
American Basket Option Pricing on a multi GPU Cluster

Michaël Benguigui
INRIA Sophia-Antipolis Méditerranée

michael.benguigui@inria.fr

Françoise Baude
CNRS I3S, University of Nice Sophia-Antipolis

francoise.baude@unice.fr

ABSTRACT

This article presents a multi GPU adaptation of a specific Monte

Carlo and classification based method for pricing American basket

options, due to Picazo [1]. The first part relates how to combine fine

and coarse grained parallelization to price American basket options.

In order to benefit from different GPU devices, a dynamic strategy of

kernel calibration is proposed, and contributes to the dynamic split of

GPU calculus. Our implementation achieves a realistic size option

pricing in less than one hour against more than 7 for a multi CPU

cluster-based solution. After an analysis of possible bottleneck

effects, we distribute the sequential bottleneck due to the training

phase. For this we rely upon Random Forests classification method

which is suited to parallelization. We show through tests that the

obtained parallel pricing algorithm is scalable.

Keywords

Distributed and parallel computing; Grid; Cloud; GPU; OpenCL;

machine learning; mathematical finance; option pricing

1. INTRODUCTION: GPUS IN FINANCE
Many financial measures require huge resources to be computed in

acceptable time. “Acceptable” is related to specific context: Value at

Risk may be performed to forecast the maximum loss of a given

portfolio at a two weeks horizon whereas computing hedging

portfolios is often dedicated to intraday operations. The difficulty not

necessarily depends on computation methods but on engaged

financial instruments. For instance, a portfolio can be composed of

several financial instruments and which can vary from a simple asset

to option on several assets. In this paper, we focus on pricing one

instrument: an American option, which for being realistic, is based

upon a basket of up to 40 assets. The difficulty to price an American

option is to predict an exercise frontier to consider all possible

exercises times until the maturity date. Furthermore, model

parameters such as discretization, number of simulations, complicate

computation time. Our previous work [2] highlights the necessity to

target GPU rather than distributed CPUs to provide the same

performance with alleviated resources. By this way we price complex

American basket options, in the same order of time than a 64 cores

cluster of CPU implementation [3], which is around 8-9 hours.

However a single GPU is limited for such complex problems.

Targeting cluster of GPUs is the natural following step to benefit of

both aggregated memory of their host CPUs, and high parallelism of

SIMT architectures.

The paper makes the following contributions. First we propose a two-

level CPU/GPU parallelization of the Picazo pricing algorithm. Then

we perform a dynamic load balancing strategy to exploit

heterogeneous multi GPU clusters. Finally we show how to integrate

Random Forests [4] in our pricing engine to make it better scale: we

propose a distribution of the classifier training and a GPU based

implementation of the classification.

We will describe in section 2 a multi GPU implementation to price

such financial instruments through Picazo method. At a coarse-

grained level, we will focus on the parallelism orchestration across

the cluster nodes. Then we will explain our fast dynamic strategy to

calibrate kernel parameters in parallel, and use them in a load

balancing solution for heterogeneous multi-GPU clusters. Finally at a

fine-grained level, we will detail the SIMT oriented implementation.

In section 3, we will expose our strategy to tackle the bottleneck

effect of the sequential learning phase, by using Random Forests

rather than AdaBoost or SVM (Support Vector Machine). We are

able to parallelize it over CPU nodes, each node training a small

Random Forest. Doing so, we obtain a fully parallel pricing

algorithm. The two approaches will be compared through several

tests.

2. A GPU CLUSTER BASED OPTION

PRICING ENGINE
Here we describe a Java implementation of the selected pricing

method due to Picazo. We use the JOCL [5] and OpenCL [6]

libraries to exploit distributed GPUs. Through a dynamic strategy we

recognize GPUs over nodes and adapt kernel parameters before load

balancing main computation phases. Tests reveal bottleneck effect

due to building phases of classifiers and necessity to parallelize them

as exposed in section 3.

