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RESUME

Ce stage concerne dans un premier temps l’étude de différentes méthodes de décomposition de do-
maines du type FETI (en français : Elements Finis Etirés et Interconnectés). Dans un premier temps
les différentes algorithmes et les points clé qui mènent à la méthode FETI et à la méthode Duale-
Primale FETI (FETI-DP) sont expliqués :
La formulation basique de l’équilibre d’un domaine une fois décomposé : formulation des problèmes
locaux et méthodes pour exprimer les conditions d’interface entre ces sous-domaines. Je présente suc-
cintement une notation simple qui peut permettre de mieux interpréter des notations d’assemblage de
matrices bloc, possédant quelques règles propres cohérentes. Ensuite quelques définitions topologiques
concernant la description des interfaces (Sommets, Arêtes et Faces) et des Moyennes de Déplacement
(translation) et de Moment au premier ordre (rotation) des dits éléments topologiques.
Ensuite une présentation très succinte des différences entre solveurs directs et solveurs itératifs, et les
implications sur une eventuelle parallèlisation.
Ensuite vient la présentation des méthodes FETI à proprement parler :

La méthode FETI originale utilise une description totalement duale de l’assemblage, avec l’utilisation
systématique et redondante de multiplicateurs de Lagrange pour l’expression de l’equilibre des in-
terfaces. Une itération de la méthode FETI implique une résolution de problèmes locaux de type
Neumann et un preconditionneur de type Dirichlet. Je présente donc dans un premier temps com-
ment le problème se pose et se résoud : comment on se débarasse des équations d’équilibre local par
recherche d’une solution partiulière. Ensuite je présente certaines considérations mécaniques à pro-
pos du préconditionneur dit de Dirichlet, et ses variantes Lumped et Super-Lumped. Finalement la
définition d’un préconditionneur mechanicallyscalable est donnée, ce qui ouvre la voie à différentes
variantes assurant une meilleure convergence, en particulier lorsqu’il existe des hétérogeneités dans les
coefficients des matériaux de part et d’autre d’une interface.

Les différentes méthodes FETI-2 et FETI-DP sont ensuite présentées, comme améliorant la con-
vergence en particulier pour les problèmes de plaques (hors 2D) et de coques. La méthode FETI-2
utilise une seconde projection de la solution sur un espace tel qu’on s’assure qu’il y ait coincidance
des Sommets, alors que La méthode FETI-DP utilise simplement une description en partie primale
des degrés de liberté, en s’assurant ainsi que la valeur de certains degrés de liberté est la même pour
chaque sous domaine concerné. Ces deux méthodes s’assurent par ailleurs qu’aucune des matrices de
rigidité n’est alors singulière et il n’existe alors pas de modes rigides utilisable pour la formulation du
problème grossier. C’est alors le fait que le problème soit couplé pour les variables primales qui définit
ce problème grossier. Dans le cas du seul déplacements des sommets, on comprend que ce problème
perd un peu de son sens au niveau mécanique. Des parades existent donc en particulier pour les
assemblages qui présentent des hétérogénéités de coefficients qui consistent à utiliser comme variables
primales les moyennes en translation ou en rotation d’éléments topologiques. Je présente donc à ce
moment la méthode qui utilise un changement de variables.
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La seconde partie de ce stage concernait l’implémentation de la méthode FETI dans le code
élément fini Oofelie. Oofelie est un annagrame qui veut dire en français code Elément Finis Orienté
Objet et Mené par Execution Intéractive. Je présente donc quelques-une des spécificités de ce code,
en particulier les différents niveaux de programmation qui existent, les classes principales nommées
PhySet, l’architecture de la base de données ce qui est une des raison principales pourquoi on dit que
Oofelie est un code Multi-Physique, et dans quel ordre on définit un modèle d’étude.

Finalement je présente la partie programmation à proprement parler :
un premier programme qui applique la méthode FETI sur un domaine paramétré écrit à la main

; quelques approches des niveaux inférieurs à l’interpréteur de commande pour la définition d’une
nouvelle fonction d’extraction de matrice et aussi pour faire en sorte que la matrice des modes rigides
calculée puisse être utilisée dans l’interpréteur. Ensuite une fois que j’étais suffisement à l’aise avec la
programmation dans l’interpréteur et la modification du projet C++ pour -après compilation- obtenir
des fonctionnalités supplémentaires, et une fois que Mr Paquay a fini de créer une base de classe
nommée DomainPartitioning qui utilise le partitionneur de domaine Metis, Une implentation plus
générale de l’algorithme FETI est possible.
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INTRODUCTION

About FETI

The Finite Element Tearing and Interconnecting method (FETI) was proposed in its original form by
Farhat and Roux in reference [12]. It led to a whole family of methods. They all consist of decomposing
the domain into non-overlapping subdomains, and using Krylov-type solvers. In all these methods,
all or almost all corresponding degrees of freedom on subdomain interface coincidence are enforced
by the use of Lagrange multipliers, and eliminating all degrees of freedom, leaving a dual system
for the Lagrange multipliers. This dual system is then solved by preconditioned conjugate gradients
with a diagonal (or block diagonal) precondititioner. Evaluation of the dual operator involves the
solution of independent Neumann problems in all subdomains, and of a small system of equation for
the remaining components. This small system acts like a coarse problem that corresponds to the
nullspace of the local stiffness operator and/or to the choosen remaining degrees of freedom for which
interface compatibility have been enforced in a different ways. This coarse problem facilitates global
exchange of information between the subdomains and therefore causes the condition number to be
bounded independently from the number of subdomains.

About Oofelie

OOFELIE is a finite elements code originally developed by a group of researchers at the Laboratoire
LTAS - Dynamique des structures and at the INTEC, under the initiative of Igor Klapka and Alberto
Cardona. OOFELIE’s birth date was at the beginning of the 90’s. Today, OOFELIE is developped by
Open Engineering and the members of the OOFELIE community. Oofelie stands for Object Oriented
Finite Element Led by Interactive Executor and is a toolbox adapted to the solution of multi-fields
and multi-methods problems. For the moment it regroups about 1500 files and 650 classes. It is a
three-level code : a ground level containing basic classes written in C++, a second level containing
what is called I classes that allows the top level to herit some of the ground functions. Once the
C++ project is compiled, the top level is a commands interpretor and acts exactly like any Matlab-
like program that uses black-box functions. We should therefore assimilate Oofelie to an opened box
Matlab-like code.

The main objectives

When I arrived at Delft, Pr.Rixen told me that he had thought about two different topics of internship.
The first was mainly on studying theory about domain decomposition methods and to work with
Matlab, whereas the second was really to implement as much algorithms as possible in Oofelie code.
Each of them were designed for eight months training periods, as this is often the lenght of internships
for Master students in the Netherlands. The few following reasons made me choose a mix a little bit
of these two subjects : on the one hand, as I had an overview of some domain decomposition methods
at the first semester, I really wanted to learn more about theory, especially on differences that exist
between FETI-family methods. But on the second hand, I really wanted to discover Oofelie instead
of carrying on working with black boxes in Matlab. Of course I knew I could never finish both jobs in
only three months so I chose two main objectives : read and learn as much as possible about FETI,
FETI-2, and FETI-DP algorithms, and learn how Oofelie works before trying to implement at least
the orginal FETI method in the interpretor.
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Part I

THEORETICAL DESCRIPTION OF FETI
METHODS

11 Linear elasticity problems and finite elements

11.1 Weak formulation and discret problem associated

We consider an elastic body which occupies a domain Ω ∈ IR3 and denote his boundary by ∂Ω.
We assume that one part ∂ΩD of the boundary is clamped, i.e. has homogeneous Dirichlet boundary
conditions, and that the rest ∂ΩN := ∂Ω ∂ΩD is subject to a surface force g, i.e., a natural or Neumann
boundary condition. We can also introduce a body force f, e.g., gravity. With H1 (Ω) :=

(
H1 (Ω)

)3
,

the appropriate space for a variational formulation is the Sobolev space

H1
0 (Ω, ∂ΩD) :=

{
v ∈ H1 (Ω) : v = 0 on ∂ΩD

}

The linear elasticity problem which then consists in finding the displacement u ∈ H1
0 (Ω, ∂ΩD) of the

elastic structure Ω such that :

∫

Ω
G (x) ǫ (u) : ǫ (v) dx +

∫

Ω
G (x) β (x)∇ (u)∇ (v) dx = 〈F,v〉 ,∀v ∈ H1

0 (Ω, ∂ΩD) . (11.1)

Here G and β are material parameters which depend on the Young modulus E > 0 and the Poisson
ratio ν ∈ (0, 1/2); we have G = E/ (1 + ν) and β = ν/(1 − 2ν). In this article, we only consider
the case of compressible elastucity, which means that the Poisson ratio ν is bounded away from 1/2.

