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Abstract

In this paper, we focus on the global optimization of the satellite imaging chain. The theoretical

analysis of the satellite imaging chain optimization is a difficult problem that needs lot of approximations.

In order to consider the complex real satellite imaging chain, we propose to address this problem

numerically and we present, based on numerical experiments, techniques to optimize the quality of the

reconstructed final image. We first focus on the common question of the position of the restoration step

in the imaging chain, that is on-board before coding or on-ground after coding. Then, we present several

methods to remove the coding artifacts inherent in wavelet based coder schemes. From these numerical

results we propose a new satellite imaging chain and we show visual and rate-distortion results on a

real satellite image.

Index Terms

Global optimization, satellite imaging chain, coding, image restoration

I. INTRODUCTION

The composition of a classical satellite imaging chain is represented Fig. 1. This representation

is simplified for more clarity and does not take into account any satellite specific preprocessing
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operations performed on board. As shown on Fig. 1, a satellite imaging chain is mainly composed

by three parts: The acquisition which captures and samples the scene, the compression which

reduces the volume of data of the image before storing it in the on-board memory (compression

is also required for a fast transmission) and the restoration which attenuates the degradations

collected during the coding and the acquisition chains. For the rest of this paper, we assume that

the transmission does not alter the quality of the image.

Fig. 1. Processing chain for satellite imaging.

Usually, the acquisition is fixed and fully characterized by the optics of the satellite and

the electronics of the chain. The parameters of this part are therefore fixed such that the

acquisition cannot be tuned so much to improve the quality of the final image. On the contrary,

the compression and the restoration have many more degrees of freedom. The choice of the

parameters of these two parts is therefore of crucial importance in the control of the satellite
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imaging chain. This is the problem of global optimization.

Formally, the global optimization of a satellite imaging chain is the problem of designing

the optimal coding and restoration algorithms which give the best final image knowing the

parameters of the chain (sampling, blur, noise, coding rate, ...). This problem is very challenging

and has been little investigated so far. Some works have been done in designing an optimal

coding/decoding structure [1] which takes into account the characteristics of the imaging chain,

or an efficient restoration method which deals with the quantizing noise [2]. But to the best of

our knowledge, the study of the global system optimization, which includes both compression

and restoration, has not devoted much work.

To formulate this specific problem, we consider the imaging chain showed Fig. 1. Let x be

the reference or target image which is the closest discrete representation of the true analog scene

that we can obtain (this image can be seen as the sampling of the convolution of the analog

image with a target point spread function), y the instrumental one and x̂ the restored image at

the output of the chain. The coding/decoding and restoration are respectively denoted by the

operators C and T . We denote by D(x, x̂) some measure of the distance between the reference

image and the restored one and by R(C(y)) some measure of the coding rate of the coded

image. The restored image can be expressed as a function of the coding and the restoration by

x̂ = T (C(y)). The problem of global optimization consists in finding the optimal C∗ and T ∗

such that

C∗, T ∗ = arg min E [D(x, T (C(y)))]

subject to C, T

R(C(y)) ≤ Rc

, (1)

where Rc is the target coding rate and E is the expectation operator with respect to the

distribution law of x. Solving problem (1) is very difficult in many aspects. Firstly, problem

(1) searches for the optimal coder and restoration among all available techniques, which is not

tractable. Second, even if the coding and restoration methods are given and perfectly known, an

analytic expression of the global distortion is usually not available and depends on the distance

measure D and on the knowledge of the real unknown image x (or its statistics). As we can

see, the problem (1) is difficult to solve in a general context. The main contribution of this

paper is to show that this problem can however be simplified in the specific case of D being

the well-known mean square error (MSE).
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From the results of [3], we show here that, in the case of the MSE criterion, the global

joint-optimization problem (1) can be replaced by two disjoint optimization problems. More

precisely, the original image x should first be optimally estimated from the instrumental image y

and, second, this estimation should be optimally coded. This result is particularly interesting in

the case of satellite imaging as it addresses the position of the estimation process in the chain,

that is the position of the restoration with respect to the coding step. We will present in this

paper numerical experiments on this aspect.

One difficulty of the optimization of the imaging chain is also the presence of coding artifacts

in the reconstructed image. We also address this issue in the paper and we present techniques

to treat this problem of coding noise removal. Finally, the last contribution of the paper is to

present a new satellite imaging chain. The particularity of this chain is that it deduces from the

conclusions obtained on each problematic (i.e. the position of the restoration and how to deal

with the coding noise) and is therefore optimized on these aspects.