2.1 Picazo pricing algorithm
High dimensional American basket call/put option is a contract

allowing the owner to buy/sell at a specified strike price K, a possibly

high size (e.g. 40) set of underlying assets Si
t (numbered i) at any

time t until a maturity date T. So a call option owner expects the

basket of assets price on the market to raise over strike, as in this case

and according to the option contract, the owner will have to spend

less money to buy these assets, i.e. to exercise the option. There is no

analytic solution to price this financial instrument but Monte Carlo

(MC) methods, based on the law of large number and central limit

theorem, allow a simplified approach for high complex problems,

reaching good accuracy in reasonable time. Consider St
(s) as

independent price trajectories of the basket of assets following

geometric Brownian motion processes, Ѱ (f (St
(s)), t) as the option

pay-off, f as the arithmetic or geometric mean function, r as the risk

free rate. European option price V at time zero can be estimated,

through a number of MC simulations nbMC, as follows

    


 
nbMC

s

S

t

rt TtSfe
nbMC

SV
1

)(

0 ,0,
1

)0,(

As opposed to European contracts, American ones offer more

flexibility for the exercise: it can be performed at any time until the

maturity date, and this over all discrete times. This is reflected in the

mathematical definition below

   

         
mm

mm

mm tmt

ttr

mtmt

TT

StSVetSftSV

TSfTSV

 |,,,)(max,

),(,

11

1











The formula E[
   

mm

mm

tmt

ttr
StSVe |, 11

1







] defines the

continuation value at time tm, noted C in Figure 1, i.e. the forecasted

option price at tm+1. The option owner will keep it, if its forecasted

price is over the benefit of immediately exercising it, i.e. the payoff.

Picazo method exposes an efficient way to define continuation or

exercise regions, separated by a frontier named exercise boundary, by

combining a machine learning technique with MC methods. The

algorithm is shown in Figure 1. We note d the basket size, δi and σi

respectively the dividends and volatilities of the i = 1..d underlying

assets, N the discrete time number.

Figure 1. Picazo pricing method and the two parallelization levels

(in rectangles)

The key pricing method strategy is to call a specific classifier per

discrete time during the nbMC simulations of the final pricing phase

[phase 2], to decide if current simulation must be stopped or not, i.e.

if simulated prices reach or not an exercise region. To achieve this,

we need during a previous phase [phase 1], to train each classifier

[step 2] over nb_class training instances. Each training instance is

composed of simulated underlying asset prices and a boolean,

depending on if the option payoff is over or not an estimation of the

continuation value. Each continuation value requires nb_cont MC

simulations [step 1]. Consequently there are nb_cont MC simulations

needed per training instance.

2.2 Distribution orchestration for coarse-

grained parallelism
Our parallel version of the Picazo pricing algorithm introduces two

degrees of parallelism as Figure 2 depicts. The first level follows a

master-slave approach. We use the Java ProActive library [7] which

offers an abstraction of distribution management by introducing the

concept of Active Object. By this way, during the detection phase

described in part I of Figure 2, whose role is to dynamically detect

what are the available computing resources, we deploy as many

active objects as cluster nodes and discover the number of residing

CPU cores and GPUs per node. In our pricing strategy, more than

workers, we require a merger to gather intermediate results. Finally

during this initialization phase illustrated in part II, we allocate the

merger active object on the node with the fewer GPUs and there will

be as many workers active objects as GPUs. Running multiple

workers to exploit GPUs on a single node will not significantly

impact performance because workers jobs are GPU intensive.

Part III details the orchestration of the training instances computation

for each classifier. To estimate a continuation value per training

instance, a worker launches nb_cont MC simulations on its GPU.

The merger recovers all training instances from workers to train a

new classifier. This classifier will be used during MC simulations of

final pricing phase, but also during MC simulations of continuation

values. Therefore the merger broadcasts the trained classifier to all

workers, at each time loop iteration. Once all classifiers are trained,

each worker is distributed a subset of MC simulations to estimate the

final price as part IV depicts.