Futhermore, ǫ/ǫij (u) := 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)

is the linearized strain tensor, and

ǫ (u) : ǫ (v) :=
3∑

i,j=1

ǫij (u) ǫij (v) , 〈F,v〉 :=

∫

Ω
fTvdx +

∫

∂ΩN

gTvds

For convenience we also intoduce the notation

(ǫ (u) , ǫ (v))L2(Ω) :=

∫

Ω
ǫ (u) : ǫ (v) dx

The bilinear form associated with linear elasticity is then

a (u,v) = (Gǫ (u) , ǫ (v))L2(Ω) + (Gβ∇ (u) ,∇ (v))L2(Ω)

We also need to introduce the null space Ker (ǫ) of ǫ which is the space of the six rigid body
motions, which is spanned by the three translations ri := ei, i = 1, 2, 3, where the ei are the three
standard unit vectors, and the three rotations

r4 =





x2 − x̂2

−x1 + x̂1

0



 , r5 =





−x3 + x̂3

0
x1 − x̂1



 , r6 =





0
x3 − x̂3

−x2 + x̂2



 . (11.2)
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Here, x̂ ∈ Ω shifts the origin to a point in Ω.
The linear system 11.1 is wellposed since it can be shown that the bilinear form a (·, ·) is uniformly

elliptic and uniformly continuous. It is therefore sufficient to be discretized by low order, conforming
finite elements, e.g. linear or trilinear elements. Let us assume that a triangulation τh of Ω is given
which is shaped regular and has a typical diameter of h. We denote by Wh := Wh (Ω) the corre-
sponding conforming finite element space of finite element functions. The discrete problem associated
to the equation 11.1 is then

a (uh,vh) = 〈F,vh〉 ,∀vh ∈ Wh (11.3)

As there will be no risk of confusion, we will drop the subscript h

11.2 Problem formulation and description of interface conditions

Assuming that the structure is divided into Ns subdomains, each par Ω(s) has internal degrees of

freedom (d.o.f.) u
(s)
i and boundary d.o.f. u

(s)
b on the interface. Calling f

(s)
i and f

(s)
b the forces applied

on the internal and boundary d.o.f. and g(s) the connection forces to the neighboring domains, the
local equilibrium of a subdomain Ω(s) writes

[

K
(s)
ii K

(s)
ib

K
(s)
bi K

(s)
bb

][

u
(s)
i

u
(s)
b

]

=

[

f
(s)
i

f
(s)
b + g(s)

]

=
[

f(s) + g(s)
]

and on an interface Γ(s,t) between subdomains s and t, the interface equilibrium and the interface

compatibility respectively writes g
(s)

Γ(s,t) + g
(t)

Γ(s,t) = 0 and u(s)

¯ Γ(s,t) = u
¯
(t)Γ(s,t)

To get an algebric expression of these interface conditions, we introduce :

for the interface equilibrium : L which is a Boolean matrix expressioning the assembly of the
subdomains on the interface such that the local d.o.f. are identified to the global unique set u by

[

u
(s)
i

u
(s)
b

]

=

[

0 · · · 0 I 0 · · · 0

0 · · · 0 L
(s)
b

]









u
(1)
i
...

u
(Ns)
i

ub









assuming for notation purpose that the boundary d.o.f are numbered last in every subdomain, or

u(s) = L(s)u

Then, L(s)T =

[

0

L
(s)
b

T

]

is the operator that projects the local set of d.o.f on the global set of

interface d.o.f. We may finaly express the interface equilibrium as

Ns∑

s=1

L(s)T
[

f(s) + g(s)
]

= LT
[
f + g

]

, where
LT =

[
L(1)T · · · L(Ns)T

]

[
f + g

]
=
[
(f + g)(1)T · · · (f + g)(Ns)T

]T
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for the interface compatibility : B which is a signed Boolean matrice such that

Ns∑

s=1

B(s)u(s) = Bu

represents the gap displacement vector across interface and should be equal to null vector for the
interface compatibility to be reached.

Remark on image spaces of these two operators : Contrary to the transposed assembly opera-
tor LT which projects forces on a space which dimension is exactly the number of d.o.f on the interface,
the operator B is needed to enforce continuity only for the dual displacement variables : those who
have one different value for each subdomain they belong to. Futhermore, as one d.o.f on interface may
be shared by more than two subdomains, we will use all possible constraint : we therefore choose a
fully redundant set of gap variables. This will lead in section 1.4 to the definition of a fully redundant
set of Lagrange multipliers. Thus, for a d.o.f common to four subdomains, we will use six gaps rather
than as few as three.

Figure 2: Shematization of fully redundant constraints

11.3 Description of block operators notations

These notations are meant to lighten the following definitions of global operators that are constructed
as block assembly of local operators. The usefullness of such notations can be discussed as some
dimensions criterions can give clues to understand how local operators are assembled, anyway I will
show that they can be used in a coherent manner in the rest of the report.

Block diagonal matrices K
︸︷︷︸

D

= diagNs

i=1(K
(i))

Block row matrices B
︸︷︷︸

H

=
[
B(1) · · · B(Ns)

]

Block column matrices L
︸︷︷︸

V

=
[
L(1)T · · · L(Ns)T

]T

Sum BL
︸︷︷︸
∑

= B
︸︷︷︸

H

L
︸︷︷︸

V

=
∑Ns

i=1 B(i)L(i)
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11.4 Definitions related to nonoverlapping domain decomposition methods

Let the domain Ω ∈ IR3 be decomposed into nonoverlapping subdomains Ωi, i = 1, ..., N , each of which
is the union of finite elements with matching finite element nodes on the boundaries of neighboring
subdomains across the interface Γ. The interfaceΓ is the intersection of three open sets, namely,
subdomain faces, edges, and vertices. We will denote individual faces, edges and vertices by F,
E, and V, respectively. For the case of regular substructures such as cubes or tetrahedrons, we
an use the standard faces, edges, and vertices. To define faces, edges and vertices more generallu,
we introduce certain equivalence classes; c.f. [16] or [13]. Let us denote the sets of nodes on ∂Ω,
∂Ωi, and Γ by ∂Ωh, ∂Ωi,h, and Γh, respectively. For any interface nodal point x ∈ Γh, we define
Nx := {j ∈ {1, ..., N} : x ∈ ∂Ωj}, i.e. Nx is the set of indices of all subdomains with x in the enclosure of
the subdomain. For a node we define the multiplicity as |Nx|, the cardinality of the set Nx. Associated
with the nodes of the finite element mesh, we have a graph, the nodal graph, which represents the
node-to-node adjacency. For a given node x ∈ Γh, we denote by Ccon (x) the connected component of
the nodal subgraph, defined by Nx, to which x belongs. For two interface points x, y ∈ Γh, weintroduce
an equivalence relation by

x ∼ y ⇔ Nx = Ny and y ∈ Ccon (x)

We now can describe faces, edges and vertices using their equivalence classes. We define

x ∈ F ⇔ |Nx| = 2,

x ∈ E ⇔ |Nx| ≥ 3 and∃y ∈ Γh, y 6= x, suchthaty ∼ x,

x ∈ V ⇔ |Nx| ≥ 3 and 6 ∃y ∈ Γh, suchthaty ∼ x.

In the definition of dual-primal FETI method, we need the notion of edge average and also edge
first order moments. We note that the rigid bod mdes r1, ...r6, restricted to a staight edge provide
only five linearly dependent vectors, since one rotation is always linearly dependent on the other rigid
body modes. For the following definition, we assume that we have used an appropriate change of
coordinates such that the edge under consideration coincides with the x1-axis and the special rotation
is then r6. The edge averages and first order moments over this specific edge E are of the form.

∫

E
rT
k udx

∫

E
rT
k rkdx

, k ∈ {1, ..., 5},u =
(
uT

1 , uT
2 , uT

3

)T
∈ Wh.

We note that on edges which are not straight we can use all six rigid body modes to construct six
average and first order moment constraints.
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Figure 3: Definition of vertices, edges, and faces. Vertices are denoted by stars, edge nodes by squares,
and face nodes by small circles. Left: The intersection of the closure of the two subdomains consists of
one face, four edges, and four vertices. Right: The intersection of the closure of the two subdomains
consists of one edge and two vertices.

12 From sequential to parallel solvers : the parallel processing issue

12.1 Primal approach and direct solvers

For the primal approach, we assume that every d.o.f is primal. This means that displacement d.o.f
are identical for all subdomains on the interface. the local d.o.f. are identified to the global set u by

u(s) = L(s)u

where L is the Boolean matrix defined in 11.2. The initial problem refref can now be expressed as
if it results from the assembly of the substructures, namely









K
(1)
ii 0 K

(1)
ib L

(1)
b

. . .
...

