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Efficient Access to Optical Bandwidth

Routing and Grooming in WDM Networks:

state-of-the-art survey

Abstract

In this survey we present some important algorithmic challenges for the design and
planning of wdm networks. This includes wavelength routing and traffic grooming.
In both cases the problem is to compute lightpaths in order to carry a traffic demand
over the network, but the objectives are different. In the case of wavelength routing
and assignment (wra for short) the problem is to minimize the number of different
wavelengths used in the network or the maximum congestion over one link. While
in the case of the grooming problem the objective is to minimize the cost of the end
to end equipment into the nodes by grouping the traffic requirements. These two
objectives may be contradictory and should be balanced into a global processing of
the design of the network.

When the network topology is fixed (e.g. rings, grids, or trees) and when the traffic
pattern is also fixed (e.g. unitary all-to-all) some closed formulaes are known about
the maximum number of wavelengths required for routing or the optimal number of
oadms required in the nodes.

In the case of mesh networks (arbitrary topology), no exact solutions are known
and the detailed integer linear formulation are not efficient as they lead to excessive
computation time. Then one has to describe simpler models or heuristics to give
practical solutions.

1 Introduction

The emergence of wavelength division multiplexing (wdm) networking components allows

carriers to build metro networks provided with access and transport functionalities as well

as wide area backbone networks. The wdm technology, a variation of Frequency Division

Multiplexing for fiber optic channels, makes it possible to optimally use the optical fibers

- often already installed - by better utilizing their available capacities. This is achieved

through multiplexing several wavelength channels onto the same fiber. In wdm networks,

the huge bandwidth available on an optical fiber is divided into multiple channels. Each

channel carries bandwidth up to several gigabits per second. A minimum unit of resource
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allocation is an optical channel, which consists of a route and a wavelength assigned on

each link along the route and is called a lightpath. If wavelength translation is performed

in optical switching, then each channel may be assigned different wavelengths on each link

along the route; otherwise the wavelength continuity constraint must be satisfied on all links

along the route. Of course, two lightpaths sharing a link must use different wavelengths

on that link.

A lot of undergoing projects plan to construct networks with hundred of wdm nodes

(see 1 for instance). Planning such networks is a complex task and a lot of undergoing re-

search is currently done with emphasis on routing and grooming the traffic. Such networks

carry wavelengths paths - or lightpaths - multiplexed onto fibers. An example of a wdm

network is provided in Fig 1 with the European backbone defined in the cost239 action

[40].

Figure 1: European Project cost239 wdm Network

The equipment at the nodes consists of optical add/drop multiplexers (oadm) and fiber

or wavelength optical crossconnects (w-oxc/f-oxc). The oadms equipments realize the

1http://www.velocita.com

2



interface with the electrical layer, and the oxcs equipments realize the switching in the

optical layer.

The objective of the planning process is to minimize the size (number of input/output

ports) of w-oxc switch matrices. Indeed, each time a fiber has to be demultiplexed at a

node (extracting wavelengths from the input fiber and multiplexing them again onto the

output fibers of the f-oxc), a w-oxc of size equal to the number of wavelengths included

in the fiber has to be used. Current wdm technology multiplexes fibers with more than

a hundred wavelengths channels. Hence, the size of the w-oxc used should be (order of)

a hundred times the number of fiber ports attached to the f-oxcs. In the last generation

of equipments, the use of wavebands is also taken into consideration. The concept of

wavebands was introduced in wdm ring networks in [52, 94]. A waveband (band for short)

is made of a set of wavelengths and is routed across the nodes as a single channel, using a

single port of a waveband optical crossconnect (b-oxc) (see Fig 2 which shows an Optical

Cross Connect (oxc) for two-stage multiplexing).
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Figure 2: A 3-layer switch

Thus, if it is possible to divide the set of wavelengths into groups or wavebands (of say

8 wavelengths for instance), then, a ratio of the size of a group (8 for instance) might be
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saved in the number of ports used to switch the traffic at the b-oxc layer. Of course, this

is not possible when all the wavelengths use different lightpaths and different fibers across

the node. Therefore, the objective is to compute paths such that groups of lightpaths

use common sub-paths as far as possible, and then to map these groups onto wavebands.

This is what is called grooming, and in fact this grouping applies at different layers: wave-

lengths are groomed into wavebands and wavebands are groomed into fibers. Note that

this grooming problem is also studied in the case of grouping oc-3 or oc-12 onto wave-

lengths in sonet rings. Instead of minimizing the size of w-oxcs or b-oxcs the problem

is to minimize the number of add/drop multiplexers and optimal or near optimal solutions

were proposed for some specific problems like wdm ring networks with all-to-all uniform

traffic (see section 3.4.1).

In the following sections we will first present the wavelength routing problem and the

solution proposed in the literature. Then we will present the traffic grooming problem

and some survivability issues. Then we will conclude with the research perspectives in

this domain. We have restricted ourselves to these problems but optical routing with

converters and dynamic traffic (e.g. on-line traffic requests) are also important problems

in wdm networks.

2 Optical routing

2.1 Generalities

Our definitions and general properties are valid for graphs and digraphs. We will always

use the terms graph, path and edge, even if the right terms for digraphs should be digraph,

dipath and arc (or directed edge). If a result is valid only for graphs or digraphs, it will be

mentioned.

A traffic demand I is a multiset of ordered pairs (x, y) ∈ V × V . All demands are as-

sumed to be unitary. Actually, a demand with bandwidth b corresponds to b unit demands.

This is equivalent to say that demands are splittable.

The optical routing problem is usually considered as the combination of two classical

combinatorial problems:

- Routing : each traffic demand has to be assigned a path. The set of such paths is

called a routing R for (G, I);

- Coloring : each path in R has to be assigned a wavelength, in such a way that any

two conflicting paths (i.e. sharing an edge) are assigned different wavelengths;

- The goal is to minimize the total number of wavelengths used. We denote this

minimum possible number by w(G, I).
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The conflict graph of (G, I,R) is defined as the graph C(G, I,R) whose vertices are

the paths in R and where there is an edge connecting two paths iff they share an edge.

We thus have to find a vertex coloring for C(G, I,R). Somehow, w(G, I) is the minimum

chromatic number among all possible conflict graphs: w(G, I) = minR χ(C(G, I,R)). Due

to the relation with vertex coloring, we use the term color instead of wavelengths, and we

say that we color the paths.

2.1.1 Path coloring problem

The Path Coloring Problem2 consists in coloring the paths once a routing R is fixed. We

denote w(G, I,R) = χ(C(G, I,R)) the minimum number of colors needed to color the

paths of R in G. The Path Coloring Problem corresponds to the usual vertex coloring

problem, restricted however to a specific class of graphs: namely the path intersection

graphs. Those have been studied for long in the literature. For cycles they are called

circular arc graphs and their coloring has been studied extensively [104, 65, 70]. Golumbic

and Jamison [56] have also studied the case of undirected trees. They proved that this

problem is equivalent to multigraph edge coloring. At last, Chlamtac, Ganz and Karmi [22]

showed that, whenever G contains a large mesh, it is possible to define a set of paths such

that the resulting conflict graph is simply any given graph. In the general case, the Path

Coloring Problem is thus exactly the vertex coloring one.

Note that the Path Coloring Problem has some practical issues. First, due to tech-

nological constraints, the routing may be fixed in advance. Second, most of the existing

optical routing algorithms are made of two steps: one that computes a routing and one

that color then the paths. Note finally that in the case of tree networks, the optical routing

reduces to the Path Coloring Problem, since there is only one “good” routing.

2.1.2 Routing

For two steps algorithms, designing a “good” routing is quite relevant. As it is not easy to

figure out what a good routing is (no simple property ensures that a routing R minimizes

χ(C(G, I,R)), the following criteria is used : the maximum edge load.

