
A Multi-Scale Geometric Flow for Seg-
menting Vasculature in MRI:
Theory and Validation

Maxime Descoteaux

School of Computer Science,

McGill University, Montréal

June 2004

A Thesis submitted to McGill University in partial fulfilment

of the requirements for the degree of Master of Science

© Maxime Descoteaux, 2004





Abstract
Often in neurosurgical planning a dual echo acquisition is performed that yields

proton density (PD) and T2-weighted images to evaluate edema near a tumor or

lesion. The development of vessel segmentation algorithms for PD images is of

general interest since this type of acquisition is widespread and is entirely non-

invasive. Whereas vessels are signaled by black blood contrast in such images,

extracting them is a challenge because other anatomical structures also yield simi-

lar contrasts at their boundaries.

In this thesis we present a novel multi-scale geometric flow for segmenting vas-

culature from PD images which can also be applied to the easier cases of MR

angiography data or Gadolinium enhanced MRI. The key idea is to first apply

Frangi’s vesselness measure [Frangi et al. (1998)] to find putative centerlines of

tubular structures along with their estimated radii. This multi-scale measure is

then distributed to create a vector field which is orthogonal to vessel boundaries

so that the flux maximizing flow algorithm of Vasilevskiy and Siddiqi (2002) can

be applied to recover them. We carry out a qualitative validation of the approach

on PD, MR angiography and Gadolinium enhanced MRI volumes and suggest a

new way to visualize the segmentations in 2D with masked projections. We also

validate the approach quantitatively on a data set consisting of PD, phase contrast

(PC) angiography and time of flight (TOF) angiography volumes, all obtained for

the same subject. A significant finding is that over 80% of the vasculature recovered

in the angiographic data sets is also recovered from the PD volume. Furthermore,

over 25% of the vasculature recovered from the PD volume is not detectable in the

TOF angiographic data.

Thus, the technique can be used not only to improve upon results obtained from

angiographic data but also as an alternative when such data is not available.



Résumé
Il est souvent nécessaire, pour une bonne planification neurochirurgicale, d’obte-

nir une imagerie par résonnance magnétique standard (IRM) de type densité pro-

tonique (PD) pour tenter d’évaluer l’oedème au pourtour d’une tumeur ou d’une

lésion. Comme le sang qui circule dans les vaisseaux donne une absence de sig-

nal (noir) et que d’autres structures anatomiques voisines du cerveau ont un signal

semblable, l’extraction des vaisseaux représente un défi de taille qui demande une

contrainte de forme tubulaire précise. Le développement d’algorithmes de seg-

mentation des vaisseaux sanguins pour l’imagerie par résonnance magnétique de

type PD est donc d’un très grand intérêt puisque ce type d’imagerie médicale non

invasive est couramment utilisée.

Dans cette thèse, nous présentons un flot géométrique multi-échelle pour seg-

menter les vaisseaux sanguins automatiquement à partir des images acquises en

PD. L’algorithme peut également être appliqué aux données angio IRM où il y

a rehaussement par un produit de contraste (gadolinium). L’idée principale est

d’appliquer la mesure de vaisseaux proposée par Frangi afin de trouver les lignes

centrales principales des structures tubulaires et d’en estimer leur diamètre. Par la

suite, cette mesure est distribuée pour créer un champ vectoriel qui est perpendicu-

laire aux parois des vaisseaux de sorte que le débit par flux maximal de Vasilevskyi

et Siddiqi 2002 puisse être appliqué. Nous avons effectué une validation qualita-

tive de cette approche sur des résonances magnétiques de type PD, des données

angiographiques et des volumes IRM rehaussés par gadolinium. De plus, nous

suggérons une nouvelle façon de visualiser les segmentations en 2D en utilisant

des projections masquées par les segmentations 3D obtenues à l’aide de notre tech-

nique. Nous avons également validé l’approche quantitativement sur une IRM de

type PD, une angiographie par contraste de phase (PC) et une angiographie par

temps de vol (TOF), toutes obtenues chez le même sujet. Les résultats démontrent

que 80% des vaisseaux mis en évidence par angiographie le sont également par



l’IRM de type PD. De plus, 25% des vaisseaux mis en évidence à partir du volume

PD ne l’étaient pas à partir des données angiographiques par temps de vol (TOF).

Ainsi, la technique développée peut être employée non seulement pour améliorer

les résultats obtenus à partir de l’angio IRM mais également comme alternative

quand de telles données ne sont pas disponibles.
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The visualization and quantification of cerebral vasculature can be extremely

important in pre-surgical planning, image-guided neurosurgery and clinical anal-

ysis. A common approach is to use a maximum intensity projection (MIP) where

three-dimensional (3D) data is projected onto a 2D plane by choosing the maximal

intensity value along that projection direction. A major drawback of this method

is that background artifacts and other tissues may occlude vascular structures of

low contrast and small width. Thus, it is desirable to extract the vasculature tree

before it is visualized. In this thesis, we define segmentation as the process of label-

ing 3D voxels as “vessel” or “non-vessel” points. Once the data is segmented and

we have a 3D volumetric representation , the visualization and further analysis of

the complex human vasculature is greatly simplified.

It is unfortunately often the case that in order to obtain such representations

from a medical data set, an expert has to interact with the data manually, in a

slice-by-slice fashion, while coloring regions of interest and connecting them using

image processing operations. This process is extremely laborious and is prone to

human error. Since a technician preparing data for surgical planning has a limited

amount of time, there is a trade-off between the number of manually segmented

structures and the quality of the segmentations. In addition, the significant amount

of time required to properly segment the vasculature (e.g. from a single brain MRI)

makes large scale clinical studies of vasculature infeasible. Another simplistic ap-

proach to vessel extraction is thresholding the original data set. Here, depending

on the image modality, all voxels with intensity above or below a threshold are

labeled as vessel and the others as non-vessel. However, due to non-homogeneous

intensity distribution in medical data sets, a conservative threshold typically does

not capture small and low contrast vessels and an aggressive threshold selection

incorrectly labels many non-vessel or background voxels. As a consequence, the

computer vision and image analysis community has paid significant attention to

automating the extraction of vessels or vessel centerlines.
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1.1 Imaging Modalities

Several methods in the computer vision literature have been shown to give promis-

ing results on 2D projection angiography, 3D Computed Tomography and Mag-

netic Resonance Angiography (CTA and MRA). These image modalities are cur-

rently the most widely used acquisition techniques when one seeks to extract the

brain vasculature. While these imaging approaches acquire high-contrast and high

resolution volumes and are designed to image blood vessels, each has its own lim-

itations and can be invasive due to contrast agent injection and radiation.

In CTA, X-ray contrast material is injected directly into the blood stream through

a catheter. Tomographic images are then generated by collecting 1D X-ray signals

of an object at many angles. Then, a cross-sectional image is reconstructed rep-

resenting the attenuation coefficient of the X-ray beam in that slice. This process

is repeated over many planes to construct 3D volumetric data. A similar method

is Computed Rotational Angiography (CRA) which produces 3D data sets by ac-

quiring projection radiographs from many angles around the patient, followed by

a reconstruction procedure using CT algorithms. These angiograms are generally

more accurate than standard MRA acquisition. However, the contrast agent injec-

tion and radiation dose given to the patient are major drawbacks.

Magnetic Resonance Imaging (MRI) of the blood vessels is referred to as Mag-

netic Resonance Angiography (MRA). MRI is a largely noninvasive technique which

utilizes the properties of magnetism of the hydrogen atoms in our body to cre-

ate nondestructive, three-dimensional, internal images of the soft tissues of the

body, including the brain. In the context of blood vessel acquisition, there are three

widely used methods. The first is Phase Contrast (PC) angiography, in which con-

trast is determined by tissue motion. Static tissue yields no signal, and is therefore

black, as in Figure 1.1(c). The second is Time Of Flight (TOF) angiography, where

vessel brightness is proportional to blood flow velocity. However, complex flow

or turbulence can cause signal loss in the vessels in such data, as seen in 1.1(b). In
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(a) PD (b) TOF

(c) PC (d) Gado

FIGURE 1.1: A mid-sagittal slice of a proton density (PD) weighted MRI volume (a), a
time of flight (TOF) MR angiogram (b) and a phase contrast (PC) MR angiogram (c) of
the same subject acquired at the Montreal Neurological Institute. A Gadolinium enhanced
MRI acquired on a patient with a brain tumor is shown in (d).

these data sets, the vessel/non-vessel contrast is sharp only at vessel boundaries.

Hence, a simple thresholding of these volumes typically yield a crude estimate of

the vascular structure. This makes the segmentation problem easier. The third

angiographic-like image acquisition used to highlight vessels is Gadolinium en-

hanced MRI, seen in Figure 1.1(d). It is the most invasive angiographic technique

and is the method currently used in almost all neurosurgical cases involving brain

tumors. Gadolinium is a contrast agent injected into patients to alter the signal in-

tensity of soft tissues as well as the blood pool. Hence, Gadolinium enhances blood

vessels but is also absorbed by non-vessel surrounding tissues resulting in several

bright/dark contrast changes in the data. This makes the segmentation problem

a significant challenge. Standard algorithms designed to work on MRA and CTA
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typically fail on such volumes.

Very few techniques currently exist for the automatic extraction of vessel bound-

aries in more standard anatomical MRI volumes such as the proton-density (PD)

weighted data set in Figure 1.1(a) and the Gadolinium enhanced MRI. In PD, it

is clear that a signal decrease is present in the vascular regions (the spaghetti-like

structures), but there are several other bright/dark contrast change at boundaries

of non-vessel structures (between gray and white matter, cerebellum area). Also,

the contrast between blood vessel and surrounding tissue is not as great when

compared to the angiographic sequences (1.1(b) and 1.1(c)). Hence, the problem of

recovering vessels from image intensity contrast alone is a challenge and requires

shape information to constrain the segmentation.

