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Abstract: This article is concerned with the l2-approximation of a given
transfer-function f by a rational one whose order is prescribed. We show
that the sum of the indices of the critical points of the criterion is generically
equal to 1, and in particular does not depend on f .

1 Introduction.

This paper deals with a rational approximation problem, which is related to
system theory in the following way. If f is the transfer function of a l2-stable
linear constant discrete-time system driven by a white noise δ, the output
y = fδ is a stationary process whose spectrum allows one, in principle, to
recover f . If the latter is to be modelled by a rational function h of order
at most n, and if we put ŷ = hδ, the minimization of the covariance of y− ŷ
is achieved when the l2-norm of f − h is itself minimal. The continuous-
time analogue reduces to the above, upon performing the substitution z →
(z + 1)/(z − 1).
Rational approximation is a new trend in system identification, but the cri-
terion under consideration here has remained relatively untouched in the
literature. To our knowledge, this question is unsolved, both from com-
putational and theoretical viewpoint. This article introduces an invariant
quantity in the single-input single-output version of this problem, namely
the sum of the indices of the critical points of the criterion. This result
shows, for instance, that the number of critical points is generically odd.
Our tools are essentially borrowed from differential topology, mixed up with
a bit of classical function theory, but we could not include arguments de-
pending on transversality theory, and still get a reasonably sized paper.
The next paragraph describes the problem and sets some notations, before
embarking into the proof itself.

2 The L2 approximation problem.

Throughout, the word system means “single-input single-output linear con-
stant causal discrete dynamical system”, and the words transfer function
mean the transfer function of such a system. We define the order of a sys-
tem to be the dimension of the state-space in its minimal realizations [7].
When the order is finite, the transfer function is a proper rational function,
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and the order is equal to the degree of the denominator when the fraction
is in reduced form.

Let f =
∞∑
k=0

fkz
−k, where fk ∈ R, be the (possibly non-rational) transfer-

function of a system. Assume that f is l2-stable, that is
∑
k f

2
k <∞.

The discrete-time version of the l2 approximation problem, in the single-
input single-output case, can be stated as follows.

For any integer n ≥ 1, find a finite-dimensional stable system, whose

order is at most n, and whose transfer-function h =
∞∑
k=0

hkz
−k is such that∑

k(fk − hk)2 is as small as possible.
If h is a best approximant of f , we must have h0 = f0 since the constant

term does not affect the order. Consequently, we can always assume f0 =
h0 = 0, and thus, from now on, every transfer function will be strictly
proper.

It is convenient to settle this in the classical framework of real Hardy
spaces (e.g. [11]). Let T be the unit circle. Let U (resp. Ū) be the open
(resp. closed) unit disk. We define H−2 to be the real Hilbert space of those
functions g holomorphic in the complement of Ū , vanishing at infinity, that
can be written

g(z) =
∞∑
k=1

gkz
−k with gk ∈ R and ‖g‖2 =

∑
k

g2k <∞.

Now, the transfer function h of a finite dimensional system is a rational
fraction which lies in H−2 if and only if it is stable, that is if and only if its
poles are in U . Hence, the set S−n of stable transfer-functions of order at
most n is naturally included in H−2 . Therefore, the question amounts to ask
the following:

Given f ∈ H−2 , and n ≥ 1, find ĥ ∈ S−n such that: ‖f−ĥ‖ = infh∈S−
n
‖f−

h‖
It can be proved (see e. g. [1]) that the problem stated above admits a

solution. This solution is not always unique, but generically is [2]. Moreover,
if we denote by Σ−n the set of transfer-functions of order precisely n, it is
shown in [10] that any solution is in Σ−n , unless f itself lies in S−n−1. This
fact lies at the root of a differential approach to the subject, since Σ−n is a
differential manifold while S−n is not.

For the moment being, we summarize some facts concerning Hardy
spaces ([11]) that will be of constant use in the sequel.
We first introduce another Hardy space H+

2 , which is symmetric in some
sense to H−2 , and consists of those functions that are holomorphic in U and
can be written

g(z) =
∞∑
k=0

gkz
k with gk ∈ R, and ‖g‖2 =

∑
k

g2k <∞
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To each g ∈ H−2 (resp. g ∈ H+
2 ), we can associate g∗ ∈ L2(T ) by putting:

g∗ =
∞∑
k=1

gke
−ikθ (resp. g∗ =

∞∑
k=0

gke
ikθ)

This establishes an isometry between H−2 (resp. H+
2 ) and the real subspace

of L2(T ) consisting of functions whose Fourier coefficients of positive (resp.
strictly negative) order are zero. Hence the orthogonal sum

H2 = H−2 ⊕H
+
2

is isometric to the subspace of L2(T ) consisting of functions whose Fourier
coefficients are real, and this allows us to express the scalar product in H2

as the one of L2(T ), which in turn can be converted into a line integral

< f, g >=
1

2iπ

∫
T
f(z) g(

1

z
)
dz

z
. (1)

It will be convenient to introduce some more notations. For u ∈ H2, we
define

ǔ = u(1/z) and uσ =
ǔ

z
.

