The Creation of a Brain Atlas for Image Guided
Neurosurgery using Serial Histological Data

M. Mallar Chakravarty!, Gilles Bertrand!+®, Maxime Descouteaux?, Abbas F.
Sadikot!*3, and D. Louis Collins'.

! Montreal Neurological Institute (MNT), McGill University, Montreal Canada
? Center for Intelligent Machines (CIM), McGill University, Montreal Canada
% Division of Neurosurgery, McGill University, Montreal Canada,

Abstract. Digital atlases of the human brain can help in the specific
localization of structures of surgical relevance and interest in Image
Guided Neurosurgery (IGNS). This paper outlines one of the steps in
the creation of a digital atlas intended for IGNS, using histological data.
The acquisition of histological data can include artefacts such as tear-
ing, shearing, stretching, shrinking, as well as inhomogeneous staining
leading to structural inhomogeneities. These inconsistencies are reduced
using a non-linear intensity based registration procedure where deforma-
tions are defined using a maximized correlation coefficient estimate. The
intensity artefacts brought about by inhomogeneous staining are reduced
by applying a slice to slice intensity inhomogeneity correction by mod-
elling the intensity mapping between slices as a third order polynomial
that is estimated with a Least Trimmed Squared fit. The final step is to
subsample this data to achieve near isotropic sampling and to improve
the appearance of the data. To demonstrate improvements, the lateral
ventricle was then segmented and the principle curvatures of the zeroth
order level set were calculated at each point on its surface. Using the
standard deviations of the mean and Gaussian curvatures, we show a
decrease in the roughness of the surface, indicating improved structural
alignment with our method.

1 Introduction

Though several anatomical imaging methods exist, these methods are not al-
ways adequate in planning neurosurgical procedures. Imaging modalities such
as Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET),
and Computed Tomography (CT) do not allow for a detailed analysis of cer-
tain structures in the brain due to their spatial resolution limitations. Digital
or computerized atlases can help improve the accuracy and precision of the spa-
tial localization of a region of interest within a patient’s brain when used in
conjunction with different imaging modalities [1, 11].

The goal of Image Guided Neurosurgery (IGNS) is to use data from different
imaging modalities in order to help plan stereotaxic neurosurgical procedures.
Using this data, surgeons are able to interpret patient specific image volumes
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of anatomical, functional, and vascular relevance as well as their relationships.
However, atlases can provide histological, functional or cyto-architectonic infor-
mation to enhance a surgeon’s visualization and understanding[1, 11]. Atlases
of the basal ganglia and thalamus are required to determine stereotaxic tar-
gets for surgical treatment of movement disorders, such as tremor associated
with Parkinson’s disease [1]. In the standard stereotaxic method, linear scaling
is used to fit an atlas to a patient’s anatomy [12]. Our group was among the
first to use a non-linear registration to improve atlas warping, thus enhancing
positional targeting in patient’s anatomy [11].

The creation of an atlas from histological data is a three-dimensional (3-D)
problem and slices of histological data are two-dimensional (2-D). In most cases,
anatomical structures are defined by an anatomist on the 2-D slices. This 2-D
data must be reconstructed (tessellated) to create a 3-D geometric atlas that
can be mapped to any patient’s anatomy. Unfortunately, the acquisition of his-
tological data contains artefacts such as tearing, shearing, stretching, shrinking
or other types of morphological inconsistencies. If the 2-D data is reconstructed
into 3-D by simply stacking the 2-D histological data, these morphological incon-
sistencies will be present in the reconstruction. This includes non-homogeneous
structural definitions in addition to poorly defined and unsmooth surfaces. In-
consistent lighting and staining can also cause intensity inhomogeneities in re-
constructions of the stacked histological data. In this paper we present initial
work to correct the histological data by improving slice-to-slice alignment while
correcting for some intensity artefacts.

Other work has been done in creating digital atlases using histological data.
Ourselin et al.[8] used an intensity based block-matching strategy between slices
of histological data and a Least-Trimmed Squared (LTS) minimization in or-
der to define rigid or affine transformations from the source block to the target
block. A 3-D registration from the reconstructed volume with a reference MRI
was done using a similar block matching strategy. Toga et al.[13] used a fiducial
marker based registration process to align serial sections. Their method uses a
combination of local and differential scaling to put anatomical data in Talairach
space [12]. Kim et al.[7] used a thin-plate spline (TPS)[2] technique to recon-
struct a set of rat brain autoradiographs to a video block face reference. The TPS
is a landmark based registration where the deformation between analogous land-
marks is calculated using n-th order polynomials. Kimet al. implemented their
technique using landmarks defined on a grid or circle, that did not necessarily
have any anatomical significance.

