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ABSTRACT 

This article presents a multi GPU adaptation of a specific Monte 

Carlo and classification based method for pricing American basket 

options, due to Picazo [1]. The first part relates how to combine fine 

and coarse grained parallelization to price American basket options. 

In order to benefit from different GPU devices, a dynamic strategy of 

kernel calibration is proposed, and contributes to the dynamic split of 

GPU calculus. Our implementation achieves a realistic size option 

pricing in less than one hour against more than 7 for a multi CPU 

cluster-based solution. After an analysis of possible bottleneck 

effects, we distribute the sequential bottleneck due to the training 

phase. For this we rely upon Random Forests classification method 

which is suited to parallelization. We show through tests that the 

obtained parallel pricing algorithm is scalable. 
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1. INTRODUCTION: GPUS IN FINANCE 
Many financial measures require huge resources to be computed in 

acceptable time. “Acceptable” is related to specific context: Value at 

Risk may be performed to forecast the maximum loss of a given 

portfolio at a two weeks horizon whereas computing hedging 

portfolios is often dedicated to intraday operations. The difficulty not 

necessarily depends on computation methods but on engaged 

financial instruments. For instance, a portfolio can be composed of 

several financial instruments and which can vary from a simple asset 

to option on several assets. In this paper, we focus on pricing one 

instrument: an American option, which for being realistic, is based 

upon a basket of up to 40 assets. The difficulty to price an American 

option is to predict an exercise frontier to consider all possible 

exercises times until the maturity date. Furthermore, model 

parameters such as discretization, number of simulations, complicate 

computation time. Our previous work [2] highlights the necessity to 

target GPU rather than distributed CPUs to provide the same 

performance with alleviated resources. By this way we price complex 

American basket options, in the same order of time than a 64 cores 

cluster of CPU implementation [3], which is around 8-9 hours. 

However a single GPU is limited for such complex problems. 

Targeting cluster of GPUs is the natural following step to benefit of 

both aggregated memory of their host CPUs, and high parallelism of 

SIMT architectures. 

The paper makes the following contributions. First we propose a two-

level CPU/GPU parallelization of the Picazo pricing algorithm. Then 

we perform a dynamic load balancing strategy to exploit 

heterogeneous multi GPU clusters. Finally we show how to integrate 

Random Forests [4] in our pricing engine to make it better scale: we 

propose a distribution of the classifier training and a GPU based 

implementation of the classification. 

We will describe in section 2 a multi GPU implementation to price 

such financial instruments through Picazo method. At a coarse-

grained level, we will focus on the parallelism orchestration across 

the cluster nodes. Then we will explain our fast dynamic strategy to 

calibrate kernel parameters in parallel, and use them in a load 

balancing solution for heterogeneous multi-GPU clusters. Finally at a 

fine-grained level, we will detail the SIMT oriented implementation. 

In section 3, we will expose our strategy to tackle the bottleneck 

effect of the sequential learning phase, by using Random Forests 

rather than AdaBoost or SVM (Support Vector Machine). We are 

able to parallelize it over CPU nodes, each node training a small 

Random Forest. Doing so, we obtain a fully parallel pricing 

algorithm. The two approaches will be compared through several 

tests. 

2. A GPU CLUSTER BASED OPTION 

PRICING ENGINE 
Here we describe a Java implementation of the selected pricing 

method due to Picazo. We use the JOCL [5] and OpenCL [6] 

libraries to exploit distributed GPUs. Through a dynamic strategy we 

recognize GPUs over nodes and adapt kernel parameters before load 

balancing main computation phases. Tests reveal bottleneck effect 

due to building phases of classifiers and necessity to parallelize them 

as exposed in section 3. 

2.1 Picazo pricing algorithm 
High dimensional American basket call/put option is a contract 

allowing the owner to buy/sell at a specified strike price K, a possibly 

high size (e.g. 40) set of underlying assets Si
t (numbered i) at any 

time t until a maturity date T. So a call option owner expects the 

basket of assets price on the market to raise over strike, as in this case 

and according to the option contract, the owner will have to spend 

less money to buy these assets, i.e. to exercise the option. There is no 

analytic solution to price this financial instrument but Monte Carlo 

(MC) methods, based on the law of large number and central limit 

theorem, allow a simplified approach for high complex problems, 

reaching good accuracy in reasonable time. Consider St
(s) as 

independent price trajectories of the basket of assets following 

geometric Brownian motion processes, Ѱ (f (St
(s)), t) as the option 

pay-off, f as the arithmetic or geometric mean function, r as the risk 

free rate. European option price V at time zero can be estimated, 

through a number of MC simulations nbMC, as follows 
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As opposed to European contracts, American ones offer more 

flexibility for the exercise: it can be performed at any time until the 

maturity date, and this over all discrete times. This is reflected in the 

mathematical definition below 
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continuation value at time tm, noted C in Figure 1, i.e. the forecasted 

option price at tm+1. The option owner will keep it, if its forecasted 

price is over the benefit of immediately exercising it, i.e. the payoff. 

