 intends to be

quite general and we let the choice of the root-finding algorithms to the user.
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Algorithm 1 Global rate-distortion joint optimization algorithm
Set τ = 1, ρ = 0.1.

while
∣∣∣∑J−1

j=0 ajRj −Rc
∣∣∣ > ρ do

for j from 0 to J − 2 do

Set ∆j = 1 and compute the value of the regularizing parameter λj from (34).

while
∣∣∣ πj∆j

6(1+λj)2 + τ ∂Rj∂∆j
(∆j)

∣∣∣ > ρ do

Increase the value of ∆j and compute the value of the regularizing parameter λj from (34).

end while

end for

Set ∆J−1 = 1 and compute the regularizing paramater λJ−1 from (41).

if
∣∣∣∑J−1

j=0 ajRj −Rc
∣∣∣ > ρ then

Increase the value of τ .

end if

end while

Output the optimal parameters {λ∗j} and {∆∗j}.

V. RESULTS

We simulate the joint optimization algorithm 1 on the well-known test images Lena, Barbara, Pirate

and on the high-dynamic range remote sensing image displayed Fig. 3.

For this simulation, we set the wavelet transform W to be a three levels CDF 9/7 wavelet transform

[22] and R is given by (4). Each test image has been noised with an additive white Gaussian noise with

a standard deviation σz equal to 15. As the efficiency of the proposed estimation depends on the standard

deviation of this noise (see Eq. (12)), we simulate two more cases for the Barbara image: σz = 5 and

σz = 25.

For each target rate, we simulate the imaging chain Fig. 2 with the usual disjoint optimization technique,

which consists in selecting the quantizing steps and the regularizing parameters such that the coding and

the restoration errors are independently minimized. The coding error minimization has been achieved

using the rate-distortion allocation based model proposed in [25]. As for the restoration error, it has been

minimized using an exhaustive search of the optimal regularizing parameters. Once the final image has
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(a) (b)

(c) (d)

Fig. 3. Test images: (a) is Lena (256× 256 pixels), (b) is Barbara (512× 512 pixels), (c) is Pirate (1024× 1024 pixels) and

(d) is a high-dynamic range remote sensing image of Cannes harbour (12 bits, 30 cm resolution, 1024× 1024 pixels).

been reconstructed using these parameters, we numerically compute the global distortion

D =
1
N
‖x− x̂‖2, (42)

where x is the clean (i.e. noiseless) test image, assumed to be known in our numerical experiments,

and x̂ is the final image. The distortion (42) is the true distortion and will be referred as the ground

truth in our simulations. The estimation model (16) of the global distortion that we proposed has then

been computed with the values of parameters obtained for the ground truth. This allows to verify that

the estimation (16) of the global distortion is close to the ground truth (42), implying the validity of
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the proposed method. And finally, we use the proposed joint optimization algorithm 1 to compute the

optimal parameters, that we inserted into the estimation model (16) to compute the minimal distortion.

Fig. 4. Comparison of the disjoint optimized distortion (ground truth and model-based estimation) to the joint optimized

distortion (model-based estimation) on Lena, σz = 15.

The resulting rate-distortion curves are given Fig. 4 to 8. We see that the validity of the proposed

estimation, as expected by the hypothesis (12), is not always verified and depends on the target coding

rate. More precisely, the proposed estimation approximates well the true distortion for medium to high

coding rates but does not give satisfying results for low coding rates. This can be explained by the

fact that for low coding rates, the condition (12) is not respected anymore and that the moments of the

global error cannot consequently be considered decorrelated to the moments of the source. As mentioned

previously, we performed several simulations on the Barbara image with different standard deviations

of the noise such that the condition (12) can be verified for different ranges of coding rate. When the

standard deviation is low (Fig. 5), we see that the proposed estimation is performant if the coding rate is

around 2.5 bits/pixel and more. However for this high coding rate1, the coding step is almost lossless such

that the global optimization problem is reduced to the optimization of the restoration only. Therefore,

the joint and the disjoint optimization techniques become the same and give then similar results.

1Barbara is originally encoded on 8 bits.

April 28, 2013 DRAFT



14

Fig. 5. Comparison of the disjoint optimized distortion (ground truth and model-based estimation) to the joint optimized

distortion (model-based estimation) on Barbara, σz = 5.