1.2 Problem Statement

The goal of this thesis is to solve the segmentation problem on common clinical

MRI. In particular, our aim is to automatically classify as much of the vascular

structure as possible. The vessel extraction must be accurate and competitive (sim-

ilar or better) to vessel segmentation achieved from the easier cases of MRA and

CTA and the algorithm must be able to extract vessels of variable widths and con-

trast.

If successful, such a procedure could be used in surgical planning while elim-

inating the need for an additional scan. This would save time during image ac-

quisition and would ease the burden on the patient as well as reduce the amount

of time required to segment and prepare data for use in planning. The 3D vessel

structure from our approach could be used as the basis for registration between

different non-angiographic modalities. One such application is the registration be-

tween intra-operative ultrasound and pre-operative Gadolinium enhanced MRI or

PD weighted MRI, to estimate brain shift during brain tumor surgery [Reinertsen

et al. (2004)]. Finally, the method could be useful for visualization of the vascu-
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lar networks of different organs such as the brain, the liver and the lungs. With a

true three-dimensional representation, the complex spatial relationships between

the vasculature and surrounding anatomical structures could be made explicit. A

user could interact with the derived model, depending upon the task at hand, and

could visualize it from arbitrary viewing directions. This is very important in min-

imally invasive neurological surgery. Typically, a needle is inserted in the scalp of

the patient to access the region that is operated on, such as a tumor. However, the

neurosurgeon does not see the tip of the needle and all navigation is guided by im-

ages. It is thus of utmost importance to have a precise visualization of the location

of blood vessels in order to avoid puncturing them.

1.3 Method Overview

We introduce a novel algorithm for vessel segmentation which is designed for the

case of PD images, but can be applied as well to angiographic data or Gadolinium

enhanced MRI volumes. The algorithm is motivated in part by the approach of

Ostergaard et al. (2000) where Frangi’s vesselness measure [Frangi et al. (1998)] is

thresholded to find centerlines. In this technique, tubular fits to vessel boundaries

are then obtained using a form of connected component analysis and a generalized

cylinder model. This latter step typically yields results that are disconnected. In

our approach, rather than threshold the vesselness measure, we extend it to yield

a vector field which is locally normal to putative vessel boundaries. This in turn

allows the flux maximizing geometric flow of Vasilevskiy and Siddiqi (2002) to be

applied to recover vessel boundaries. This flow has a formal motivation, is topo-

logically adaptive due to its implementation using level set methods, and finally is

computationally efficient. We show qualitative results on magnetic resonance an-

giography (MRA) data, as well as on the more challenging cases of Gadolinium en-

hanced MRI and proton density (PD) weighted MRI volumes. We also validate the

approach quantitatively by comparing the segmentations from PD, PC angiogra-
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phy and TOF angiography volumes, all obtained for the same subject (Figure 1.1).

1.4 Contributions

In this thesis, we propose a three step algorithm for blood vessel segmentation. We

first introduce a tubular structure model incorporating local vessel centerline ori-

entation and width. Then, we extend this measure to the implied vessel contours

to finally apply a flux maximizing geometric flow. The main contributions can be

summarized as follows:

1. We describe a new multi-scale geometric flow which can extract vasculature

from standard MRI. The approach is able to segment blood vessels on sev-

eral image modalities, including MRA, Gadolinium enhanced MRI, and PD

weighted MRI.

2. We propose a 2D visualization of the vasculature by intensity projections

(MIPs) of the original volume masked by the binary segmentation obtained

by our algorithm.

3. We carry out a qualitative comparison of the vessel extraction on PD, PC

and TOF volumes obtained from the same subject. This suggests that the PD

segmentation improves upon results obtained from TOF angiography and is

very similar to that obtained from PC angiography.

4. We perform a careful quantitative validation confirming our qualitative ob-

servations. In particular, we note that 80% and 89% of the PC and TOF data

respectively, is accounted for by the PD segmentation. Moreover, 26% of the

PD reconstruction is not present in the TOF vessel extraction.
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1.5 Organization

The thesis is outlined as follows. In Chapter 2 we review relevant background

literature on the modeling of tubular structures, vessel segmentation and center-

line extraction. We then develop our multi-scale geometric flow by incorporating

Frangi’s vesselness measure [Frangi et al. (1998)] in the flux maximizing flow algo-

rithm of Vasilevskiy and Siddiqi (2002) in Chapter 3. We present qualitative and

quantitative validation results in Chapter 4. We then conclude with a discussion of

the results and present directions for future work in Chapter 5.



Chapter 2

Background
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We now review the use of the Hessian as a descriptor for modeling tubular

structures and then provide an overview of vessel segmentation and centerline ex-

traction methods in the literature. This overview is necessarily not exhaustive; it

is based on a selection of representative techniques. For a more thorough discus-

sion of the relative strengths and weaknesses of such approaches we encourage

the reader to refer to the recent article of Aylward and Bullitt (2002). Also, we refer

to relatively standard differential geometry definitions, propositions and theorems

that are described in greater detail in any standard differential geometry text such

as DoCarmo (1976).

2.1 Modeling Vasculature using the Hessian

Several multi-scale approaches to modeling tubular structures in intensity images

have been based on properties of the Eigen values of the Hessian matrix H [Lorenz

et al. (1997); Sato et al. (1998); Frangi et al. (1998); Aylward and Bullitt (2002); Koller

et al. (1995); Krissian et al. (2000); Ostergaard et al. (2000); Wink et al. (2004)]. For

a function f (x1, x2, ..., xn), the Hessian is given by the Jacobian of the derivatives
∂ f
∂x1

, ∂ f
∂x2

, ... ∂ f
∂xn

. This matrix encodes important local shape information. To under-

stand why this is so, we must review some basic concepts in differential geometry

of surfaces. Referring to Figure 2.1, we look at how rapidly a surface S pulls away

from the tangent plane Tp in a neighborhood of a point p ∈ S . This is the same as

measuring the rate of change, dNp, of the unit normal vector field Np on a neigh-

borhood of p. It can be shown that this differential dNp is a self-adjoint linear map

[DoCarmo (1976)] giving rise to the second fundamental form IIp of a surface S at a

point p. To see how the Hessian operator appears in this shape analysis of surfaces,

we consider surfaces given as the graph of a differentiable function z = h(x, y).

Such graphs are common in the computer vision and in the active contour litera-

ture. For example, the intensity values of a 2D image are often regarded as a height

surface z = I(x, y). Most importantly, it is known that locally, any surface is the
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FIGURE 2.1: Basic differential geometry of surfaces. Local surface representation of a regu-
lar surface S . Tp is the tangent plane of the surface at a point p ∈ S , πN is the plane of the
normal vector Np to the surface at point p.

graph of a differentiable function [DoCarmo (1976) (cf. Prop 3, Sec. 2-2)]. That is,

given a point p ∈ S, one can choose the coordinate axis of R3 so that the z-axis

is along the normal of the surface (Np) and the xy plane agrees with Tp. Thus, a

neighborhood of p ∈ S can be represented in the form z = h(x, y). If the surface

is parametrized as (x, y, h(x, y)), a simple computation [DoCarmo (1976) (Sec. 3-3

ex.5)] shows that the unit normal field is given by

N (x, y) =
(−hx,−hy, 1)√

h2
x + h2

y + 1
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Thus, the second fundamental form of such a surface at a point p applied to a

vector (x, y) ∈ Tp becomes,

I Ip(x, y) = − 〈
dNp((x, y)), (x, y)

〉

= hxxx2 + 2hxyxy + hyyy2

= (x y)


 hxx hxy

hxy hyy





 x

y




(2.1)

In this case, the Hessian of h is the second fundamental form of S at p.

In general, the second fundamental form I Ip has some very important geomet-

ric properties in the tangent plane Tp for any surface. In particular, the value of

I Ip for a unit vector v ∈ Tp is equal to the normal curvature of a regular curve

passing through p and tangent to v. In fact, we can show that all curves lying on a

surface S and having the same tangent line along v at point p ∈ S have the same

normal curvature. This allows one to speak of the normal curvature in a partic-

ular direction v at p. We are usually interested in the extreme values, maximum

(κ1) and minimum (κ2), of the normal curvature. These are called principal curva-

tures. A nice theorem states that there exists an orthonormal basis {e1, e2} of Tp

such that dNp(e1) = −κ1e1 and dNp(e2) = −κ2e2, [DoCarmo (1976)]. Thus, the

normal curvature can always be expressed as a linear combination of the mini-

mum and maximum curvatures. In our context, this means that the Eigen values

of the Hessian matrix give the principal curvatures (κ1,κ2), and the corresponding

Eigen vectors (e1, e2) span the tangent plane Tp (Figure 2.2). Hence, the Eigen value

decomposition of the second fundamental form (or the Hessian matrix) is all one

needs to locally describe the shape of a 2D surface.

In computer vision, one often works with three-dimensional (3D) images. Hence,

we must extend the 2D differential geometry to 3D iso-intensity surfaces present

in the image data, I(x, y, z). In this thesis, we model blood vessels as closed tubu-

lar iso-surfaces as is popular in the medical imaging literature [Koller et al. (1995);
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e2
e1

maximum
curvature minimum

curvature

N

S

p

FIGURE 2.2: Illustration of the direction of the gradient or normal N , the direction of the
minimum and maximum curvatures of a surface S at a point p.

Frangi et al. (1998); Krissian et al. (2000)]. In particular, at any given voxel in a 3D

image I , we wish to know if we are inside, on or outside a tubular structure implied

by the data. To do so, we must explore the variations of intensity in small regions.