The load of a routing R is the maximum number of paths sharing some edge, denoted by

π(G, I,R). As w(G, I,R) ≥ π(G, I,R) for any routing R, solving the minimum maximum

edge load problem can be of first importance for optical routing. We call it the Minimum

Load Problem: finding a routing R such that π(G, I,R) is minimum. This optimum value

is denoted by π(G, I).

The classical routing problem consists in deciding if a set of requests in some capaci-

tated network is feasible or not. In the case of uniform capacity, the question is what is the

2also called Wavelength Assignment Problem (WAP)
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minimum capacity value such that the requests can be satisfied, which corresponds actu-

ally to finding the minimum load of a routing. As we will see, the minimum load problem

is NP-hard, but it can be approximated often quite well. Indeed, whenever π(G, I) suffi-

ciently large compare to |E| by rounding randomly a fractional solution with the routine

of Raghavan and Thomson [89].

Let us mention finally that finding an optical routing using k colors is equivalent to

solving a routing problem for some induced graph mainly made of k copies of the initial

graph. This equivalence is of little practical importance in general, since the induced

routing problem is an edge-disjoint path problem, which is very hard to solve. Nevertheless,

it is quite useful for multicasting instances of requests, or in the case of multifiber networks.

2.2 General hardness results

Most of the hardness results in this area rely on the hardness of the two sub-problems that

we have defined: the Path Coloring Problem and the Minimum Load Problem.

2.2.1 Exact computation

The oldest hardness result is due to Fortune, Hopcroft and Willie, and in [44] they proved

that deciding if two given requests can be routed in a directed network along edge-disjoint

paths is NP-hard. In other words, on directed network the feasibility of the integral

multicommodity flow problem is NP-hard, even with two unit commodities. This means

that the optical routing problem is NP-hard even for directed networks with |I| = 2.

For undirected networks, an analogous result, proven by Even, Itai and Shamir [41],

states that finding k edge-disjoint paths for k given requests in some undirected network is

NP-hard. Therefore the optical routing problem is NP-hard for undirected networks, even

if w(G, I) = 1. Note that this last result is somehow optimal: from the results of Robertson

and Seymour [93], k edge-disjoint paths can be found in time f(k).|E| in any undirected

graph with |E| edges (f(k) being extremely large). Note also that Jarry [62] proved that

for symmetric directed graphs the situation is similar, that is: the multicommodity flow

with bounded traffic k can be solved in time f(k).|E|.
Since optical routing is a specific edge-disjoint path problem, it follows that optical

routing on undirected or symmetric networks is solvable in polynomial time when the

traffic is bounded.

The case of specific topologies was first discussed by Erlebach and Jansen [36]. They

proved that the optical routing problem in directed trees and cycles is NP-hard, by reducing

it to the circular arc graph coloring. Note that this result does not hold when w(G, I) is

bounded, since then a usual dynamic programming method allows to compute w(G, I) in

time nO(dw) for bounded degree trees and for cycles.
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In [37] they extended their hardness results to directed symmetric trees, cycles and

grids. The hardness holds even when w(G, I,R) = 3: they proved for trees that finding an

optical routing using at most 3 colors is NP-hard. Their reduction relies on the fact that

the optical routing problem reduces to multigraph edge coloring.

More generally, the optical routing problem is polynomial whenever the associated edge-

disjoint path problem is so. For more results on the complexity of the edge-disjoint path

problems on specific topologies, we refer to the book edited by Korte, Lovász, Prömel and

Schrijver [67], and to the chapter of A. Frank [46].

2.2.2 Hardness of Approximation

Most of the hardness proofs for specific topologies do not extend to any hardness result

about the approximability of the optical routing problem. For directed trees and cycles,

the question of approximating w(G, I) is tightly related to approximating circular arc graph

coloring, and this question remains open.

For undirected trees, the question reduces exactly to multigraph edge coloring.

For a general directed network, Jarry [62] proved that deciding if there exists an optical

routing using only one color in some given (G, I) where G has |V | = O(k2) vertices, or if

at least k colors are necessary, is NP-hard. It follows that w(G, I) cannot be approximated

within a factor less than |V |1/2. A similar result for undirected networks is still to be found.

2.3 Relation between w and π(G, I)

The relation between the two parameters w and π is hard to capture. For some topologies

the ratio w/π is bounded, while for others we may have π >> w. Some trivial bounds exist

still.

First, if a routing uses some paths of length at most L, then the maximum degree

of C(G, I,R) is less than L.(π(G, I,R) − 1). From Vizing’s theorem [105], w(G, I,R) ≤
L.(π(G, I,R) − 1) + 1. Hence w(G, I) ≤ L0.(π(G, I) − 1) + 1, where L0 is the minimum

length such that there exists a minimum routing using paths of length at most L0.

A refined analysis due to Aggarwal et al. [1, 2] proves that w(G, I) ≤ 2π(G, I)
√

|E|.
Indeed, as for any routing it holds that

∑

Load(e) ≤ |E|.π(G, I,R) =
∑

Length(P ),

the corresponding conflict graph contains at most
√

|E| paths with length greater than√
E.π(G, I) and each other path has at most

√

|E|.π(G, I) conflicts. Such high degree

vertices in the conflict graph are colored each with one new color, and the coloring is

completed by applying the above method with L0 =
√

|E|.
The above upper bound on w(G, I) is somehow the best possible since the authors also

provided a pathological example (G, I) for which w = Ω(π · min {L,
√

|E|}). Many other
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pathological examples are based on this construction, we shortly describe it.

s1

s2

s3

s4

t4

t3

t2

t1

Figure 3: Pathological instance in the mesh-like network.

In [7] Beauquier proposed an extension of this pathological case to directed networks.

Such an example is still to be found for symmetric directed networks. He also used the

large gap between π and w in the mesh-like network to prove another counter-intuitive

result: minimizing w and π may be opposite goals. His network has O(k2) nodes. Then,

on one hand any optimal routing requires at least k.w colors and on the other hand any

optimal coloring induces a load of at least k.π(G, I).

2.4 Links with connectivity

The usual measure of the network connectivity allows to derive some (weak) bounds on w.

We denote λ(G) the edge connectivity and we refer to [28, 10] for basics on connectivity

and its relations with single-commodity flow and edge-disjoint routing.

Recall that Shiloach and Tarjan [97] proved that any instance I of requests can be

routed along edge-disjoint paths if λ(G) ≥ k, k = |I|. Note that this theorem follows quite

simply from Edmons theorem [32], which states that if the connectivity of a vertex r is k,

then k edge-disjoint directed spanning trees rooted in r can be found in polynomial time.

An immediate consequence of those theorems is the following: for any directed network

G and any instance I, an optical routing using less than d|I|/λ(G)e colors can be found in

polynomial time.

2.5 Links with edge expansion and distance parameters

Some general results were derived by considering any instance as a subset of a k-relation.

In the directed case a k-relation is an instance such that a node is the source of at most

k requests and the destination of at most k requests. In the undirected case a k-relation
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is such that every node is involved in at most k requests. Any instance is a k-relation

for a suitable k (namely the maximum vertex degree in the traffic graph). In the case of

directed networks, a k-relation can be considered as the union of k permutations (using

the Kœnig-Hall theorem on matching decomposition of bipartite graphs).

In his thesis [87] and in [88], Pankaj proved that some bad permutations may need many

colors. The idea is to construct an instance I such that the average distance between a

source and a destination is large. This average is computed according to a Moore-like

estimation of the size of a ball of radius d centered at some vertex: the number of vertices

at distance less than d is at most
∑d−1

i=0 ∆i = ∆d−1
∆−1

≤ ∆d. This leads to the existence of a

permutation instance such that w(G, I1) ≥ π(G, I1) ≥ blog∆ N/2c
2δ

.