Picazo method exposes an efficient way to define continuation or 

exercise regions, separated by a frontier named exercise boundary, by 

combining a machine learning technique with MC methods. The 

algorithm is shown in Figure 1. We note d the basket size, δi and σi 

respectively the dividends and volatilities of the i = 1..d underlying 

assets, N the discrete time number. 

 

 

Figure 1. Picazo pricing method and the two parallelization levels 

(in rectangles) 

The key pricing method strategy is to call a specific classifier per 

discrete time during the nbMC simulations of the final pricing phase 

[phase 2], to decide if current simulation must be stopped or not, i.e. 

if simulated prices reach or not an exercise region. To achieve this, 

we need during a previous phase [phase 1], to train each classifier 

[step 2] over nb_class training instances. Each training instance is 

composed of simulated underlying asset prices and a boolean, 

depending on if the option payoff is over or not an estimation of the 

continuation value. Each continuation value requires nb_cont MC 

simulations [step 1]. Consequently there are nb_cont MC simulations 

needed per training instance. 

2.2 Distribution orchestration for coarse-

grained parallelism 
Our parallel version of the Picazo pricing algorithm introduces two 

degrees of parallelism as Figure 2 depicts. The first level follows a 

master-slave approach. We use the Java ProActive library [7] which 

offers an abstraction of distribution management by introducing the 

concept of Active Object. By this way, during the detection phase 

described in part I of Figure 2, whose role is to dynamically detect 

what are the available computing resources, we deploy as many 

active objects as cluster nodes and discover the number of residing 

CPU cores and GPUs per node. In our pricing strategy, more than 

workers, we require a merger to gather intermediate results. Finally 

during this initialization phase illustrated in part II, we allocate the 

merger active object on the node with the fewer GPUs and there will 

be as many workers active objects as GPUs. Running multiple 

workers to exploit GPUs on a single node will not significantly 

impact performance because workers jobs are GPU intensive. 

Part III details the orchestration of the training instances computation 

for each classifier. To estimate a continuation value per training 

instance, a worker launches nb_cont MC simulations on its GPU. 

The merger recovers all training instances from workers to train a 

new classifier. This classifier will be used during MC simulations of 

final pricing phase, but also during MC simulations of continuation 

values. Therefore the merger broadcasts the trained classifier to all 

workers, at each time loop iteration. Once all classifiers are trained, 

each worker is distributed a subset of MC simulations to estimate the 

final price as part IV depicts. 

 

 



 

Figure 2. Parallelism orchestration of the Picazo pricing method 

 

2.3 Kernel parameters calibration and load 

balancing 

2.3.1 Dynamic kernel parameters calibration 
Targeting GPU programming implies to cope with a wide variety of 

GPUs. To ensure high multiprocessor occupancies for each worker, 

we must calibrate kernel parameters, i.e. work-group size and global 

size. For this, we provide a Java class which imitates the CUDA 

occupancy spreadsheet. Before starting the first step of the pricing 

algorithm, each worker, in charge of one GPU device, computes 

theoretical multiprocessor occupancies for all possible work-group 

sizes: from the warp size up to the maximal work-group size allowed, 

increased by warp size. As required in the spreadsheet, some device 

specifications are required: each worker detects shared memory 

amount per multiprocessor, maximal work-group size, generates the 

program compilation log to parse used registers. Different kernel 

configurations can describe same multiprocessor occupancies, for 

instance 4 work-groups of 32 threads against 2 of 64. In such case, 

our program will keep the one offering more work-groups, to reduce 

waiting time between them (as each work-group would be given a 

smaller simulations number to perform). As intermediate calculus to 

deduce the multiprocessor occupancy, the theoretical active work-

group number by multiprocessor is estimated, and will be reused to 

fix the total threads number to: work-group size multiplied by 

number of active work-group per multiprocessor multiplied by 

number of multiprocessors on the device. This strategy allows a fast 

estimation of kernel parameters for each of the detected GPUs to 

ensure a high multiprocessor occupancy without launching any 

preliminary fake pricing calculations. 