A common approach to analyzing local shape behavior in the neighborhood 4x̄

of a voxel x̄ of an image I is to consider its Taylor expansion. Neglecting terms of

degree higher than two we obtain

I(x̄ +4x̄) ≈ I(x̄) +4x̄T∇I(x̄) +4x̄TH(x̄)4x̄

where

H =




Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz


 and ∇I =




Ix

Iy

Iz




The vector of first derivatives of the image is the gradient vector ∇I and it gives

the normal vector (N in Figure 2.2) to the implied iso-intensity surface. The Hessian
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e1

e2

e3

FIGURE 2.3: At locations centered within tubular structures the Eigen vector (e1) corre-
sponding to the smallest Eigen value (λ1) of the Hessian matrix is along the vessel direction
and the other Eigen vectors {e1, e2} span the cross-sectional plane.

matrix H looks at how this normal vector varies in all three directions. Intuitively,

when on a tubular iso-surface, the normal vector variation along the tube is small

due to low curvature whereas the variation is important in the other two orthogo-

nal directions due to high curvature of the cross-section. Hence, in the tubular case,

one expects a row of H to be composed of zero or close to zero entries (low curva-

ture in that direction) and have the other two rows equal or almost equal (high

curvature of circular or almost circular cross-section). In this case, the Eigen de-

composition of the Hessian matrix H, which seeks for vectors −→e ∈ R3 and scalars

λ such that

H−→e = λ
−→e

gives a zero or close to zero Eigen value and two other equal or almost equal Eigen

values with high magnitude. The associated Eigen vectors form a coordinate frame

giving the minimum and maximum curvature directions in the tangent plane to the

iso-surface at that point and the direction of the normal vector. This is illustrated

in Figure 2.3.

The Eigen value analysis can be extended to differentiate tube-like, blob-like,

sheet-like, and noise-like structures from one another as summarized in Table 2.1.

Sheet-like or plate-like structures are encountered in data sets with flat bones, skin
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Eigen value conditions local structure examples
λ1 ≈ 0 , λ2 ≈ λ3 >> 0 tube-like vessel, bronchus
λ1 ≈ λ2 ≈ 0 , λ3 >> 0 sheet-like cortex, skin
λ1 ≈ λ2 ≈ λ3 >> 0 blob-like nodule
λ1 ≈ λ2 ≈ λ3 ≈ 0 noise-like noise

TABLE 2.1: A classification of local structures based on the Eigen values of the Hessian
matrix. Here, we assume that |λ1| ≤ |λ2| ≤ |λ3|. The sign of the highest Eigen values
generally indicate whether the local structure is dark on a bright background or bright on
a dark background. A positive sign corresponds to a dark structure on a bright background
which is the case for PD weighted MRI volumes.

or cortex, where two of the Eigen values are close to zero due to small normal

changes in the plane corresponding to the flattened shape. For sphere-like or blob-

like structures, it is expected that all three Eigen values are high and almost equal

because of the isotropy of the data in all three directions. This local structure is

often detected at branch points and at very high curvature sections of blood ves-

sels, as pointed out later in Figure 3.2. Finally, close to zero Eigen values represent

locations with the absence of structure. This is often the case for points in the

background or in noisy parts of the data. In this thesis, we are interested in tube-

like structures for the task of segmenting vasculature. Two prominent approaches

for capturing vessel-like or tube-like structures based on the Hessian are the tech-

niques proposed in Krissian et al. (2000) and Frangi et al. (1998).

First, Krissian et al. (2000) propose a model-based approach to detecting tubu-

lar structures. An Eigen value decomposition of the Hessian matrix is carried out

analytically for each assumed model that is fit to the image data. They report that

whereas this analysis provides a good descriptor at the center of a vessel, its qual-

ity decreases at locations close to vessel boundaries. Hence, they define a vessel

detector which combines the highest two Eigen values of the Hessian matrix and

a gradient term which is known to play a significant role at vessel boundaries.

They have recently demonstrated the robustness of this operator in the context of

segmenting the aorta in low contrast 3D ultrasound images [Krissian et al. (2003)].
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Second, Frangi et al. (1998) propose a vesselness measure which incorporates

information from all three Eigen values and has an intuitive geometric interpreta-

tion. This method is close in spirit to previous work by Lorenz et al. (1997) and

Sato et al. (1998). Three quantities are defined to differentiate blood vessels from

other structures:

RB =
|λ1|√|λ2λ3|

RA =
|λ2|
|λ3| S =

√
λ2

1 + λ2
2 + λ2

3 .

From Table 2.1, it can be seen that RB is non zero only for blob-like structures.

The RA ratio differentiates sheet-like from other structures because it is zero only

for sheet points. Finally, S, the Frobenius norm, is used to ensure that random

noise effects are suppressed from the response. For all non noise-like structures,

this measure is high because at least one of the Eigen values is significant. For a

particular scale σ the intensity image is first convolved by a Gaussian at that scale,

G(σ), and the following vesselness response function, V(σ), is computed:1

V(σ) =





0 if λ2 < 0 or λ3 < 0

(1− exp
(
− R2

A
2α2

)
)exp

(
− R2

B
2β2

)
(1− exp

(
− S2

2c2

)
).

(2.2)

This measure is designed to be maximum along the centerlines of tubular struc-

tures and close to zero outside vessel-like regions. The scale σ associated with the

maximum vesselness response provides an estimate of the width of the tubular

structure centered at a particular location and the Eigen vector associated with the

smallest Eigen value of the Hessian gives its local orientation. This is illustrated in

Figure 3.2 and will be further explained later when we develop our approach.

1The vesselness expression is given for the case of a dark tubular structure on a brighter back-
ground (as in a PD volume). In the case of angiographic data, the signs in condition 1 must be
changed, i.e., V(σ) = 0 if λ2 > 0 or λ3 > 0.
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2.2 Vessel Segmentation and Centerline Extraction

In this section, we review three classes of vessel segmentation algorithms relevant

in the context of this thesis. We first look at a statistical approach and then in-

vestigate ridge traversal and centerline extraction methods. Finally, we provide a

discussion on other geometric flows existing for blood vessel segmentation from

angiographic data sets.

2.2.1 Statistical Methods

Wilson and Noble (1997) propose a statistical approach for segmenting blood ves-

sels from TOF angiography data, such as that shown in Figure 1.1(b). They intro-

duce a mixture of three probability distributions which is based on physical prop-

erties of blood and brain tissues. Vessel labels are assumed to arise from a uniform

distribution and two Gaussian distributions are used to model other structures, one

for tissue outside the head and another for eyes, skin, bone and brain tissue. The

parameters of these models are estimated using a classical expectation maximiza-

tion (EM) algorithm. The vasculature tree is then obtained following a thresholding

procedure that is sensitive to signal to noise ratio and intensity contrast between

vessel and non-vessel structure in the data. It is important to point out that this

method does not employ a multi-scale analysis and also has no explicit model for

tubular structures. Hence, it cannot be applied to non-angiographic data sets such

as the PD volume or to Gadolinium enhanced MR volumes of Figure 1.1(a) and

Figure 1.1(d).

2.2.2 Centerline Extraction

Another class of methods attempts to find centerlines of tubular structures as they

are manifest directly in intensity (MR or CT) images, such as those in Figure 1.1(c).

Aylward and Bullitt (2002) present a centerline tracking approach which is based
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on a characterization of intensity ridges in 3D data sets. The Eigen vectors of the

Hessian matrix are used to estimate the local orientation of vessels and a normal

plane is iteratively updated to follow the vessel’s cross-section, as illustrated locally

in Figure 2.3. This idea is also the basis of work by Koller et al. (1995) for the multi-

scale detection and traversal of curvilinear structures in intensity images. Aylward

and Bullitt pay particular attention to the validation of their method, demonstrat-

ing its robustness under parameter changes, changes in scale and simulated image

acquisition noise. The method is an iterative one, where the centerline is continu-

ously extended in the estimated direction of its local orientation. As we shall later

see, this local Hessian analysis is similar to the one used in our geometric flow

based approach. However, rather than traverse the ridge at a single scale and com-

pute vessel widths using a multi-scale analysis, we use multi-scale orientation and

scale estimates directly to propagate information from centerlines to vessel bound-

aries.

Deschamps and Cohen (2001) relate the problem of finding centerline paths

to that of finding paths of least action in 3D intensity images. This leads to a

form of the well-known Eikonal equation where a front is propagated in the im-

age with a speed determined by a scalar potential that depends upon location in

the medium. The minimal path is extracted using a simple steepest gradient de-

scent. The framework aims to infer the boundaries of tubular structures in a first

stage, using a standard surface evolution method. The potential function is then

designed to take into account a Euclidean distance function from the boundary, so

that the minimal paths are centered. The flow is implemented using fast marching

schemes and is hence computationally efficient. The algorithm requires little user

interaction but the user must specify the starting and end points of a particular

path. As a consequence, the method is only applicable to small portions of blood

vessels since it extracts only a single path at a time. The major drawback is that the

technique cannot, its current form, handle bifurcations and multiple trajectories
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naturally, making global segmentation of vasculature quite difficult.

Wink et al. (2004) have recently presented an approach to centerline extraction,

applied in the context of vessel tracking, which combines features of the above

two approaches. More specifically, they use Frangi’s vesselness measure (Eq. 2.2)

to characterize putative vessel centerline locations [Frangi et al. (1998)]. They then

formulate the problem of finding paths between user selected points as a minimum

cost path problem which they solve computationally using wavefront propagation.