0 K
(Ns)
ii K

(Ns)
ib L

(Ns)
b

L
(1)
b

T K
(1)
bi · · · L

(Ns)
b

T K
(Ns)
bi

∑Ns

s=1 L
(s)
b

T K
(s)
bb L

(s)
b

















u
(1)
i
...

u
(Ns)
i

ub









=









f
(1)
i
...

f
(Ns)
i

∑Ns

s=1 L
(s)
b

T f
(s)
b









which can be rewritten :

[
Kii KibLb

LT
b Kbi LT

b KbbLb

] [
ui

ub

]

=

[
fi

LT
b fb

]

using new notations :

Kii = Kii
︸︷︷︸

D

; KibLb = KibLb
︸ ︷︷ ︸

V

; LT
b KbbLb = LT

b KbbLb
︸ ︷︷ ︸

∑

;ui = ui
︸︷︷︸

V

; fi = fi
︸︷︷︸

V

; LT
b fb = LT

b fb
︸︷︷︸
∑

This expression indicates that the internal stiffness matrices K
(s)
ii can be factorized independently,

which is equivalent to eliminating all internal d.o.f. to build the condensed interface problem for ub. :

u
(s)
i = K

(s)
ii

−1
(

−K
(s)
ib L

(s)
b u

(s)
b + f

(s)
i

)

The condensed interface problem is then obtained using interface conditions and proceeding to the
schur fatorization of the global interface operator:

Sub =

(
Ns∑

i=1

L
(i)
b

T S
(i)
bb L

(i)
b

)

ub =

Ns∑

i=1

L
(i)
b

T f
(i)
b

⋆ = f⋆b
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which is equivalent to

Sub = LT
b SbbLb
︸ ︷︷ ︸

∑

ub = LT
b

︸︷︷︸

H

Sbb
︸︷︷︸

D

Lb
︸︷︷︸

V

ub = LT
b f⋆b
︸ ︷︷ ︸
∑

= LT
b

︸︷︷︸

H

f⋆b
︸︷︷︸

V

= f⋆b
︸︷︷︸

V

where S
(s)
bb is called the local Schur complement, and b

(s)
bb is the condensed right-hand-side

S
(s)
bb = K

(s)
bb − K

(s)
bi K

(s)
ii

−1K
(s)
ib

f
(s)
b

⋆ = f
(s)
b − K

(s)
bi K

(s)
ii

−1f
(s)
i

Thus, the decomposition should be such that the number of interface d.o.f is small in order to
minimize the size of the global interface problem. But as the factorization of the condensed interface
can not be efficiently factorized on parallel and that its size inscreases when the decomposition is
refined, such an approach is not scalable on massively parallel computation.

12.2 Iterative methods

Iterative sovers search for approximations of all unknowns simultaneously and involve simple matrix
operations. They are thus naturally parallel. For symetric positive definite systems, the most effec-
tive algorithm is the Conjugate Gradient method. It can be interpreted as successive Rayleigh-Ritz
approximations : we seek for the best approximation of the solution in a subspace which size increases
at each iteration. Conjugate gradient consists in building S-orthogonal basis (wi)0≤i≤m of so-called
Krylov subspace

Km

(

z0, S̃
−1SQ

)

= span

(

z0, . . . ,
(

S̃−1SQ
)m−1

z0

)

and finding approximation

{

xm ∈ x0 + Km (S, r0)

rm⊥Km (S, r0)
so that at each iteration error ‖u − um‖S is

minimized. Because of the good conjugasion properties of basis (wi) the optimization is decoupled
and only one scalar coefficient αm is seeked for at each iteration so that ‖x − xm−1 − αmwm‖S is
minimized.

Key points of coupling domain decomposition methods and Krylov iterative solvers are the choice
of the preconditioner S̃−1 and the coarse problem represented by projector Q and intialization u0.

Table 1: preconditioned conjugate gradient

1: Set Q = I − G(GT SG)−1GT S
2: Compute u0 = G(GT SG)−1GT b
3: Compute r0 = b − Su0 = QT b
4: z0 = S̃−1r0 set w0 = z0

5: for j = 0, . . . , m do
6: pj = SQwj (notice SQ = QT S = QT SQ )
7: αj = (wj , rj)/(pj , wj)
8: uj+1 = uj + αjwj

9: rj+1 = rj − αjpj

10: zj+1 = S̃−1rj+1

11: βj = −(zj+1, pj)/(wj , pj)
12: wj+1 = zj+1 + βjwj

13: end for
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13 The Classical Finite Element Tearing and Interconnecting method
(FETI-1)

Reference [23]
The FETI algoritms (finite elements tearing and interconnecting) is a family of domain decomposition
methods for which we distinguish primal and dual displacement variables by the way the continuity of
the solution is established. Dual displacements variables are those, for which the continuity is enforced
by the a set of Lagrange multipliers and thus the continuity is not established until convergence, as
in the classical one-level FETI method. On the other hand, continuity of the primal displacement
variables is enforced explicitely at each iteration step by subassembly of the local stiffness matrices
at the primal displacement variables. This subassembly leads to a symmetric, positive definite matrix
which is coupled at the primal displacement variables but block diagonal otherwise. This coupling
yields a global problem which is necessary to obtain a numerically scalable algorithm.

13.1 FETI, the dual schur complement method

The original FETI method is distinguished from others by a fully dual assembly : all corresponding
degrees of freedom on subdomain interface coincidence are enforced by the use of Lagrange multipli-
ers. This implies that some subdomains stiffness operators may have a nullspace due to the lack of
Dirichlet boundary conditions. We then have to deal with generalized inverse, and to add a linear
combination of the nullspace components to the displacements, which is searched so that each subdo-
main is self-equilibrated after each iteration.

13.1.1 formalization

Introducing Lagrange multipliers λ to enforce the compatibility constraints, the inital problem can be
expressed in the equivalent form








K(1) 0 B(1)T

0
. . .

...

K(Ns) B(Ns)T

B(1) . . . B(Ns) 0















u(1)

...

u(Ns)

λ








=








f(1)

...

f(Ns)

0








To solve the interface problem, we solve this for the local d.o.f. u(s) :

u(s) = K(s)+(f(s) − B(s)T λ) − R(s)α(s)

K(s)+ is the inverse of K(s) for a subdomain with no rigid modes or a generalized inverse if
subdomain s is floating, in which case R(s) are the rigid modes. The forces applied to a floating
subdomain must be in self equilibrium, namely

R(s)T (f(s) − B(s)T λ) = 0

Substituting in the compatibility conditions the expression of u(s) in terms of λ, and taking into
account the subdomain self equilibrium, we find

[
FI GI

GT
I 0

] [
λ
α

]

=

[
d
e

]

where
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FI =

Ns∑

s=1

B(s)K(s)+B(s)T

d =

Ns∑

s=1

B(s)K(s)+f(s)

GI =
[
B(1)R(1) . . . B(Ns)R(Ns)

]

α =






α(1)

...

α(Ns)




 ande =






R(1)T
f
(1)

.

.

.

R(Ns)T f
(Ns)






FI is the interface flexibility operator, d is the interface gap created by the applied loads. The
interface problem expresses that the connecting forces should be such that they fill the interface gap
created by the external loads, and such that, together with the applied loads, they are in equilibrium
with respect to the local rigid body modes (self-equilibrium). This problem is called the dual interface
problem because it is expressed un terms of the dual variables λ representing the interface connecting
forces.

Assuming that the problem to be solved is symmetric positive definite, the interface problem ()
can be put into a symmetric positive form bu splitting the Lagrange multipliers a

λ = λ0 + Pλ̄

where
P = I − QGI(G

T
I QGI)

−1GT
I

λ0 = QGI(G
T
I QGI)

−1e

such that the self-equilibrium is satisfied for any λ̄ and the interface problem finally writes

(P T FIP )λ̄ = P T (d − FIλ0)

An efficient parallel solver then consists in solving the latter equation for λ by Conjugate Gradient
iterations. Indeed, the projection operator P requires solving only a small coarse grid problem related
to the rigid body modes whereas multiplication by FI involves solving for u(s) locally.

the Dirichlet preconditioner is expressed by

∆λk+1 = F̃−1
I rk

with F̃−1
I =

∑Ns

i=1 B(s)

[

0 0

0 S
(s)
bb

]

B(s)T

and where it is assumed for the notation purposes, that the boundary d.o.f are numbered last in
every subdomain. Note that the so-called Lumped preconditioner expressed by

∆λk+1 =

(

F̃−1
I =

Ns∑

i=1

B(s)

[

0 0

0 K
(s)
bb

]

B(s)T

)

rk

is a low cost variant of the Dirichlet preconditioner for which the internal d.o.f are supposed to remain
fixed when prescribing interface displacement. Although it yields slower convergence of the iterations
on the interface problem this low cost preconditioner is often used because it reduces the overall
computing time.

These preconditioners are obviously naturally parallel since they involves solving local Dirichlet
problems.