We propose a new technique in the creation of a digital atlas using histolog-
ical data for which no complementary data (such as complementary MRI data
or digital photographs of the blockface) is available. There are several cryogenic
and histological datasets in existence which are of high quality, have been studied
extensively, and pre-date the use of brain-imaging modalities or digital photog-
raphy. The goal of our research is to create a 3-D reconstructed volume of such
data while minimizing morphological variability introduced in the data acquisi-
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tion process. Section 2 will describes the acquisition of the data while Section 3
describes the 3-D reconstruction technique.

2 Histological Data Acquisition

The histological data set used here was acquired in 1957 from a male patient
who died of non-neurological complications. The brain was removed and fixed
in 10% formalin and suspended in a gauze hammock to avoid any deformation.
The brain was then split at the midline after which a block, centered on the
thalamus and measuring 6cm from front to back, 4.4cm from top to bottom,
and 3.2cm from side to side, was sectioned out. The volume contains all of the
basal ganglia together with the amygdala and the hippocampus (except for the
posterior portion).

After dehydration the block was mounted in paraffin and placed in a mi-
crotome. Slices were taken at 0.69mm intervals between sections. Alternating
sections were stained with Luxol Blue for myelin and with a Nissl stain for cell
bodies. Corresponding myelin and cell photographs were then placed together
and matched on the histological data as closely as possible. The contours struc-
ture were then segmented by hand by a neuroanatomical expert (GB) using
Adobe Photoshop.

3 3-D Reconstruction Methods

The 3-D reconstruction used a three step approach. Prior to implementing the
reconstruction scheme the contours and the histological images were seperated.
A picture of all three of these images can be seen in Figure 1. The colour pho-
tographs of the stained image were then converted to grey-level images. These
images are considered in the reconstruction scheme described.

First a registration scheme was implemented in order to align homologous
anatomical structures between sections. An intensity inhomogeneity correction
was then implemented to correct any lighting artefacts and inconsistent staining
which may have occurred in the original data acquisition. The volume was then
super-sampled to obtain near-isotropic resolution. These steps are described in
the following sections.

3.1 Registration

The Automatic Nonlinear Matching and Anatomical Labeling(ANIMAL) regis-
tration scheme was used to reduce the morphometric variability between slices
[4, 5]. The registration scheme is based on a 2-D lattice defined for each slice
which makes up the volume. A deformation vector is then calculated for each
node on the lattice. Each deformation vector is estimated by maximizing the
correlation coefficient of the local intensity neighborhood centered at each lat-
tice point. Since we have no reference data we maximize anatomical consistency
between slices.



4 M. Mallar Chakravarty et al.

Fig.1. An example of the data set. Left: The colour data with segmentation
lines drawn. Middle: The segmentation contours. Right: Grey-level image.

In doing the non-linear registration we consider the data sequentially in sets
of three slices. Let the source be the second slice in the sequence of three slices.
Let the two extreme slices in this set be the targets. All three slices in the set
were blurred with an isotropic Gaussian kernel. Two different deformation vector
fields were calculated to define the warp from the source slice to each of the target
slices. The average of these two deformation vector fields was then applied to
the source slice, thus maximizing its similarity with both targets simutaneously.
We then incremented our procedure by a slice and consider the next set of three
slice (the source slice from the previous step is now a target slice, and one of the
target slices from the previous step is now a source slice).

The voxel size of each slice was 34um x 34pum x 700um. Based on this res-
olution, the blurring was done with a Gaussian kernel with a Full Width at
Half Maximum (FWHM) of 640um. The deformations were calculated over 50
iterations using a step size of 1700um and a lattice diameter of 3400um.

It should be noted here that this registration procedure will not account
for any global deformations. For example, uniform shrinkage throughout the
data set cannot be accounted for since there is no reference. Local anatomical
inconsistencies between slices are accounted for by this process.

3.2 Intensity Inhomogeneity Correction

Intensity artefacts are also incurred during the acquisition of the histological
data. Inhomogeneous lighting and inconsistent staining can cause artefacts in
the intensity of the 3-D reconstructed volume. The intensity inhomogeneity cor-
rection scheme developed by Prima et al.[9] was used. The technique models the
intensity mapping of one image to another as a polynomial with degree greater
than order one. This mapping is then applied to all the pixels in the image.
We applied a third order polynomial for each image after which an LTS fit was
applied.
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Here we considered the data sequentially in groups of two slices. Let the
second slice in this set be the target image. Let the first slice in this set be
the reference image. The LTS fit is calculated between the target and reference
images. The correction is then applied to the target image. We then increment
the procedure by a slice and consider the next set of two slices (the target image
from the previous step is now the reference image). We consider the spatial
variation between slices in the histological data set to be small enough to be
accommodated by the technique.