The paper is organized as follows. We present, in Section II and III, numerical experiments

to improve the quality of the final image. The purpose of these parts is to bring leads, mainly

based on numerical results, to open problems in the design of a satellite imaging chain such as

the position of the restoration in the chain and how to deal with the coding noise. From the

obtained results we propose a new imaging chain in Section IV and we present reconstruction

results on a real satellite image. Finally, Section V concludes the paper and presents perspectives

for future works.

The data presented in this paper are provided by the French Space Agence (CNES1) and are

simulations of the post PLEIADES-HR satellite. We will then focus only on the imaging chain

system of the CNES but the methods we propose are more general and can be easily extended

to the characteristics of other systems.

II. THE POSITION OF THE RESTORATION IN THE IMAGING CHAIN

The actual restoration method used by the CNES only deals with the blur and the additive

Gaussian noise of the instrument [4]. It actually does not take into account the fact that the

decoded image is also deteriorated with coding noise. This restoration is therefore also suitable

1Centre National d’Etudes Spatiales
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to be used on-board just before coding on the intrumental image, as this image perfectly matches

the image formation model considered by the restoration.

In this part, we are thus considering the question of the position of the restoration in the

satellite imaging chain, i.e. on-board2 before coding (see Fig. 2) or as usual on-ground after

coding (see Fig. 1).

Fig. 2. On-board restoration based satellite imaging chain.

A. Introducing the on-board restoration

As mentioned in the introduction, the initial global optimization problem consists in finding

the optimal coding C∗ and restoration T ∗ such that

C∗, T ∗ = arg min E [D(x, T (C(y)))]

subject to C, T

R(C(y)) ≤ Rc

. (2)

2The purpose of this part is to give a methodological answer to the position of the restoration in the chain; so we assume

that we have at our disposal enough on-board computing resources such that an on-board restoration can be implemented
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A similar problem has been formalized in [3] for the study of optimal noisy source coding.

The main result of [3] states that the global distortion, if measured by the mean square error

(MSE), can be separated in two terms. More precisely, the authors of [3] showed that

E
[
‖x− T (C(y))‖2

2

]
= E

[
‖x− E[x|y]‖2

2

]
+ E

[
‖E[x|y]− T (C(y))‖2

2

]
, (3)

where E[x|y] is the conditional expectation of the original image x knowing the noisy one y.

The image E[x|y] can be seen as the best estimator (which minimizes the MSE) of the original

image x from y. This image does not depend on the restoration or the compression technique

used. So the minimal distortion D∗ then writes [3]

D∗ = E
[
‖x− E[x|y]‖2

2

]
+ min E

[
‖E[x|y]− T (C(y))‖2

2

]
subject to C, T

. (4)

From (4), we propose to use the MSE as the global measure criterion and we rewrite the

optimization problem (2) as

C∗, T ∗ = arg min E
[
‖E[x|y]− T (C(y))‖2

2

]
subject to C, T

R(C(y)) ≤ Rc

. (5)

We see that the global distortion can be expressed and optimized with respect to the image

E[x|y] instead of the original image x. Note that the problem (5) is not simpler to solve as the

computation of the image E[x|y] is usually not accessible. This formulation may however be

interesting to address the common question of the position of the restoration in the design of

the satellite imaging chain (that is before or after coding).

As mentioned previously, the image E[x|y] represents the restoration of the true image x from

the instrumental one y. It is then very tempting to think that this ideal image is actually the

result of the restoration T , moved on-board of satellite (i.e. before coding), and that we can

replace E[x|y] in (5) by T (y) such that the global optimization problem can also be written

C∗, T ∗ = arg min E
[
‖T (y)− C(T (y))‖2

2

]
subject to C, T

R(C(T (y))) ≤ Rc

. (6)

It is certain that the problem (6) is slightly different from the initial optimization problem

(2) but problem (6) is easier to treat as each variable can almost be optimized separately. If
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T is fixed, then problem (6) looks for the optimal coder C∗ which minimizes the coding error

under the constraint that the coding rate does not exceed the target coding rate. This problem is

well-known and referred as the coding rate-allocation problem [6] which has been addressed a

lot in the coding community [7], [8], [9] and references therein.

