NUDELMAN INTERPOLATION,
PARAMETRIZATIONS OF LOSSLESS
FUNCTIONS AND BALANCED
REALIZATIONS.

Jean-Paul Marmorat* Martine Olivi **

*CMA, BP 93, 06902 Sophia-Antipolis Cedex, FRANCE,
marmorat@sophia.inria.fr, phone: 33 4 92 38 79 56, fax:
33 4 92 38 79 98
** INRIA, BP 93, 06902 Sophia-Antipolis Cedex,
FRANCE, olwi@sophia.inria.fr, phone: 33 4 92 38 78 77,
faz: 33 4 92 38 18 58

Abstract: We investigate the parametrization issue for discrete-time stable all-
pass multivariable systems by means of a Schur algorithm involving a Nudel-
man interpolation condition. A recursive construction of balanced realizations
is associated with it, that possesses a very good numerical behavior. Several
atlases of charts or families of local parametrizations are presented and for each
atlas a chart selection strategy is proposed. These parametrizations allow for
solving optimization problems within the fields of system identification and optimal

control. Copyright© 2004 IFAC.
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1. INTRODUCTION

Lossless or stable allpass transfer functions play
an important role in system theory mainly due
to the Douglas-Shapiro-Shields factorization: any
proper transfer function can be written as the
product of a lossless function, which includes the
dynamics of the system, and an unstable factor. In
many problems, within the fields of identification,
model reduction and optimal control, the unstable
factor can be computed from the lossless one.
These problems can thus be handled by optimiza-
tion methods over the class of lossless functions
of prescribed degree, or possibly a specified sub-
class. It is with such applications in mind, and in
particular rational L? approximation, that we will
approach this parametrization issue.

In view of these applications, the manifold struc-
ture of the class of lossless functions of fixed degree
(Alpay et al., 1994) will be used and parametriza-
tions coming from an atlas of chart will be consid-
ered. An atlas of chart attached with a manifold is
a collection of local coordinate maps (the charts),
whose domains cover the manifold and such that
the changes of coordinates are smooth. A search
algorithm can be run through the manifold as a
whole, using a local coordinate map to describe
the manifold locally and changing from one co-
ordinate map for another when necessary. Such
a representation presents a lot of advantages. It
ensures identifiability, takes into account stability
and preserves the order.

In the literature, atlases of charts have been de-
rived both from the state-space approach using



nice selections and from the functional approach
using interpolation theory and Schur type algo-
rithms. A connection between these descriptions
was found in the scalar case (Hanzon and Peeters,
2000) and generalized to the matrix case (Hanzon
et al., 2004). This work is in the same vein :
atlases are constructed in which lossless functions
are represented by balanced realizations built re-
cursively from interpolation data. Instead of the
Nevanlinna-Pick interpolation problems used in
previous works we consider in this work the more
general Nudelman interpolation problems. This
very general framework allows to construct several
atlases, including that of (Hanzon et al., 2004),
and to describe the subclass of real functions. For
each particular atlas presented in this work, we
propose a chart selection strategy which provides
an adapted chart for a given lossless function.
This last point, together with their nice numerical
behavior, make these parametrizations an inter-
esting tool for solving the optimization problems
mentioned before.

2. PRELIMINARIES.
Let
7= [IS _OIP] '
For any matrix function F(z), we define
F¥(2) = F(3)". (1)
A 2p x 2p rational matrix function ©(z) is called

J-inner if, at every point of analyticity z of © it
satisfies

0(2)*JO(z) < J,
0(2)*JO(z)=J,

|z <1, (2)
2| = 1. (3)

A (p x p) rational matrix function F(z) is called
lossless or stable all-pass (resp. inner), if and only
if

F)F(2)* <I,, |2l > 1 (resp. 2] <1),  (4)

with equality on the circle.

By analytic continuation, the identity on the circle
extends almost everywhere, so that any rational
lossless function G(z) is invertible, its inverse
being inner and given by G(z)~! = G¥(z).