In the case of vertex-transitive graphs, Pankaj [87] derived a stronger result: applying

the automorphism group allows to find a permutation instance in which each vertex is

connected to an antipodal vertex. It follows that there exists a permutation instance I1

such that w(G, I1) ≥ π(G, I1) ≥ D
∆

. Note that this bound is somehow optimal since the

antipodal permutation x → x + 111 . . . 111 in the hypercube can be routed with only one

color and has some average edge load equal to 1.

Most of the general upper bounds on w(G, i) rely on the fact that w(G, I) ≤ L(R)π(G, I,R)

for any routing using paths of length at most L(R), so we present results dealing about

routing with small load and short paths.

For instance, a general relation was proven by Raghavan and Upfal, providing some

estimation of w from the edge expansion of the graph. Their work was inspired by another

on edge-disjoint paths by Broder et al. (see the survey [48] or [16]). They constructed

a routing by connecting each source to its destination via a random walk of appropriate

length L. The transition matrix of the random walk is Q where qij = 1/di for (i, j) ∈ E,

qij = 0 otherwise, and qii = 1/2. The limit distribution of this chain is P (x = x0) =
d(x)
2|E|

on the vertices, and it is uniform on the edges. The mixing time of the random

walk is driven by λ the largest absolute eigenvalue of Q different from 1. By choosing

L ∼ log (kn)/ log (λ), they ensure two properties: first, there exists a walk of length L

connecting any source to any sink; second, for any edge the actual load is almost the

expected load, that is Lk|V |/|E| ≤ Lk. We refer to Jerrum and Sinclair works on rapidly

mixing Markov chains [98].

They obtained thus a routing along paths of length L forcing a load kL, and an optical

routing using O(kL2) colors.

Results from spectral graph theory (see the book of Chung [23]) put in relation λ and the

edge expansion of a graph. The edge expansion is defined as β = maxS⊂V,|S|≤|V |/2|S|/Γ(S).

It can be remarked that nβ approximates very well the maximum load l of a cut for the

all-to-all instance: l = maxS⊂V |S||S|/|Γ(S)|. It is known that λ provides an estimation
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for β(G). Indeed, 1 − O(β−1) ≤ λ ≤ 1 − O(β2).

By applying this relation, Aggarwal et al. obtained w ≤ L2k ≤ k(log2 n)β2. Using a

construction similar to that of Figure 3, it was also proved that their bound was quite

tight since for any β ≤ 1 and any 1 ≤ k ≤ N , there exists a planar directed graph and a

k-relation Ik such that w(G, Ik) = Ω(k/β2).

Leigthon and Rao [73] proved a similar result for directed networks: for any bounded

degree symmetric directed graph and any permutation, there is a polynomial algorithm

to find a routing with load O(log N/β) using path of length O(log N/β). Aumann and

Rabani [4] used this result to prove that any k-relation can be routed with k log2 n/β2

colors.

Note that the upper bound for undirected graphs, w(G, Ik) ≤ k log2 nβ2, relies strongly

on a property of the Laplacian of undirected graphs, and on the semi-definite property of

this matrix. No similar result is known for directed graphs. Still pathological cases can be

constructed, proving that there exist instances such that w(G, Ik) = Ω(k/β2)). Similarly

the symmetry hypothesis is essential in the Leigthon and Rao’s work. Similar results are

still to be found for general directed networks.

2.6 Broadcasting (one-to-all) and multicast (one-to-many) in-
stances

A set of request is called a broadcasting in G = (V,A) if I = {(u0, v)}v∈V (G) for some u0.

The following immediate bounds on w(OTA(u0), G) where given by Bermond et al. [15]:

first w(OTA(u0), G) ≥ N−1
d(u0)

(where d(u0) denote the degree or the outdegree of u0) moreover

w(OTA(u0), G) ≤ dN−1
λ(G)

e. Note that for superconnected regular graphs (such that λ(G) =

d) we have w(OTA(u0), G) = d.

From Mader and Hamidoune work [79], edge-transitive graphs are superconnected, and

many other Cayley graphs belong to that class.

The generalization to the case of any graph due to Beauquier et al [8], states that optical

routing is solvable in polynomial time for any multicast instance. Moreover w(G, IM) =

π(G, IM) since the proof shows that w(G, IM) is the maximum load of a cut.

2.7 Gossiping (all-to-all) Instances

We recall that the so called Gossiping or all-to-all is IA = V (G) × V (G). First, the

complexity of optical routing for the all-to-all instance is still open. Note that the only

related problem for which there exists a hardness result is the the minimum load problem:

Saad proved it to be NP-hard via a quite complex reduction in the case of vertex load. The

case of edge load is still open. The load of a all-to-all routing had been largely studied.
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First Chung [24] studied the minimization of the vertex load for a all-to-all instance,

and named this parameter the vertex forwarding index. The edge load in directed and undi-

rected version was studied by Heydemann et al [58, 57]. More recently π(G, IA) had been

proven to be closely related to the edge expansion of G, namely π(G, IA) = O(log(|V |)n/β).

Note that most of the results linking routing with the edge expansion can be interpreted

from Linial et al. [77] work on graph embedding into low dimensional spaces, which implies

that for an instance I, π(G, I) is a most log(|I|) the load of the most weighted cut.

The good news are that π(G, IA) can be quite well approximated by randomized round-

ing, and that for Cayley graph it is equal to the average load
∑

x,y d(x, y)/|E|.
Many papers proved that w(G, IA) = π(G, IA) for specific networks, but no general result,

neither positive or negative, had been derived. The question whether or not w(G, IA) =

π(G, IA) for the all-to-all instance is still open. Does the equality hold for any graph? For

a sub-class of networks (like edge transitive graph, or edge transitive Cayley graphs)? The

only evidence for w 6= π comes from weighted graphs. In a weighted graph, each vertex is

given a positive integer weight w(x) and all-to-all is then defined as establishing w(x)w(y)

paths between the vertices x and y. Any weighted graph all-to-all instance can be easily

transformed into an equivalent instance on a graph when the weights are > 0. There exist

weighted graphs for which w(G, IA) 6= π(G, IA) but they use vertices with weight 0.

The equality w(G, IA) = π(G, IA) had been proven when G is

- an undirected Cycle (Bermond et al. [15] and independently Wilfong [108]); a

symmetric directed cycle [15]

w(CN , IA) = π(CN , IA) = dbN 2/4c/2e

- the n dimensional undirected hypercube (Pankaj [87] or Bermond et al. [15])

- The n dimensional symmetric directed hypercube Hn

w(Hn, IA) = π(Hn, IA) = 2n−1.

- the Cartesian sum K(n1, n2, . . . , nd) of complete graphs (Beauquier ?? or see [103,

102] for some slightly weaker results) w(K(n1, n2, . . . , nd), IA) = π(K(n1, n2, . . . , nd), IA) =
∏d

i=1 ni

- the Cartesian product of directed symmetric cycles (tori)

w(Cd
n, IA) = ~π(Cd

n, IA) = nd+1/8, if n is even

~π(Cd
n, IA) = (n2 − 1)nd−1/8 ≤ w(Cd

n, IA) ≤ (n + 1)d+1/8 = w(Cd
n+1, IA)if n is odd

(Beauquier [6])

11



- the Cartesian product of symmetric directed paths (grids)

w(P d
n , IA) = ~π(P d

n , IA) = nd+1/4, if n is even

~π(P d
n , IA) = (n2 − 1)nd−1/4 ≤ w(P d

n , IA) ≤ (n + 1)d+1/4 = w(P d
n+1, IA)if n is odd

- a directed tree, indeed the result holds for weighted trees (Gargano et al [49])

- a tree of rings 3 (Beauquier et al. [9] generalize the case of trees).