To be clear, the global joint optimization problem (2) is very difficult to address. But, in our

opinion, we believe that moving the restoration on-board could take benefit of the characteristics

of the actual restoration and coding algorithms. So one way (but again this is not the only one)

to address the problem of global joint optimization (2) is to use an on-board restoration such

that the global optimization problem can be splitted in two independent ones. The first problem

is to optimize the on-board restoration such that it is close to E[x|y]. The second problem is

to design a coder C which minimizes the coding error. As mentioned previously, the latter has

been the focus of intense work in the imaging community. So the difficulty here is to evaluate

how close to E[x|y] is T (y). As the ideal image E[x|y] depends on the original image x and

is therefore not accessible, we will simulate several state-of-the-art restoration algorithms and

observe their impact on the global distortion and on the quality of the reconstructed image. This

is the focus of the next part.

B. Comparison of on-board and on-ground chains

We are considering the on-board chain showed Fig. 2 in comparison to the on-ground one

illustrated Fig. 1. For the simulation, the coding step is fixed and is based on the method

proposed in [10]. This method is very similar to the one implemented in the PLEIADES-HR

satellite [4]. For each chain (on-board and on-ground), the restoration will be performed in two

steps as follows. First, a direct deconvolution will be performed using the target point spread

function (PSF) provided by the CNES. The second step is the denoising step. A wavelet packet

decomposition [11] is usually employed to fit the frequential characteristics of the deconvolved

noise [4]. However, another important point to take into account for an efficient denoising is the

decrease rate of reconstruction error from the M largest wavelet coefficients [12]. The faster the

reconstruction error decreases, the better the denoising is. And on this point, a wavelet packet

transform is not optimal [13].

We propose here to perform the denoising using a variant of the wavelet transform named the

Shearlet transform [14]. A wavelet transform can be represented using a matrix with dyadic shifts
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and dilations as coefficients. It is classically extented to the two dimensional case using separable

wavelets which process each dimension of the image independently. The matrix representation

of a two dimensional wavelet transform is therefore diagonal. The Shearlet transform presented

in [14] proposes instead to use a non-diagonal matrix and more specifically considers a “shear”

matrix. A shear matrix is a matrix that combines operations along its rows and columns. This

implies that a Shearlet transform uses combinations of shifts and dilations of each dimension

of the image. This offers the ability to capture oriented details and is, among the contourlets

[15] and the curvelets [16], an optimal transform (in term of reconstruction error decreasing

rate with respect to the number of retained coefficients) for the representation of images [12].

A deconvolution method based on the Shearlet transform has been proposed in [12]. We will

therefore compare the method [12] to the current state-of-the-art restoration methods such as

the ForWarRD method [17], which performs a deconvolution followed by a regularization in

both the Fourier and wavelet domains, or the method based on a Stein block thresholding [18]

which performs the regularization in the Vaguelet-Wavelet domain followed by an adaptive block

thresholding. Note that to be coherent with the current restoration technique used by the CNES,

we only focus here on the methods which decompose the restoration in a direct deconvolution

followed by a threshold operation of some sparse representation. We did not include the methods

based on a variational framework such as [19].

We simulate these two chains on the image presented Fig. 3 and we compare these results to

the reconstructed images provided by the CNES. The acquisition parameters have been provided

by the CNES and simulate a SNR of 30-100 (each value defines the power of the noise at a

certain target luminance). The restoration method used by the CNES is similar to the method

proposed in [11] and consists in a direct deconvolution followed by a thresholding in a wavelet

packet basis.

From numerical experiments, the threshold parameters which minimize the MSE of each

method then been computed using an exhaustive. In this simulation, the original image x is

known and the MSE can thus be computed. Note that in a real environnment, unbiased estimator

of the MSE exists and does not not require the knowledge of the true image [20].

We evaluate the reconstruction results both visually and using the peak signal-to-noise ratio
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Fig. 3. Reference image of Cannes harbour (12 bits, resolution of 30 cm, 1024× 1024 pixels).

(PSNR) criterion defined for 12 bits dynamic images as

PSNR(x, x̂) = 20 log10

(
4095

1
N
‖x− x̂‖2

)
, (7)

where N is the number of pixels. We show visual results only for the case of 2.5 bits/pixel

as at high coding rate (4.0 bits/pixel) the reconstructed images of the on-board and on-ground

chains appear perceptually identical and have an almost equal PSNR. This can be explained by

the fact that at this rate, the compression is almost lossless and the coding step could then be

“omitted”, making both chains equivalent.

The comparison of these two chains in a rate-distortion sense is given Fig. 4. Visual results

are given Fig. 5 to 6. We can see that for every restoration techniques, an on-board chain always

performs better in term of PSNR. At low coding rate, the difference between the two chains

reaches almost 1 dB. We can check on Fig. 5 for example that the on-board chain gives edges

which are slightly more blurred than the on-ground chain (particularly visible around the edges

of buildings). This is due to the fact that the edges of the image have been enhanced by the

deconvolution. The high frequency subbands require then more bits to be properly encoded.