Fig. 6. Comparison of the disjoint optimized distortion (ground truth and model-based estimation) to the joint optimized

distortion (model-based estimation) on Barbara, σz = 15.
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Fig. 7. Comparison of the disjoint optimized distortion (ground truth and model-based estimation) to the joint optimized

distortion (model-based estimation) on Barbara, σz = 25.

Fig. 8. Comparison of the disjoint optimized distortion (ground truth and model-based estimation) to the joint optimized

distortion (model-based estimation) on Pirate, σz = 15.
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As shown by Fig. 5, 6 and 7, the range of validity of the proposed estimation increases as the standard

deviation increases. For a high standard deviation (Fig. 7), we can verify that the proposed estimation

is valid for lower coding rates (around 1.8 bits/pixel and more). In that case, the joint optimization

displays significant improvement in comparison to the disjoint optimization. It allows for example to

reach the same global error than the disjoint optimized technique but for a lower coding rate. On the

Barbara image and for σz = 15 (Fig. 6), the joint optimization technique reaches at 1.42 bits/pixel the

same distortion than the one obtained at 2.04 bits/pixels for the disjoint optimization technique, saving

therefore almost 30% of the bit budget. The benefit in term of compression performances of the joint

optimization technique appears then to be very significant.

(a) (b)

(c) (d)

Fig. 9. Visual comparison of reconstruction results. Displayed images have a size of 200 × 200 pixels. (a) is the reference

image, (b) is the observed image, (c) is the image reconstructed with the parameters obtained by the disjoint minimization of

the ground truth distortion and (d) is the image reconstructed with the parameters obtained by the joint optimization, performed

using algorithm 1, of the estimated distortion. The coding rate is 2.5 bits/pixel. The image range has been extended to point up

the image reconstruction artifacts.
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(a) (b)

(c) (d)

Fig. 10. Visual comparison of reconstruction results. Displayed images have a size of 200 × 200 pixels. (a) is the reference

image, (b) is the observed image, (c) is the image reconstructed with the parameters obtained by the disjoint minimization of

the ground truth distortion and (d) is the image reconstructed with the parameters obtained by the joint optimization, performed

using algorithm 1, of the estimated distortion. The coding rate is 2.5 bits/pixel. The image range has been extended to point up

the image reconstruction artifacts.

Visual results for the target rate of 2.5 bits/pixel are given Fig. 9 to 12 for the high-dynamic range

remote sensing image. We do not focus on the quality of the reconstructed images regarding to the

reference one as the considered chain is excessively simple. Clearly, the presence of artifacts on the

reconstructed image is due to the simple hypothesis that we made on the restoration algorithm (4). On

the contrary, we are more concerned on the improvement of the image quality of the joint optimized

chain with respect to the disjoint optimized one. We can see that the global joint optimization of the

chain always leads to a reconstructed image witch contains less blurry edges or ringing artifacts. This is

particularly visible on the edges of the buildings Fig. 9 and 11. As mentioned in the introduction of this

paper, the obtained results clearly point that optimizing coding and denoising separately is suboptimal.

April 28, 2013 DRAFT



18

(a) (b)

(c) (d)

Fig. 11. Visual comparison of reconstruction results. Displayed images have a size of 200 × 200 pixels. (a) is the reference

image, (b) is the observed image, (c) is the image reconstructed with the parameters obtained by the disjoint minimization of

the ground truth distortion and (d) is the image reconstructed with the parameters obtained by the joint optimization, performed

using algorithm 1, of the estimated distortion. The coding rate is 2.5 bits/pixel. The image range has been extended to point up

the image reconstruction artifacts.

One needs instead to address the problem of imaging chain design in its globality; the proposed method

and the obtained results are encouraging in this sense. A lot of works is however required to extend the

proposed method to lower coding rates and to more complex denoising schemes.