The interesting feature of their approach is that they do a 3D search for a minimum

path in the space of multi-scale responses. Standard methods usually take a max-

imum projection of the multi-scale responses to perform a 2D search. To achieve

this 3D search across scales, they incorporate a term that controls how easily the

scale of the vessel can be changed in the path tracking. Their method has been val-

idated qualitatively in the presence of stenoses, vessel crossings, several proximal

vessels and imaging artifacts. However, the technique is again a local one and it

does not handle the branching of vessels naturally.

2.2.3 Geometric Flows

There is a long history on the use of deformable models for segmentation in the

computer vision literature, motivated in large part by the classical parametric snakes

introduced by Kass et al. (1987). These models have also been extended to handle

changes in topology due to the splitting and merging of contours [McInerney and

Terzopoulos (2000)]. In the context of geometric flows for shape modeling, the

first curve and surface evolution models were developed independently by Mal-

ladi et al. (1993, 1994, 1995) and Caselles et al. (1993). This work lead to two recent

vasculature segmentation approaches which are relevant to the development here.

First, Lorigo et al. (2001) propose a regularization of a geometric flow in 3D using

the curvature of a 3D curve. This approach is grounded in the recent level set the-

ory developed for mean curvature flows in arbitrary co-dimension based on work
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FIGURE 2.4: Illustration of the flux maximizing flow of Vasilevskiy and Siddiqi (2002) for a
2D curve placed in a vector field. The curve evolves as to increase the inward flux through
its boundary as fast as possible. The resting flux maximizing configuration is one where
the inward normals to the curve are everywhere aligned with the direction of the vector
field. The figure is adapted from Vasilevskiy and Siddiqi (2002).

by Ambrosio and Soner (1996). It yields the flow

ψt = λ(∇ψ,∇2ψ) + ρ 〈∇ψ,∇I〉 g
′

g
∇ψ.H

∇I
|∇I| .

Here ψ is an embedding surface whose zero level set is the evolving 3D curve,

λ is the smaller nonzero Eigen value of a particular matrix [Ambrosio and Soner

(1996)], g is an image-dependent weighting factor, I is the intensity image and H

is the determinant of its Hessian matrix. For numerical simulations the evolution

of the curve is depicted by the evolution of an ε-level set. Without the multiplica-

tive factor ρ 〈∇ψ,∇I〉 the evolution equation is a gradient flow which minimizes a

weighted curvature functional. The multiplicative factor is a heuristic which mod-

ifies the flow so that normals to the ε-level set align themselves (locally) to the

direction of image intensity gradients (the inner product of ∇ψ and ∇I
|∇I| is then

maximized). The flow is designed to recover vessel boundaries signaled by the gra-

dient in angiography data, while under the influence of a smoothing term driven

by the mean curvature of an implied centerline.

Second, Vasilevskiy and Siddiqi (2002) derive the gradient flow which evolves

a curve (2D) or a surface (3D) so as to increase the inward flux of a fixed (static)

vector field through its boundary as fast as possible (Figure 2.4). With S an evolving
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surface and
−→V the vector field, this flow is given by

St = div(
−→V )

−→N (2.3)

where
−→N is the unit inward normal (for inward motion) or outward normal (for

outward motion) to each point on S. The motivation behind this flow is that it

evolves a curve (in 2D) or surface (in 3D) to a configuration where its normals are

aligned with the vector field, as seen in Figure 2.4 for the 2D case. In the context of

segmenting vasculature in angiographic images,
−→V can be selected to be the gradi-

ent of the intensity image which is expected to be orthogonal to vessel boundaries

[Vasilevskiy and Siddiqi (2002)].

It is important to point out that both of the above approaches are designed

specifically for angiographic data and hence require restrictive assumptions to hold.

In particular: 1) both methods are initialized essentially by thresholding such data,

and thus would fail when vessel boundaries cannot be identified from contrast

alone; 2) neither approach has an explicit term to model tubular structures, but

instead relies on the assumption that the gradient of the intensity image yields a

quantity that is significant only at vessel boundaries; and 3) neither of these meth-

ods takes into account explicitly the multi-scale nature of vessel boundaries as they

appear in all modalities. In the following chapter we argue that several of the above

limitations can be overcome by incorporating a measure of “vesselness”. The result

is a modified flow which can be applied to a wide range of modalities, and which

also offers computational advantages over other vessel segmentation algorithms

due to its implementation using level set techniques [Osher and Sethian (1988)].
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The approach we develop proceeds in two steps. First, we apply Frangi’s ves-

selness measure to find putative centerlines of tubular structures along with their

estimated radii. Second, this multi-scale measure is distributed to create a vector

field which is orthogonal to vessel boundaries so that the flux maximizing flow

algorithm of Vasilevskiy and Siddiqi (2002) can be applied to recover them.

3.1 Introducing a Tubular Model

Returning to Frangi’s vesselness measure (Eq. 2.2), a subtlety arises when a multi-

scale analysis is employed. The difficulty is that one has to compare the results of

the response function at different scales, while the intensity and its derivatives are

decreasing functions of scale. Hence, each individual response function must be

suitably normalized before the comparison can be done. Fortunately, this can be

done quite efficiently by directly computing the entries which comprise the Hes-

sian matrix by convolving the image, I , with second order derivatives of Linde-

berg’s γ-parametrized normalized Gaussian kernels [Lindeberg (1998)]. This is a

general heuristic principle stating that local maxima over scales of combinations of

γ-normalized derivatives,

∂x,γ−norm = t
γ
2 ∂x

serve as useful indicators reflecting the spatial extent of corresponding image struc-

tures. In this expression, the scale parameter used is the evolving time, t, in the

classical Heat Equation,

It = 4I = div(∇I)

This comes from the fact that convolving an image I with a Gaussian kernel at

scale σ is equivalent to evolving every point of I according to the Heat equation
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FIGURE 3.1: A mid-sagittal slice of the original PD weighted MRI volume with its corre-
sponding vesselness map. Note how the vesselness measure is now an angiographic-like
volume similar to the PC data set of 1.1(c).

for t = σ2 iterations [Hummel (1986)]. Thus,

∂x,γ−norm = t
γ
2 ∂x

= (σ2)
γ
2 ∂x

= σγ∂x.

It is standard to choose γ = 1 when gamma is a fixed value. Otherwise, it is

adaptively changed to maximize some quantity as in Lindeberg (1998) and Krissian

et al. (2000) for automatic detection of edges or special features. Hence, anytime

we compute a derivative, we scale its value by σ . We compute every entry of the

Hessian matrix using

Iuv(x̄,σ) ≡ σ2 ∂2G(x̄,σ)
∂u∂v

∗ I(x̄) where G(x̄,σ) =
1√

(2πσ2)
exp

−<x̄,x̄>
2σ2

In our implementation of the vesselness measure, we set the parameters α,β

and c to 0.5, 0.5 and half the maximum Frobenius norm respectively, as suggested

in Frangi et al. (1998). In practice we have found these parameter settings to yield

stable results over a wide range of image modalities. Figure 3.1 shows a mid-

sagittal slice of the original PD weighted MRI volume with its corresponding ves-
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selness map. Note how the vesselness measure is an “angiographic-like” volume

with strong intensity in vessel regions and almost null values outside vasculature,

similar to the phase contrast angiography of Figure 1.1(c). At each voxel we com-

pute vesselness responses using ten log scale increments between σ = 0.2 and

σ = 2.5 (in our data the maximum radius of a vessel is 2.5 voxels) and select the

maximum vesselness response along with its scale. The chosen scale gives the esti-

mated radius of the vessel and the Eigen vector associated with the smallest Eigen

value its local orientation.

This process is illustrated in Figure 3.2 for a synthetic branching structure, a

synthetic helix and cropped portions of a PD weighted MRI and MRA. The gray

surface coincides with a particular level set of the vesselness measure, which quickly

drops to zero away from centerline locations. Within this surface locations of high

vesselness are indicated by overlaying the Eigen vectors associated with the low-

est Eigen values, which correspond to the estimated vessel orientation. Note that

some vessel regions do not have vectors overlaid. This is because they have a low

vesselness value at these locations. This is evident at the branch point of Figure

3.2(a) and the high curvature part of Figure 3.2(b), where at these voxels, the local

shape is more blob-like. However, neighboring points have high vesselness mea-

sures with correct associated vessel orientations. Furthermore, it is apparent that

locations of high vesselness are close to the expected centerlines, and that the esti-

mated vessel orientation at these locations is accurate. This information along with

the estimated radius of associated vessels can be used to construct an appropriate

vector field to drive the flux maximizing geometric flow, as we shall now see. The

use of a geometric flow is a simple and natural way to handle branching structures

while integrating the vesselness information with some amount of local control.

This allows us to lift many of the restrictions on the flow pointed out in Section

2.2.3, because an explicit model of a tubular structure is now incorporated along

with an appropriate notion of scale.
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(a) Branch structure (b) Helix (c) Cropped PD

(d) Cropped MRA

FIGURE 3.2: A synthetic branching structure, a synthetic helix, a cropped region of an MRA
and a cropped vessel of a PD weighted MRI. For each structure the red vectors indicate
the estimated vessel orientation at locations where the multi-scale vesselness measure (Eq.
2.2) is high. Note that at the branch point of 3.2(a) and the high curvature part of 3.2(b),
there are no vectors overlaid. At these locations the local shape is blob-like and hence the
vesselnes measure is low.



28 CHAPTER 3. A MULTI-SCALE GEOMETRIC FLOW

3.2 Extending the Vesselness Measure to Boundaries

As described in Section 2.2.3, in order for an initial surface to evolve so as to align

itself to vessel boundaries using the flux maximizing flow equation of 2.3, we need

to construct a vector field large in magnitude and orthogonal to vessel contours.