Figure 2. Parallelism orchestration of the Picazo pricing method

2.3 Kernel parameters calibration and load

balancing

2.3.1 Dynamic kernel parameters calibration
Targeting GPU programming implies to cope with a wide variety of

GPUs. To ensure high multiprocessor occupancies for each worker,

we must calibrate kernel parameters, i.e. work-group size and global

size. For this, we provide a Java class which imitates the CUDA

occupancy spreadsheet. Before starting the first step of the pricing

algorithm, each worker, in charge of one GPU device, computes

theoretical multiprocessor occupancies for all possible work-group

sizes: from the warp size up to the maximal work-group size allowed,

increased by warp size. As required in the spreadsheet, some device

specifications are required: each worker detects shared memory

amount per multiprocessor, maximal work-group size, generates the

program compilation log to parse used registers. Different kernel

configurations can describe same multiprocessor occupancies, for

instance 4 work-groups of 32 threads against 2 of 64. In such case,

our program will keep the one offering more work-groups, to reduce

waiting time between them (as each work-group would be given a

smaller simulations number to perform). As intermediate calculus to

deduce the multiprocessor occupancy, the theoretical active work-

group number by multiprocessor is estimated, and will be reused to

fix the total threads number to: work-group size multiplied by

number of active work-group per multiprocessor multiplied by

number of multiprocessors on the device. This strategy allows a fast

estimation of kernel parameters for each of the detected GPUs to

ensure a high multiprocessor occupancy without launching any

preliminary fake pricing calculations.

2.3.2 GPU cluster load balancing
The estimated total number of threads per GPU is used as a criterion

to load balance the calculus on the GPU cluster. Indeed, a high-end

graphic card capable of launching twice as many threads than another

will be given twice as many MC simulations. We set the subset of

nb_class and nbMC for a given worker W as follows

classnb
readstotalGPUth

readstotalGPUth
classnb

PWORKERSALL

P

W

W __ 


[TABLE I] highlights our dynamic split strategy over a

heterogeneous GPU-based cluster. Grid5000 [8] provides sufficient

CPU and GPU resources to perform intensive tests. On Grid5000,

each cluster node can directly interact with other cluster nodes, i.e.

without having to traverse a cluster front-end node. Thus, virtually all

Grid5000 nodes form a single heterogeneous cluster. Each node of

the Grenoble Adonis cluster has 2 E5520 CPUs and 2 NVIDIA Tesla

S1070. The Lille Chirloute cluster includes 3 Tesla M2050 and each

node has 2 E5620 CPUs. Each node of the Lyon Sagittaire cluster

holds 2 AMD Opteron 250. These sites are connected with 10Gbit/s

optical fibers. We launch respectively 10 and 3 workers on the

Adonis and Chirloute clusters. The merger is executed on a single

node from the Sagittaire cluster. The dynamic kernel parameters

calibration is activated on both tests, and estimates as best parameters

<total threads number, work-group size>, for respectively Tesla

S1070 and Tesla M2050, <5760, 64> and <7168, 64>. We disable

the dynamic split in the first test by fixing the same subset of

nb_class and nbMC for all GPUs. On the contrary, second column

features better performances due to the use of the simple yet efficient

load balancing strategy.

Table 1. Comparison of two algorithm phases execution times (in

seconds) with Adaboost classifier. Geometric average American

call option, d=40, K=100, N=50, T=1, r=3%, δi=5%, σi =40%,

nb_class=5000, nb_cont=10^5, nbMC=2x10^6, 150 boosting

iterations/decision stumps

no dynamic
calibrated

split

 dynamic
calibrated

split

Total duration of training
instances computations

Figure 1 [phase 1][step 1]
3502,2s 3320,4s

Final pricing time
Figure 1 [phase 2]

3,7s 3,5s

2.4 Fine-grained parallelism with OpenCL
Each worker computes a subset of nb_class training instances and

requires for each to estimate a continuation value through nb_cont

MC simulations, c.f. Figure 1 line 6. MC simulations are launched

through an OpenCL kernel function. There are as many parallel

simulations on the GPU as threads iterating to provide the nb_cont

simulations. Difficulty of pricing American option is the random

length of simulations: a classifier can predict the exercise region is

reached at any time before the maturity date. Consequently we cannot

forecast the required random variables number and we use the GPU

based Random Number Generator MWC64X [9] to generate at

runtime only required variables. At each discrete time of a single

simulation, a thread generates as many uniform random variables as

underlying assets, performs the Box Muller transformation to retrieve

the Gaussian values, simulates the underlying assets prices, call the

specific classifier, and finally computes the actualized payoff, adds it

to a variable allocated in a register, and start a new simulation.