It is actually difficult to conclude on the difference between the two chains as they both give
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Fig. 4. Rate-distortion of on-board and on-ground chains for different restoration techniques compared to the method currently

used by the CNES.

similar results, although the on-ground one seems to perform better on low intensity areas. For

example, on Fig. 6, we see that the on-board chain reconstructs an image which is more blurred

(see the small square element at the bottom of the figure) than the one we would have obtained

with an on-ground chain (see also Fig. 5). The on-board chain presents however the advantage

to separate the process of coding noise removal and we will exploit this ability later in Section

IV.

Visually, the Stein block thresholding restoration technique [18] does not give satisfying results

and tends to oversmooth the image. If we observe the reconstructed images, we can verify that

all the small details are lost. The ForWaRD method [17] seems also to suffer from the same

behavior and provides slightly smooth reconstructed images. The method based on the Shearlets

[12] seems to be slightly superior in term of image quality. This method give satisfying results

and recover the small details of the image without giving too many artifacts. A deeper evaluation

of the reconstructed images, by image analysis experts, may be however required to confirm this

result.

Finally, we see that many coding artifacts still appear in the reconstructed images. This
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phenomenon is particularly visible on the reconstruction results of the on-board chain as the

coding noise is not treated at all by this chain. The on-board chain may be therefore penalized

by the presence of these artifacts, so we present in the next part some of the state-of-the-art

processing methods to reduce these coding artifacts.

We can also observe that each restoration technique outperforms the restoration technique

used by the CNES in terms of PSNR. For a coding rate of 2.5 bits/pixel, the improvement, in

terms of PSNR, of these methods over the method of the CNES varies between 1 and 1.5 dB.

Note that the PSNR of the method used by the CNES is almost constant after the coding rate

of 2.5 bits/pixel as this technique leaves some residual noise to give the image a physical sense.

This residual noise simulates the instrumental noise that one obtains at the output of a sensor.

This phenomenon only appears from 2.5 bits/pixel, as at this rate the encoder starts to efficiently

encode the instrumental noise instead of removing it. Also note that this image characteristic

is highly appreciated by image analysis experts. We will use this characteristic to propose a

technique to remove the coding artifacts inherent in wavelet-based compression systems. This

is the focus of the next part.

III. QUANTIZING ARTIFACTS REMOVAL

In this part, we briefly describe the state-of-the-art of quantization noise removal methods.

Note that this part is only a brief review of quantization noise removal techniques and we will

discuss the integration of these techniques in the satellite chain in the last part of the paper.

A. Variational methods for denoising quantization noise

The quantization noise is very specific and visually comes out as structured artifacts which

represent the responses of the wavelets. This phenomenon appears as oscillations, basically near

the edges of the image (ringing artifacts), when an initial non-null wavelet coefficient has been

set to zero by the quantization. Several methods based on a variational framework have been

recently proposed [21], [22], [2] to tackle the problem of quantization noise removal. Techniques

[22] and [2] are actually very similar and, consequently, we only present the methods proposed

in [21] and [22]. These methods rely on the minimization of an a priori named the total variation

(TV) [23].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Visual comparison of on-board and on-ground chains. Displayed images have a size of 200 × 200 pixels. (a) is

the reference image, (b) is the instrumental image (output of the acquisition, PSNR = 32.69 dB), (c) is the reconstructed

image provided by the CNES (PSNR = 45.93 dB), (d) and (e) are the reconstructed images respectively from the Shearlets

based on-board (PSNR = 46.80 dB) and on-ground (PSNR = 46.69 dB) chains, (f) and (g) are the reconstructed images

respectively from the block thresholding based on-board (PSNR = 46.46 dB) and on-ground (PSNR = 46.24 dB) chains,

(h) and (i) are the reconstructed images respectively from the ForWarRD based on-board (PSNR = 47.11 dB) and on-ground

(PSNR = 47.05 dB) chains. The target rate is 2.5 bits/pixel. The image range has been extended to point up the image

reconstruction artifacts.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. Visual comparison of on-board and on-ground chains. Displayed images have a size of 200 × 200 pixels. (a) is

the reference image, (b) is the instrumental image (output of the acquisition, PSNR = 32.69 dB), (c) is the reconstructed

image provided by the CNES (PSNR = 45.93 dB), (d) and (e) are the reconstructed images respectively from the Shearlets

based on-board (PSNR = 46.80 dB) and on-ground (PSNR = 46.69 dB) chains, (f) and (g) are the reconstructed images

respectively from the block thresholding based on-board (PSNR = 46.46 dB) and on-ground (PSNR = 46.24 dB) chains,