A mechanical consequence of (1) is that

< uv,w >=< v, ǔw >

whenever both sides do make sense. Moreover, u → uσ maps H−2 onto H+
2

and conversely.
We are now ready to introduce the function which will be our main object
of study.

3 The function Ψn
f .

Let Pn be the set of real polynomials of degree at most n, and P1
n the

subset of monic polynomials of degree n whose roots are in U . Taking
the coefficients as coordinates, Pn−1 can be naturally identified with Rn.
Similarly, the subset of Pn consisting of monic polynomials of degree n can
be identified with Rn as an affine space, taking as coordinates all coefficients
except the leading one. This allows to consider P1

n as an open subset of Rn.
Now, Σ−n consists of all rational fractions h = p/q, where

p = pn−1z
n−1 + pn−2z

n−2 + ...+ p0 ∈ Pn−1

q = zn + qn−1z
n−1 + ...+ q0 ∈ P1

n

are coprime polynomials. Hence Σ−n is isomorphic to an open set of R2n, and
the natural inclusion Σ−n → H−2 is an embedding [1]. This makes Σ−n into a
smooth submanifold of H−2 , and the pi’s and qj ’s as above are coordinates.
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Let us consider the smooth function Γnf : Σ−n → R, defined by Γnf (h) =

‖f − h‖2. The best approximants we are looking for are among the critical
points (i.e. those at which the derivative is 0) of Γnf .
If p/q is a critical point of Γnf , differentiating with respect to the pi’s yields

< f − p

q
,
Pn−1
q

>= 0 (2)

and with respect to the qj ’s

< f − p

q
,
pPn−1
q2

>= 0 (3)

Introducing the n-dimensional linear subspace ofH−2 defined by Vq = Pn−1/q
we see that (2) means precisely that p/q is the orthogonal projection πq(f)
of f onto Vq. On another hand, for any q ∈ P1

n, we may define a polynomial
Lnf (q) ∈ Pn−1 by the formula

Lnf (q) = qπq(f)

Because critical points of Γnf are of the form Lnf (q)/q, we are led to consider
the map

Ψn
f : P1

n → R defined by Ψn
f (q) =

∥∥∥∥f − Lnf (q)

q

∥∥∥∥2,
and the l2-approximation problem consists in minimizing this function.

3.1 The nature of Lnf .

We state first a division lemma in sets of functions which are holomorphic
in an open disk. It will be of constant use in the sequel.
Let Uλ denote the open disk centered at 0 of radius λ, Tλ its boundary circle.
We shall denote by H(Uλ) the space of functions holomorphic in Uλ, and by
Pλn the set of real monic polynomials of degree n whose roots lie in Uλ.

Lemma 1 Let λ > 0 be a real number. Let further u ∈ H(Uλ) and q ∈ Pλn .
There exists a unique function v ∈ H(Uλ), and a unique w ∈ Pn−1 such that

u = qv + w.

If u and q take on real values for real arguments, the same holds true for v
and w. If λ = 1 and u ∈ H+

2 , then v ∈ H+
2 .

Proof: The existence and uniqueness of v and w are a special case of Weier-
strass’s extended division theorem [5]. The proof, in this reference, estab-
lishes integral representation formulas for v and w as follows. Let µ < λ be
such that q ∈ Pµn . Then

v(z) =
1

2iπ

∫
Tµ

u(ξ)

q(ξ)

dξ

ξ − z
(4)
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and w(z) =
1

2iπ

∫
Tµ

u(ξ)

q(ξ)

[
q(ξ)− q(z)
ξ − z

]
dξ.

