

Bone enhancement filtering: application to sinus bone segmentation and simulation of pituitary surgery

M. Descoteaux¹, M. Audette², K. Chinzei², K. Siddiqi³

¹Odyssée Project Team, INRIA Sophia Antipolis, France ²Surgical Assist Group, AIST Tsukuba, Japan ³School of Computer Science, McGill University, Montréal, Canada

Pituitary surgery

- Surgical simulator for pituitary gland cancer interventions
 - Create a virtual reality environment for students to train
 - Surgeon enters through nasal cavaties and must brake bones and cut soft tissue to reach the gland

Pituitary gland area

 Need tissue classification of bones, soft tissues and vessels in the pituitary gland area using MRI and CT scans available

Bone segmentation in CT data

cropped CT resampled to 0.468³ mm resolution

Using the structure tensor

• Structure tensor captures texture information

$$\mathbf{T}=\left(egin{array}{cccc} I_xI_x & I_xI_y & I_xI_z\ I_yI_x & I_yI_y & I_yI_z\ I_zI_x & I_zI_y & I_zI_z \end{array}
ight)$$

• Adaptive thresholding based on a local planar measure from eigen values of **T**

thresh_adaptive(x) = *thresh_global* – $\beta \cdot c_plane(x)$

• *c_plane* designed to be 1 for plate structures and 0 otherwise

[Westin et al cvpr'97,miccai'98]

Westin et al. segmentation

axial sagittal coronal

Tensor norm

Segmentation

Orignal CT

Overview of our algorithm

1. Propose a **new multi-scale sheetness** measure: measure that is maximum on the center sheet and decreasing to the boundaries

2. Use a **geometric flow** to connect the sheetness information together

The Hessian operator

- Operator that looks at the underlying shape of the iso-intensity surface $H = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{bmatrix}$
- \Rightarrow Hessian matrix, 2nd derivative information -> shape \Rightarrow Look at how the normal to the surface changes locally

Eigen value properties

- Eigen value decomposition of the Hessian matrix to get λ₁, λ₂, λ₃ and e₁, e₂, e₃ eigen vectors
 - Sheet condition:
 - Tube condition:
 - Blob condition:

$$\lambda_1 = \lambda_2 = 0 \quad \text{and} \ \lambda_3 >> 0$$

$$\lambda_1 = 0 \qquad \text{and} \ \lambda_2 = \lambda_3 >> 0$$

$$\lambda_1 = \lambda_2 = \lambda_3 >> 0$$

- With these properties, we can propose a sheetness measure
 - Inspired by Frangi's vesselness measure

[Frangi miccai'98,]

0

Constructing sheetness measure

$$R_a = \frac{|\lambda_2|}{|\lambda_3|} = \begin{cases} 0 & \text{for sheets} \\ 1 & \text{for tubes} \\ 1 & \text{for blobs} \\ undefined & \text{for noise} \end{cases}$$

enhance sheets
(set undefined = 1)

$$R_{c} = \frac{|2\lambda_{3} - \lambda_{2} - \lambda_{1}|}{|\lambda_{3}|} = \begin{cases} 2 & \text{for sheets} \\ 1 & \text{for tubes} \\ 0 & \text{for blobs} \\ undefined & \text{for noise} \end{cases}$$

kill blobs and noise (set *undefined* = 0)

$$S = \sqrt{\lambda_1^2 + \lambda_2^2 + \lambda_3^2} = \begin{cases} \lambda_3 & \text{for sheets} \\ \sqrt{2}\lambda_3 & \text{for tubes} \\ \sqrt{3}\lambda_3 & \text{for blobs} \\ 0 & \text{for noise} \end{cases}$$

kill noise

Multi-scale sheetness measure

$$S(\sigma) = \begin{cases} 0 & \text{if } \lambda_3 > 0\\ (\exp\left(\frac{-R_a^2}{2\alpha^2}\right))(1 - \exp\left(\frac{-R_c^2}{2\gamma^2}\right))(1 - \exp\left(\frac{-S^2}{2c^2}\right)). \end{cases}$$

- Maximum on the center plane of the structure
- Scale σ corresponds to radius of sheet
- Eigen vector e_3 associated with λ_3 gives normal direction to the plate

(Derivatives computed using Gamma-parametrized Gaussian kernels. [Lindeberg, IJCV 98])

Flow segmentation

• Flux maximizing geometric flow

$$\mathcal{S}_t = div(\overrightarrow{\mathcal{V}})\overrightarrow{\mathcal{N}}$$

 Construct new vector field maximum and perpendicular to bone boundaries. Compute its divergence => *speed* term for the flow

$$div(\overrightarrow{V}) = div\left(\phi_{\text{sheet}}\frac{\Delta I}{|\Delta I|}\right)$$

[Vasilevkiy & Siddiqi, PAMI'02]

Extending sheetness measure

- Define ϕ_{sheet} by extending the sheetness measure to boundaries
 - Distribute over a flat ellipsoid
 - Radius and orientation based on σ and e_3

[Descoteaux et al, miccai'04]

Synthetic examples

Quantitative validation

- Validation of the sheetness extension to boundaries
- How do zero-crossings of the speed term agree with the ground truth?
 - Compute Euclidean distance errors between each empirical surface voxel and its closest ground truth point

object	average distance error (voxels)	maximum error (voxels)	ratio (%)
plate	0.22	1.00	95
rib	0.25	1.12	95
spiral	0.26	1.22	91

Segmentation result

Hessian norm

Sheetness

Our segmentation

Segmentation comparison

Original CT

Simple thresholding

Adaptive thresholding (Westin et al.)