Note that in the undirected case π(G, IA) 6= w(G, IA) since a simple subdivided star

provide an example with π = 20 and w = 24. Indeed no scheme computing an optical

routing for all-to-all instances in undirected trees is known.

2.8 Specific Topologies

Since the optical routing problem is hard to solve on a general network, a lot of work had

been devoted in order to provide efficient (approximation) algorithm or negative results for

specific topologies. Most of the work focused on very simple networks like cycles, trees or

grids. Since these networks are the blocks commonly used to build real life networks those

results have strong practical impact.

2.8.1 Trees

As already claimed, the optical routing problem in trees reduces to the Path Coloring

Problem, or the vertex coloring problem of path intersection graph on a tree. The simplest

tree is a path, note that in that case we have to color an interval graph. Such a problem

is polynomial and can be solved by a greedy algorithm (which could be seen as a trivial

dynamic programming algorithm) that would proceed from left to right. Another simple

tree class is the star. In that case, the situation differs in the directed and undirected case.

In the case of undirected trees, Golumbic et Jamison [55, 56] proved that coloring a

path intersection graph based on a tree is equivalent to coloring the edges of a multigraph.

Indeed coloring some paths of a star is equivalent to multigraph edge coloring (since any

path is adjacent two edges). Then coloring path of a tree can be reduced to solving several

multigraph edge coloring. Note that the equivalence proven is extremely strong, optical

routing in undirected trees is solving a sequence of multigraph edge coloring on auxiliary

graphs. In some sense any result on edge coloring can be applied immediately. It fol-

lows that the problem is NP-hard even on a star, then existing results on multigraph edge

3A tree of rings is any graph made up by a union of cycles such that two cycles intersect in at
most one vertex and such that two distinct vertices can be connected by exactly two edge-disjoint paths
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coloring can be applied: Tarjan [100], and later Raghavan and Upfal [90] used Shannon

theorem [95] (see [43] for a nice presentation) which provides a 3
2

approximation for multi-

graph edge coloring, to derive a 3/2 approximation for optical routing in trees. Then it was

observed in [82] that one could get an asymptotic 9/8 approximation from Goldberg edge

coloring algorithm [53, 54], last from Nishizeki and Kashiwagi [84] algorithm, Erlebach et

Jansen [36] provided a 1.1 approximation scheme.

It is not known if the asymptotic approximation ratio can be 1 or not, since the only

negative result is that deciding if w = 3 or 4 is NP-complete.

In the directed case the situation is quite different. One can prove that the optical

routing problem is equivalent to decompose the edges of a bipartite graph into a minimum

number of matchings (see for example [7]). From König-Hall theorem, we know that the

edge set can be decomposed into exactly ∆ matchings where ∆ is the maximum degree

of a vertex. Since ∆ = π(S, I) we conclude that the problem is polynomial and that

w(S, I) = π(S, I). The idea can be generalized to star subdivision (which are tree having

only one vertex with degree ≥ 3).

For general trees the problem is NP-hard:

- even if w(T, I) = 3 , (tree with unbounded degree) (from Erlebach and Jansen [36]

or Kumar et al. [69]);

- in binary trees ( [37, 69] or tree with depth 2 [69] (in both cases the load is unbounded)

Using dynamic programming one can prove that the problem is polynomial if the in-

stance is bounded, or if the set of request class (two requests connecting the same vertices

being considered as equivalent) is bounded. The particular case of a bounded tree being

addressed in [69].

Remark: Note that in the undirected case the problem do not depend on the tree

depth since one can color each substar and combine the solutions without adding any new

color. In that case, the hard part of the problem consist in being able to color locally the

paths crossing a star. In the directed case, coloring a star is easy, but the hard part is to

combine the local coloring obtained.

Several papers considered the problem of providing an approximated solution to the

optical routing problem on directed trees. Mihail, Kaklamanis et Rao [82] first derived a

15π(T , I)/8 approximation scheme. Kaklamanis et Persiano improved it to a 7/4 approx-

imation [63] (independently found by Kumar et Schwabe in [71]), then this factor was

improved to 5/3 by Erlebach et al. in [39, 38].

All those papers use variations of the same “greedy” technique: the idea is to operate

from top to bottom coloring the paths intersecting a star and propagating the constraints
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downward. This leads to a constrained edge coloring problem in a bipartite graph (see for

example [64]). The results proven were indeed stronger since it was actually proven that

w ≤ ρπ.

For binary trees, a simplified version of the algorithms was given again with an approx-

imation ratio of 5/3 ( [19] and [61]). Furthermore 5/3 ratio is believed to be the best

asymptotic ratio since there exists an instance such that π = 3 et w = 5. Moreover it was

proven by the authors that for any “greedy” algorithm, there exists an instance such that

the algorithm will return a solution with cost a least (5/3 − ε)(π).

Later two different approaches improved those ratios. The first is due to Caragiannis

et al. [18] and is based on fractional coloring. Fractional coloring consists in covering the

paths with set of independent paths, the goal being to minimize the total weight used

(number of colors). It is tightly related to the maximum independent set problem, which

in the case of path intersection graph reduces to find maximum number of requests that

can be routed via edge disjoint paths. This problem named Maximum Routing problem

was proven by Jansen et al. to be polynomial on bounded degree trees, but NP-hard on

general trees.

The authors proved that fractional coloring in bounded degree trees is polynomial. They

also use a randomized rounding of a fractional solution to derive a 1+5/3e approximation.

They showed that for path intersection graph on the binary tree the fractional chromatic

number is at most 7
5
π.

The second approach due to Auletta et al. [3] used a randomized algorithm. It still

operates from top to bottom but instead of fixing completely the coloring. It determines

a probability distribution on the colorings. It provides a 7
5

randomized approximation

scheme for optical routing in binary trees.

One open question is to understand better those two approaches since one can probably

be considered as a randomized rounding version of the other.

The question about the worst ratio between π and w is still open. An easy example

based on a weighted C5 proves that we can have w ≥ 5/4π even for w → ∞, on the other

hand we know that w ≤ 5/3π.

2.8.2 Cycles

For cycles, when the routing is fixed (Wavelength Assignment Problem) the problem re-

duces to the classical circular coloring problem which is NP ([56]) and for which no neg-

ative result hold concerning its approximation. The first approximation algorithm was

designed by Tucker (and it’s relation with a specific multi commodity flow presented).

Then Karapetyan [65] derived a 3
2

approximation scheme (note that this result remained

almost unknown for at least 10 years) since the number of color used is at most b3ϕ/2c,
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where ϕ is the size of the maximum clique. Until Karapetyan result was known the best

algorithm was due to Shih et Hsu [96] providing a 5/3 approximation. Note also that if the

path set is proper (no path is a strict subpath of another) the problem becomes polynomial

(Bonuccelli and Bovet [86]).

Recently, Kumar proposed a randomized algorithm [70] based on the relaxation of

Tucker multicommodity flow modelisation, and using a randomized rounding to obtain

an integral solution. The approximation ratio is 1 + 1/e ' 1.37, with high probability

when log |I| = o(π(G, I)). Note that relaxing Tucker multicommodity flow consists indeed

in solving the fractional coloring problem for the set of paths. This approximation ratio

seems quite pessimistic since branch and bound strategies based on solving the relaxed

fractional problem converge very fast toward the optimal even for large values of w. After

solving many instances we still have to find one for which w is greater than the optimum

of the relaxed problem + 1. One can find a related result in [20].

When the routing is not fixed, we have some additional freedom since we can choose

between different paths to connect x and y. Erlebach et Jansen designed some instance so

that the routing becomes fixed, reducing the problem to the standard arc circular coloring

problem [36], [109].