This random stopping time leads to some threads finishing earlier

their simulations than others. A “warp”, for NVIDIA architecture or

“wavefront” for AMD, is the smallest quantity of threads that are

issued with a SIMT instruction. Because threads of the same warp

cannot perform at the same time different instructions, some of them

will block at the main loop condition if they perform short

simulations (as dictated by the classifier call). These unwanted

synchronizations lead to low occupancy of the multiprocessor. That’s

why we cannot simply iterate over the same fixed number of steps for

all threads when computing the nb_cont simulations. Consequently

each thread computes after nbStepsBeforeReduction time steps and

through intermediate reductions (parallel sums), how many MC

simulations have been achieved (see further details in [2]). This is

repeated by each thread until at least the total number of MC

simulations needed for getting a continuation value has been

achieved.

We kept in mind all recommendations of the GPU device

programming guide to avoid possible performance losses. In

particular, (1) coalesced access allow threads to get asset prices from

global memory in few instructions, (2) we employ constant cached

memory to store read-only values such as volatilities or dividends,

and (3) perform the intermediate parallel reductions in shared

memory. Specific tests revealed that even a high number of

reductions for summing do not impact global execution time.

Classifiers used during Monte Carlo simulations are previously

created and trained on the CPU by the merger with the Weka library

[10]. Since OpenCL does not allow advanced library call, each

worker needs to work with a serialized version of the Weka Classifier

object obtained at kernel launches. The two possible classifiers from

Weka we experimented with, AdaBoost and SVM, part of Weka

library were slightly modified to retrieve all private members of

Weka object and only cope with basic structures in OpenCL. Then all

of them are transferred to the global memory to imitate the Weka

classify call on the GPU. At the end, we can afford to imitate the

original Weka behavior with basic structures, and store as many

classifiers as discrete times in arrays. During a kernel execution,

threads work with position indexes to access in parallel different

classifiers to predict the stopping times.

2.5 Experimental tests

Figure 3. Comparison of algorithm phases execution times with

AdaBoost classifiers over workers numbers. The pricing

parameters are the same than previously (see TABLE 1)

Figure 3 depicts execution times on the Adonis cluster, of parts III

and IV as illustrated in Figure 2. Parts I and II are not specified here

due to their small execution times, and possibility to reuse the

resulting active objects deployment for multiple program runs. The

option price of a single run is around 0.64108 ± 0.0015, which is a

reference price according to [3]. Times of training instances creations

and final pricing phases include calculus and broadcast/merge

operations from/to the merger. We fall below 1 hour when

performing tests over 18 workers (i.e. GPUs). Tests reveal linear

dependence of workers numbers with the computation part of each

phase, but managing more workers complicates broadcast/merge

operations and slowdowns their respective overall time. Because the

merger sequentially trains each classifier through the Weka library

and does not solicit workers, the implementation is not scalable.

When increasing workers number, the training instances computation

time decreases, and consequently tends to vanish in comparison to

the constant time of the classifiers training. AdaBoost and SVM are

based upon iterative algorithms during the learning phase, which are

thus not parallelizable. The idea is to choose an alternate

classification method, i.e. the Random Forests method, whose

learning phase could be parallelized.

3. RANDOM FORESTS INTEGRATION FOR

FAST CLASSIFIER TRAINING
We focus here on the integration of Random Forests in our pricing

engine. Experimental tests will illustrate the scalability of our

implementation, thanks to the parallelization of the learning phase.

3.1 Training Random Forests over cluster nodes
When distributing the Random Forests trainings, we decided to

preserve the Weka behavior: the idea was to train in parallel small

Random Forests with the same buildClassifier() call as it was for a

single larger one. The Weka library was slightly modified so that the

original Random Forest and the one obtained after merging all

smaller forests built by workers provide strictly identical

classification measures. By this way, we can train in parallel subsets

of a Random Forest over cluster nodes (Figure 4). As complementary

optimization, we decided to exploit the last Weka library version

affording parallelization over CPU cores. For this, only one worker

per node is in charge of a sub classifier to benefit of all CPU cores

for the training.