Since the vesselness measure is concentrated at centerlines, we need to distribute

it to the vessel boundaries which are implied by the local orientation and scale. We

consider an ellipsoid with its major axis aligned with the estimated orientation and

its two semi-minor axes equal to the estimated radius. In our implementation the

semi-major axis length is chosen to be twice that of the semi-minor axes. The ves-

selness measure is then distributed over every voxel (xe, ye, ze) on the boundary of

the ellipsoid by scaling it by the projection of the vector from (x, y, z) to (xe, ye, ze)

onto the cross-sectional plane passing through the semi-minor axes, as illustrated

in Figure 3.3(a) and Figure 3.3(b). If (x, y, z) is taken to be the origin (0, 0, 0) and the

xy plane is taken to coincide with the cross-sectional plane this scale factor works

out to be 〈
(xe, ye, ze),

(xe, ye, 0)√
x2

e + y2
e

〉
=

√
x2

e + y2
e . (3.1)

This distribution cannot be blindly done at all voxels in the vesselness volume

because we are only confident in scale and orientation estimates for voxels on ves-

sel centerlines. For instance, it is often the case that tube-like points off the center-

line get a significant vesselness measure with an associated scale that is incorrect

because the Gaussian kernel responds to the opposite boundary, which is further

away. Hence, the estimated scale does not reflect the true vessel width. To resolve

this subtlety, we must distribute the measure only from voxels at centerline loca-

tions. To find such locations, we adopt a very simple local maximum detection pro-

cedure. At each voxel (x, y, z) where the vesselness measure is a local maximum

in a 3x3x3 neighborhood, we perform the vesselness distribution over all voxels on

the surface of the associated ellipsoid. This construction is explained in more detail
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(x_e, y_e, z_e)

(a) Projection (b)φ-distribution

(c) Tube (d) Slice of vesselness map

(e) Slice ofφ map (f) Slice of div(V) map

FIGURE 3.3: Distributing the vesselness measure to the implied boundaries. 3.3(a) The vec-
tor from the center of the ellipsoid to the surface voxel (xe, ye, ze), as well as its projection
onto the cross-sectional plane, taken to be the xy plane. 3.3(b) We distribute the vesselness
measure to all (xe, ye, ze) on the ellipsoid by scaling it by the magnitude of this projection.
The color bar indicates the association between brightness and magnitude. 3.3(c) A syn-
thetic tube of radius 2. 3.3(d) A view of the vesselness measure in a slice, with brighter
regions indicate stronger intensity. 3.3(e) A view of the φ distribution in the same slice.
3.3(f) The divergence of the vector field in Eq. 3.2, with transitions between dark and bright
indicating zero-crossings. As expected, we have local maxima of the vesselness measure
on the centerline in 3.3(d), local maxima of theφ distribution at the boundaries of the tube
in 3.3(e) and zero-crossings of the divergence at the boundaries of the tube in 3.3(f).
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in Section 3.4. This process of distributing the vesselness measure to the implied

boundaries clearly favors voxels in the cross-sectional plane and gradually fades

to the ends of the ellipsoid. This is illustrated in 3.3(b), where the surface of the

ellipsoid is colored according to the projection value. We define the addition of the

extensions carried out independently at all voxels to be theφ distribution.

The extended vector field is now defined as the product of the normalized gra-

dient of the original image with the aboveφ distribution

−→V = φ
∇I
|∇I| . (3.2)

This vector field embodies two important constraints. First, the magnitude of φ is

maximum on vessel boundaries and the ellipsoidal extension performs a type of

local integration. This follows because the local maximum vesselness criterion en-

forces the condition that the extension is carried out only from locations as close as

possible to vessel centerlines. Hence, the maximum value previously on the cen-

terline is translated to the vessel contour. This is demonstrated in Figure 3.3 on a

synthetic tubular structure. The vesselness map is maximum along the centerline

(3.3(d)) and the φ map has maxima distributed to vessel boundaries (3.3(e)). Sec-

ond, ∇I
|∇I| captures the direction of the gradient, which is expected to be high at

boundaries of vessels as well as orthogonal to them. It is important to normalize

the gradient of the image so that its magnitude does not dominate the measure in

regions of very low vesselness. For example, structures such as white and gray

matter boundaries could then get significant unwanted contributions. Figure 3.3(f)

shows the divergence of this new vector field of Eq. 3.2.

We have performed a careful numerical validation of the φ distribution proce-

dure on synthetic tubes of varying central axis curvature and radius. The vessel-

ness measure, φ extension and divergence map were computed as previously ex-

plained (illustrated in the example of Figure 3.3). We then found the average and

maximum distance error between ground truth surface points and corresponding
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extension surface points. The extension surface points are the zero-crossings in

the divergence map, which are computed with a simple linear interpolation. We

obtained an average distance error of 0.35 voxels and a maximum error of approxi-

mately 1 voxel over all the examples. This shows the accuracy of the vessel bound-

ary estimations using the proposed extension.

3.3 The Multi-Scale Geometric Flow

The extended vector field explicitly models the scale at which vessel boundaries

occur, due to the multi-scale nature of the vesselness measure V(σ) (Eq. 2.2) as

well as the expected gradient in the direction normal to vessel boundaries. Thus

it is an ideal candidate for the static vector field in the flux maximizing geometric

flow (Eq. 2.3). The surface evolution equation then works out to be

St = div(
−→V )

−→N
=

[〈
∇φ, ∇I

|∇I|
〉

+φdiv
(
∇I
|∇I|

)]−→N
=

[〈
∇φ, ∇I

|∇I|
〉

+φκI
]−→N .

(3.3)

Here κI is the Euclidean mean curvature of the iso-intensity level set of the image.

Note that this is a hyperbolic partial differential equation since all terms depend

solely on the vector field and not on the evolving surface. We now enumerate

several properties of this geometric flow.

1. The first term
〈
∇φ, ∇I

|∇I|
〉

acts like a doublet. To see this, we observe the in-

tensity profiles of I,∇I,φ and ∇φ in Figure 3.4. φ has a maximum at vessel

boundaries which implies that ∇φ has a zero-crossing at such locations. Fur-

thermore, I behaves like a smoothed step function at vessel contours which

implies that ∇I does not change sign there. Therefore, the first term of the

evolution Eq. 3.3 is a doublet. Such doublet terms have also shown to be

beneficial in earlier geometric flows for segmentation [Kichenassamy et al.
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(1995); Caselles et al. (1995); Siddiqi et al. (1998)]. When the evolving surface

overshoots the boundary slightly, this term acts to push it back toward the

boundary.

I(x)

x

vessel boundaries

(a) I

ϕ

x

(x)

vessel boundaries

(b)φ

x

grad(I(x))

vessel boundaries

(c) ∇I

x

vessel boundaries

grad(ϕ(x))

(d) ∇φ
FIGURE 3.4: An approximate sketch of the I,∇I,φ, and ∇φ intensity profiles.

2. The second term is a regularization term since it behaves like the geometric

heat equation. Here,

κI = div
( ∇I
|∇I|

)

is the mean curvature of the iso-intensity level set of the original intensity

image. Evolutions driven by such term have been extensively studied in the

mathematics literature and have been shown to have remarkable anisotropic
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smoothing properties [Gage and Hamilton (1986);Grayson (1987)]. Such terms

are also the basis for several nonlinear geometric scale-spaces such as those

studied in Alvarez et al. (1992b,a) and Kimia et al. (1990, 1995).

3. Combining both terms, it is clear that the flow cannot leak in regions outside

vessels since both φ and ∇φ are zero there. Hence, when seeds are placed at

locations where the vesselness measure V(σ) is high the flow given by Eq. 3.3

will evolve toward the closest zero level set of the divergence of the vector

field
−→V . This will make the evolving surface cling to vessel boundaries.

3.4 Algorithms and Implementation Details

The entire process for extracting vasculature can now be described via three algo-

rithms. First, the vesselness measure is computed using Algorithm 3.1. Second,

this measure is used to construct the extended vector field via Algorithm 3.2. Fi-

nally, this extended vector field drives the flux maximizing geometric flow for seg-

mentation described in Algorithm 3.3.

Below we review some of the details of the implementation of these algorithms:

1. Typically, a few iterations of mean curvature type smoothing on the original

At vessel boundaries inside vessels outside vessels
I contrast change (bright to dark

for PD and dark to bright for an-
giography)

roughly constant
(step function or
Gaussian-like)

large for PD and
small for angiogra-
phy

∇I local min at one boundary and
local max at the other

zero or small small except at tissue
change (ex: between
gray and white mat-
ter)

φ local max camel back zero
∇φ zero-crossing positive and negative zero

TABLE 3.1: Behavior of I,∇I,φ,∇φ intensity profiles at vessel contours and inside and
outside vessel regions.
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Algorithm 3.1: Vesselness computation

Data : I : 3D input medical data set

Result : Vess: maximum vesselness measure volume
Scale: smallest Eigen value λ1
Ex: volume containing first component of Eigen vector e1
Ey: volume containing second component of Eigen vector e1
Ez: volume containing third component of Eigen vector e1

for σ = σmin to σmax do
for (every voxel x̄ ∈ I) do

Compute the derivatives of the Hessian matrix as described in Sec-
tion 3.1;
Use Jacobi’s method to extract the Eigen values λ1, λ2, λ3 and the as-
sociated Eigen vectors e1, e2, e3;
Sort them such that |λ1| ≤ |λ2| ≤ |λ3|;
Compute Ra, Rb, S and the corresponding vesselness value V(σ) of
Eq. 2.2;
/* keeping maximal response */
if (V(σ) > Vess(x̄)) then

Vess(x̄) = V(σ);
Scale(x̄) = λ1;
Ex = e1(x);
Ey = e1(y);
Ez = e1(z);

image is used as a pre-processing step before segmentation. This is a stan-

dard method to remove artifacts such as speckle noise since it smooths along

iso-intensity level sets but not across them. However, we have noticed that

this process is unnecessary in our implementation as we compute derivatives

of the Hessian matrix by convolution with derivatives of Gaussian kernels,

which takes care of preliminary smoothing. If a curvature flow is used on top

of that, we loose many smaller vessels.