Mandel and Tezaur explained in reference [21] that :
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Table 2: FETI or Dual Schur complement method

1: Set k = 0, λ0 = QGI(G
T
I QG)−1e, r0 = P T (d − FIλ0)

2: while ‖rk‖ > ǫ‖d‖ do
3: Preconditioning
4: ∆λk+1 = F̃−1

I rk

5: k+1 = ∆λk+1

6: orthogonalisation of directions
7: for i = 1, . . . , k do

8: βi = −
yT

i FI∆λk+1

yT
i FIyi

, yk+1 = yk+1 + βiyi

9: end for

10: ηk+1 =
yT

k+1rk

yT
k+1FIyk+1

11: λk+1 =
yT

k+1rk

yT
k+1FIyk+1

12: rk+1 = P T (rk − ηk+1FIyk+1)
13: k = k + 1
14: end while
15: α = (GT

I QGI)
−1GT

I Qrk

16: u(s) = K(s)+(f(s) − B(s)T λk) − R(s)α(s)

Farhat, Mandel and Roux recognized that this small system plays the role of a coarse problem.
They also replaced the diagonal preconditioner by a block preconditioner with the solution of indepen-
dent Dirichlet problems in each subdomain and observed numerically that this Dirichlet preconditioner
results in a very slow growth of the condition number with subdomain size. Mandel and Tezaur ref-
erence [20] proved that the condition number grows at most as C(1 + log(H/h))m, with m ≤ 3 and
where H is subdomain size and h is element size, both in 2D and 3D.

Figure 4: Mesh size order definition

13.1.2 Mechanical considerations

Mechanical interpretation of the FETI method and the Dirichlet preconditioner : At each
iteration k of the FETI solver, a new traction Lagrange multipliers field λk is computed. Then, for

each substructure, a load field equal to B
(s)
b

T λk is imposed on its interface boundary, and the resulting
substructure displacement field u(s)k is obtained from the solution of the equilibrium equation. Except
at convergence, the substructure solutions u(s)k are not compatible on the substructure interface
boundaries, and their jump is evaluated during the computation of the projected residual wk

wk =

Ns∑

s=1

Bs
bu

(s)k
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Figure 5: Mechanical interpretation of the FETI method and the Dirichlet preconditioner

How the preconditioner can improve the condition number for heterogeneities across
interface ? From a mechanical viewpoint, the objective of a substructure-by-substructure precon-
ditioner F̃−1 can be stated as that of generating a Lagrange multiplier correction z that reduce as
much as possible the displacement jump w. Preconditioning the projected residual w by the Dirichlet
or lumped operators yields :

z = F̃−1w =

Ns∑

s=1

B
(s)
b

(

S
(s)
bb orK

(s)
bb

)

B
(s)
b

T w

The above expression of z suggests that preconditioning by the substructure-by-substructure Dirichlet
and lumped operators can be understood as a three-step procedure for building a correction of the
Lagrange multiplier field

• First, displacement corrections ∆u
(s)
b are imposed on the subdomain interfaces as follows

∆u
(s)
b = B(s)

n
T w

This means that at every interface d.o.f., a displacement correction equal to the sum of the
displacement jumps with neighboring d.o.f. is imposed.

• Next, the corresponding interface nodal forces ∆f
(s)
b are evaluated as

∆f
(s)
b =

(

S
(s)
bb orK

(s)
bb

)

∆u
(s)
b

Note that when the lumped operator K
(s)
bb is used instead of the Schur complement S

(s)
bb , the

computation of the interface forces ∆f
(s)
b assumes implicitly that the internal d.o.f. are fixed.

• Finally, the jump of interface nodal forces ∆f
(s)
b are computed to obtain the Lagrange multiplier

correction z

z =

Ns∑

s=1

B
(s)
b ∆f

(s)
b

Master 1 internship 15 2007



Study of FETI methods and implementation of FETI in Oofelie code 16/37

Rixen and Farhat defined in reference [24] a Mechanically consistent preconditioner such that z

must be constructed such that as the ∆f
(s)
b approach equilibrium, B

(s)
b

T z restores the interface force

corrections ∆f
(s)
b . They therefore state that a mechanically consistent preconditioner implicitly results

in

• displacement increment ∆u
(s)
b such that the new gap is null :

Ns∑

s=1

B
(s)
b û(s) =

Ns∑

s=1

B
(s)
b

(

u
(s)
b + ∆u

(s)
b (w)

)

= 0

• Lagrange multiplier correction z such that

B
(s)
b

T z(∆f
(s)
b ) = ∆u

(s)
b

if the sum of all forces acting on an interface d.o.f. is zero and is therefore the expression of
interface equilibrium

∆f
(s)
b − B

(s)
b

T
Ns∑

r=1
r 6=s

B
(r)
b ∆f

(r)
b

It has been shown that for iterative substructuring methods, mechanically consistent precondition-
ers deliver a better numerical performance than mechanically inconsistent ones.

as each row of B
(i)
b with a non zero entry corresponds to a Lagrange multiplier connecting the

subdomain Ω(i) with a neighboring subdomain Ωj at a point x ∈ ∂Ωi,h ∩ ∂Ωj,h. The Dirichlet FD−1,
Lumped FL−1 and Super-Lumped FSL−1 preconditionner is then given in matrix form by

FD−1 = BDSDBT =

Ns∑

i=1

B(i)D(i)S(i)D(i)B(i)T

FL−1 = BDKbbDBT =

Ns∑

i=1

B(i)D(i)K
(i)
bb D(i)B(i)T

FSL−1 = BDdiag(Kbb)DBT =

Ns∑

i=1

B(i)D(i)diag(K
(i)
bb )D(i)B(i)T

with the scaling parameter D(i) is choosen among :

-D(i) = diag
(

1
multiplicity

)

= diag
(

1
‖Nx‖

)

for homogeneous structures,

-D(i) = diag

(

diag
(

K
(i)
bb

)

i
∑

j∈Ni
diag

(

K
(j)
bb

)

i

)

for compressible heterogeneous structure (assuming s represents the

same d.o.f shared by the set Ns of subdomains),

-D(i) = diag

(

µ
(i)
i

∑

j∈Ni
µ

(j)
i

)

for incompressible heterogeneous structures (assuming s represents the same

d.o.f shared by the set Ns of subdomains)
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Figure 6: Conditions for a mechanical consistent preconditioner
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14 Variants to the FETI method

reference [11]
The basic FETI method has been successfully extended to modal analysis reference [8] transient
response simulations reference [5], heterogeneous problems reference [4], and systems with multiple
and/or repeated right-hand sides reference [7] [3]. However, for plate bending and shell problems, the
condition number of the preconditioned FETI interface problem was observed to grow fast with the
number of elements per substructure reference [2]. So far, curing this problem has been the major if not
only obstacle between the FETI method and versatility, reliability, and universal high-performance.

14.1 The FETI 2 levels method (FETI-2)

The original method of reference [12] [2] does not converge well for plate and shell problems, and
the existence and the form of the coarse space depend on the singularity of the subdomain matrices.
Therefore, Mandel, Tezaur, and Farhat reference [22] and Farhat, Mandel, and Chen reference [11]
proposed to project the Lagrange multipliers in each iteration onto an auxiliary space. With the
auxiliary space chosen so that the corresponding primal solutions are continuous at the crosspoints, it
is possible to prove that the condition number does not grow faster than C(1 + log(H/h))3 for plate
problems reference [22], and fast convergence was observed for plate reference [11] as well as shell
problems reference [6]. This method is now called FETI-2. For related results for symmetric positive
definite problems, see reference [?] [25] and references therein.

Figure 7: Shematization of tearing stage and FETI-2 reassembly stage

14.2 The Dual-Primal FETI method (FETI-DP)

The Dual-Primal FETI method (FETI-DP) was introduced by Farhat et al. reference [9]. This
method enforces the continuity of the primal solution at the crosspoints directly in the formulation of
the dual problem: the degrees of freedom at a crosspoint remain common to all subdomains sharing
the crosspoint and the continuity of the remaining degrees of freedom on the interfaces in enforced
by Lagrange multipliers : they are said to be primal variables. The degrees of freedom are then
eliminated and the resulting dual problem for the Lagrange multipliers is solved by preconditioned
conjugate gradients with a Dirichlet preconditioner. Evaluating the dual operator involves the solution
of independent subdomain problems with nonsingular matrices and of a coarse problem based on the
subdomain corners. The advantage of this method is a simpler formulation than those of reference
[22] [11]; there is also no need to solve problems with singular matrices, and the method has been
observed to be significantly faster in practice for 2D problems.

Jan Mandel and Radec Tezaur prove in reference [21] that the condition number of the FETI-DP
method with the Dirichlet preconditioner does not grow faster than C(1+ log(H/h))2 for both second
order and fourth order problems in 2D. By spectral equivalence, the result for fourth order problems
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extends to a large class of Reissner-Mindlin elements for plate bending as in reference [22].

A condition number of the order of κ(M−1F ) = O(1 + log2(H
h

)) reflects optimal convergence
properties because :

when the number of substructures is fixed and the mesh is refined, h is decreased, and therefore
the condition number and convergence rate of the FETI method deteriorates only as O

(
log3 (1/h)

)
,

whereas the condition number of the unpreconditioned stiffness matrix associated with a second-order
elasticity problem grows asymptotically as (1/h).