Figure 4. Two-level parallelization of the Random Forest

training. Each subClassifier is trained over the detected CPU

cores through the Weka library

We set the Weka parallelization degree of each node with the number

of detected CPU cores. A simple load balancing mechanism affords

each worker W to build a specific subset nbTreesW of the total

number nbTreesCLASSIFIER of trees of a Random Forest, such as

CLASSIFIER

PCPUsALL

P

W

W nbTrees
nbCPUcores

nbCPUcores
nbTrees 



For the following tests (Figure 5), we will disable this optimization,

in order to highlight the benefit of the training distribution over

cluster nodes. Once all workers have finished, the merger retrieves all

sub classifiers, merges them and broadcasts the trained global

Random Forest to all workers that will use them, as explained in the

following subsection.

3.2 Parallel Random Forests classifications on

GPU Units
As for AdaBoost or SVM, a Random Forest classifier per discrete

time must be serialized by the worker, and transferred to the GPU

global memory, in order to predict the exercise boundary at this time,

during the simulations, c.f. Figure 1 line 6 and 15. The difficulty

comes from the storage of the trees that are indeed incomplete. Only

an experimental solution is provided by the JOCL team, to transfer

tree structures to the device, so we had to imagine one solution that

fits our needs. To cope with sparse tree storage, we work with

compressed arrays representation. Once workers are broadcasted the

merged global Random Forest, they parse all trees, retrieve and queue

node information in specific arrays for the compression. Indeed

considering all trees, there is an array for split values, another one for

attribute indexes. We store indexes of tree roots in a dedicated array.

Finally, we work with a left children indexes array and a right

children indexes array, to imitate tree parsing when classifying

instances in OpenCL. As for AdaBoost and SVM, we queue all the

classifier representations in the same specific arrays to be accessed

for each discrete time, complicating indexes management.

3.3 Experimental tests

Figure 5. Comparison of algorithm phases execution times with

Random Forest classifiers of 150 unlimited depth trees, over

workers numbers. The pricing parameters are the same than

previously and global execution times correspond to the situation

where training of classifiers is distributed

The option price of a single run is around 0.63651 ± 0.0016 which is

in line with the expected value. Tests are executed on the Adonis

cluster, and working with such Random Forest parameters (150 trees)

affords to reach the same order of confidence interval than AdaBoost

tests presented in 2.5. The training instances creations (~3h13min

with 18 GPUs) require more time than with AdaBoost (~53min with

18 GPUs) due to the cost of Random Forest classification. Indeed, to

classify an instance, a GPU thread will take more time to parse the

150 unlimited depth trees, rather than the 150 one-level decision

trees of the AdaBoost classifier. Conversely, we take advantage of the

distributed CPUs during the classifiers trainings, to let the algorithm

better scale.

4. RELATED WORK
Regarding the fine tuning for GPU configuration, Grauer and

Cavazos present an auto-tuning implementation in [11] to produce

the configuration that minimizes local memory accesses against

registers and shared memory. Since they play with data partition sizes

via changing the maximum occupancy, the strategy allows finest

kernel parameters calibration but requires more calculus. Raphael Y.

de Camargo [12] describes a load distribution algorithm for

heterogeneous GPU cluster to reduce the total execution time of his

neuronal network simulator. To estimate each quantity of data input

assigned to each GPU, he formalizes the problem to a linear system

of equations. Some variables in the system represent the execution

time functions of each kernel on each GPU over input sizes. This

requires each kernel to be executed a few times on each GPU, with

different input sizes to get the interpolation function. This can spend

a lot of time and become inconvenient in case of several types of

GPUs, and compute-intensive kernels. Our dynamic strategy to

calibrate kernel parameters, with no preliminary simulations, allows a

fast comparison of the parallelism degrees of each GPU for a given

kernel. Although it does not consider the program behavior with all

implementation details such as branch divergences, non-coalesced

memory accesses, our approach is not closed to a specific problem

and is more generic.

In [13] is presented CudaRF, a CUDA-based implementation of

Random Forests. During the training phase, each thread constructs a

tree of the forest. It could be used within our ProActive-based

distributed training phase so that huge Random Forests could benefit

of a dual-level of parallelism offered at both worker and GPU sides.