2.3.2 GPU cluster load balancing 
The estimated total number of threads per GPU is used as a criterion 

to load balance the calculus on the GPU cluster. Indeed, a high-end 

graphic card capable of launching twice as many threads than another 

will be given twice as many MC simulations. We set the subset of 

nb_class and nbMC for a given worker W as follows 
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[TABLE I] highlights our dynamic split strategy over a 

heterogeneous GPU-based cluster. Grid5000 [8] provides sufficient 

CPU and GPU resources to perform intensive tests. On Grid5000, 

each cluster node can directly interact with other cluster nodes, i.e. 

without having to traverse a cluster front-end node. Thus, virtually all 

Grid5000 nodes form a single heterogeneous cluster. Each node of 

the Grenoble Adonis cluster has 2 E5520 CPUs and 2 NVIDIA Tesla 

S1070. The Lille Chirloute cluster includes 3 Tesla M2050 and each 

node has 2 E5620 CPUs. Each node of the Lyon Sagittaire cluster 

holds 2 AMD Opteron 250. These sites are connected with 10Gbit/s 

optical fibers. We launch respectively 10 and 3 workers on the 

Adonis and Chirloute clusters. The merger is executed on a single 

node from the Sagittaire cluster. The dynamic kernel parameters 

calibration is activated on both tests, and estimates as best parameters 

<total threads number, work-group size>, for respectively Tesla 

S1070 and Tesla M2050, <5760, 64> and <7168, 64>. We disable 

the dynamic split in the first test by fixing the same subset of 

nb_class and nbMC for all GPUs. On the contrary, second column 

features better performances due to the use of the simple yet efficient 

load balancing strategy. 

Table 1. Comparison of two algorithm phases execution times (in 

seconds) with Adaboost classifier. Geometric average American 

call option, d=40, K=100, N=50, T=1, r=3%, δi=5%, σi =40%, 

nb_class=5000, nb_cont=10^5, nbMC=2x10^6, 150 boosting 

iterations/decision stumps 

 
no dynamic 
calibrated 

split 

 dynamic 
calibrated 

split 

Total duration of training 
instances computations  

Figure 1 [phase 1][step 1] 
3502,2s 3320,4s 

Final pricing time           
Figure 1 [phase 2] 

3,7s 3,5s 

 

2.4 Fine-grained parallelism with OpenCL 
Each worker computes a subset of nb_class training instances and 

requires for each to estimate a continuation value through nb_cont 

MC simulations, c.f. Figure 1 line 6. MC simulations are launched 

through an OpenCL kernel function. There are as many parallel 

simulations on the GPU as threads iterating to provide the nb_cont 

simulations. Difficulty of pricing American option is the random 

length of simulations: a classifier can predict the exercise region is 

reached at any time before the maturity date. Consequently we cannot 

forecast the required random variables number and we use the GPU 

based Random Number Generator MWC64X [9] to generate at 

runtime only required variables. At each discrete time of a single 

simulation, a thread generates as many uniform random variables as 

underlying assets, performs the Box Muller transformation to retrieve 

the Gaussian values, simulates the underlying assets prices, call the 

specific classifier, and finally computes the actualized payoff, adds it 

to a variable allocated in a register, and start a new simulation. 

This random stopping time leads to some threads finishing earlier 

their simulations than others. A “warp”, for NVIDIA architecture or 

“wavefront” for AMD, is the smallest quantity of threads that are 

issued with a SIMT instruction. Because threads of the same warp 

cannot perform at the same time different instructions, some of them 

will block at the main loop condition if they perform short 

simulations (as dictated by the classifier call). These unwanted 

synchronizations lead to low occupancy of the multiprocessor. That’s 

why we cannot simply iterate over the same fixed number of steps for 

all threads when computing the nb_cont simulations. Consequently 

each thread computes after nbStepsBeforeReduction time steps and 

through intermediate reductions (parallel sums), how many MC 

simulations have been achieved (see further details in [2]). This is 

repeated by each thread until at least the total number of MC 

simulations needed for getting a continuation value has been 

achieved. 

We kept in mind all recommendations of the GPU device 

programming guide to avoid possible performance losses. In 

particular, (1) coalesced access allow threads to get asset prices from 

global memory in few instructions, (2) we employ constant cached 

memory to store read-only values such as volatilities or dividends, 

and (3) perform the intermediate parallel reductions in shared 

memory. Specific tests revealed that even a high number of 

reductions for summing do not impact global execution time. 