Suppose that a given mesh is fixed, one processor is assigned to every substructure, and the
number of substructures is increased in order to increase parallelism. In that case, h is fixed and H
is decreased. From reference [11], it follows that for second-order elasticity problems, the condition
number of the preconditioned FETI interface problem decreases. This implies that the number of
iterations for convergence can be expected to decrease with an increasing number of substructures.

On most distributed memory parallel processors, the total amount of available memory increases
with the number of processors. When solving a certain class of problems on such parallel hardware,
it is customary to define in each processor a constant subproblem size, and increase the total problem
size with the number of processors. In such a case, h and H are decreased, but the ratio H/h is kept
constant. It then follows that the FETI method can solve larger second-order elasticity problems with
the same number of iterations as smaller ones, simply by increasing the number of substructures.

14.2.1 Formalization

Reference [14] We will use the subscripts I, ∆ and Π to denote the interior dual and primal dis-
placement variables, respectively and obtain for the local stiffness matrices, load vectors and solution
vectors of nodal displacement

K(i) =






K
(i)
II K

(i)
∆I

T K
(i)
ΠI

T

K
(i)
∆II K

(i)
∆∆ K

(i)
Π∆

T

K
(i)
ΠI K

(i)
Π∆ K

(i)
ΠΠ




 , f(i) =






f
(i)
I

f
(i)
∆

f
(i)
Π




 ,u(i) =






u
(i)
I

u
(i)
∆

u
(i)
Π




 (14.1)

We also introduce the notation

ub =
[
uT

I uT
∆

]T
, fb =

[
fTI fT∆

]T
, f

(i)
b =

[

f
(i)
I

T f
(i)
∆

T
]T

,u
(i)
b =

[

u
(i)
I

T u
(i)
∆

T
]T

(14.2)

Introducing local assembly operators L
(i)
Π

T which map from the space of local primal displacement
variables to that of the global, assembled primal displacement variables writes

K̃ =









K
(1)
BB 0 0 K

(1)
ΠB

T L
(1)
Π

0
. . . 0

...

0 0 K
(Ns)
BB K

(Ns)
ΠB

T L
(Ns)
Π

L
(1)
Π

T K
(1)
ΠB · · · L

(Ns)
Π

T K
(Ns)
ΠB

∑Ns

s=1 L
(s)
Π

T K
(s)
ΠΠL

(s)
Π









we will denote by a tilde the subassembled matrices and

K̃
(i)
ΠB = L

(i)
Π

T K
(i)
ΠB, K̃

(i)
ΠB =

[

L
(1)
Π

T K
(1)
ΠB, · · · , L

(Ns)
Π

T K
(Ns)
ΠB

]

, K̃
(i)
ΠΠ =

Ns∑

i=1

L
(i)
Π

T K
(i)
ΠΠL

(i)
Π ,

KBB = diagNs

i=1

(

K
(i)
BB

)

, K
(i)
BB =

[

K
(i)
II K

(i)
∆I

T

K
(i)
∆II K

(i)
∆∆

]

,

thus we obtain

K̃ =

[
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

]

,
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We note that KBB is a block diagonal matrix.

for i = 1, . . . , Ns. Due to the subassembly of the primal displacement variables, Lagrange Lagrange
multipliers have to be used to enforce continuity only for the dual displacement variables uΠ. We
introduce a discrete jump operator B =

[
OBD

]
such that the solution uD, associated with more than

one subdomain, coincides when BuB = BDuD = 0. Since we assume pointwise matching grids across
the interface C, the entries of the matrix B can be chosen as 0, 1, and -1. However, we will otherwise
use all possible constraints and thus work with a fully redundant set of Lagrange multipliers as in
reference [15]Section 5]; cf. also reference [24]. Thus, for an edge node common to four subdomains,
we will use six Lagrange multipliers rather than choosing as few as three. We can now reformulate
the problem as

K̃ =





KBB K̃T
ΠB BT

K̃ΠB K̃ΠΠ 0
B 0 0









uB

ũΠ

λ



 =





fB
f̃Π
0



 ,

where elimination of the primal variables and of the interior and dual displacement variables leads
to a reduced linear system of the form :

Fλ = d

formally obtained by block Gauss elimination i.e. we have

S̃ΠΠ = K̃ΠΠ − K̃ΠBK−1
BBK̃T

ΠB,

F = BK−1
BBBT + BK−1

BBK̃T
ΠBS̃−1

ΠΠK̃ΠBK−1
BBBT ,

d = BK−1
BBfB + BK−1

BBK̃T
ΠBS̃−1

ΠΠ

(

f̃Π − K̃ΠBK−1
BBfB

)

,

The matrix F is never built explicitly but in every interation appropriate systems are solved the
first term of the sum on the right hand side of the representation of F applied to a vector can be
computed completely in parallel since KBB is a bock diagonal matrix, and the second term in that
sum concernes the global problem needed for scalability.

As for the FETI methods, we then solve the F−1Fλ = d preconditioned linear system with F−1

is the scaled Dirichlet, Lumped or Super-Lumped preconditioner.

14.2.2 How the convergence of FETI-DP can be improved ?

The finite elements discretization of highly heterogeneous linear elasticity problems leads to large and
ill-conditioned problems to solve. Thus they provide good examples to test the robustness of methods
and see if they can converge independently of the material discontinuities.

The main point of the FETI-DP algorithm is the choice of the primal displacement variables to
select for the coarse problem. So naturally the seek for a good 3D variant of the method led to the
choice of the best displacement variables (primal variables) to choose : instead of corner displacement
(Vertices in 3D), one can choose average displacements of edges or faces. In reference [18] where
FETI-DP is described, some edge averages are first mentionned, then this method was experimented
in 2003 when FETI-DP was implemented in Salinas, see reference [?] and is was shown scalable on
massively parallel computers. Finally in reference [17]. Unfortunately this choice does not always
lead to a good convergence results in three dimensions. To obtain better convergence, another coarse
problem was suggested by introducing some additional constraints as averages or first order moments
over selected edges and faces. these choices may lead to robust condition number bounds for highly
heterogeneous materials

There are different ways of implementing these additional primal constraints. One is to use ad-
ditional, optional Lagrange multipliers, see reference [10] or reference [16], another one is to apply a
transformation of basis, see reference [10] [16] [19]. In [14], the use of a transformation of basis is
explained. Let us note that this approach leads again to a mixed linear system of the form (*5) and
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Figure 8: Dual-Primal Mesh partitions

that the same algorithmic form as for Algorithm A can be used; see reference [10] [16] [?] [19] for
further details.

14.2.3 Theoretical implementation of additional primal constraints : with a transfor-
mation of basis

From the inner products of uE with the translational and the rotational rigid body modes, we obtain
three averages and two or three first order moments, respectively; cf. (*4). These averages and
moments are explicitly introduced as new variables into the new basis and will form a part of the set
of primal displacement variables. The dual displacement vectors in the new basis will have a zero edge
average and will be orthogonal to the rotations on the fully primal edge under consideration; this can
also be seen as having certain first order moments to be zero. We now describe how the transformation
matrix for such a change of basis can be constructed. First, we consider the construction of the basis
transformation for a single, fully primal edge. We consider the six rigid body modes ri, i = 1, . . . , 6
; cf. Section *2. Next, we orthogonalize the rigid body modes on the edge against each other using
a stable formulation of the GramSchmidt process, e.g., modified GramSchmidt. We note that the
translational rigid body modes are already orthogonal to each other and thus, we only have to start
with the rotations in order to obtain an orthogonal basis of rigid body modes on the edge E. We
denote the orthogonal basis obtained by this process by (r̂j)j=1,...,l, with l ∈ {5, 6}. When restricted
to straight edge E, one of the rotations is linearly dependent on the others and should vanish when
modified GramSchmidt is used; cf. also the discussion at the end of Section *2. Then, we only have
a five dimensional basis. Let us assume that the vector of nodal unknowns uE has length n. We
then consider the set of vectors {(r̂j)j=1,...,l, (i)i=1,...,n}, where ei is the unit vector with one at the
ith component and zero otherwise, which is associated with the ith d.o.f. on the fully primal edge.
Starting with the orthogonalized rigid body modes (r̂j)j=1,...,l, we orthogonalize the set of n+l vectors,
using modified GramSchmidt. We discard the l linearly dependent vectors and use the remaining n
orthogonal vectors to define the column vectors of our transformation matrix TE . The transformation
matrix TE performs the desired change of basis from the new basis to the original nodal basis. Denoting
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the edge unknowns in the new basis by hatuE , we have

uE = TEûE

A similar construction can be carried out for an edge where only averages are used as primal con-
straints. In this case,we orthogonalize only against the translational rigid body modes. Only edge
averages are then introduced as new variables and the remaining new variables will have zero edge
average. We note that in this case, we can also explicitly set up a transformation matrix for the basis
transformation without using a GramSchmidt process; see, e.g., reference [16]. Next, we consider all
edges on the boundary of a single subdomain Ωi. The transformation matrix, which operates on all

relevant edges of ∂Ωi, will be denoted by T
(i)
E . Then, the transformation T (i) for all variables of one

subdomain Ωi is of the form

T (i) =





I 0 0
0 I 0

0 0 T
(i)
E





Here, we assume that the variables are ordered interior variables first, interface variables not related
to the (fully) primal edges second, and the variables on the (fully) primal edges last, i.e., a typical

vector of nodal unknowns is of the form
[

u
(i)
I

T u
(i)