Geometric flow based on a new sheetness measure

Contributions

- New sheetness measure
 - Detect bone structure even in very thin structures and low contrast regions
- Geometric flow segmentation gluing together the multi-scale sheetness information
- Quantitative validation of the sheetness extension on synthetic planar examples
- Qualitative comparison between our Hessianbased approach and an adaptive thresholding method based on the structure tensor

- 1) A. Frangi, W. Niessen, K.L. Vincken, M.A. Viergever. Multi-scale vessel enhancement filtering. *In MICCAI'1998*.
- 2) A. Vasilevskiy, K. Siddiqi. Flux maximizing geometric flows. *In PAMI, vol. 24, 2002.*
- 3) M. Descoteaux, L. Collins, and K. Siddiqi. A multi-scale geometric flow for segmenting vasculature in mri. *In MICCAI'2004*.
- 4) M. Audette, H. Delinguette, A. Fuchs, K. Chinzei. A Topologically Faithful, Tissue-guided, Spatially Varying Meshing Strategy for Computing Patient-specific Head Models for Endoscopic Pituitary Surgery Simulation. Computer Vision for Biomedical Image Applications, ICCV Workshop.

THANK YOU!

Extra slides....

cropped CT resampled to 0.468³ mm resolution

Proposed framework

- 1. Registration
- Identification of tissue classes (arteries, cranial nerves, dura matter & *sinus bones*)
- 3. Tissue boundary and interior tessalation, adaptive surface and volume meshing

[Audette et al., Surgical Assist Lab]

Bone segmentation in CT

- Challenging in paranasal sinus area
 - Bones are very thin
 - Low contrast of bone structures and sometimes signal missing
- Previous work:
 - Thresholding
 - Adaptive thresholding based on structure tensor

[Westin et al. CVPR'97, MICCAI'98]

Limitations of existing methods

- Thresholding is too sentitive to noise
- Better result using structure tensor
- Structure tensor has good properties:
 - Robust texture detector that is maximum at boundaries
 - Very good for finding direction of max intensity change
- Structure tensor has disadvantages for our problem:
 - Not well localized (max on boundaries of structure)
 - Positive semi-definite matrix => positive eigen values (Does not make the difference between white/black or black/white contrast)

Thresholding the CT data

axial

sagittal

coronal

conservative thresh

best thresh

aggressive thresh

Sheetness measure terms

Robust to noise

• Sheetness measure and orientation detection very stable and robust under Gaussian white

noise

SNR = 5

SNR = 10

vesselness measure

Westin et al. algorithm

Tensor norm = sqrt($\lambda_1^2 + \lambda_2^2 + \lambda_3^2$) $c_plane = (\lambda_3 - \alpha \cdot \lambda_2) / \lambda_3$

thresh_adaptive(x) = *thresh_global* – $\beta \cdot c_plane(x)$

tensor norm

 c_plane

tensor segmentation

Synthetic plate example

tensor norm

 c_plane

Synthetic spiral example

tensor norm

 c_plane

Sheetness measure example

Input binary volume

sheetness measure

Segmentations

Reconstruction of the synthetic binary shapes

Reconstruction of the smoothed synthetic binary shapes

Local structure classification

Eigen value conditions	local structure	examples
$\lambda_1 \approx 0 \ , \ \lambda_2 \approx \lambda_3 >> 0$	tube-like	vessel, bronchus
$\lambda_1 \approx \lambda_2 \approx 0 , \lambda_3 >> 0$	sheet-like	cortex , skin
$\lambda_1 \approx \lambda_2 \approx \lambda_3 >> 0$	blob-like	nodule
$\lambda_1 \approx \lambda_2 \approx \lambda_3 \approx 0$	noise-like	noise

$$R_B = \frac{|\lambda_1|}{\sqrt{|\lambda_2\lambda_3|}} \quad R_A = \frac{|\lambda_2|}{|\lambda_3|} \quad S = \sqrt{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}$$

blob vs others sheet vs others noise vs others

Vesselness measure

$$V(\sigma) = \begin{cases} 0 & \text{if } \lambda_2 < 0 \text{ or } \lambda_3 < 0 \\ \left(1 - \exp\left(-\frac{R_A^2}{2\alpha^2}\right)\right) \exp\left(-\frac{R_B^2}{2\beta^2}\right) \left(1 - \exp\left(-\frac{S^2}{2c^2}\right)\right) \end{cases}$$

Multi-scale geometric flow

• Consider the vector field

$$\overrightarrow{\mathcal{V}} = \phi \frac{\nabla \mathcal{I}}{|\nabla \mathcal{I}|}$$

 $\nabla \tau$

• The associated flux maximizing flow

$$S_{t} = div(\overrightarrow{\mathcal{V}})\overrightarrow{\mathcal{N}}$$

$$= \left[\left\langle \nabla \phi, \frac{\nabla \mathcal{I}}{|\nabla \mathcal{I}|} \right\rangle + \phi div\left(\frac{\nabla \mathcal{I}}{|\nabla \mathcal{I}|}\right) \right] \overrightarrow{\mathcal{N}}$$

$$= \left[\left\langle \nabla \phi, \frac{\nabla \mathcal{I}}{|\nabla \mathcal{I}|} \right\rangle + \phi \kappa_{\mathcal{I}} \right] \overrightarrow{\mathcal{N}}.$$

Initial curve

Final curve

Surface evolution

T **= ⊉**000