We denote by L the set of (p x p)-lossless func-
tions of McMillan degree n and by U, the set of
constant unitary matrices. The natural framework
for these studies is that of complex functions.
However, in most applications, systems are real-
valued and their transfer functions T are real,
that is satisfy the relation T'(z) = T'(Z). We shall

denote by RLP the set of real (p X p)-lossless
functions. Even if the complex case includes the
real case by restriction, a specific treatment is
actually relevant and was the initial motivation
for this work which notably improves (Marmorat
et al., 2003).

An important property of a lossless function is
that if

G(2) = C(zI, — A)"'B + D,

is a balanced realization (always exists), then the
associated realization matric

r=154) ®

is unitary (see (Hanzon et al., 2004) and the
bibliography therein). Lossless function can be
represented by unitary realization matrices.

Remark: The transfer functions that we consider
are in discrete-time. However the parametriza-
tions can be used for continuous-time systems
using the usual Mo6bius transform.

Along with a 2p x 2p rational function ©(z) block-
partitioned as follows

01(z) 02(z)
0O(z) = 6
(2) [@3(z) O4(2) |’ (6)
with each block of size px p, we associate the linear
fractional transformations T which acts on p x p
rational functions F(z) :

To(F)=[01 F + 05][03 F + 04" (7)

Linear fractional transformations occur exten-
sively in representation formulas for the solu-
tion of various interpolation problems (Ball et
al., 1990). If ©(z) is a J-inner matrix function,
then the map T sends every lossless function onto
a lossless function.

3. NUDELMAN INTERPOLATION FOR
LOSSLESS FUNCTIONS

The problem is to find a (p x p) rational lossless
function G(z) which satisfies an interpolation con-
dition of the form
1 _

o /Gﬂ(z)x (Li-W)yldz=Y, (8)
T
where (X,W) is an observable pair and W is
asymptotically stable (X is px d and W is d x d).
Such a triple (W, X,Y) will be called Nudelman
interpolation data. Note that if W is a diagonal
matrix, this problem reduces to a Nevanlinna-Pick
problem.



Let Ow,x,y be the (2p x 2p) J-inner function
builts from the interpolation data (W, X,Y) as
follows:

Owxy(z)=
[Lp — (2 —=1)C(zIa — W) P11y — W) *C*J]

where C' = )}f] and P is the unique solution to

the symmetric Stein equation

P—-W*PW = X*X - Y*Y. (10)

Theorem 1. There exist a rational lossless func-
tion G satisfying the interpolation condition (8)
if and only if the solution P of (10) is positive
definite. In this case, any solution G can be rep-
resented by

G = Te(F),

for some lossless function F' and where © =
Ow,x,yH, H being an arbitrary constant J-
unitary matrix and Ow x,y being given by (9).
Moreover,

deg G =deg F' + d.

Proof. This result is a particular case of (Ball et
al., 1990, th.18.5.2), which describes all the Schur
functions solution to a Nudelman interpolation
problem. O

Let A and II be p x p unitary matrices. Then the
following important relations are satisfied

AO A0
[O H] Ow.x,y [ 0 H*] =Owaxny (11)

Tow axny (AF(2)II) = AT (F(2))II"  (12)

4. BALANCED REALIZATIONS

The aim of this section is to choose the arbitrary
J-unitary factor H, so that the linear fractional
transformation G = Te,, . a(G) gives rise to a
simple construction of balanced realizations.

Let U and V be (p+d) x (p+ d) unitary matrices
partitioned as follows:

Cv= ] o

oy My
U = B
[ kV ﬂv

ku By

where ky and ky are d x d, ay, ay, By and By
are p X d and My and My are p X p, and put

e[ ] o [3] =[] o

Proposition 1. Let U and V be unitary matrices
block-partitioned as in (13). Assume that ky z —

ky is invertible. The (2p x 2p) rational matrix
function

Syy(z) =M+alky z—ky) ' BT [(1) 2] (15)

is J-inner and has McMillan degree d.