Γ̄
T u

(i)
E

T
]T

. Here, we denote the interface variables

not related to a (fully) primal edge by the subscript Γ̄. We note that T
(i)
E is a block-diagonal matrix

where each block represents the transformation of a component of a (fully) primal edge. Decomposing
the subdomain stiffness matrices K(i) in the same manner, we obtain

K(i) =






K
(i)
II K

(i)

IΓ̄
K

(i)
IE

K
(i)

Γ̄I
K

(i)

Γ̄Γ̄
K

(i)

Γ̄E

K
(i)
EI K

(i)

EΓ̄
K

(i)
EE






Using the transformation uE = TEûE , we obtain

T (i)T K(i)T (i) =






K
(i)
II K

(i)

IΓ̄
K

(i)
IET

(i)
E

K
(i)

Γ̄I
K

(i)

Γ̄Γ̄
K

(i)

Γ̄E
T

(i)
E

T
(i)
E

T K
(i)
EI T

(i)
E

T K
(i)

EΓ̄
T

(i)
E

T K
(i)
EET

(i)
E






where the upper left 2 x 2 block matrix is not affected by the basis transformation. The primal
variables in the new basis consist now of averages and first order moments but we note that there
might be also selected primal vertices as additional primal variables. As before, the primal variables

belonging to Ωi are denoted by u
(i)
Π and the remaining, dual displacement variables by u

(i)
∆ . By

construction, the basis functions associated with the new dual displacement variables have zero edge
average over primal edges. In the same manner the indices ∆E and ΠE indicate the dual and primal
displacement variables associated with the primal edge constraints. Denoting the transformed matrices
by an overline and ordering the primal edge variables last, we obtain

T (i)T K(i)T (i) =









K
(i)
II K

(i)

IΓ̄
K

(i)
I∆E

K
(i)
IE

K
(i)

Γ̄I
K

(i)

Γ̄Γ̄
K

(i)

Γ̄∆E
K

(i)

Γ̄E

K
(i)
∆EI K

(i)

∆E Γ̄
K

(i)
∆E∆E

K
(i)
∆EE

K
(i)
ΠEI K

(i)

ΠE Γ̄
K

(i)
ΠE∆E

K
(i)
ΠEΠE









Denoting the primal vertices by a subscript ΠV and the remaining dual displacement variables

by a subscript ∆, we can then write u
(i)

Γ̄
= [u

(i)
∆

Tu
(i)
ΠV

T ]T . Using this splitting for the local stiffness

matrices K(i) accordingly, ordering the primal variables u
(i)
ΠV

and u
(i)
ΠE

last, and combining them as

primal variables u
(i)
Π = [u

(i)
ΠV

Tu
(i)
ΠE

T ]T , we obtain

T (i)T K(i)T (i) =






K
(i)
II K̄

(i)
∆I

T K̄
(i)
ΠI

T

K̄
(i)
∆I K̄

(i)
∆∆ K̄

(i)
Π∆

T

K̄
(i)
ΠI K̄

(i)
Π∆ K̄

(i)
ΠΠ
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Assembling the primal contributions of each transformed K(i) and ordering the primal variables
last, we obtain

K̃ :=














K
(1)
II K̄

(1)
∆I

T K̃
(1)
ΠI

T

K̄
(1)
∆I K̄

(1)
∆∆ K̃

(1)
Π∆

T

. . .
...

K
(Ns)
II K̄

(Ns)
∆I

T K̃
(Ns)
ΠI

T

K̄
(Ns)
∆I K̄

(Ns)
∆∆ K̃

(Ns)
Π∆

T

K̃
(1)
ΠI K̃

(1)
Π∆ . . . K̃

(Ns)
ΠI K̃

(Ns)
Π∆ K̃ΠΠ














:=

[
K̄BB K̃T

ΠB

K̃ΠB K̃ΠΠ

]

.
The transformation of basis changes the sparsity pattern of the transformed matrices T (i)T K(i)T (i)

compared to that of the original local stiffness matrices K(i) but only the matrix blocks related to the
edge degrees of freedom are affected; cf. (*8). We note that the set of edge degrees of freedom is only
a small subset of the overall set of interface degrees of freedom. Thus, the transformation of basis only
slightly affects the sparsity pattern. Using local Lagrange multipliers, the sparsity of the transformed
matrices can be further improved; cf. reference [16]Section 6.2]. In our FETI-DP algorithm in this
article, we always assume that we have performed an appropriate change of basis. If there is no danger
of confusion, we will drop the overline notation which indicates the dual displacement variables in the
transformed basis. Using the transformation of basis, we again obtain a system of the same form as
in (*5),





KBB K̃T
ΠB BT

K̃ΠB K̃ΠΠ 0
B 0 0









uB

ũΠ

λ



 =





fB
f̃Π
0





We note that, after the change of basis has been carried out, we can always use the same imple-
mentation since the algorithmic description earlier in this section is based on (*5) and thus does not
depend on a specific choice of primal and dual variables. Note that the local problems as well as the
Schur complement K̃ΠΠ remain symmetric positive definite. In the theory presented in Klawonn and
Widlund reference [16], it is assumed that the subdomains are polytopes with good aspect ratios and
that the edges are straight. Furthermore, large material discontinuities should be aligned with the
interface. But condition number estimates have also been done in reference [16] for some case not
predicted by the theory.
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Part II

IMPLEMENTATION OF FETI METHOD IN
OOFELIE CODE

21 Few things to know about the Oofelie toolbox : specificities and
limitations

In my case, the commands interpretor seemed sufficient to introduce the FETI algorithm. In fact, but
the domain partitionner that did not exist at the beginning, it allows the definition of the problem,
of the resolution schemes and no compilation is needed to test the new algorithms.

specificities of “.d”-directories and “.e”-files New algorithms may be written in a file
name of the file .e which is compiled once called in the interpretor by the syntax name of the file;
or name of the file.e; Oofelie looks then in a recursive way into every directories of working direc-
tory that may contain such a “.e” file. These special directories are those which name looks like
name of the directory.d . Once the file is found, it is parsed and the file is executed in the interpretor.
As no compilation is needed to test algorithms in “.e” files, they are a very important tool in a first
stage of implementing new methods. There are two different kind of “.e” :

• those who will only be executed once in the whole algorithm : they don’t need any special
heading and can contain only commands. They may use and modify any of the already declared
variables. They may be called more than once in an algorithm but it is not adviced as it will be
parsed and compiled each time by the command interpretor. Furthermore, for the time being, a
bug appears when it is used in a loop : the file end acts like a “continue” command in C++, it
means that every command between the end of the file call and the end of the loop is ignored,
without stopping the loop.

• those who will be called two or more times : they must be declared as functions very similarly to
C++ syntax. Every object used in such a function must be either defined as an input argument,
or declared on the command list. Once they are called in the program, they are parsed and
compiled by the interpretor but unlike the simple “.e” files, this happens only once and the
interpretor keeps in memory how it behaves. Their syntax is as follows :

Table 3: function syntax in Oofelie’s command interpretor

1: Function type of output object name of function ( type of input object name of input object , . . . )
2: {
3: commands list
4: }

types of data Many types are available to store data and save space : some of them are written
down below. In the interpretor doubles and integers have the same type named scalar. Let me define
more precisely what are the specificities of some of the matrices storage :
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• Matr3-type matrices are 3-dimensional matrices. they only use the amount of 9 scalars.

• Matrix-type matrices are n by m real matrices : they use an amount of n ∗ m + 2 scalars

• CMatrix-type matrices are n by m complex matrices : they use an amount of 2 ∗ n ∗ m + 2
scalars

• SkyMatrix-type matrices are sparse n by m matrices : they use an amount of
∑m

i=1(bi −ai +1)
scalars where Aji = 0 for j < ai and Aji = 0 for j > bi

• CSRMatrix-type matrices are fully sparse n by m matrices that use an amount of 3 ∗ p scalars
for p declared values. every other value is considered as equal to the default value (0 for example)

all of these matrices have the same parent class MotherMatrix but they may have specific functions
that are not implemented in their common parent class. We always have to take care about what
specific functions are available in parallel to willing save as much storage space as possible.

the std library Many types are available to store data and save space : some of them are writ-
ten down below. In the interpretor doubles and integers Thanks to the accessibility to a C++ li-
brary called standard library, one can acces to a very usefull std function in the interpretor : the
std::vector<type >dynamic array that contains a list of a specific type. the std::vector<type
>function has three very important functions that are pop up, push back and get dim. The fol-
lowing shows how works std::vector<type >declaration and use. Unlike in C++, it is not possible
to define std::vector<std::vector<>> in the interpretor. so some of the strategies of data storage for
the interpretor may have to be retought once we want to implement directly in the C++ code.