However, having a GPU thread handles one single tree of the forest

during the classification phase, is not suited to our algorithm. We

cannot afford to exploit at a specific time the entire device for a

single instance, as our implementation exploits SIMT architecture to

call simultaneously possibly different classifiers, depending on the

discrete time reached by each thread.

5. CONCLUSION
Our works propose a multi GPU based implementation of Picazo

method to price complex American options, allowing pricing time to

fall below 1 hour with 18 GPUs (against almost 10 hours on a 64

cores cluster). To fully exploit the dual-level of parallelism of such

architecture, we distribute the training instances computation over the

cluster nodes and solicit the SIMT architecture of each detected

device to parallelize all the Monte Carlo simulations of the algorithm.

Our fast parallel strategy to estimate kernel parameters of devices can

be adapted to a wide range of GPUs to target from any cluster: as

such it allows us to easily involve heterogeneous GPUs for solving

the pricing in parallel. The integration of Random Forests, tackles the

sequential bottleneck effect due to the classifiers trainings by

parallelizing them, but slowdown the training instances creations due

the expensive classification. Working with more GPUs (100+) than

in our experiments, would further decrease the computation

operations but increase broadcast/merge operations, impacting the

overall pricing time. Thus, to face this only remaining bottleneck

effect, we could implement a broadcast ring, and merge operations

could be parallelized along a tree of workers.

It would be exiting to take advantage of high end CPUs (Xeon Phi) if

available on the cluster, to perform part of the Monte Carlo

simulations. By relying on OpenCL in our pricing engine, it already

abstracts the hardware architecture. The only point to consider in

order to take advantage of such hybrid hardware environment is to

extend our dynamic calibration and load balancing strategy. A natural

exploitation of our work is to evaluate a portfolio of such complex

assets, which is an ongoing task.

6. ACKNOWLEDGMENTS
This work has received the financial support of the Conseil régional

Provence-Alpes-Côte d’Azur. Experiments presented in this paper

were carried out using the Grid'5000 experimental testbed, being

developed under the INRIA ALADDIN development action with

support from CNRS, RENATER and several Universities as well as

other funding bodies.

7. REFERENCES
[1] J.A. Picazo. American Option Pricing: A Classification-Monte

Carlo (CMC) Approach. Monte Carlo and Quasi-Monte Carlo

Methods 2000: Proceedings of a Conference Held at Hong Kong

Baptist University, Hong Kong SAR, China, November 27-

December 1, 2000, 2002

[2] Michael Benguigui, Françoise Baude, Towards parallel and

distributed computing on GPU for American basket option

pricing, in the 2012 International Workshop on GPU Computing

in Cloud in conjunction with 4th IEEE international conference

on Cloud Computing Technology and Science, 2012

[3] Viet Dung Doan, Grid computing for Monte Carlo based

intensive calculations in financial derivative pricing

applications, Phd thesis, University of Nice Sophia Antipolis,

March 2010

http://www-sop.inria.fr/oasis/personnel/Viet_Dung.Doan/thesis/

[4] L. Breiman, Random Forests, Statistics Department of

California Berkeley, January 2001

[5] JOCL, www.jocl.org

[6] Khronos Group, www.khronos.org/opencl/

[7] proactive.inria.fr

[8] www.grid5000.fr

[9] David Thomas, http://cas.ee.ic.ac.uk/people/dt10/research/rngs-

gpu-mwc64x.html

[10] Machine Learning Group at University of Waikato,

www.cs.waikato.ac.nz/ml/weka

[11] Scott Grauer-Gray and John Cavazos, Optimizing and Auto-

tuning Belief Propagation on the GPU, In 23rd International

Workshop in Languages and Compilers for Parallel Computing

(LCPC), 2010

[12] Raphael Y. de Camargo, A load distribution algorithm based on

profiling for heterogeneous GPU clusters, Third Workshop on

Applications for Multi-Core Architecture, 2012

[13] Håkan Grahn, Niklas Lavesson, Mikael Hellborg Lapajne, and

Daniel Slat, “CudaRF”: A CUDA-based Implementation of

Random Forests, Proc. Ninth ACS/IEEE International

Conference on Computer Systems and Applications, IEEE press