2. In order to favor smaller scales, we use log scale increments when comput-

ing derivative entries of the Hessian operator. We then select the maximum
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Algorithm 3.2: Construction of the extended vector field

Data : I : 3D input medical data set
Vess: maximum vesselness volume
Scale: smallest Eigen value λ1
Ex: volume containing first component of Eigen vector e1
Ey: volume containing second component of Eigen vector e1
Ez: volume containing third component of Eigen vector e1
φ: φ-extension volume

Result : F : speed volume driving the flux maximizing flow, div(
−→V )

Compute Vess, Scale, Ex, Ey, Ez with Algorithm 3.1;
for (every voxel x̄ ∈ I) do

Initializeφ(x̄) = 0;

for (every voxel x̄ ∈ I) do
/* vesselness extension to vessel boundaries */
Compute local_max variable by finding local maximum of Vess volume
in a 3x3x3 neighborhood of x̄;
if (Vess(x̄) > threshold) and

(
Vess(x̄)

local_max > percentile
)

then
for each x̄e on the ellipsoid surface of semi-minor length Scale(x̄), semi-
major length 2*Scale(x̄) and orientation given by (Ex(x̄), Ey(x̄), Ez(x̄))
do
φ(x̄e) = Distribute(Vess(x̄)) as detailed in Section 3.2;

for (every voxel x̄ ∈ I) do
Compute ∇I(x̄)

|∇I(x̄)| ;
Compute κI(x̄) given by Eq. 3.4;
Compute ∇φ;
F (x̄) =

〈
∇φ(x̄), ∇I

|∇I|(x̄)
〉

+κIφ(x̄);

return F ;

vesselness response as described in Section 2.1. We use Jacobi’s method for

symmetric matrices to find the Eigen values of the Hessian. For a faster multi-

scale vesselness volume computation, we have computed this measure over

5 scales without noticeable differences in the vessel extractions.

3. The φ distribution in Section 3.2 is carried out from voxels at vessel center-

lines since at such locations one has strong confidence in the scale and ori-
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Algorithm 3.3: Level set based geometric flow

Data : F : speed volume driving the flux maximizing geometric flow
Ψ: volume with the evolving surface embedded as its zero level
set
N: data structure containing points in the narrow band

Result : S: surface representation of the vasculature extracted from I
Compute vesselness measure and resulting volumes with Algorithm 3.1;
Compute speed function F using Algorithm 3.2;
/* Surface initialization */
for (every voxel x̄ ∈ F ) do

if (Vess(x̄) > initial_threshold) then
S(x̄) = 1;

else
S(x̄) = 0;

Ψ = dt(S) (dt is the signed Euclidean Distance Transform of Borgefors (1984);
Compute points in the narrow band to the surface and store them in N;
/* Level set surface evolution equation */
for (t = 0 to stop_time) do

for (every voxel x̄ ∈ F ) do
if (x̄ ∈ N) then

Update Ψ according to the discrete surface evolution Eq. 3.5;
if narrow band boundary N is hit then

for every x̄ ∈ I do
if (Ψ = 0) then

S(x̄) = 1;

else
S(x̄) = 0;

Ψ =dt(S);

return S = Ψ(0);

entation estimate from Frangi’s vesselness measure [Frangi et al. (1998)]. A

global thresholding approach is not appropriate as it either misses the smaller

structures or allows a lot of non-vessel structures. Hence, we adopt a more
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local procedure which is sensitive to both small and large vessels:

if (V(σ) > threshold && V(σ)
local_max > percentile)

Distribute vesselness over ellipsoid

The threshold condition is to ensure that we only consider voxels with a signif-

icant vesselness measure. The variable local_max is the maximum vesselness

response in a small neighborhood of a particular voxel. We chose a 3x3x3

neighborhood because we know that if a point has a significant vesselness

value, there must be a vessel centerline within at least 3 voxels (the maxi-

mum vessel radius is 2.5 voxels in our data). If V(σ)
local_max > percentile, then

we have detected a vessel voxel on or very near the center of the vessel. Oth-

erwise, we are either off the centerline or at part of another local structure.

For most examples we use a conservative vesselness threshold of 0.01 and a

percentile of 0.75. These parameters give good and stable vessel extractions

over all the image modalities tested. In practice, one can choose the threshold

more aggressively for angiographic data as the difference between vessel and

non-vessel regions is then much sharper.

4. The derivatives in the doublet term
〈
∇φ, ∇I

|∇I|
〉

are computed using cen-

tral differences for ∇φ and a second-order essentially non-oscillatory (ENO)

scheme for the normalized gradient of the input image, ∇I
|∇I| [Osher and Shu

(1991)]. We choose a central difference scheme when we want a smoother

approximation of the derivatives and an ENO scheme for a more precise ap-

proximation able to capture sharp changes in intensity. ENO is also compu-

tationally more expensive.

5. We have two options to compute this quantity. First, we can use numeri-

cal approximations to first compute ∇I and obtain a new volume ∇I
|∇I| =

A. Then, we can compute the divergence of this new data set with another
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derivative approximation, i.e., div(A) = Ax + Ay + Az. This approach is

less appealing because we need at least three data structures to save the par-

tial volumes and also, it uses numerical approximations at two levels. Our

second option is to use the analytic level set expression for the mean curva-

ture of an iso-intensity level set [Osher and Sethian (1988)]. We compute all

derivatives using a 3-neighbor central difference scheme,

κI =





(Iyy + Izz)I2
x + (Ixx + Izz)I2

y + (Ixx + Iyy)I2
z

−2(IxIyIxy − IxIzIxz − IyIzIyz)





(I2
x + I2

y + I2
z )

3
2

(3.4)

6. A first-order in time discretized form of the level-set version of the evolution

equation is given by

Ψn = Ψn−1 + ∆t ∗ F ∗ ||∇Ψn−1|| (3.5)

where F =
〈
∇φ, ∇I

|∇I|
〉

+φdiv
(
∇I
|∇I|

)
, Ψ is the embedding hypersurface and

∆t is the step size. The evolving surface S is obtained as the zero level set of

this Ψ function. The numerical derivatives used to estimate ||∇Ψ|| must be

computed with up-winding in the proper direction as described in Osher and

Sethian (1988). This is now a standard numerical approach for solving partial

differential equations of this type since it allows topological changes to occur

without any additional computational complexity and can be made efficient

using a narrow band implementation. It could be made even more efficient

by using a second order in time discretization of the surface evolution equa-

tion, since the time step 4t could then be reduced.

7. The narrow band width has an underlying subtlety. There is a trade-off be-

tween memory and speed. The smaller the narrow band, the less voxels we

have to update at every iteration of the evolution equation. However, when
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the narrow band is hit by the evolving surface, we need to reinitialize the bi-

nary surface and recompute a new embedding distance function, Ψ. This is

computationally expensive and very slow for large data sets because we use

the Euclidean Distance Transform of Borgefors (1984) to implement Ψ. This uses

four float measures for every voxel in the data set. Memory allocation quickly

becomes a problem when segmenting volumes in the order of 300x300x300

voxels. Hence, we do not want to be hitting the narrow band too often. In

our implementation, we have found that a narrow band width of 20 voxels is

an effective and computationally efficient choice.

8. Flow algorithms are always challenged by the initialization step. Depending

on the way the algorithm is used, one can initialize the flow manually or auto-

matically. In this work, we have focused on segmenting as much vasculature

as possible automatically. As mentioned in Chapter 2, most existing flows

are applied on angiographic data and can be initialized by thresholding the

original data set. In the more general case of PD or Gadolinium enhanced

MRI, we use the vesselness volume to initialize the surface. We threshold it

using 0.1 for standard MRI data sets and use a more aggressive threshold of

0.05 when segmenting angiography data sets. These values give good initial

surfaces capturing most of the important vessels. This allows the flow to con-

verge fast to the final segmentation without the need of a constant inflation

term to speed up the evolution as necessary in the implementation of Mal-

ladi et al. (1993, 1994, 1995) and Caselles et al. (1993). Optimally, we believe

a semi-automatic algorithm gives the best results. A user would typically

segment automatically as much vasculature as possible in a first step. Then,

regions of interest could be selected and seeds could be placed manually to

further segment smaller or lower contrast vasculature.

9. The stopping criteria is specified by the user. However, if the narrow band

has not been hit in a very long time ( 5000 iterations), the process is stopped
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automatically. In most examples, depending on the initialization used, 15000

iterations is enough to extract most of the vasculature. The algorithm reg-

ularly saves intermediate surfaces during the evolution so that a user can

restart the segmentation process from a previously saved iteration. In prac-

tice, when the original data set is in the order of 300x300x300, we can compute

10000 iterations per hour on a Pentium IV, 1.5Ghz, 1G RAM machine. The

initial computation of the vesselness measure and the vector field needed to

drive the flow can be computed in roughly 15 minutes.



Chapter 4

Validation



42 CHAPTER 4. VALIDATION

We now validate our multi-scale geometric flow for extracting vasculature. We

first present qualitative segmentation results and masked maximum intensity pro-

jections (MIPs) on a variety of modalities. We then carry out a quantitative compar-

ison of the segmentations on a data set consisting of Proton Density (PD) weighted

MRI, Time Of Flight (TOF) angiography and Phase Contrast (PC) angiography vol-

umes, all obtained for the same subject.