Table 4: std::vector<> declaration and use

1: std::vector<scalar >A (3); creates a std::vector of 3 scalars
2: A[0]$ the numbering starts at 0
3: >> scalar entry = 0
4: A.push back(scalar);A.size$
5: >> scalar entry = 4
6: A.pop back();A.size$
7: >> scalar entry = 3

The PhySet class In Oofelie, everything is based on a base class: the PhySet class. The name of
this class comes from the contraction of Physical Set. This is the Oofelie’s most important class and
it is not possible to access the code without knowing how PhySet works. Most of Oofelie’s objects
are PhySet objects. For example, all the elements are PhySet, all the materials are PhySet, all the
sets (Elemset, Positset, Fixaset, etc) are PhySets. Every PhySet has very practical base functions:
for example the kind of set() function returns the name of PhySet, the print() function prints out to
stdout the contents of PhySet, etc...

PhySets are only used to be identified: they allow to very freely create links between different
Oofelie’s objects.

Every PhySet can have one and only one “parent” (there exist the set pere() function to define it)
and a series of properties under a form of a PhySets list (use add properties() function to define them).
For example, an Element can have an Elemset as parent. This Element can also have a Material and
a Propelem in its properties list.

This allows to create “the PhySet tree”, an image of the Oofelie’s memory organization. A classic
PhySet tree is shown for example on figure 9.

We see that Domain is the axis of everything here. In fact, Domain is the main class that regroups
the set of informations of the problem. Arrows represent the relationships defined by set pere(). We
see that Materset is the parent of two materials, the Elemset is the parent of two elements and the
Domain is the parent of the Materset and of the Elemset. The Positset contains a set of positions
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Figure 9: Father-Son scheme

((x,y,z) coordinates), for example nodes positions. The Fixaset contains the fixations and the Analysis
manages the Step objects. The latter are time steps, load cases, etc... The Steps contain the database.
The Analysis is always pointing to the current Step.

Another way of representing the preceding diagram is to indicate the properties of every PhySet.
They are represented on figure 10 by an arrow that means “I’m a property of...” :

We remark that on this scheme, the Domain is the axis of everything. Therefore, every physet
is a property of the Domain. Finally, there are a commands that should immediately be explained :
the Physet :: get properties(PHY SET 2 PO) command allows any communication within the three
( PO stands for Physical Object). In the interpretor, this command can be simply called by the
Physet[PHY SET 2 PO] function. Then, if the database PHY SET 2 PO of Physet Physet 2 is not
a direct property of the Physet Physet, the interpretor asks the parent of Physet for the database,
and so on.

In brief, The PhySets are the Oofelie’s basic objects, they all have specific name and can be
identified (ex: Domain). Every PhySet possess a parent and a list of properties (ex: DOMAIN PO)
that allow any object in memory to communicate with each other, using the get properties(* PO) or
simply the [* PO] function. This function allows a PhySet to do a request to another PhySet.

The multi-physic database and its possibilities The database is one of the keypoints that make
Oofelie multi-physics. First of all because it can be accessed at whatever time and in whatever way.
For example we can use previous computation results as new data for re-start an completly different
computation. In a more generaly manner, the database may contain every value of the computation.
The database is made of a set of objects Set. These objects are contained in the “Physet properties”
of the Step objects. So every Step possess a set of Sets and, from this fact, a part of the database.
The whole database is made of all the Sets of all the Steps, as shown on figure 11. Every Set makes up
a set of different objects of different types, according to their dimension : scalar(temperature, electric
potential), vectorial(displacement, force) or more(constraints))

The Locks help to recognize differences between one Set and another, i.e. how to distinguish
between a forces Set and a displacements Set. A Lock is represented by a set of 64 bits (or flags)
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Figure 10: Properties scheme

Figure 11: The database
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taking the 0 or 1 value. Every bit is represented by a symbol made of two capital letters (TX, TO,
GD, IM, etc). Some Lock categories are used to distinguish between different Sets, whereas other
Lock categories allow to give attributes and are used at d.o.f management level, see figure 12 for some
of the main fields.

Figure 12: Qualification of degrees of freedom

The Nature category gives the Lock type (for example TX for the translation along X coordinate),
the Reference category is AB for absolute or RE for relative (allows multi-body management for
example), the Degree category is GD for generalized displacement, GV ofr gen. velocity, GA for gen.
acceleration, or GF for gen. force. The Fixation category is FR if the d.o.f is free and FI if it is fixed.
Finaly one that will be very important for the following : the Interface category may be set to IN for
a d.o.f on the interface or NI for a d.o.f not on the interface

The Keys are used to define criterions of validity of Keys (with some match function) ; it allows
activation of multiple characteristics inside each sub-field, two examples out of the FETI.e program :
(TX|TY|TZ| INTERFACE|FR).care means that all d.o.f, on the interface or not, provided that they
are free, are valid ; (TX|TY|TZ| IN|FR).care means nearly the same, but there they have to be on
the interface to be valid. The .care activates one default bit in every other field, which is necessary to
obtain a key.

All this work on definition of degrees of freedom is used to partition the degrees of freedom set, so
that we can divide structural components created into different blocks according to the partitioning.

Definition of a Domain. The Model definition must follow this order :

Table 5: Model definition

1: Positions
2: Materials : material or materialset +properties; element property “propelem” +proper-

ties+material
3: Elements : propelem+positions
4: Fixations : position+lock
5: Excitations : position+lock+value
6: Domain : add different properties

One remark about the positionset : this is the only Set that is also a PhySet, in fact, the Lock
that corresponds actually to the Set PositionSet is (TX|AB|GD).
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22 Programmation

Figure 13: Oofelie’s command interpretor

For the virtual parallelization , We decided to use std :: vector <> of the dimension of the
number of subdomains for every PhySet needed : only for the database I did not really use steps
and sets, but I extracted every structural matrix I needed into normal structures, and I used normal
vectors to store displacement data. Oofelie has no tool implemented to make different processors work
in collaboration such as the MPI (Message Passing Interface) so I tried to make programs the most
virtualy parallelized as possible, mainly by the use of a loop on every subdomain as often as possible.

Structure of the project and Compilation As any C++ project, Oofelie must be compiled for
the interpretor to take into account new modifications. I used Microsoft Visual C++ Studio to compile
as it was the one installed on the faculty computers. It is a good software thanks to which we can
easely navigate into the project, search for an expression in every files.

The I class contents is related to :

• oeI class.h :

– the class name declaration

– the eventual declaration of mother/parental classes (where the class to be interpreted comes
from)

• oeI class.cpp :

– the different member functions declaration (with its own parameters)

– the declaration of an interpreter documentation of all these functions

– the execution management of member functions (by a big switch)
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22.1 The first program

At the beginning of this internship, some of the keypoints for domain decomposition were not imple-
mented on Oofelie : no domain partitioner were implemented. For a few weeks I kept on studying
bibliography on different methods, and as the open-engineering team whished to implement theirselves
a partitioner, I made a first attempt of the FETI algorithm on a simple “chessboard” 2D problem.
This is a fully parameterized problem with rectangular elements. It is clamped on one side and some
constraints can be imposed on the opposite side. This made me get familiar with the command in-
terpretor avaliable functions, and with the architecture of the C++ project. Indeed, every class has
particular commands and their application field may sometimes be limited.

For the model definition, I needed to limit data storage. One of the principles was to be as close as
possible of a domain definition strategy that could be used for every FETI-family methods : as every
interface degree of freedom may be different for each subdomain, they had to be part of a different set.
Furthermore, the positionset should be defined only once and was to be shared by all subdomains.

The first program was made on the base of a Matlab program made by Mr Rixen, which was
optimized to run fast on Matlab. I copied this program quite linearly and choose to maintain the use
of connectivity matrices B. This lead to too much loops as lots of Matlab function do not exist in
Oofelie, and the program was finaly very very slow.

Figure 14: Original partitioned domain for the first program

Nevertheless, thanks to this I have understood a lot about Oofelie, about the interpretor in par-
ticular but also about programing in the upper levels, and I made implemented some modifications in
the project.

A Matrix extraction function At the beginning I didn’t knew about partitions, how to label dif-
ferently degrees of freedom and to extract a particular block from a structural matrix, I implemented
a new function available in the interpretor that allows to extract a matrix from a bigger, taking two
integer vectors as arguments. Before that, only block extraction was possible, with a min and a max
value. This method is very similar to the one implemented in Matlab. This extraction method was
implemented in the MotherMatrix class, which is a common parent of every matrix classes. Thus any
kind of matrix can une this function.