A minimal matrix realization R of G = Tg,, ,, (G)
can be computed from a minimal matrix realiza-
tion R of G by

=~ [UO]|[La40]|]V* O
=lon]lisllon] oo
where k is the McMillan degree of G(z).

Proof. The case d = 1 has been studied in
(Hanzon et al., 2004). A similar approach can be
developed when ky and ky are matrices. O

Proposition 2. Let (W,X,Y) be some Nudelman
interpolation data. There exist unitary (p + d) X
(p+d) matrices U and V and a (2px 2p) J-unitary
matrix Hw,x,y such that

Ow,x,y =Owxy Hwxy = ®uy (17)

Proof. If (17) is satisfied, the function @,y
cannot have a pole on the circle and can be
rewritten

@U’v(z) =

[Izp — (Z — 1) Oé(kv zZ— kU)il(k'V — kU)i*Ct*J] K

with K = q)U,V(]-)-

Comparing with (9), there must exist a transfor-
mation 7T such that P = T*T, kyk;' = TWT !,
aky,' = CT~!. The matrix V being unitary,
oy ay + kiyky = Iz, and thus

(T*Y*YT' + 1) = kvky. (18)

Since T—*Y*YT~! + I; is positive definite, a
solution to (18) does exist. Let the matrices T
and k, be chosen such that for Y = 0, T =
Iy and ky = I;. We may choose for example
the positive square roots: T = P2 and ky =
(T=*Y*YT~'+1,)""/*. Then, we must have

ku = TWTilkv
ay = YTilkV (19)
= XT lky

and the first d columns of U and V are deter-

mined. Now, we must find My, By, My, By and
H such that

) [ ]-» @

] = L] [
B By | Pt ku | | ku




the same for My and By, and

H, H,

H:[Hg Hy

] =M+ a(ky —ky)~'B*J, (22)

where M, «, and § are given by (14). Solving for
these equations yields

HiH =
I+ ay(ky —ku) ™ (I — kvky) (kY — ki)~ oy,

HyH} =
I+ ay(ky —kuy) ™' (Ia — kukg) (kv — ki) "oy,

and choosing for H; and H» the positive square
roots, we have

{ MUH; = Ip - O‘Uk?‘/(k*V - kl*J)_la?Ja (23)
BuHy = (Ia — kuky)(ky — ki) oy,
My H; = L, + avky(k}, — kiy) " tayC*, (24)
BiHy = —(Ig — kvky)(ky — ki)~ lay.

Now, the matrices U and V are completely deter-
mined and we can put

Hw,xy = M+ a(ky —ky) 8 J. (25)

O

Note that the J-inner function (:)W, X,y also satis-
fies (11) and (12).

Corollary 1. A unitary matrix realization R of
G=T,, ., (G) can be computed from a unitary

matrix realization R of G by (16).

Remark. Note that if Y = 0, since the pair
(X, W) satisfies X* X + W*W = I, we have that
P =1;and T = I; too. Thus,

v [X L-X(- W*)Tx*
W (g = W)y - W)X
— 0 IP
i

so that the recursion (16) becomes

(26)

5. CHARTS FROM A SCHUR ALGORITHM.

Let 0 = ((Xl, W1>, (XQ, Wg), ceey (Xl, Wl)) be a
sequence of observable pairs such that the W;’s

are asymptotically stable, W; is n; x n;, X; is
p X nj, and
!

n= E n;.

=1

We further imposed the normalization condition
(output normal pairs)

WiW, + X X; = In,. (27)

A Schur algorithm associated with a sequence o
of observable pairs consists from a given lossless
function G of degree n, in a recursive construction
of lossless functions of decreasing degree G; =

G,Gi-1,.... Assume G; has been constructed and
put
Y= — [ GHe)X; (21, - W;) N d
I o $(2)X; (21, = W) da.
T

If the solution P; to the symmetric Stein equation

P~ WiPW; = X} X; - Y}'Y;

is positive definite, then from theorem 1, a lossless
function G;_; is defined by

WJ',XJ'.YJ-
If P; is not positive definite, the construction
stops.