VI. CONCLUSIONS

In this paper we considered the problem of joint noisy source coding/denoising. Most of the time, the

coding and the denoising parameters are selected independently such that the coding and the restoration

error are respectively minimized. This parameters selection technique leads however to a suboptimal

distortion. It appears then crucial to address the problem of joint coding/denoising in its globality. We
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(a) (b)

(c) (d)

Fig. 12. Visual comparison of reconstruction results. Displayed images have a size of 200 × 200 pixels. (a) is the reference

image, (b) is the observed image, (c) is the image reconstructed with the parameters obtained by the disjoint minimization of

the ground truth distortion and (d) is the image reconstructed with the parameters obtained by the joint optimization, performed

using algorithm 1, of the estimated distortion. The coding rate is 2.5 bits/pixel. The image range has been extended to point up

the image reconstruction artifacts.

proposed here a technique to modelize the global distortion and we presented an algorithm to get the

optimal coding and denoising parameters. We simulated this joint optimization technique on classical test

images and on a high-dynamic range remote sensing image. We concluded that our joint coding/denoising

optimization approach can either allows to reach the same quality at lower rates or to improve the quality

of the reconstructed final image for the same rates, in comparison to the image obtained using the classical

disjoint optimization technique. Further works will be focused on the extension of the proposed model

to lower coding rates and to advanced denoising schemes.
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VII. EXISTENCE AND UNIQUENESS OF OPTIMAL PARAMETERS

We detail here the existence and uniqueness of optimal parameters of the following problem

inf φτ ({λj}, {∆j})

λj > 0, ∀j ∈ {0, . . . , J − 1}

∆j > 0, ∀j ∈ {0, . . . , J − 1}

, (43)

where

φτ ({λj}, {∆j}) =
J−1∑
j=0

πjajλ
2
j

(1 + λj)2
σ2
wx,j +

πjaj
(1 + λj)2

σ2
z +

πjaj∆2
j

12(1 + λj)2
+ τ

J−1∑
j=0

ajRj(∆j)−Rc

 .
(44)

To simplify the notations, we get rid of the constant Rc and the sum over j (as each subband is

independent) in φτ , which now rewrites

φτ (λj ,∆j) =
πjajλ

2
j

(1 + λj)2
σ2
wx,j +

πjaj
(1 + λj)2

σ2
z +

πjaj∆2
j

12(1 + λj)2
+ τajRj(∆j). (45)

Proposition 4: Problem (43) admits an unique solution (λ∗j ,∆
∗
j ) which verifies

λ∗j =
σ2
z

σ2
wx,j

+
∆∗j

2

12σ2
wx,j

(46)

πj∆∗j
6(1 + λj)2

+ τ∗
∂Rj
∂∆j

(∆∗j ) = 0 (47)

Proof: To prove the existence and uniqueness of this solution, we propose to study the convexity of

the function (45). We have

∂φτ
∂∆j

(λj ,∆j) =
πjaj∆j

6(1 + λj)2
+ τaj

∂Rj
∂∆j

(∆j), (48)

and
∂2φτ
∂∆2

j

(λj ,∆j) =
πjaj

6(1 + λj)2
+ τaj

∂2Rj
∂∆2

j

(∆j). (49)

We also have

∂φτ
∂λj

(λj ,∆j) = πjajσ
2
wx,j

(
2λj(1 + λj)2 − 2(1 + λj)λ2

j

)
(1 + λj)4

− πjajσ2
z

2
(1 + λj)3

− πjaj∆2
j

2
12(1 + λj)3

= πjaj

(
12λjσ2

wx,j − 12σ2
z −∆2

j

6(1 + λj)3

)
(50)
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and

∂2φτ
∂λ2

j

(λj ,∆j) = πjaj

(
12σ2

wx,j

6(1 + λj)3
−

12λjσ2
wx,j − 12σ2

z −∆2
j

2(1 + λj)4

)

= πjaj

(
4σ2

wx,j − 8λjσ2
wx,j + 12σ2

z + ∆2
j

2(1 + λj)4

)
(51)

Finally, we have

∂2φτ
∂λj∂∆j

(λj ,∆j) =
∂2φτ
∂∆j∂λj

(λj ,∆j) =
−ajπj∆j

3(1 + λj)3
. (52)

Using (48) and (50), we deduce the expressions (46) and (47) of the solution (λ∗j ,∆
∗
j ) which satisfies

the first-order conditions

∂φτ
∂∆j

(λ∗j ,∆
∗
j ) = 0, (53)