Classifiers used during Monte Carlo simulations are previously 

created and trained on the CPU by the merger with the Weka library 

[10]. Since OpenCL does not allow advanced library call, each 

worker needs to work with a serialized version of the Weka Classifier 

object obtained at kernel launches. The two possible classifiers from 

Weka we experimented with, AdaBoost and SVM, part of Weka 

library were slightly modified to retrieve all private members of 

Weka object and only cope with basic structures in OpenCL. Then all 

of them are transferred to the global memory to imitate the Weka 

classify call on the GPU. At the end, we can afford to imitate the 

original Weka behavior with basic structures, and store as many 

classifiers as discrete times in arrays. During a kernel execution, 

threads work with position indexes to access in parallel different 

classifiers to predict the stopping times. 

2.5 Experimental tests 

 

Figure 3. Comparison of algorithm phases execution times with 

AdaBoost classifiers over workers numbers. The pricing 

parameters are the same than previously (see TABLE 1) 



Figure 3 depicts execution times on the Adonis cluster, of parts III 

and IV as illustrated in Figure 2. Parts I and II are not specified here 

due to their small execution times, and possibility to reuse the 

resulting active objects deployment for multiple program runs. The 

option price of a single run is around 0.64108 ± 0.0015, which is a 

reference price according to [3]. Times of training instances creations 

and final pricing phases include calculus and broadcast/merge 

operations from/to the merger. We fall below 1 hour when 

performing tests over 18 workers (i.e. GPUs). Tests reveal linear 

dependence of workers numbers with the computation part of each 

phase, but managing more workers complicates broadcast/merge 

operations and slowdowns their respective overall time. Because the 

merger sequentially trains each classifier through the Weka library 

and does not solicit workers, the implementation is not scalable. 

When increasing workers number, the training instances computation 

time decreases, and consequently tends to vanish in comparison to 

the constant time of the classifiers training. AdaBoost and SVM are 

based upon iterative algorithms during the learning phase, which are 

thus not parallelizable. The idea is to choose an alternate 

classification method, i.e. the Random Forests method, whose 

learning phase could be parallelized. 

3. RANDOM FORESTS INTEGRATION FOR 

FAST CLASSIFIER TRAINING 
We focus here on the integration of Random Forests in our pricing 

engine. Experimental tests will illustrate the scalability of our 

implementation, thanks to the parallelization of the learning phase. 

3.1 Training Random Forests over cluster nodes 
When distributing the Random Forests trainings, we decided to 

preserve the Weka behavior: the idea was to train in parallel small 

Random Forests with the same buildClassifier() call as it was for a 

single larger one. The Weka library was slightly modified so that the 

original Random Forest and the one obtained after merging all 

smaller forests built by workers provide strictly identical 

classification measures. By this way, we can train in parallel subsets 

of a Random Forest over cluster nodes (Figure 4). As complementary 

optimization, we decided to exploit the last Weka library version 

affording parallelization over CPU cores. For this, only one worker 

per node is in charge of a sub classifier to benefit of all CPU cores 

for the training. 

 

Figure 4. Two-level parallelization of the Random Forest 

training. Each subClassifier is trained over the detected CPU 

cores through the Weka library 

We set the Weka parallelization degree of each node with the number 

of detected CPU cores. A simple load balancing mechanism affords 

each worker W to build a specific subset nbTreesW of the total 

number nbTreesCLASSIFIER of trees of a Random Forest, such as 

CLASSIFIER
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P

W

W nbTrees
nbCPUcores
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
 

For the following tests (Figure 5), we will disable this optimization, 

in order to highlight the benefit of the training distribution over 

cluster nodes. Once all workers have finished, the merger retrieves all 

sub classifiers, merges them and broadcasts the trained global 

Random Forest to all workers that will use them, as explained in the 

following subsection. 

 

3.2 Parallel Random Forests classifications on 

GPU Units  
As for AdaBoost or SVM, a Random Forest classifier per discrete 

time must be serialized by the worker, and transferred to the GPU 

global memory, in order to predict the exercise boundary at this time, 

during the simulations, c.f. Figure 1 line 6 and 15. The difficulty 

comes from the storage of the trees that are indeed incomplete. Only 

an experimental solution is provided by the JOCL team, to transfer 

tree structures to the device, so we had to imagine one solution that 

fits our needs. To cope with sparse tree storage, we work with 

compressed arrays representation. Once workers are broadcasted the 

merged global Random Forest, they parse all trees, retrieve and queue 

node information in specific arrays for the compression. Indeed 

considering all trees, there is an array for split values, another one for 

attribute indexes. We store indexes of tree roots in a dedicated array. 