(h) and (i) are the reconstructed images respectively from the ForWarRD based on-board (PSNR = 47.11 dB) and on-ground

(PSNR = 47.05 dB) chains. The target rate is 2.5 bits/pixel. The image range has been extended to point up the image

reconstruction artifacts.
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The TV prior supposes that an image can be modeled as a smooth function with discontinuities

across curves. The oscillations created by the artifacts cannot therefore be considered to be natural

and do not belong to an image. The simple way to remove these variations is to minimize the

l1-norm of the gradient of the image, namely the TV, such that these oscillations are replaced

by smooth homogeneous regions. Both methods [21] and [22] could globally be formalized as

the following minimization problem

x̂ = arg min ‖∇x‖1

subject to x ∈ K

, (8)

where x̂ is the denoised image and K is a set that constrains the reconstructed image. The

authors of [22] proposed to define the set K such that it constrains the error between the

observed and the reconstructed wavelet coefficients to be bounded by the boundaries of the true

quantization error.

Let x0 be the image to encode, W the wavelet transform of the coder and x̃ the decoded

image. We denote Q the set of all possible output quantized values Q = {qk; k ∈ Z, q0 = 0}

and bk, bk+1 (bk+1 > bk) the boundaries of each quantization interval such that

(Wx̃)i = qk, if bk ≤ (Wx0)i < bk+1, ∀i ∈ {0, . . . , N − 1}. (9)

We have

bk − qk ≤ (Wx0)i − (Wx̃)i < bk+1 − qk, ∀i ∈ {0, . . . , N − 1}. (10)

We set αi = bk − qk and βi = bk+1 − qk; the authors of [22] proposed to define K as the

following hypercube

K =
{
x ∈ RN , αi ≤ (Wx)i − (Wx̃)i < βi, ∀i ∈ {0, . . . , N − 1}

}
. (11)

The true quantization error is unknown as the original image x0 is not accessible. The bounds

αi and βi of this error can however be estimated from the reconstructed image and the knowledge

of the quantizing model. So the originality of the method proposed in [22] consists in minimizing

the TV of the reconstructed image such that the quantization error belongs to the invervals defined

by the boundaries (10) of the true quantization error. The method proposed in [21] is slightly

different and constrains the wavelet coefficients that have not been set to zero by the quantization

to remain identical. They define the set K as

K =
{
x ∈ RN , (Wx)i = (Wx̃)i , ∀i ∈M

}
, (12)
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where M is the set of coefficients coordinates that have not been set to zero by the quantizing

M = {i ∈ {0, . . . , N − 1}, |(Wx̃)i| > 0}. (13)

The idea of the method proposed in [21] is to reconstruct the small coefficients that have

been set to zero by the quantization. The method relies on the fact that the minimization of the

TV creates flat regions which need small wavelet coefficients to be represented. The presence

of the constraint (12) is to ensure that only the small coefficients are updated and that the large

quantized coefficients, which are likely to be close to the original ones, remain unchanged.

A comparison of the two presented methods is given at the end of this part. We will see

however that the flat homogeneous regions created by these methods are not natural in the sense

that they cannot be interpreted physically. The problem of quantization noise removal is actually

very difficult to address. The main difficulty lies in the fact that the quantization noise is highly

correlated to the signal source and cannot be modeled using classical probability distributions.

We present in the next part methods to improve the statistical properties of the quantization

noise.

B. Dithering methods for removing quantization artifacts

A dithering technique consists in inserting a noise prior to quantizing to improve the statistics

of the quantization error. Among the dithering techniques, we focus on the subtractive dithering

technique proposed in [24] whose particularity is to subtract the added noise after quantizing.

Let w be the wavelet coefficients of the image to quantize and Q a uniform scalar quantizer of

quantizing step ∆. The quantized coefficients w̃ are obtained by applying the quantizing operator

Q on the wavelet coefficients w noised by the dithering noise v

w̃ = Q(w + v). (14)

As mentioned previously, a subtractive dithering scheme also subtracts the dithering noise

after the quantizing. The final wavelet coefficients z are

z = w̃ − v = Q(w + v)− v. (15)