∂φτ
∂λj

(λ∗j ,∆
∗
j ) = 0. (54)

To ensure that this solution exists and is unique, we study the convexity of φτ through its Hessian

matrix Hφτ , which writes

Hφτ (λj ,∆j) =

 ∂2φτ
∂∆2

j
(λj ,∆j) ∂2φτ

∂∆j∂λj
(λj ,∆j)

∂2φτ
∂λj∂∆j

(λj ,∆j) ∂2φτ
∂λ2

j
(λj ,∆j)

 . (55)

Since Hφτ is a 2× 2 matrix, we conclude from [28] that the function φτ is strictly convex if

∂2φτ
∂∆2

j

(λj ,∆j) > 0, (56)

∂2φτ
∂λ2

j

(λj ,∆j) > 0, (57)

and if the determinant of Hφτ is strictly positive

det (Hφτ (λj ,∆j)) =
∂2φτ
∂∆2

j

(λj ,∆j)
∂2φτ
∂λ2

j

(λj ,∆j)−
(

∂2φτ
∂∆j∂λj

(λj ,∆j)

)2

> 0. (58)

The coding rate Rj is a monotonically decreasing positive function with respect to ∆j [26], ∆j

being positive. Its limits are zero when ∆j tends to infinity and infinity when ∆j vanishes to zero [27].

Its derivative ∂Rj
∂∆j

is negative and monotonically increasing, whose limits are minus infinity when ∆j

vanishes to zero and zero when ∆j tends to infinity [26]. Still from [26], we have that ∂2Rj
∂∆2

j
is positive

and monotonically decreasing. Since τ is positive, we deduce from (49) that

∂2φτ
∂∆2

j

(λj ,∆j) > 0, ∀(∆j , λj) (59)
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From equation (51), it is clear that ∂2φτ
∂λ2

j
is not always positive and we have

∂2φτ
∂λ2

j

(λj ,∆j)


> 0, if 0 < λj < λhj

= 0, ifλj = λhj

< 0, otherwise,

(60)

with

λhj =
1
2

+
12σ2

z + ∆2
j

8σ2
wx,j

=
1
2

+
3
2
λ∗j . (61)

We need now to compute the determinant of the Hessian matrix Hφτ . Let us assume that ∂
2φτ
∂λ2

j
(λj ,∆j)

is strictly positive and let us define

g(λj ,∆j) =
πjaj

6(1 + λj)2

∂2φτ
∂λ2

j

(λj ,∆j)−
a2
jπ

2
j∆

2
j

9(1 + λj)6
. (62)

Using equations (58) and (62), we have

det (Hφτ (λj ,∆j)) = g(λj ,∆j) + τaj
∂2Rj
∂∆2

j

(∆j)
∂2φτ
∂λ2

j

(λj ,∆j) (63)

Since τaj
∂2Rj
∂∆2

j
(∆j) is always strictly positive, we get the following inequality

det (Hφτ (λj ,∆j)) > g(λj ,∆j), (64)

such that if g(λj ,∆j) > 0 then we directly deduce that the Hessian matrix Hφτ is strictly positive and

thus the function φτ is strictly convex. We have

g(λj ,∆j) =

(
π2
ja

2
j

6(1 + λj)2

)(
4σ2

wx,j − 8λjσ2
wx,j + 12σ2

z + ∆2
j

2(1 + λj)4

)
−

a2
jπ

2
j∆

2
j

9(1 + λj)6

=
π2
ja

2
j

3

(
12σ2

wx,j − 24λjσ2
wx,j + 36σ2

z −∆2
j

12(1 + λj)6

)
. (65)

From (65), we can conclude that g(λj ,∆j) > 0 if

12σ2
wx,j − 24λjσ2

wx,j + 36σ2
z −∆2

j > 0, (66)

that is, if

λj < λcj , (67)

where

λcj =
1
2

+
3
2
σ2
z

σ2
wx,j

−
∆2
j

24σ2
wx,j

. (68)
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Since λcj < λhj , we have from (60)

∂2φτ
∂λ2

j

(λj ,∆j) > 0, ∀∆j and∀λj < λcj , (69)

which confirms the positivity hypothesis used to get inequality (64). We deduce that

det (Hφτ (λj ,∆j)) > 0, ∀(λj ,∆j) ∈ ]0, λcj [×R∗+. (70)

We can thus conclude that the function φτ is only convex locally on the convex domain ]0, λcj [×R∗+.