A trivial 2-approximation is obtained by coloring all the paths crossing an edge with

l(e) colors and all the other with π colors since the problem is then on a path, see [90] for

the undirected case and [82] for the directed one).

Since the routing problem and the optical routing problem are quite related, let us

mention a nice min-max result of Wilfong and Winkler [109]. They proved that one can

route requests on a cycle with an optimal load π(Cn, I) that is almost equal to the maximum

load of a cut. The corresponding result in the undirected case is due to Frank et al. [45, 47],

and follows from a more general result of Okamura and Seymour [85] that states that multi

commodity flow in planar graph can be solved in polynomial time when the sources and

sinks are located on the outer face of the graph.

Note that, even if the routing problem can be solved exactly, this do not yield an

immediate approximation algorithm with a ratio better than 2. Indeed there exists a

simple (see /citeBeau00) instance such that w = 2π. So π is not an accurate indicator for

w.

2.8.3 Grid

From a result of Kramer et van Leeuwen [68] dealing about the complexity of VLSI

design one can deduce that the routing problem is NP-hard for grids, and that finding a
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2-approximation is also NP-Hard.

Aumann and Rabani [4] proposed a O(log N log |I|w(G, I)) approximation scheme. It is

based on an oracle that find an approximated maximum set of requests that can be routed

using edge disjoint paths (the technique is quite analogous to the one which colors a graph

by greedily picking maximum independent sets). Using Kleinberg and Tardos result [66]

that provides for a class of graphs including the grids a constant approximation for the

maximum routing problem Rabani improved that result to O(log N).

2.9 Summary of the results on Optical routing

In this section we summarize the results presented in this survey.

Relation between w and π
Instance Topology Relation

Any Any w ≤ 2π
√

|E| (tight)

Directed pathological network Pathological w = O(2π
√

|E|)
One-to-all Any w = π
All-to-all Hypercubes, Tori, Trees of rings, Grids w = π
Any Directed trees w ≤ 5

3
π

Pathological Directed trees w ≥ 5
4
π

Pathological Directed trees w = 5, π = 5
Any Sub divided stars w = π
Undirected or symmetric cycle Pathological w = 2π

Relation with connectivity parameters
Instance Topology
Any λ connected graph |I|/λ(G)

k-relation Undirected Graph with edge expansion β w ≤ k(log2 n/β2)
k-relation Undirected Graph with edge expansion β open
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Complexity of Optical Routing
Instance Topology

Any Any ρ ≥ n1/2

One-to-all Any Polynomial
All-to-all Any Unknown
All-to-all Undirected trees Unknown
All-to-all Cayley Graphs Unknown
Any Directed trees ρ ≤ 1 + 5/3e, ρ 6= 1
Any Cycles ρ ≤ 1 + 1

1/e
ρ 6= 1

Any Cycles Routing fixed (WAP) ρ ≤ 1 + 1
1/e

ρ 6= 1

Any Undirected trees Multigraph edge coloring
Bounded Traffic |I| ≤ k Directed and symmetric or undirected Polynomial
Bounded Traffic |I| ≤ k Undirected ρ 6= 1

Complexity of Fractional Optical Routing
Instance Topology
Any Any ρ ≥ nε

Any Any Polynomial
Any Bounded degree trees & Bounded treewidth Polynomial

2.10 k-fiber networks

Recently a special case of the optical routing problem where each edge is replicated k

times as been addressed. This problem was introduced in order to model the fact that in

telecommunication networks a fiber is usually carried by a cable containing several fibers,

so practically the network is a multigraph in which each edge is replicated several time.

In the k-fiber model it is assumed that each edge is replicated k times. If we call kG the

multigraph obtained from G by replicating each edge k times, the k fiber optical routing

problem can be considered as a classical optical routing problem on kG. But this way

of doing is not providing interesting results since as k grows the k-fiber problem becomes

much easier to solve than the general optical routing problem. So some work has been

directed toward proving stronger results for the k-fiber model.

Note that, Ferreira et al. [42] proved that the problem of deciding if an optical routing

using w color exists in a k fiber network remains NP-complete for any value of k and w.
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2.10.1 Relation with π

Since the k-fiber optical routing problem is more constrained than routing in a network

with capacity k it follows that wk(G, I) ≥ dπ(G,I)
k

e. Note also that wk(G, I) ≤ dw(G,I)
k

e since

any set of paths that can be colored with k colors in the 1-fiber model can be colored with

a single color in the k-fiber model. So we have dπ(G,I)
k

e ≤ wk(G, I) ≤ dw(G,I)
k

. We will

focus on the ratio π(G,I)
kwk

which measures the efficiency of the optical routing (kwk is the

maximum capacity provided by a link, while π(G, I) is the minimum capacity needed to

carry the traffic). Intuitively wk(G, I) should be upper bounded by π(G,I)
k

(1 + g(k)) with

g(k) → 0 when k → ∞.

Note that the efficiency can grow dramatically, as for example there exist instances

such that wk(G, I) = n and wk+1(G, I) = 1 (see [81]).

Li and Simha [75] considered the case of 2-fiber stars and proved that w2(P ) = dπ(P )/2e.
They used a result from Ramaswami et al. [91] which shows that paths can be directed

so that the load induced on the associated symmetric directed star is at most dπ(P )/2e,
as for directed stars w = π the directed path can be colored with dπ(P )/2e colors, then on

any edge at most 2 paths are assigned the same color (one in each direction). They also

considered the 2-fiber ring, they proved the optical routing problem to be NP-hard, and

using Seymour et al. result [85] (which allows to find a routing with minimum load), and

the fact that any set of path can be colored with at most 3π(P )
4

colors they provided a 3/2

approximation.

Janos and Simons studied this property for cycles and trees [81], they proved that

for any undirected star S and any k ≥ 2 the equality wk(S, I) = dπ(S, I)/ke holds, and

that for ring networks wk(S, I) = (1 + 1
k
)dπ(S, I)/ke (note that this result can be seen

as consequence of Tucker work [104] and was also proven by Li and Simha [75]). They

also constructed specific instance on tree for which wk(T, I) ≥ (1 + 1/k)π(G, I)/k), and on

cycles wk(C, I) ≥ (1 + 1/(k − 1))π(C)
k

. Note that the results on the cycle are assuming a

fixed routing, so they deal about paths coloring.

2.10.2 Reduction to routing in a network with capacity c

Recall that deciding if there exist an optical routing with p colors can be reduced to the

feasibility of an edge disjoint path routing problem in an associated network, the associated

network being made of p copies of G and each copy representing one color.

For the k-fiber problem this construction can be adapted but the associated routing

problem has then to be solved in a network with capacity k, when k grows this problem

tends to be much easier to solve than an edge disjoint path problem. As example Bask-

iotis et al [5], using Raghavan and Thomson randomized rounding technique proved that

wk(G, I) ≤ π(G, I)(1+O(
√

log|E|
k

)) when k > log2/3 |E|, moreover the algorithm can be de-
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randomized easily. So in some sense as soon as k is relatively large (k > log|E|) there exist

a 2-approximation scheme, and the approximation gets better when k grows. Rivano and

Coudert [29] also studied the practical efficiency of this multi commodity flow relaxation

and considered how wavelength conversion could be integrated in the relaxation.

The question on how large k must be so that good approximation schemes exists is

open.

2.10.3 Modelizing the conflicts

One can model the path conflicts in a k-fiber network using a conflict graph, but in that

case the routing of an instance must be given in the multigraph kG even if it is quite clear

that only the routing in G is relevant. In order to be able to express the optical routing

constraint from a routing in G one need to model the fact that on an edge at most k paths

can be assigned the same color.