Finally, we work with a left children indexes array and a right 

children indexes array, to imitate tree parsing when classifying 

instances in OpenCL. As for AdaBoost and SVM, we queue all the 

classifier representations in the same specific arrays to be accessed 

for each discrete time, complicating indexes management. 

3.3 Experimental tests 

 

Figure 5. Comparison of algorithm phases execution times with 

Random Forest classifiers of 150 unlimited depth trees, over 

workers numbers. The pricing parameters are the same than 

previously and global execution times correspond to the situation 

where training of classifiers is distributed 

The option price of a single run is around 0.63651 ± 0.0016 which is 

in line with the expected value. Tests are executed on the Adonis 

cluster, and working with such Random Forest parameters (150 trees) 

affords to reach the same order of confidence interval than AdaBoost 

tests presented in 2.5. The training instances creations (~3h13min 

with 18 GPUs) require more time than with AdaBoost (~53min with 

18 GPUs) due to the cost of Random Forest classification. Indeed, to 

classify an instance, a GPU thread will take more time to parse the 

150 unlimited depth trees, rather than the 150 one-level decision 

trees of the AdaBoost classifier. Conversely, we take advantage of the 



distributed CPUs during the classifiers trainings, to let the algorithm 

better scale. 

4. RELATED WORK 
Regarding the fine tuning for GPU configuration, Grauer and 

Cavazos present an auto-tuning implementation in [11] to produce 

the configuration that minimizes local memory accesses against 

registers and shared memory. Since they play with data partition sizes 

via changing the maximum occupancy, the strategy allows finest 

kernel parameters calibration but requires more calculus. Raphael Y. 

de Camargo [12] describes a load distribution algorithm for 

heterogeneous GPU cluster to reduce the total execution time of his 

neuronal network simulator. To estimate each quantity of data input 

assigned to each GPU, he formalizes the problem to a linear system 

of equations. Some variables in the system represent the execution 

time functions of each kernel on each GPU over input sizes. This 

requires each kernel to be executed a few times on each GPU, with 

different input sizes to get the interpolation function. This can spend 

a lot of time and become inconvenient in case of several types of 

GPUs, and compute-intensive kernels. Our dynamic strategy to 

calibrate kernel parameters, with no preliminary simulations, allows a 

fast comparison of the parallelism degrees of each GPU for a given 

kernel. Although it does not consider the program behavior with all 

implementation details such as branch divergences, non-coalesced 

memory accesses, our approach is not closed to a specific problem 

and is more generic. 

In [13] is presented CudaRF, a CUDA-based implementation of 

Random Forests. During the training phase, each thread constructs a 

tree of the forest. It could be used within our ProActive-based 

distributed training phase so that huge Random Forests could benefit 

of a dual-level of parallelism offered at both worker and GPU sides. 

However, having a GPU thread handles one single tree of the forest 

during the classification phase, is not suited to our algorithm. We 

cannot afford to exploit at a specific time the entire device for a 

single instance, as our implementation exploits SIMT architecture to 

call simultaneously possibly different classifiers, depending on the 

discrete time reached by each thread. 

5. CONCLUSION 
Our works propose a multi GPU based implementation of Picazo 

method to price complex American options, allowing pricing time to 

fall below 1 hour with 18 GPUs (against almost 10 hours on a 64 

cores cluster). To fully exploit the dual-level of parallelism of such 

architecture, we distribute the training instances computation over the 

cluster nodes and solicit the SIMT architecture of each detected 

device to parallelize all the Monte Carlo simulations of the algorithm. 

Our fast parallel strategy to estimate kernel parameters of devices can 

be adapted to a wide range of GPUs to target from any cluster: as 

such it allows us to easily involve heterogeneous GPUs for solving 

the pricing in parallel. The integration of Random Forests, tackles the 

sequential bottleneck effect due to the classifiers trainings by 

parallelizing them, but slowdown the training instances creations due 

the expensive classification. Working with more GPUs (100+) than 

in our experiments, would further decrease the computation 

operations but increase broadcast/merge operations, impacting the 

overall pricing time. Thus, to face this only remaining bottleneck 

effect, we could implement a broadcast ring, and merge operations 

could be parallelized along a tree of workers. 

It would be exiting to take advantage of high end CPUs (Xeon Phi) if 

available on the cluster, to perform part of the Monte Carlo 

simulations. By relying on OpenCL in our pricing engine, it already 

abstracts the hardware architecture. The only point to consider in 

order to take advantage of such hybrid hardware environment is to 

extend our dynamic calibration and load balancing strategy. A natural 

exploitation of our work is to evaluate a portfolio of such complex 

assets, which is an ongoing task. 
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