From now, we set ∆j to be equal to the optimal value ∆∗j . Let us imagine that λ∗j > λcj , then we get

that

σ2
z

σ2
wx,j

+
∆∗j

2

12σ2
wx,j

>
1
2

+
3
2
σ2
z

σ2
wx,j

−
∆∗j

2

24σ2
wx,j

3∆∗j
2

12σ2
wx,j

>
1
2

(
σ2
z + σ2

wx,j

)
σ2
wx,j

∆∗j
2 > 2

(
σ2
z + σ2

wx,j

)
, (71)

which is non-sense as it means that the optimal quantizing step would be greater than the standard

deviation of the signal to quantize. In particular, note that +∞ also verifies (71) although it completely

cancels the signal. Condition (71) is also contradictory to the dithering hypothesis (12) that we made to

develop our method, which comforts ourselves that this behavior never happens and that we always have

λ∗j < λcj . This result suggests that the point (λ∗j ,∆
∗
j ) always lie in the strictly convex part of the function

φτ .

If the evaluate ∂2φτ
∂λ2

j
at the point (λ∗j ,∆

∗
j ), we have from (60) and using the fact that λ∗j < λhj (see 61)

∂2φτ
∂λ2

j

(λ∗j ,∆
∗
j ) > 0. (72)

Using (59), (70), (72) and [28], we deduce that the solution (λ∗j ,∆
∗
j ) is a strict local minimum of the

function φτ . If we look further at (48), we have

∂φτ
∂λj

(λj ,∆∗j )


> 0, ifλj > λ∗j

= 0, ifλj = λ∗j

< 0, otherwise.

(73)

The derivative is strictly positive for any λj > λ∗j , we deduce that

φτ (λj ,∆∗j ) > φτ (λ∗j ,∆
∗
j ), ∀λj > λ∗j . (74)
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Since φτ is strictly convex on the domain ]0, λcj [×R∗+ whose strict local minimum is λ∗j , we deduce

φτ (λj ,∆j) > φτ (λ∗j ,∆
∗
j ), ∀∆j and∀λj with 0 < λj < λcj andλj 6= λ∗j . (75)

Using (74) and (75), we have

φτ (λj ,∆j) > φτ (λ∗j ,∆
∗
j ) ∀∆j and∀λj > 0 withλj 6= λ∗j , (76)

which concludes that the solution (λ∗j ,∆
∗
j ) is the unique global minimum of the function φτ .

We now have to deal with the numerical computation of the optimal parameters. Since the optimal

regularizing parameter λ∗j is expressed in closed-form, its computation is straightforward. The computation

of the optimal quantizing step ∆∗j is not direct as, for a given τ > 0, we need to find a root of

gτ (∆) =
πj∆j

6
(

1 +
σ2
wz,j

σ2
wx,j

+ ∆j
2

12σ2
wx,j

)2 + τ
∂Rj
∂∆j

(∆j). (77)

The monotony of the function gτ is not easy to study since the term ∂Rj
∂∆j

is complex to evaluate.

From our numerical experiments, we found out that the optimal quantizing step ∆∗j always lies on a

monotonically increasing part of the function gτ . From this observation, we propose to use a binary

search algorithm to compute this parameter. From (77), we see that ∆∗j is function of τ . It seems

reasonable to think that the higher τ is, the higher ∆∗j needs to be for the function (77) to cross zero.

This implies that the optimal quantizing step ∆∗j can then be noted as a function of τ

∆∗j = f(τ), (78)

where f is an increasing function. Consequently, from [26], we deduce that the coding rate Rj is a

monotonically decreasing function with respect to τ . Using (36) and (78), we define

h(τ) =
J−1∑
j=0

ajRj(f(τ))−Rc. (79)

Then it seems clear that the function h is a monotonically decreasing function with respect to τ whose

limits are infinity when τ vanishes to zero and −Rc when τ tends to infinity. Its root τ∗, which verifies

h(τ∗) = 0, can then be computed using any root-finding algorithm.
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