A chart (V,9) of LP attached with a sequence o
of observable pairs and with a chart (W, ) of U,
is defined as follows.

A function G' € L? belongs to the domain V of the
chart if the Schur algorithm allows to construct
a complete sequence of lossless functions, G =
G, Gi1...,Go, where Gy is a constant lossless
matrix in W C U,.

The local coordinate map ¢ is defined by
¢ :GeV— (Ea%v"'alflaw(GO))a

and the interpolation matrices Y; are the Schur
parameters of the function in the chart.

Theorem 2. A family of charts (V, ®) defines an
atlas of L2 provided the union of their domains
cover LP.

Atlases for the quotient L2 /U, are obtained using
the properties (11) and (12). If G has Schur
parameters (Y1,Y5,...,Y;) and constant unitary
matrix Gy in a given chart, and if II € U, , then
GII* has Schur parameters (IIY;,IIYs,...,IIY;)
and constant unitary matrix GoII*. The quotient
can be performed within a chart by imposing
the last constant lossless matrix Gy in the Schur
algorithm to be the identity matrix.



6. SOME PARTICULAR ATLASES.

We present three atlases for which a chart selec-
tion strategy can be given. They all present some
interest from the optimization viewpoint. The first
one is for complex functions and it involves only
schur steps in which the degree is increased by one.
It allows for a search strategy of local minima by
induction on the degree, which can be very help-
ful in some difficult optimization problems. The
second one is the analog for real-valued functions.
The third one involves only a schur step and is
much more simple that the previous ones.

6.1 Adapted charts from realizations in Schur
form.

6.1.1. The case of complex functions. Consider
the charts associated with sequences of observable
pairs (z1,w1), (T2, w2),...,(Tn,w,) in which the
w;’s are complex numbers. In this case, the Nudel-
man interpolation condition (8) can be rewritten
as a Nevanlinna-Pick interpolation condition

G(1/w;)*z; = y;-

This is the atlas described in (Hanzon et al., 2004).
However, the normalization conditions differ. In
(Hanzon et al., 2004) the p-vectors z;’s have
norm one, while in this work, the pairs (z;,w;)’s
are input normal (27). Note that, in the case
d > 1 the matrix X; may fail to satisfy X X;
positive definite and the normalization condition
X; unitary cannot be chosen. Moreover, condition
(27) simplifies the procedure to obtain adapted
charts.

An adapted chart for G(z) € LP. will be a chart in
which all the Schur parameters are null p-vectors.

It is obtained as follows: let (A4,B,C,D) be a
balanced realization of G(z) in Schur form (A is
upper triangular), and write it in the form

T_|Wn * D Bn
= m=len]
5:[$n"':|7

where w, is a complex number, z, a column
vector and S, a row vector. Comparing with (26),
choose the observable pair (z,,w,) and y, = 0
and run the Schur algorithm with interpolation
data (wn, Zn,yn). The lossless function G,,—1 de-
fined by G = T~~~ (Gn—1) has realization
(An_l,Bn_l,Cn_l,Dn;l), obtained by inverting
(16), still in Schur form. This process can thus
be repeated and we get a sequence of output
normal observable pairs (z;,w;), the w;’s being
the eigenvalues of A. In the associated chart, the
Schur parameters of G(z) are y, =... =y =0.

6.1.2. The case of real functions. To deal with
real functions we consider the charts associ-
ated with sequences of observable pairs (X3, W1),
(X2, Wa),...,(X,,W,) in which the W;’s are ei-
ther real numbers or real 2 x 2 matrices with
complex conjugate eigenvalues.