4.1 Image Acquisition

We acquired four different volumes from the same subject (the author) on a Siemens

1.5 Tesla system at the Montreal Neurological Institute (MNI). We first used a

PD/T2-weighted dual turbo spin-echo acquisition with sagittal excitation (2mm

thick slices, 50% overlap 1mm3 isotropic voxels, TE = 0.015s TR = 3.3s). Fol-

lowing this, a 3D axial phase-contrast (PC) volume (0.47mm x 0.47mm x 1.5mm

resolution, TE = 0.0082s TR = 0.071s) and a 3D axial time-of-flight (TOF) vol-

ume (0.43mm x 0.43mm x 1.2 mm resolution, TE = 0.0069s TR = 0.042s) were

acquired. Each data set was registered to a standardized coordinate system and

re-sampled onto a 0.5mm3 isotropic voxel grid to facilitate processing and compar-

isons. A mid-sagittal slice of the PD, PC and TOF volumes is depicted in Figure 1.1.

We supplemented these three data sets with an MRA volume (Figure 4.1) and a

Gadolinium enhanced MRI volume (Figure 4.3), both obtained from the MNI.

In the PC data, contrast is determined by tissue motion. Static tissue yields no

signal, and is therefore black. In the TOF data, vessel brightness is proportional to

blood flow velocity. However complex flow or turbulence can cause some signal

loss in the vessels in such images. In the data presented here, vessel/non-vessel

contrast is greatest for the PC data (white on black tissue), intermediate for the PD

data (black on gray) and slightly less for the TOF (white on gray). Resolution also

affects vessel detectability. In principle the angiographic volumes should be able

to show smaller vessels, since they have a higher resolution.
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4.2 Qualitative Results

We illustrate our multi-scale geometric flow for segmenting vasculature on a vari-

ety of modalities. The same parameters were used throughout, as described in Sec-

tion 3.4. We should point out that whereas the prior geometric flow based methods

of Lorigo et al. (2001) and Vasilevskiy and Siddiqi (2002) could be applied to the

angiographic volumes, they would fail entirely on both the Gadolinium enhanced

MRI volume and the PD data set. This is because high contrast regions are not

limited to vessel boundaries and these techniques do not have an explicit tubular

model. Hence, these flows would leak in the gray matter and other non-vessel

regions.

Figure 4.1 shows iterations of the flow using three single voxel seeds on an

MRA data set obtained from the MNI, as well as an MIP of the data set masked

by the final segmentation. In preliminary work we demonstrated that the flow is

able to pick up the main vessels automatically when the original 1mm3 isotropic

data is used [Descoteaux et al. (2004a)]. In the current experiment the original data

is super-sampled to a 0.5mm3 resolution. This preprocessing strategy allows us to

recover several of the finer vessels which are less than one voxel wide and have

low contrast at their boundaries. This is illustrated in Figure 4.2.

Figure 4.3 depicts a 40mm x 53mm x 91mm region centered on the corpus cal-

losum from a Gadolinium enhanced MRI volume obtained at the MNI. The 1mm3

isotropic data was super-sampled to a resolution of 0.33mm3 using a tricubic inter-

polation kernel, because several vessels in the original data set were less than one

voxel wide. In the image one can see the callosal and supra-callosal arteries (the

long arching vessels running from left to right). We show an MIP of a sagittal and

a transverse view in the left column. A segmentation obtained by thresholding is

shown in the middle column. This results in many disconnected vessels as well as

artifacts. Our segmentation is shown in the third column and results in the recon-

struction of well connected tubular structures. Observe how the local ellipsoidal
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MIP t = 0

t = 100 t = 200

t = 500 t = 1000

t = 5000 MIP segmentation

FIGURE 4.1: An illustration of the multi-scale geometric flow on a 68 x 256 x 256 MRA
image. An MIP of the data is shown at the top left and the other images depict different
stages of the evolution from three seeds. The bottom right figure depicts an MIP of the
input MRA data masked by the binary segmentation.
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(a) 1mm3 grid (b) 0.5mm3 grid

FIGURE 4.2: An illustration of the automatic blood vessel segmentation when re-sampling
the original data set. Results of column (a) were presented in Descoteaux et al. (2004a)
where we worked with the original 1mm3 resolution data. In column (b), we demonstrate
the benefits of re-sampling the original data to a 0.5mm3 grid. Although it is computa-
tionally more expensive and requires more computer memory, re-sampling allows one to
recover smaller vessels automatically.

integration scheme is able to connect a section of the supra-callosal arteries which

has very low contrast in the original Gadolinium data set. Other methods that

do not have an explicit tubular constraint fail miserably on this modality source

as they leak into regions where the the Gadolinium contrast agent is absorbed by

non-vessel tissues.

Finally, Figure 4.4 depicts the transverse views of intensity projections of the

input data, the vesselness measures and the segmentations of the PC angiography,

TOF angiography and PD volumes shown in Figure 1.1. Owing to the large num-

ber of short vessels near the surface of the full brain, the 2D visualization of the

3D segmentations poses a challenge since most of the vasculature inside the head

is occluded when projecting the data in a certain direction. Hence, we choose to

work with a common 259 x 217 x 170 voxel region cropped from the center of each

volume, which has vessels of different widths and contrasts in the three modali-
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(1) (2)

(3) (4)

(5) (6)

FIGURE 4.3: An illustration of the flow on a 40 mm x 53 mm x 91 mm cropped region of
a Gadolinium enhanced MRI. An MIP of the sagittal and transverse views of the data is
shown in (1) and (2). Reconstructions obtained by simple thresholding for the same views
are shown in (3) and (4). These are clearly sensitive to noise and result in disconnected
or missing vessels. The results obtained by our multi-scale geometric flow are shown in
(5) and (6). Observe that the flow has connected a section of the callosal arteries which is
barely visible in the MIP (see (1),(3),(5)).

ties. In the third column we mask the original volumes with the corresponding

binary segmentations obtained by our algorithm, and show a maximum intensity

projection (rows 1 and 2) or a minimum intensity projection (row 3). This last result

is shown in “reversed” contrast so that it is comparable to the other two. Observe

that along each row, the segmentations, vesselness maps and maximum/minimum
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PC vesselness of PC PC masked by segmentation

TOF vesselness of TOF TOF masked by segmentation

PD vesselness of PD PD masked by segmentation
(reversed contrast)

FIGURE 4.4: Transverse views of intensity projections (IP) of the PC, TOF (maximum IP)
and PD data sets (minimum IP), the associated vesselness measures and the segmentations
obtained by the multi-scale geometric flow. Observe that along each row, the segmenta-
tions, vesselness maps and maximum/minimum intensity projections agree closely.

intensity projections agree closely, up to some very small vessels. We also note

the resemblance between the PC and PD views, where a majority of the vascu-

lature agrees. We carry out a quantitative study of these segmentation results in
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the following section. To our knowledge, this is the first segmentation in the lit-

erature of a PD weighted MRI obtained using a geometric flow. Movies of the

geometric flow on the PC and PD data sets can be found on the author’s web page,

http://www.cim.mcgill.ca/∼mdesco.

4.3 Quantitative Results

Figure 4.5 compares the segmentations obtained on the PC, TOF and PD volumes

(Figure 4.4) with transverse views in the left column and sagittal views in the right

column. To allow for small alignment errors due to geometric distortions between

the different acquisitions, we consider two locations to be in common if the Eu-

clidean distance between them is no greater than 3 voxels (1.5 mm). In each figure

red labels indicate locations common to the two data sets, green labels indicate lo-

cations present in the ground truth data set but not in the test data set and blue

labels locations in the test data set which are not in the ground truth data set. It is

clear from the first row that most of reconstructed vessels in the PD and PC data

agree. The PC reconstruction has some finer vessels apparent in the transverse

view where small collaterals branch off the posterior aspects of the middle cerebral

artery in the lateral fissure. On the other hand, the PD reconstruction has more

vasculature visible in the sagittal view with vessels branching off the callosal and

supra-callosal arteries. Finally, the second and third rows of Figure 4.5 indicate that

the TOF reconstruction is missing a large number of vessel labels when compared

to the PC and PD reconstructions.

We now present a quantitative analysis of these segmentation results, which

were presented in preliminary form in Descoteaux et al. (2004b). We compute a

number of statistics between each pair of modalities, treating one as the “ground

truth” data set and the other as the “test” data set. These comparisons are shown

in Table 4.1 and include the following measures:
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PC (truth) vs PD (test)

TOF (truth) vs PD (test)

PC (truth) vs TOF (test)

FIGURE 4.5: We consider the angiograms as the “ground truth”. Each row shows a pair-
wise comparison of reconstructions obtained on different modalities, with transverse views
in the left column and sagittal views in the right column. White labels correspond to the
background, red labels to locations common to the ground truth and test data, green labels
to locations in the ground truth only and blue labels to locations in the test data only.

1. The kappa coefficient defined by

2a
2a + b + c
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Data Sets Validation Measures

Ground Truth Test Data kappa ratio alignment
(voxels) (mm)

PC PD 0.84 0.80 0.95 0.48
TOF PD 0.81 0.89 0.66 0.33
PD PC 0.84 0.89 0.56 0.28
PD TOF 0.81 0.74 0.60 0.30
PC TOF 0.81 0.72 0.82 0.41

TOF PC 0.81 0.94 0.88 0.44

TABLE 4.1: A pair-wise comparison between the different modalities, treating one as the
ground truth and the other as the test data.

where a is the number of red voxels, b is the number of green voxels and c the

number of blue voxels. This measure tests the degree to which the agreement

exceeds chance levels [Dice (1945)]. This measure is commonly used in the

medical image analysis community. A kappa coefficient above 60% to 70% is

considered as a strong correlations.