Given a set of paths (a routing) R to be colored under the k-fiber hypothesis we define an

hypergraph coloring problem on an associated hypergraph denoted H(G,R). H(G,R) has

as vertex set the set of paths, and to each edge of G we associate an hyperedge in H(G,R)

which contains all the paths crossing that edge. Note that if we replace each hyperedge

by a clique we obtain the conflict graph C(G,R) defined for optical routing. The path

coloring reduces then to the following hypergraph coloring problem : find a vertex coloring

so that in any hyperedge each color appear at most k times (this approach was introduced

in [42] by Ferreira et al.).

Note that when k = 1 all the vertices appearing in the same hyperedge are given

different colors, which means that in that special case the hypergraph coloring reduces to

color C(G,H, I).

2.10.4 Path coloring problem

We consider now the path coloring variant, in which the routing is fixed. For a set of path

P we denote wk(P ) the minimum number of color needed to color the paths under the k

fiber hypothesis.

As in the non routed case we have dπ(P )/ke ≤ wk(P ) ≤ dw(P )/ke.
Margara and Simon [80] proved that for any fixed network G there exist a value of

k0(G) such that for limitπ(P )→∞wk(P )/dπ(P )
k

e = 1.

The result is coming from the finiteness of G, indeed since G is finite one can show

that any subset of path P with high enough load can be partitioned into two subsets

P1 and P2 such that the π(P ) = π(P1) + π(P2). It follows that any set of path P can

be decomposed using a finite ground set {P1, P2, . . . Pp} called prime sets of paths. That

is P = α1P1 ∪ αP2 ∪ αpPp with
∑

αiπ(Pi) = π(P ), where αiPi means taking αi times
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the set Pi. Then choosing k0 as the smallest common divisor of the numbers π(Pi) we

obtain that the set αiPi can be colored with dα1π(P1)/k0e colors. It follows that wk0
(P ) ≤

∑

i=1,2,...pdαiπ(Pi)/k0e ≤ p +
∑

αiπ(Pi)
k0

= p + π(P )
k

.

Note that this result if of little practical use since k0 can be extremely large (in the

case of a cycle with n nodes, on can show that prime set have load at most n − 1, so k0

can be taken as (n − 1)!/(n/2)!), moreover even when k ≥ k0 the result only states that

wk(G,P ) ≤ π(G)/k + p, and the number of prime sets can be extremely large.

Rivano [92] also studied the problem and used hypergraph coloring results (based on

(hypergraph coloring algorithm by Liu [78], and on variation of lovatz local lemma due

to Srinivasan [74]) to derive approximation schemes, they proved if Lmax is the maximum

length of a path then for k ≥ log Lmax

2
there exist a randomized scheme which colors the

paths with π(P )/k(1 + o(1)) colors.

2.10.5 Fixing w and minimizing k

Note that the k fiber problem open some new perspectives, especially when the routing is

fixed, since then one need to color a set of paths so that at most k paths share a given

edge, this can be seen as a covering problem with set of path of load k. Studying the

relation between wk and π/k consist then in finding how well can the load be balanced if

we partition the paths into c subsets. Which lead to the next approximation problem :

given c partition a set of path P into c sets P1, P2, . . . Pc such that maxI=1,2,...cπ(Pi) (or
∑

I=1,2,...c π(Pi)) is minimized.

3 Traffic Grooming

Traffic grooming refers to techniques used to combine low speed traffic streams onto high

speed wavelengths in order to minimize the network-wide cost in terms of line terminating

equipment and/or electronic switching. Such techniques become increasingly important for

emerging network technologies, including sonet/wdm rings and mpls/mpλs backbones

[99], for which traffic grooming is essential.

The general traffic grooming problem being NP-complete [21], recent works focus on

specific issues. Most of the algorithms aim at grooming traffic in such a way that all the

traffic between any given pair of nodes is carried on a minimum number of wavelengths

(efficient use of the fiber, see section 2). However, a large part of the cost depends on the

size of the multiplexing equipment required at each node. Hence, in order to minimize the

overall network cost, algorithms have to take into account a tradeoff between the number

of wavelengths used and the number of required (optical) Add-Drop Multiplexers (adms)

[51, 114].
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In the following subsections a general definition of the problem as well as proposed

solutions are presented.

3.1 The General Traffic Grooming Problem

A comprehensive survey of the literature concerning the general traffic grooming problem

is presented in [30]. Given the traffic demand matrix between pairs of nodes in a network

represented by a directed graph and a fixed capacity per wavelength, the traffic grooming

problem involves the following conceptual subproblems [30]:

1. virtual topology: find a set of lightpaths requests for the traffic demands (Recall a

lightpath is a path associated with one wavelength). A traffic demand may have to

use several consecutive lightpaths to cross the network (multihop);

2. lightpath routing and wavelength assignment: solve the Routing and Wavelength As-

signment problem on the virtual topology of lightpaths requests found in step 1;

3. traffic routing: route each traffic stream through the lightpaths.

Actually, these three steps are not independent and a global optimization should be

processed.

The authors then attempt to give an Integer Linear Program (ilp) formulation of the

grooming problem for illustrative purpose. No wavelength conversion is assumed, i. e. the

same wavelength is assigned to a lightpath throughout the path it follows. Three relevant

objectives for traffic grooming have also been identified by the authors:

1. Total number of lightpaths. The cost to be minimized corresponds to the expensive

electronic equipment required at the extremities of each lightpath, i. e, the number

of sonet add-drop multiplexers (adms) for ring networks, or the number of oxc

ports for a mesh topology.

2. Network wide amount of electronic switching. Instead of counting a unit of cost each

time a lightpath is terminated, this objective takes into account the number of traffic

streams carried by the lightpath.

3. Maximum number of lightpaths terminating/originating at a node. This model aims

to minimize the electronic switching at the node where it is maximum.

A mathematical ilp formulation for the Traffic Grooming problem for optical mesh

(actually networks with arbitrary topology) networks is also given in [115], where the

authors seek to maximize the total successfully-routed traffic. Thus, even if the network

resources are insufficient to allow all the traffic demands to be successfully routed the ilp

gives a solution maximizing the network throughput.
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3.2 Traffic Grooming with Multi-Layer Switches

This model proposed in [60] assumes a network with arbitrary topology in which the data

is transmitted in a set of hierarchical optical containers, for example, wavelengths are

included in bands and the bands, in turn, in fibers. Each level in the hierarchy, also called

a layer, is mapped to a specific switching cost. This hierarchical network model has been

defined in the French RNRT project porto with inputs from its industrial partners. The

use of wavebands [72] allows to reduce the size and complexity of optical crossconnects at

the nodes.

The multi-layered approach introduces the concept of a Pipe which is used to represent

traffic switched within the same layer throughout the path it follows. The model in the

paper is restricted to the two layers sub-problem: pipes of layer l are considered as traffic

demands that must be carried by pipes of layer l + 1 which are to be designed.

Fiber BandWavelength

N_0

N_1
N_2 N_3 N_4

N_6

N_5

Figure 4: A grooming example

To illustrate what a pipe is, let us consider Fig. 4. We observe that some traffic is

carried on the network within the same layer on certain sub-paths. This is the case of

demand N1 → N6 that crosses the network in the band layer and never has to be processed

by a w-oxc. The sequence of bands from N1 to N6 forms a band-pipe. Another band-

pipe exists from N0 to N4. Note that there is also a fiber-pipe running from N2 to N4.