The authors of [24] showed that the global error ε = z −w of a subtractive dithering system

is independent of the system source and is distributed uniformly if the dither noise v can be
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expressed as a summation of rectangular probability density functions [25]. More precisely, the

probability density function pε of the global error ε can be expressed as [24]

pε(ε) = ∆Π∆(ε). [W∆ ∗ pw ∗ pv] (−ε), (16)

where pv is the probability density function of the dithering noise v, pw is the probability

density function of the wavelet coefficients w to quantize and

Π∆(ε) =


1
∆

if − ∆
2
< ε ≤ ∆

2
,

0 otherwise
(17)

W∆(ε) =
+∞∑

k=−∞
δ(ε− k∆). (18)

The characteristic function (defined as the Fourier transform of the probability density function)

is usually easier for studying the correlation properties. It writes [26]

Pε(u) = sinc(u) ∗ [W 1
∆

(−u)Pw(−u)Pv(−u)]

=
+∞∑

k=−∞
sinc

(
u− k

∆

)
Pw

(
− k

∆

)
Pv

(
− k

∆

)

= sinc(u) +
+∞∑

k=−∞, k 6=0

sinc

(
u− k

∆

)
Pw

(
− k

∆

)
Pv

(
− k

∆

)
. (19)

where

sinc(u) =


sin(π∆u)
π∆u

, ifu 6= 0

1, otherwise
. (20)

From (19), we see that the global error ε is independent of the source w only if the characteristic

function Pε is reduced to sinc(u). This is verified if the characteristic function of the dither noise

Pv cancels for each k
∆
, ∀k ∈ Z∗ [24]

Pv

(
k

∆

)
= 0, ∀k ∈ Z∗. (21)

As mentioned by [25], Eq. (21) is satisfied if the dithering noise can be expressed as a

summation of rectangular probability density functions [25]. In that case, the global error ε

reduces to an independent and uniformly distributed noise.

This is an encouraging result as it implies that an on-board restoration coupled with a

subtractive dithering scheme will result in a restored image with a residual noise which is
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independent of the original image. This residual noise can then be interpreted physically as the

intrumental noise of the sensor. This aspect of residual noise is very important as it is one of

the features seeked by the CNES for the design of restoration methods [27]. We will discuss

this aspect later as this is the basis of the proposed imaging chain described in Section IV.

Finally, we would like to mention also the dithering technique proposed by [28]. The method

proposed in [28] is slightly different from the classical dithering techniques as it is more focus

on the reconstruction of the original wavelet subbands rather than improving the statistics of

the quantizing noise. More precisely, the main result of [28] is that the probability density

function of a wavelet subband can be recovered exactly (assuming we know the parameters of

its model) from its quantized version by adding a dithering noise v to the quantized coefficients.

As previously, we denote by w an original (i.e. prior to quantizing) wavelet subband and w̃ the

corresponding quantized subband. The authors of [28] proposed to model a wavelet subband w

(each subband can be treated separately) by a Laplace distribution [29]

pw(w) =
λ

2
e−λ|w|, (22)

where λ is the scale parameter that can be estimated using classical estimation techniques

such that least-squares minimization methods or maximum-likelihood estimations. Similarly to

(9), we have

w̃ = qk, if bk ≤ w < bk+1. (23)

Using the wavelet subband model (22), we can express the probability density function of a

quantized wavelet subband

pw̃(w̃ = qk) =



1
2

(
e−λbk − e−λbk+1

)
, if k ≥ 1

1− 1
2

(
e−λb0 − e−λb1

)
, if k = 0

1
2

(
eλbk+1 − eλbk

)
, if k ≤ −1.

(24)

The output wavelet subband z is given by

z = w̃ + v, (25)

where w̃ is the quantized wavelet subband and v the dithering noise. The output wavelet

subband probability density function can be expressed using the law of total probability [28]

pz(z) =
∑
k

pz|w̃(z|w̃ = qk)pw̃(w̃ = qk), (26)
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where

pz|w̃(z|w̃ = qk) = pv|w̃(v = z − qk|w̃ = qk), (27)

is the probability density function of the dither noise v knowing the quantized values w̃. The

authors of [28] showed that the choices

pv|w̃(v|w̃ = qk, k 6= 0) =


1
αk
e− sign(qk)λ̂v, if (bk − qk) ≤ v < (bk+1 − qk)

0, otherwise
(28)

pv|w̃(v|w̃ = 0) =


1
α0
e−λ̂|v|, if b0 > v > b1

0, otherwise
, (29)

with ak being normalization constants and λ̂ an estimated value of the scale parameter λ, lead

to the original wavelet subband probability density function, under the condition that λ̂ = λ [28]

pz(z) =
∑
k

pz|w̃(z|w̃ = qk)py(w̃ = qk)