2. The ratio
a

a + b

where a and b are as before. This measure indicates the degree to which the

ground truth data is accounted for by the test data.

3. The alignment error, defined by taking the average of the Euclidean distance

between each voxel in the ground truth data set and its closest voxel in the

test data set. This is done by computing the Euclidean distance transform on

the test data and then, at every vessel voxel in the ground truth, adding the

corresponding distance value. Recall that this value is the closest Euclidean

distance to a vessel structure in the test data. This measure also indicates the

degree to which the test data explains the ground truth data, but in terms

of an average distance error. In order to avoid measurement bias when an

extracted vessel is longer in one segmentation when compared to another, we
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do not include voxels whose closest distance is greater than 3 voxels (1.5mm).

This is essentially the set of red voxels in Figure 4.5.

It is clear from Table 4.1 that the vasculature obtained from the PD volume

accounts for 80% and 89% of that obtained from the PC and TOF angiographic

sequences, respectively. Furthermore, whereas 89% of the PD vessel voxels are

also found in the PC data, a significant proportion (26%) of PD vessel voxels are

not seen in the TOF data. The results also indicate very high alignments between

vessel labels in all pair-wise comparisons, which indicates that when segmented,

vasculature extracted from the different data sets is indeed similar.
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This last and final chapter addresses potential questions concerning presented

in this thesis. We also summarize the main contributions and propose a number of

directions for future work.

5.1 Discussion

5.1.1 Why use a Geometric Flow?

This question is important and needs to be addressed since one may wonder if

the result obtained using our algorithm is almost equivalent to surface obtained

by sweeping elliptical disks, whose radii and orientation are determined by multi-

scale vesselness responses. This proposition is in fact a direct extension to vessel

boundaries of Aylward and Bullitt’s ridge traversal using properties of the Hessian

matrix. The theory behind this centerline approach and our method is essentially

the same but the geometric flow framework has several important advantages. A

flow acts as a local “glue”, i.e., when propagating the surface front it is able collect

evidence from neighboring voxels to create a connected surface. Hence, branch

points of vascular trees, which locally behave like blobs (Section 3.1, Figure 3.2),

are handled naturally. Ridge traversal and centerline techniques need an explicit

bifurcation model or a back-tracking method to capture vessel junctions. A flow

also allows significantly more control. An expert can interact with the data and

segmentation process by stopping it, manually placing seeds and restarting the

evolution. This is possible because the flow can adapt to merging surfaces as well

as changes in topology. In the end, if one seeks for the 3D centerlines of the blood

vessel surfaces, one can use centerline extraction methods such as those in Bouix

et al. (2004a,b).

Another question one might ask is why did we chose the flux maximizing flow

of Vasilevskiy and Siddiqi (2002) over the flow of Lorigo et al. (2001)? Although

the latter has very nice mathematical motivation and an underlying regularization
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term involving the Hessian matrix, the flow must be forced to stop at vessel con-

tours by adding a heuristic image gradient term in the surface evolution equation.

This is less appealing than the flux maximizing gradient flow of Vasilevskiy and

Siddiqi (2002), which is significantly easier to implement.

5.1.2 Quantitative Validation and Ground Truth Data

Although we have carried out a careful qualitative and quantitative cross vali-

dation of our method, this falls short of a true quantitative validation. This is

because we do not have the ground truth segmentation to compare our PD seg-

mentation to. Colleagues have suggested the use of a high quality CT acquisition

of a phantom brain to obtain a ground truth 3D representation of the blood ves-

sels. However, this is not useful in our analysis because it is impossible to ob-

tain test data from a phantom brain with similar complexity as a PD weighted

MRI of a human brain. Another possibility is to use the virtual brain simulator

(http://www.bic.mni.mcgill.ca/brainweb/) [Collins et al. (1998)] to generate a vir-

tual angiogram and its corresponding anatomical MRI. However, at this point, the

tool can generate T1, T2, and PD MRI composed of only cerebral spinal fluid, gray

and white matter tissues but not blood vessels. Hence, the cross validation per-

formed in this thesis is currently the best type of validation we can perform. Our

statistical measures suggest that most of the vascular structures in a high quality

PC angiography data set can be extracted from a standard clinical PD weighted

MRI. One might have doubts on the quality of the angiogram but in fact, the PC

MRA used in this comparison was shown to an expert in image acquisition and

brain analysis who was impressed by its quality and ability to show the vascula-

ture.
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5.2 Contributions and Summary

We have presented what to our knowledge is the first multi-scale geometric flow

for segmenting vasculature in standard MRI volumes. Whereas the flow is de-

signed for PD weighted data sets, it can also be applied to a variety of other modal-

ities. We have demonstrated its applicability with both qualitative and quantita-

tive cross validation studies. First, the qualitative results indicate that a significant

amount of vasculature can be recovered by initializing the flow using a few isolated

seeds. We have also found that a number of finer vessels can also be recovered by

super-sampling the data and by placing seeds manually along with an adaptive

lowering of the vesselness threshold used in the construction of the extended vec-

tor field
−→V (Eq. 3.2).

We have proposed a method to visualize vasculature by creating maximum or

minimum intensity projections of the original data, but masked by the binary seg-

mentations. These projections are particularly useful for visualizing vasculature in

non-angiographic volumes since artifacts due to the brain surface as well as back-

ground structures are removed. These are quick to compute over any projection

direction and neurosurgeons and radiologists are familiar with them. The results

in Figure 4.4 show that the MIPs of the original PC data and the segmented PC data

are very similar, indicating that our geometric flow is successful in segmenting all

but the very finest vessels. The MIPs of the original TOF and the segmented TOF

data are even more similar, although the TOF data contains fewer vessels when

compared with the PC volume. Surprisingly, the minimum intensity projection

of the PD data also shows a significant number of vessels. This information is

greatly enhanced in the vesselness of PD image in the bottom row of Fig. 4.4. The

reversed contrast MIP of the masked PD data demonstrates that our vessel seg-

mentation procedure is successful and yields a 2D image which is comparable to

the MIP of the segmented PC image and which is almost as informative as the MIP

of the original PC. More importantly, the complex spatial relationships between
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the vasculature and surrounding anatomical structures can be made explicit since

the segmented PD is a true three-dimensional structure. A user can interact with

the derived model, depending upon the task at hand, and can visualize it from

arbitrary viewing directions.

Second, an important contribution of our work is the quantitative cross val-

idation of the algorithm using a data set comprised of PD, PC and TOF volumes

obtained for the same subject. The quantitative results indicate that the vessels seg-

mented from the PD data alone account for over 80% of the vasculature segmented

from either of the angiographic data sets, with a very small alignment error. We ob-

serve also that 26% of the vasculature obtained from the PD data are not recovered

from the angiographic TOF volume. This suggests that our algorithm can be used

to improve upon the results obtained from angiographic data but also as a promis-

ing alternative when such data is not available, since PD-weighted MRI data are

routinely acquired when planning brain tumor surgery.

It is important to point out that all the segmentations were obtained automat-

ically by initializing the flow with a threshold of the vesselness measure and by

stopping the surface evolution after a fixed number of iterations, or when the flow

had not hit the narrow band for several iterations. In the case of the PD volume,

the threshold must be conservative to guarantee that seeds are placed only within

vessel regions. It is possible to place seeds less conservatively in the angiographic

volumes in which vessels can be identified primarily by contrast. Ideally the algo-

rithm could be semi-automatic to improve the segmentation results. For example,

in the event that the automatic reconstruction does not recover some of the finer

vessels, these could be later obtained using a finer manual placement of seeds along

with an adaptive lowering of the vesselness threshold at such locations.

Finally, it is important to note that the method does depend crucially on the

choice of a particular vesselness measure to identify centerlines along with their

orientations and associated vessel widths. Whereas our results indicate that Frangi’s
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vesselness measure is a very promising candidate, other choices have also been

proposed in the literature [Aylward and Bullitt (2002); Krissian et al. (2003)] and

these would be worth exploring in the context of driving a geometric flow. One

issue that must be faced is the normalization of the responses for such operators

so that both thin and thick vessels yield quantitatively similar values at expected

centerline locations.

5.3 Future Work

It is our hope that our implementation will become a basic image analysis tool for

segmenting vasculature in clinical studies. In fact, we have already started using

it for vessel driven brain shift correction at the Montreal Neurological Institute [Rein-

ertsen et al. (2004)]. Our segmentation algorithm is the basis for the registration of

pre-operative MR images and intra-operative Doppler ultrasound data. The vascu-

lar tree present in the Gadolinium enhanced MRI is segmented with our algorithm

and then the 3D centerline curves are found using the automatic centerline extrac-

tion proposed by Bouix et al. (2004a,b). These curves are used as landmarks for

registering vessels from the intra-operative ultrasound. It is then possible to find a

brain shift estimate.

An accurate segmentation of vasculature from brain MR images is also critical

in many other clinical applications. Once segmented, various measures can be

used to characterize the vascular tree, such as tortuosity, size and branching, with

direct applications in the diagnosis, treatment and follow-up of arterial veinous

malformations and assessment tumor malignancy. Due to the automatic nature

of our vessel segmentation algorithm, one could also analyze large databases of

PD/T2 weighted MRIs of healthy subjects and patients with particular diseases.

Finally, there are many other ways one could exploit local shape properties in

images. In this thesis, we have only discussed tube-like structures but one can

easily define different measures to enhance and detect other structures such as blobs
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or sheets. In particular, we have recently designed a “sheetness” measure to detect

sheet-like structures in astrophysics galaxy simulation data using a geometric flow,

with promising results.
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