The grooming algorithm decides the way pipes of lower layers are included in pipes of

upper layers. A different grooming could have been done by multiplexing N0 → N6 and

N1 → N6 at node N2 and this would have led to a different set of pipes. Usually one

considers that f-oxcs are much less expensive than b-oxcs and that b-oxcs are in turn,

much less expensive than w-oxcs. Hence the grooming algorithm has a strong influence
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on the cost of nodes. Note that the wavelength-continuity constraint along a pipe has not

been considered since it is assumed that a good grooming algorithm leads to a simpler

wavelength assignment problem. However it is easy to add this constraint to the model.

Roughly speaking a pipe is a lightpath in a wdm model where conversion is allowed, but

the optical channel is not necessary a wavelength but could be a band, a fiber or any kind

of container defined in the network nodes.

3.3 Traffic Grooming Heuristics

As stated earlier the traffic grooming problem has been shown to be NP-complete and the

ilps proposed in [30, 115, 60, 72] become extremely difficult to solve for large scale networks

due to the unbounded increase in their size and complexity. Hence several heuristics have

also been proposed in the literature to groom traffic efficiently.

1. Maximizing Single-Hop Traffic (MST) [115]: This simple heuristic seeks to establish

single lightpath hops for the traffic demands as far as possible and the demands are

considered in the order of their magnitudes. The lightpaths are routed along the

shortest path between source and destination, subject to wavelength availability and

node equipment constraints. If no more single hop lightpaths can be established, the

remaining demands are routed based on the virtual topology network state created

so far.

2. Maximizing Resource Utilization (MRU) [115]: This heuristic seeks to maximize the

average traffic per wavelength link. The ratio of the traffic demand size and the

physical hop distance between the source and the destination is used to determine

the priority of the demand for routing. The procedure is the same as for MST except

for the manner of assigning priorities to traffic demands.

3. Grouping lightpaths with the same destination [72]: This is applied to networks using

wavebands. To construct the wavebands, the lightpaths having the same destination

are grouped together since then there would be no need to ungroup them before the

destination. The lightpaths are first routed. This is followed by grouping lightpaths

in the same class (corresponding to one destination) into wavebands.

4. Pipe filtering[60]: taking all the subpaths of existing demands as the set of potential

pipes is leading to hard integral linear program as this set is too large. The main

goal is to discard any long pipe that would in any case be almost empty. In order

to eliminate such pathological pipes one use an evaluation function f that given a

pipe, its length l and the maximum amount of traffic t that it can use, assigns a pipe

grade f(l, t). All pipes receiving a grade lower than mingrade are discarded. Note
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that by tuning the value mingrade the selectivity of this process can be adjusted (as

an example we can keep 10 percents of the best pipes).

Another efficient heuristic is to limit the number of split allowed per demand (i.e. the

number of different pipes that will carry that demand from source to destination).

The first two heuristics have been compared to the optimal solution (in terms of the

ilp formulated) [115]. However one may like to compare the performance of the last to

the optimal grooming solution for a given routing. The multi-layered ilp gives the optimal

solution for a given routing (considering 2 layers at a time) in a hierarchically layered

network and this can be used to test the efficiency of grooming the routed lightpaths by

common destination.

Apart from these solutions proposed for grooming traffic, a novel approach to this

problem is of improving the routing of the traffic demands itself so that the grooming can

be done efficiently.

3.4 Traffic Grooming in Unidirectional Rings

Because much of previous physical layer network infrastructure was built around Syn-

chronous Optical NETwork (sonet) rings, a lot of research has been done for that specific

case of topology (see the surveys [83, 31]). Let recall that by using traffic grooming, one

can bypass the nodes electronics for which there is no traffic sourced at this node or des-

tined to it. Instead of having one sonet Add Drop Multiplexer (shortly adm) on every

wavelength at every node, it may be possible to have adms only for the wavelength used

at that node (the other wavelengths being optically routed without electronic switching).

It is well known that even for this simple unidirectional ring network the number of

wavelengths and the number of adms cannot be simultaneously minimized (see [50], or

[21] for uniform traffic). Furthermore, given a traffic matrix expressed in some units of a

bandwidth (for example OC-3) where ri,j units have to be transmitted from i to j, the

solution will depend on the routing used and how connections are assigned to wavelengths.

So, the general problem is even more difficult.

3.4.1 Unidirectional Ring and all-to-all traffic

In the following, we consider the particular case of unidirectional rings (the routing is

unique) with static uniform symmetric all-to-all traffic (that is ri,j = 1 for all couples

(i, j)) and with no possible wavelength conversion.

In that case, for each pair {i, j}, we associate a circle (or circuit) which contains both

the request from i to j and from j to i. If each circle requires only 1
C

of the bandwidth of

a wavelength, we can “groom” C circles on the same wavelength. C is called the grooming
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ratio (or grooming factor). For example, if the request from i to j (and from j to i) is

one OC-12 and a wavelength can carry an OC-48, the grooming factor is 4 as 4 OC-12

can be multiplexed into an OC-48. The objective is, given the grooming ratio C and

the size N of the ring, to minimize the total number of (sonet) adms used, denoted

A(C,N), and so reducing the network cost by eliminating as many adms as possible from

the “no grooming case”. For example, let N = 4 ; we have 6 circles corresponding to the

6 pairs {0, 1} , {0, 2} , {0, 3} , {1, 2} , {1, 3} , {2, 3}. Without grooming (one wavelength per

request) we will have to use 2 adms per circle, and thus a total of 12 adms. Suppose

now that C = 4. One way can be to groom on wavelength 1 the circuits associated to

{0, 1} , {1, 2} , {2, 3} , {3, 0} requiring 4 adms and on wavelength 2 the circuits associated

to {0, 2} and {1, 3} requiring 4 adms. So a total of 8 adms. A better way is to groom

the circuits associated to {0, 1} , {0, 2} , {0, 3} using 4 adms and those associated with

{1, 2} , {1, 3} , {2, 3} using 3 adms and a total of 7 adms.

This case might appear very particular but it has been considered by many authors

[21, 31, 50, 51, 59, 106, 107, 112, 113, 114] and numerical results, heuristics and tables have

been given (see for example that in [107]). It presents the advantage of concentrating on

the grooming phase (excluding the routing). It can also be applied to groom components of

connections more general than two opposite pairs into wavelengths or more general classes.

These components are called circles [21, 114] or circuits [107] or primitive rings [26, 27].

Ideas of design theory can be used to obtain optimal or quasi-optimal results improving

some of the preceding results of the literature and unifying them [13]. Indeed it is possible

to use the vast effort and the numerical results obtained in the last century in design theory

[25], without reinventing them. Note that design theory was also used in [26, 27] for C = 8.

3.4.2 Other studies for Rings

In the case of unidirectional rings with arbitrary asymmetric traffic requirements the design

theory proposed above does not applies. Integer Linear Programs mixed with heuristics

[107] or genetic algorithms are proposed [111].

In the case of bidirectional rings, a first step is to determine the routing (clokwise or

counterwise) but this goes against the protection scheme of sonet rings: in case of link

failure the protocol uses the opposite direction. We introduce some survivability issues in

the next following section.

4 Network survivability

Network survivability [110] (i.e. the ability to recover traffic affected by failures) is becom-

ing a key issue in the design of ultra-high capacity networks based on wdm technology.
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The survivability against equipment or link failure consists in computing new routes for

the demands affected by a failure; thus the optical layer must be over-dimensioned.

Two survivability schemes can be implemented : protection or restoration. Protection

can be done by using a pre-assigned capacity between nodes in order to replace the failed

or degraded transport entities.

On the other hand, restoration can be realized by using any capacity available between

nodes in order to find a transport entity that can replace the failed one. Furthermore,

restoration is based on re-routing algorithms to find a new path to recover failed network

entities, at the time the failure occurs.