=
∑
k≤−1

1

αk
eλ(z−qk) 1

2

(
eλbk+1 − eλbk

)
1(bk ≤ z < qk+1)

+
1

α0

e−λ|z|
(

1− 1

2

(
eλb0 − e−λb1

))
1(b0 ≤ z < b1)

+
∑
k≥1

1

αk
e−λ(z−qk) 1

2

(
e−λbk − e−λbk+1

)
1(bk ≤ z < qk+1)

=
λ

2
e−λ|z| = pw(z) (30)

Even if the reconstructed and original subbands will numerically differ, this technique will

remove the undesirable observed artifacts, due to the quantization, by filling in the blanks. The

fact that we also add dither noise on the null coefficients may also provide the residual noise

appreciated by the image analysis experts.

C. Comparison of removal methods for quantization artifacts

We simulate the behavior of the presented quantization removal methods directly on a coded

version of the reference (i.e. without any blur or noise) satellite image shown Fig. 3. The

simulation of the complete imaging chain including these techniques is done in the next part.

To perform a fair comparison, the image will be coded using the biorthogonal 9/7 wavelet
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transform [30] followed by the quantizer described in [26]. As a consequence, the method [28]

has been adapted to this choice. For the subtractive dithering method [25], we simulated a

uniform dithering noise to limit the power of the residual noise. We only provide visual results

as common criteria such as PSNR do not take into account the appreciated physical perception

of residual noise.

The results are given Fig. 7 to 8. Visually, we immediately see that the techniques based on the

minimization of the TV create large smooth homogenous regions and remove the small details

of the image. This effect is known as the cartoon effect. These flat regions are not considered to

be natural for a remote sensing image and are really not appreciated by image analysis experts

who clearly prefer a deterioration that can be interpreted physically. As explained previously,

this is for example the case of an unstructured residual noise. The subtractive dithering system

and the method proposed in [28] give good visual results. Both images are well reconstructed

and do not present common artifacts such as ringing or blurry edges. The quality of the image

reconstructed with the subtractive dithering system actually seems slightly better, particularly on

the small details of the image (cars and zebras). As expected, these methods leave a residual noise

on the reconstructed image which simulates the instrumental noise that image expert analysis

are used to observe.

IV. PROPOSED IMAGING CHAIN

In the previous section, we showed that the dithering techniques may be very interesting to

remove the structured artifacts of the coding step. As we have also mentioned in Section III, these

techniques leave a uniform residual noise which is highly appreciated from the image analysis

experts as it can be interpreted physically. More precisely, an ideal final image (as defined by

image analysis experts) should owns a residual blur characterized by a target PSF [5] along with

a uniform residual noise with a fixed standard deviation [27].

We also presented in Section II an on-board restoration technique which gives an image with

a residual noise (whose power is very small in comparison to the power of the residual noise

obtained from the dithering technique) and a residual blur fully characterized by the target PSF. If

we combine these two techniques, i.e. if we use an on-board restoration coupled with a subtractive

dithering technique, the image obtained at the output of the chain will then present a residual

noise (coming from the dithering technique) with the blur of the target PSF (coming from the
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Visual comparison of quantizing removal techniques. Displayed images have a size of 200 × 200 pixels. (a) is the

reference image, (b) is the decompressed image, (c) is the image obtained using the post-processing technique proposed in [21],

and (d) is the image obtained using the post-processing technique proposed in [22], (e) is the image reconstructed using the

post-processing dithering technique proposed in [28], (f) is the image reconstructed using the subtractive dithering technique

[26] with an uniform dithering noise. The target rate is 2.5 bits/pixel. The image range has been extended to point up the image

reconstruction artifacts.

on-board restoration). And as mentioned previously, a final image with such characteristics is

the objective of image analysis experts as it can be interprated as the direct output of an ideal

instrument.

From this remark, we propose the imaging chain shown Fig. 9.

This chain includes the on-board restoration [12] based on the Shearlets transform and the

subtractive dithering technique [25] to decorrelate the quantizing noise. Note that, in this chain,

the quantizer follows the model described in [26] to respect the subtractive dithering scheme

hypothesis. The coding step is then decomposed in a 3-levels CDF 9/7 wavelet transform followed

by an explicit quantization of the wavelet coefficients and an entropy encoding of the quantized

coefficients. The results of the proposed imaging chain are given Fig. 10 to 13. Like previously,
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Visual comparison of quantizing removal techniques. Displayed images have a size of 200 × 200 pixels. (a) is the

reference image, (b) is the decompressed image, (c) is the image obtained using the post-processing technique proposed in [21],

and (d) is the image obtained using the post-processing technique proposed in [22], (e) is the image reconstructed using the

post-processing dithering technique proposed in [28], (f) is the image reconstructed using the subtractive dithering technique

[26] with an uniform dithering noise. The target rate is 2.5 bits/pixel. The image range has been extended to point up the image

reconstruction artifacts.

the simulated SNR of this simulation is 30-100.