To find an adapted chart for a given lossless
function G € RLP, we shall proceed as follows:
we start from a balanced realization (A4, B,C, D)

of G(z) in which A is in real Schur form
M/l * el %
;( = 0 Wl—l E - :
0 --- 0 W,

where for j =1,...,1, Wj is either a real number
or a (2 x 2) block with complex conjugate eigen-
values. Let

C=[X x- %],

where X; is p X n;, the size of W;. As previ-
ously, choose the observable pair (X;,W;) and
Y, = 0 and run the Schur algorithm from G; =
G with interpolation data (W,,X,,Y,). A new
lossless function is obtained with a realization
still in Schur form. Repeating this process, we
get a sequence of output normal observable pairs
(X;,W;), the W;’s being the diagonal blocks of A,
that index a chart in which the Schur parameters
of G(z) are all null matrices: ¥, =...=Y; =0.

The Schur algorithm attached with this sequence
of interpolation data yields a Potapov factoriza-
tion for real lossless functions, namely

G(2) = Bi(2)Bi-1(2) - - - B1(2),
where B; is the real-valued lossless function

Bj(z) =

I, — (z = 1)X;(2 1, = W;) " (I, - W)X

6.2 A one step Schur algorithm.

We only consider sequences of observable pairs
composed with a single pair (X, W) in which W is
n xn and X is p x n. The recursion formula (16)
has a particular interpretation in this context.

Let G(2) = D + C(zI, — A)~'B be a balanced
realization of G(z). Let @ be the unique solution
to the Stein equation

Q- A*QW =C*X, (28)

and P the solution to (10) where Y is given by

(8).



The contour integral (8) can be computed using

1 s :
21— A* — )
(zI" A ) z ]Z:;(z/l )

(el = W) ' =271 Y (WY,

and thus

_ 1 « S, 1y
Y_%/DX Z(z W)
T J=0

+B*z Z(zA*)j c*X Z 2IWI %,
§=0 =0 o
so that
Y =D*X + B*QW. (29)

Moreover, it is easily verified that
P=Q*Q.

Equations (28) and (29) can be rewritten in a
matrix form

BRES[G

Since Y*Y + Q*Q = Y*Y + P is positive definite
we may define ¢ = (Y*Y + Q*Q)~'/2 and (30)

yields
o= [awe] [25][a]
TLRQWE] | BAJQE)”
which can be completed into an analog of (16).

The observable pair (X, W) represents a lossless
function F(z) = Dp + X(2I, — W)™ 1B € L?
(see (Alpay et al., 1994)). In this atlas, a chart
of LP can be defined by a lossless function of £Z.
The solution P to the Stein equation (10), which
satisfies 0 < P < I,, measures the possibility
to encode the given lossless function G(z) in the
chart associated with F(z). An adapted chart
for G(z) will be the chart associated with the
observable pair (C,.4) of a balanced realization
(A,B,C,D) of G(z). Then P=1, and Y = 0. At
the opposite, if P is only positive semi-definite,
then G(z) does not belong to the chart associated
with F(z).

7. CONCLUSION.
In this paper atlases of charts for the class of loss-

less function of fixed degree have been proposed.
This differential geometric approach presents a lot

of advantages since it ensures identifiability, takes
into account the stability constraint and allows
to run a search algorithm through the manifold
as a whole. Moreover, lossless functions are rep-
resented by balanced realizations computed by a
recursion formula from interpolation data which
presents a nice numerical behavior. This formula
is independent from the dimension of the interpo-
lation data so that a same implementation can be
used for different atlases.

This approach takes place into a very general
framework, that of Nudelman interpolation and
we hope it could allow to describe other classes
of transfer functions, taking into account for ex-
ample some particular structure of the realization
coming from the physics. We also think that sym-
metric lossless function could be handled using
two-sided Nudelman interpolation data.

These parametrizations have been used to handle
the L? rational approximation problem. The atlas
of section 6.1.1 has been first implemented, nu-
merical examples from the literature and real-data
simulations have been presented in (Marmorat et
al., 2002). This parametrization describes com-
plex lossless function and even if it allows to
approximate real-valued functions, a specific atlas
is preferable. The atlas of section 6.2 has been
recently implemented. It works for both complex
and real-valued functions and its effectiveness has
been demonstrated through the examples men-
tioned in (Marmorat et al., 2002).
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