Dividing the network into independent sub-networks provides an intermediate solution

for survivability. Indeed it allows resource sharing within the limits of a given sub-network,

and uses of fast automatic protection in case of failure [101]. The ring topology is often

chosen as sub-network since it minimizes the complexity of the routing problem with full

survivability for any single failure. Indeed we use on the cycle half of the capacity for

the demands and in case of failure we reroute the traffic going through the failed link via

the remaining part of the cycle using the other half of capacity. It will be interesting to

get very small cycles as subnetworks as they are more easy to manage and less costly to

reroute. Also, we will associate a wavelength to each cycle (in fact two: one for the normal

traffic and one for the spare one). Furthermore this cycle should satisfy the disjoint routing

cycle (DRC) property, implying that it is embedded in an elementary cycle of the physical

graph.

The general problem can be summarized as follows: Find a covering of the edges of a

logical graph H by subgraphs Hk, such that, for each Hk, there exists in the physical graph

G a disjoint routing of the edges of Hk and such that the cost of the network is minimized.

The aim is to minimize the cost of the network; that is a very complex function depend-

ing on the size of the adms put in each node, the number of wavelengths (associated to the

subnetworks) in transit in each optical node and a cost of regeneration and amplification

of the signal. In a first approximation, some authors reduce it to minimize the number

of cycles of the covering ; other minimize the sum of the number of vertices of the rings ;

other insist on using very small cycles in the covering [76, 35],[17, 33, 34] and [50].

When the physical graph is a ring this corresponds to minimize the number of subgraphs

Ik in the covering (as there is a unique physical path associated to a request). In [12,

11, 14] the problem is fully solved for the case where the physical graph is a ring and the

logical graph is the complete graph (corresponding to an all-to-all communication pattern).

Furthermore it is shown that the cycles can be chosen to be of length at most 4.
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5 Future Challenges

One of the main practical issue would be to refine the modelization of wdm networks in

order to take into account the diversity of the problems: coloring, grooming, routing and

survivability. More experimentations should be done in order to validate the proposed

models and the efficiency of the algorithms.

Regarding theoretical aspects, a lot of problems remain unsolved.

In the case of the grooming problem, most of the results presented here assume a static

traffic input of the problem, except in very specific hypothesis like in [51, 114]. The case

for dynamic instance of traffic should be considered, especially in adequation with gmpls

internet backbones. However, even in the static case, the grooming problem in mesh

network is open. In particular, we want to study the impact of routing over grooming,

and simple instances of traffic such as multicast or traffic with limited number of sources.

Moreover, even for simple models like [13, 60] no approximation algorithm is known.

In the case of optical routing, many open problems are mentioned in section 2, among

them let recall:

• generalization of results only known for undirected network to directed network;

• Good bounds for the all-to-all instance are to be found. Indeed for many usual

networks the optimum number of colors is simply the load parameter, which is easy

to approximate. However no relation between the number of colors and the load has

been proved in that case;

• for simple networks like trees, rings, or grids finding practical algorithms computing

an almost optimal solution ( 1 + ε approximation ratio for trees and rings, constant

approximation ratio for grids) is an important question. Obviously if such algorithms

do not exist it remains to be proved.
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coloring with applications to wdm networks. In ICALP 01, pages 732–743, 2001.

[19] I. Caragiannis, C. Kaklamanis, and P. Persiano. Bounds on optical bandwidth allocation on
directed fiber tree topologies. In Proc. of IPPS’97, 2nd Workshop on Optics and Computer
Science (WOCS’97), Geneva, Switzerland, April 1997. IEEE Press.

[20] C. T. Cheng. A new approximation algorithm for the demand routing and slotting problem
with unit demands on rings. In Proc. of the International Workshop on Approximation
Algorithms for Combinatorial Optimization (APPROX’99), volume 1671 of Lecture Notes
in Computer Science, pages 209–220. Springer-Verlag, 1999.

[21] A. L. Chiu and E. H. Modiano. Traffic grooming algorithms for reducing electronic multi-
plexing costs in WDM ring networks. Journal of Lightwave Technology, 18(1):2–12, January
2000.

[22] I. Chlamtac, A. Ganz, and G. Karmi. Lightpath communications: An approach to high
bandwidth optical WAN’s. IEEE Transactions on Communications, 40(7):1171–1182, July
1992.

[23] F. R. K. Chung. Spectral Graph Theory, volume 92. CBMS, American Mathematical
Society, 1997.

[24] F. R. K. Chung, E. G. Coffman, M. I. Reiman, and B. E. Simon. The forwarding index of
communication networks. IEEE Transactions on Information Theory, 33:224–232, 1987.

[25] C. Colbourn and J. Dinitz, editors. The CRC handbook of Combinatorial designs. CRC
Press, 1996.

[26] C. Colbourn and A. Ling. Wavelength add-drop multiplexing for minimizing SONET
ADMs. Discrete Applied Mathematics, to appear.

[27] C. Colbourn and P-J. Wan. Minimizing drop cost for SONET/WDM networks with 1
8

wavelength requirements. Networks, 2001.

[28] W J. Cook, W H. Cunningham, W R. Pulleyblank, and A. Schrijver. Combinatorial Opti-
mization. John Wiley & Sons, 1998.

[29] D. Coudert and H. Rivano. Lightpath assignment for multifibers wdm optical networks with
wavelength translators. In Globecom’02, Taipei, Taiwan, November 2002. To be published.

[30] R. Dutta and G. N. Rouskas. Traffic grooming in WDM networks: Past and future. Tech-
nical Report CSC Technical Report TR-2002-08, NCSU, 2002.

[31] R. Dutta and N. Rouskas. On optimal traffic grooming in WDM rings. IEEE Journal on
Selected Areas in Communications, 20(1):110–121, January 2002.

[32] J. Edmonds. Edge-disjoint branchings. In R. Ruskin, editor, Combinatorial Algorithms,
pages 91–96. Algorithmic Press, NY, 1972.

29



[33] T. Eilam, S. Moran, and S. Zaks. Approximation algorithms for survivable optical networks.
In The 14th international Symposium on Distributed Computing (DISC), pages 104–118,
2000.

[34] T. Eilam, S. Moran, and S. Zaks. Lightpath arrangement in survivable rings to minimize
the switching cost. IEEE Journal on Selected Areas in Communications, 20(1):172–182,
January 2002.

[35] G. Ellinas, A. Hailemariam, and T. Stern. Protection cycles in mesh WDM networks. IEEE
Journal on Selected Areas in Communications, 18(10):1924–1937, 2000.

[36] T. Erlebach and K. Jansen. Scheduling of virtual connections in fast networks. In Proc. of
4th Workshop on Parallel Systems and Algorithms (PASA’96), pages 13–32. World Scien-
tific, 1996.

[37] T. Erlebach and K. Jansen. Call scheduling in trees, rings and meshes. In Proc. of 30th
Hawaii International Conference on System Sciences (HICSS’97), volume 1, pages 221–222.
IEEE Computer Society Press, 1997.

[38] T. Erlebach, K. Jansen, C. Kaklamanis, M. Mihail, and P. Persiano. Optimal wavelength
routing on directed fiber trees. Theoretical Computer Science, 221(1–2):119–137, 1999.

[39] T. Erlebach, K. Jansen, C. Kaklamanis, and P. Persiano. Constrained bipartite edge color-
ing with applications to wavelength routing. In Proc. of 24th Internat. Colloq. on Automata,
Languages and Programming (ICALP’97), volume 1256 of Lecture Notes in Computer Sci-
ence, pages 493–504. Springer-Verlag, 1997.

[40] P. Batchelor et al. Ultra high capacity optical transmission networks : Final report of action
COST 239. Technical Report ISBN 953-184-013-X, Faculty of Electrical Engineering and
Computing, HR, Zagreb, 1999.

[41] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity flow
problems. SIAM Journal of Computing, 5(4):691–703, December 1976.
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