We immediately see that the reconstructed images with the proposed chain do not present any

common wavelet compression artifacts (see Fig. 10 and 11), that we observed on the reconstructed

image provided by the CNES. They exhibit instead an unstructured residual noise which is

visually similar to the noise obtained on the instrumental image at the ouput of the acquisition

chain. This is particularly visible on the dark zones of the reconstructed image, see Fig. 11. It is

clear that the proprosed chain tends to replace one type of residual noise (wavelet compression

artifacts) by another one. The obtained residual noise is however better appreciated by image

analysis experts as it can be interpreted physically. More precisely, the proprosed imaging chain

produces a reconstructed image which owns the two characteristics of an ideal image: Blur with
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Fig. 9. Proposed satellite imaging chain

the target PSF (obtained by the on-board restoration) and a residual unstructured noise [27]. The

drawback of the proposed method is that the standard deviation of the residual noise is function

of the quantizing step while it should be constant for all coding rates. Consequently, for a low

coding rate, the proposed chain gives an image which is more noisy than the instrumental one.

It gives however very interesting results for high coding rates as shown by Fig. 12 to 13. Futher

works need thus to be done on this aspect.

V. CONCLUSIONS

In this paper, we considered the satellite imaging chain optimization problem. We presented

numerical results which showed that the quality of the reconstructed image can be improved if

one concedes several changes on the usual design of imaging chain. The first one would be to

move the restoration step on-board of satellite, prior to compression. This allows to reconstruct
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(a) (b)

(c) (d)

Fig. 10. Visual comparison of the proposed and the current imaging chains. Displayed images have a size of 200×200 pixels.

(a) is the reference image, (b) is the instrumental image, (c) is the decompressed and restored image provided by the CNES,

(d) is the reconstructed image from the Shearlets based on-board chain followed by a subtractive dithering scheme. The target

rate is 2.5 bits/pixel. The image range has been extended to point up the image reconstruction artifacts.

an image with less reconstruction artifacts, specially on shadows zones. The second deals with

the problem of coding noise removal. From the results we presented, we concluded that the

current state-of-the-art algorithms do not give competitve results and that the best option may be

to used dithering techniques to transform this stuctured coding noise in an unstructured uniform

residual noise. This residual noise is very interesting as it simulates the noise obtained at the

output of the instrument, and this property is highly appreciated from photo interpreters. From

these conclusions, we proposed a new imaging chain based on an on-board restoration coupled

with a subtractive dithering technique. We showed results on a real satellite data. We compared

the results of the proposed chain with the ones obtained with the current satellite imaging chain.
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(a) (b)

(c) (d)

Fig. 11. Visual comparison of the proposed and the current imaging chains. Displayed images have a size of 200×200 pixels.

(a) is the reference image, (b) is the instrumental image, (c) is the decompressed and restored image provided by the CNES,

(d) is the reconstructed image from the Shearlets based on-board chain followed by a subtractive dithering scheme. The target

rate is 2.5 bits/pixel. The image range has been extended to point up the image reconstruction artifacts.

We showed that the proposed chain gives interesting results and may be particularly efficient at

medium and high coding rates (around 3.0 bits/pixel and more). The particularity of the proposed

imaging chain is that the final image is fully characterized by the target blur (specified by the

CNES) and a residual unstructured noise. Such feature is interesting for images analysis experts

since classical defects of the compression and restoration steps do not appear in the final image,

such that these two steps appear then almost transparent in the chain. A drawback of the proposed

method is that the power of this residual noise depends on the target coding rate. At low coding

rate (like 2.5 bits/pixel), the final image appears to be more noisy than the instrumental image

and is therefore difficult to exploit. Future works will be focussed to extend our approach such
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(a) (b)

(c) (d)

Fig. 12. Visual comparison of the proposed and the current imaging chains. Displayed images have a size of 200×200 pixels.

(a) is the reference image, (b) is the instrumental image, (c) is the decompressed and restored image provided by the CNES,

(d) is the reconstructed image from the Shearlets based on-board chain followed by a subtractive dithering scheme. The target

rate is 4.0 bits/pixel. The image range has been extended to point up the image reconstruction artifacts.

that we get competitive results at low coding rates.
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