3.3 Super-sampling

After all the intensity corrections and registration corrections have been applied,
the volume is then super-sampled along the z axis, creating additional smoothing.
The sampling was increased by a factor of ten, using trilinear sampling. This
creates a final voxel size of 34um x 34pm x 70um.

4 Results

Figure 2 shows a pictoral view of the results. The first three pairs of images are
the pre-registration step and post-registration step images. The box represents
the region of interest shown in Figures 3 after super-sampling of the intensity
inhomogeneity has been applied to the un-registered and registered data.

Figure 2 shows the uncorrected and corrected data. Streaking caused by
intensity inhomogeneities has decreased in the corrected data. Figures 3 show
both data sets after the inhomogeneity correction has been applied and the data
has been super-sampled. The close-up on the right shows that the contour has
been smoothed.

To quantify the smoothness of the end result, the lateral ventricle was manu-
ally segmented at each slice in the volume. A surface rendering of this segmenta-
tion was done and the curvature of this surface was also analyzed. Figure 4 below
shows a view of the reconstructed ventricles of both the spatially corrected and
uncorrected volumes. These surfaces can be seen in Figure 4. Although the dif-
ferences between the surfaces are subtle, our analysis of the principle curvatures
demonstrate greater smoothness quantitatively.

Mathematically, any surface can be characterized by its two principle curva-
tures, which are two orthogonal vectors. The principle curvatures roughly repre-
sent the shape (including any perturbations) of a surface. The mean curvature
is simply the average of the two principle curvatures and the Gaussian curvature
is their product [6]. A decrease in curvature indicates that a surface is smoother.

The level set approach is used for calculating the mean curvature and the
Gaussian curvature for every voxel on the surface rendering of the ventricle
[3]. This is done in a two step process. First the distance transform for the
binary volume is calculated in order to obtain the zeroth order level set. This
corresponds to the 3-D outside surface of the segmented ventricle. The second
step involves the calculation of the mean and Gaussian curvatures based on the
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Fig.2. Volumes before and after registration correction Left:
The original, uncorrected data. Middle: The post-registration and intensity
inhomogeneity-corrected output. Right: Orientation. Top: Coronal View. Mid-
dle: Saggital View. Bottom: Transverse View. The boxed region will be the
focus of Figures 3.
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Fig. 3. Close-up of volumes before and after registration correction.
Left: The data after performing intensity inhomogeneity correction and super-
sampling but not the registration correction. Right: Corrected data. Smoothing
of the edge has occurred.

Fig. 4. Top view of the Lateral Ventricle. Left: Segmented lateral ventricle
before registration correction. Right: Segmented lateral ventricle after registra-
tion correction.
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distance transform function[10]. The average and standard deviations for both
these curvatures, are shown in Table 1.

Table 1. Average and Standard Deviation for the Mean and Gaussian Curva-
tures Values for each Voxel on 3-D Lateral Ventricle Surface.

| ||Mean Curvature|Standard Deviation|

Before Correction 2 081.7 15.5
After Correction 1 646.6 10.74

||Gaussian Curvature|Standard Deviation

Before Correction| 16 879 254.26
After Correction | 9 641 125.11

We can see from Table 1 that the mean curvature has decreased by 21% and
that the Gaussian curvature has decreased by 42%, indicating that the surface
of the reconstructed ventricle is much smoother due to the alignment technique
described here.

5 Conclusion

This atlas is intended for use with an IGNS system and when complete, it would
replace the simple stereotaxic atlas in use [11]. This would be the first step
towards a full integration of this atlas in an IGNS platform.

This work is also done with older data which has no block-face or MRI
reference. This method should be tested against results obtained with reference
data to see how it compares with such methods.

An intensity inhomogeneity scheme better suited to histological data is also
necessary. Although the correction scheme used here yields global slice-to-slice
intensity correction, it is not optimized for spatially variant inhomogeneity be-
tween slices. An adaptive thresholding technique, is being considered. This tech-
nique would examine a neighborhood of pixels and use a polynomial fit between
a reference slice and the target slice.

We have presented here a method to reconstruct histological data, while
accounting for anatomical inconsistencies and slice to slice intensity inhomo-
geneities. The results demonstrate increased smoothness of the reconstructed
volume. This will allow us to proceed in creating a 3-D geometric atlas of the
basal ganglia and thalamus for use in stereotaxic IGNS.
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