Figures 15 and 16 are written in the ground level oeMotherMatrix.cpp file, and in order to au-
thorize access to these functions in the interpretor, I also had to modify the second level I class
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Figure 15: Original extract(scalar, scalar, scalar, scalar) function

Figure 16: Modified extractV(V ector, V ector) function
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oeI MotherMatrix.cpp : a line in the description of the member function list that declares a new func-
tion available for the I MotherMatrix class, and a case in the switch loop of the I MotherMatrix::exec()
function that links the new function available in the interpretor and the one recently added in the
ground C++ level.

Making rigid body modes available in the interpretor In the class SymMatrix, the LDLT

factorization was already coded and detected null pivots of singular matrices. A Matrix containing
the rigid body modes was also created but it was not available in the interpretor. I needed this in-
formation thought for the elaboration of the small coarse grid problem. Thus I had to modify the
oeI SymMatrix.cpp file and it is now possible to extract the rigid body modes matrix, the number of
such modes. On the opposite of the Matlab code for the nullspace of a Matrix which seeks for the best
d.o.f. to block, the LDLT factorization is inherently sequential and often the last d.o.f. are considered
as fixed.

22.2 The metis partitionner and the DomainPartitioning class

Metis [1] is a freeware package commonly used. It is a graph partitioner and can also be used as a
mesh partitioner. There are two methods implemented to partition meshes slightly different : the one
minimizes the latter information exchange by minimizing the number of nodes on the interface, the
second one just minimizes the number of 2D elements on the interface. The difference of efficacity
between them may be discussed in terms of speed of computation but we do not have enough data to
make our choice now.

Using this mesh partitioner, Mr Paquay from Open-Engineering created new classes named oe-
DomainPartitioning and oeI DomainPartitioning. It is first declared taking as argument the initial
global domain, then we set the number of subdomains for the decomposition and finaly the partition-
ing is performed using Metis. After this, informations about interface are stored in the InterfaceInfos
structure and the interface flags are set to IN=1 (on the interface) for corresponding d.o.f while others
have the default flag NI set to 1. The commands in the interpretor are as follows :

Table 6: Domain partitioning

1: DomainPartitioning domDec(dom FETI);
2: domDec.setNbParts(Ns);
3: domDec.performDecomposition();

Figure 17: dom FETI domain example partitioned with Metis

The InterfaceInfos is a std::vector<InterfaceNodeInfoByDomain> ; The InterfaceNodeInfoByDo-
main is a std::vector<InterfaceNodeInfo> ; The InterfaceNodeInfo is a structure that possess an int
nodeId, a std::vector<int> domainsIds, and a std::vector<int> localInterfaceIdOfConnectedNode ;
All this means that the InterfaceInfos has every information a subdomain could need to rapidly pick
from other subdomains the exact information they need to compare any of their interface d.o.f. .
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Concretely,
interfaceInfos[subdomainId][LocalInterfaceNodeId].nodeId() is the identity number of the node

to which this d.o.f. belongs in the positionSet.
interfaceInfos[subdomainId][LocalInterfaceNodeId].domainsIds contains the domainsId of the

subdomains that are connected to this interface node.
Thus, interfaceInfos[subdomainId][LocalInterfaceNodeId].domainsIds.size is equal to the multi-

plicity of the interface node minus one.

Limitations For the moment, some limitations exist for the decomposition : It works only for
Tetra4 elements, and for continuous nodeId and elementId numerotation (starting from 1 to ...) There
are also some problems about the repartition of node fixations and excitations which are defined in
FixationSet or ExcitationSet by for example the use of the following command : excitationset.define(
nodeId,Lock,value); . Indeed, after partitioning, every subdomain has the whole information about
fixations and excitations, even if it does not have any elements connected to the excited nodes. This
is not really a problem but it appears that data are lost once we try to get the structural vector of
generalized forces. To avoid loos of data for a simple domain, one commonly use the special command
domain.get properties(Lock).put val NFD(nodeId,Lock,value); but I didn’t succeed in getting those
values transmitted to subdomains in case of a domain decomposition. To get some constraints for one
or more subdomains, one has to modify arbitrarly one of the generalized forces structural vector.

22.3 The final program

The main FETI.e file is composed as follows :

Table 7: The main FETI.e file algorithm and different files related : description of the preprocessing

1: exempledom.e; //creates the global dom FETI domain
2: define different parameters;
3: declare variables that are not Sets;
4: partition the domain as in table ??
5: extract fact local op.e; //extract K, u, f
6: extract fact int op.e; // extract Kbb; Kbi; Kii; and factorize Kii if needed
7: comp force norm.e; //compute force norm
8: compute k scaling.e; //compute scaling for preconditioner if needed
9: coarsegrid .e; //build natural coarse grid data

10: FETI initialisation.e;
11: Preconditioned Conjugate Gradient Iterations

But the use of the DomainPartitioning class, The main difference between this program and the
first one is that no connectivity matrice B is defined. Thanks to the InterfaceInfos structure, every
subdomain have direct acces to the Id of the domains and of their local d.o.f. connected. Most of the
functions that the B and the L matrices yield to may be done in a simple a completely parallelized
manner. For the assembly operations using B, I made the LocalScaledAssembly.e function. This
function is equivalent to the operation B(s)T

∑Ns

i=1 B(i)u(i) and is sufficient for nearly everything in
the FETI method. The different values may be ponderated, for example if the preconditioner takes
into account heterogeneities across the interface. We then should rather store the facing stiffness of
the connected domain at the connected node in the preoprocessing to avoid decelerations each time
it is needed. I then added to the InterfaceInfos structure the std::vector<double> localFacingStiffTX
(and TY and TZ);. For the convergence criterion, I made the LocalPrimalAssembly.e which has no
real algebraic equivalence with L or B operations.

Improvements possible For the moment, almost all the specificities of the Oofelie code have been
used in this algorithm, but one should still implement this algorithm in a Analysis Class, and this
could enable the use of steps to store data in different Sets. In this algorithm, the sets exist but
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are not used, and data for one step are stored in different colums of a Matrix. But there still is a
problem, because for the moment the set stores only one value for each displacement variable and only
one value for each force variable. This could fit for primal variables, but as dual variables need one
specific value for each subdomain and multiplicity − 1 lagrange multipliers values, one should maybe
use the “I1toI9 contributions Locks”, combinated with the GD lock, and each subdomain should know
specificly which one of the variables is his, and maybe the “I1toI9 contributions Locks”, combinated
with the GF locks, for the lagrange multipliers. This would limit the number of lagrange multipliers
and there could never be a node where more than four subdomains could meet : if so, the lagrange
multipliers could not be fully redundant.

This problem could be solved with the actual parallelization of the Oofelie code : maybe each pro-
cessor will posses its own database, then there would be no problem for the displacement variables and
the lagrange multipliers would be limited to 9 per subdomain, which would mean that 9 subdomains
could meet in one node without any problem, which is enought to test the algorithms on some very
simple cubic “3D chessboard” problems.
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CONCLUSION

The achieved work To conclude the work I have done, I first have to go back to the differents
algorithms and their Indeed, our first work during this internship was to make understand links and
differences between different FETI-family methods : The different preconditioners and its mechanical
interpretation, The difference between FETI-2 and FETI-DP, How to add average constraints to
improve convergence.
After having read a lot of the Oofelie documentation on the community website Oofelie.org, and
talking about strategies of where to store the different data with Mr Rixen and Mr Paquay, and before
that the DomainPartitioning class was created, I started to implement FETI in a first manner on
the simple chessboard problems. This was the occasion to get used with the command interpretor
functions, and to constainsly seek in differents lower levels for the available functions and their meaning.
This problems has permitted us to understand a lot about how this code works and how to modify
the interpretor. I then implemented a first little Matrix extraction function and modified the LDLT

factor function in order to have acces to some informations in the interpretor.
Once the DomainPartitioning class was availabe and that the first program worked, I started the new
implementation, avoiding connectivity matrices and using Locks and partitions to separate degrees of
freedom and to extract easely Blocks from structural Matrices.
Concerning the objectives that I had at the beginning, that is to say:

• To read and learn as much as possible about the FETI-family algorithms

• To learn a lot about how Oofelie works

• To implement at least the original FETI algorithm

they are all nearly completly reached.

The perspectives As I have mentionned it, There are a lot of perspective for the implementation
of FETI methods in the Oofelie program. One has to completely integrate it into an Analysis class
and to use Steps and different Sets to save memory. There is also a lot to do in order to take
into account average primal variables for the coarse problems of the next algorithms, finaly, the
DomainPartitioning class should to be modified to distribute the minimum of information to each
subdomain, in particular for the excitations. One keypoint in the futur is to make a real paralelized
version of these algorithms, with communcations rules between processors and to make some choice
about what data they will independently own.
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