Taking the conjugates of the Taylor coefficients, the second assertion is an
easy consequence of uniqueness. If λ = 1 and u ∈ H+

2 , then qv ∈ H+
2 . If B

is the Blaschke product made from the roots of q, the factorisation theorem
([11],th.17.17) implies qv = Bf1 with f1 ∈ H+

2 . As B/q is a rational fraction
with no poles in Ū , we conclude v ∈ H+

2 , Q.E.D.
When v and w are defined as in the lemma, we call them respectively the
quotient and the remainder of the division of u by q, and we put

v = Qq(u) and w = Rq(u)

Now, let us introduce a new notation. If r ∈ Pk, we put r̃ = zkř(z) It
is immediate that r → r̃ is an involution of Pk and that the roots (possibly
infinite) of r̃ are the inverses of those of r. We give a word of warning about
this: if r is now considered as an element of Pk+1 whose leading coefficient is
zero, the two definitions of r̃ do not agree. For that reason, we shall always
specify which Pk r is supposed to belong to. In particular, the remainder of
the division by a polynomial of degree k will be considered as a member of
Pk−1.

We are now able to describe the nature of Lnf .

Proposition 1 For f ∈ H−2 and q ∈ P1
n, we have

Lnf (q) = ˜Rq(q̃fσ). (5)

.

Proof: Let s ∈ Pn−1. The following sequence of equalities holds

< f−
˜Rq(q̃fσ)

q
,
s

q
>=<

fq − ˜Rq(q̃fσ)

q
,
s

q
>=<

1

q
,

 ˇ︷ ︸︸ ︷
fq − ˜Rq(q̃fσ)

 s

q
>

Since multiplying by z is an isometry of H2, the above is also equal to

<
zn−1

q
, zn−1

 ˇ︷ ︸︸ ︷
fq − ˜Rq(q̃fσ)

 s

q
>

=<
zn−1

q
, (q̃fσ −Rq(q̃fσ))

s

q
>=<

zn−1

q
, Qq(q̃fσ)s > .

By lemma 1, Qq(q̃fσ) is in H+
2 , and so is Qq(q̃fσ)s, whereas zn−1/q is in

H−2 . Hence, the last expression is zero. This shows that (2) is verified if we

let p = ˜Rq(q̃fσ). Q.E.D.
Note that (5) and the integral representation of the remainder given by
(4) show that Lnf is a smooth function. Thereby, we get as an immediate
corollary:

Corollary 1 The map Ψn
f : P1

n → R is a smooth function.
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3.2 Critical points of Ψn
f .

Now, the partial derivatives of Ψn
f are computed as

∂Ψn
f

∂qi
(q) = −2 < f −

Lnf (q)

q
,

∂
∂qi

(Lnf (q))

q
> +2 < f −

Lnf (q)

q
,
ziLnf (q)

q2
>

and since ∂Lnf (q)/∂qi is in Pn−1, it follows from the very definition of the
projection that the first term on the right hand-side is zero. Hence, we get

∂Ψn
f

∂qi
(q) = 2 < f −

Lnf (q)

q
,
ziLnf (q)

q2
> . (6)

By (3), it is clear that the denominator of any critical point of Γnf is a critical
point of Ψn

f . Conversely, let q be a critical point of the latter. If we put
p = Lnf (q), it follows from (6) and from the definition of the projection that
(2) and (3) are satisfied. However, p/q will then be a critical point of Γnf only
if it belongs to Σ−n , i.e. only if Lnf (q) and q are coprime. This is not always
the case, so that Ψn

f might have “more” critical points that Γnf . In spite of
the fact that these additional points have no chance to be best approximants
unless f ∈ S−n−1 (though they are critical points of a lower order problem as
we shall see), they will be needed in this paper to construct an invariant of
the problem, namely the index.
If q is a critical point of Ψn

f as above, and d is the g.c.d. of p and q whose
degree is k, combining linearly (2) and (3), and taking into account the fact
that

q Pn−1 + pPn−1 = dP2n−1−k

by Bezout’s identity, yields readily

< f − p

q
,
dP2n−1−k

q2
>= 0.

If q = dq1 and p = dp1, this can be rewritten as

< f − p1
q1
,
P2n−1−k
dq21

>= 0.

We first observe from this equation that p1/q1 is a critical point of Γn−kf .
On another hand, for any s ∈ Pn−1, we have

<
p1
q1
,
q̃1s

dq21
>=<

p1q1
q1

,
zn−ks

dq21
>=< p1,

zn−ks

dq21
>= 0

where the last equality holds because p1 ∈ H+
2 and zn−ks/dq21 ∈ H−2 . We

deduce from this

∀i ∈ {0, ..., n− 1} < f,
q̃1z

i

dq21
>= 0. (7)
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3.3 Extension of the domain of Ψn
f .

So far, Ψn
f has been defined only on P1

n. In fact, one of the advantages of
considering Ψn

f instead of Γnf is that the former can be, under mild assump-
tions on f , extended to a smooth function defined on a neighborhood of the
closure, in Rn, of P1

n. This last set, denoted by ∆n in the sequel, consists
obviously of all real monic polynomials of degree n whose roots are in Ū .
The important fact about ∆n, which we shall prove later on, is that it is a
compact manifold, thereby allowing us to use classical tools from topology.
To proceed with the above-mentioned extension, it would be sufficient to
assume that f is holomorphic in a neighborhood of T . However, in order
to ensure further existence properties, it is convenient to work with the
following class of functions: for 0 < r < 1, define Hr ⊂ H−2 to be the space
of functions which are holomorphic for |z| > r and continuous for |z| ≥ r. If
f ∈ Hr, it should be noted that fσ ∈ H(U1/r).

Proposition 2 If f ∈ Hr, Ψn
f extends to a smooth function Ψn

f : P1/r
n → R.

Proof: If q ∈ P1
n, the properties of the orthogonal projection show that

Ψn
f (q) =

∥∥∥f − Lnf (q)

q

∥∥∥2 =< f, f > − < f,
Lnf (q)

q
> . (8)

From lemma 1 and proposition 1, we first obtain a smooth extension of Lnf

to a map P1/r
n → Pn−1 by setting

L̃nf (q) =
1

2iπ

∫
Tα

q̃fσ(ξ)

q(ξ)

[
q(ξ)− q(z)
ξ − z

]
dξ

where α < 1/r is an upper bound for the moduli of the roots of q. Having
this at our disposal, it is now sufficient to extend smoothly < f, zk/q > to

P1/r
n . This is achieved by putting

< f,
zk

q
>=

1

2iπ

∫
Tα
fσ(ξ)

zk

q(ξ)
dξ, Q.E.D.

The next lemma shows a recursive property of Ψn
f , which will enable us

proceed inductively in a forthcoming proof.

Lemma 2 Let f ∈ Hr and q ∈ P1/r
n . Suppose q = q1q2 where q2 is monic

of degree k, and has all its roots of modulus 1. Then Ψn
f (q) = Ψn−k

f (q1).

Proof: From (8), it is sufficient to prove that

Lnf (q) = q2L
n−k
f (q1). (9)

But, since inverse and conjugate agree on T , we have q̃2 = ±q2 and (9)
follows immediately from (5). Q.E.D.

In order to study the behaviour of the derivative of Ψn
f on the boundary

∂∆n of ∆n, we shall need the following lemma:
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Lemma 3 Let f ∈ Hr and q ∈ P1/r
n be such that q = q1q2, where q2 is

irreducible over R. Denote by v the quotient of the division of fσ q̃1 by q1.
If q2 = z − a, then

Ψn
f (q) = (a2 − 1)v2(a) + Ψn−1

f (q1).

If q2 = (z − ξ1)(z − ξ̄1), then

Ψn
f (q) =

−v2(ξ1)(1− ξ21)(1− ξ1ξ̄1)2 − v2(ξ̄1)(1− ξ1ξ̄1)2(1− ξ̄21)

(ξ1 − ξ̄1)2

+
2v(ξ1)v(ξ̄1)(1− ξ21)(1− ξ̄21)(1− ξ1ξ̄1)

(ξ1 − ξ̄1)2
+ Ψn−2

f (q1).

Proof: The proof consists of a straightforward computation using (5), and
is left to the reader.

Corollary 2 With the same notations as in lemma 3, we have

∂

∂a
Ψn
f ((z − a)q1)|a=1 = 2v2(1),

∂

∂a
Ψn
f ((z + a)q1)|a=1 = 2v2(−1),

and if z2−2αz+1 = (z−ξ1)(z−ξ̄1),
∂

∂β
Ψn
f ((z2−2αz+β)q1)|β=1 = 2|v(ξ1)|2.

4 The topology of ∆n.

Remind that the set ∆n consists of monic polynomials of Pn whose roots
are of modulus at most 1. As usual, we identify such a polynomial

q = zn + zn−1qn−1 + ...+ q0 =
n∏
i=1

(z − ξi)

with the point (qn−1, · · · , q1, q0) of Rn. We denote by ‖q‖e the euclidean
norm of this vector and by M(q) the sup of the |ξi|’s. Finally, if t ∈ R, we
define a new monic polynomial q ∗ t of Pn by putting

q ∗ t = zn + tqn−1z
n−1 + ...+ tnq0 =

n∏
i=1

(z − tξi).

It is plain that ∆0 reduces to the point 0, and ∆1 is the segment [−1, 1].
It is also easy to show that ∆2 is the triangle with vertices (-2,1),(2,1) and
(0,-1). In all three cases, we see that ∆n is homeomorphic to a ball. In fact,
this result holds for any n.
We denote by Bn (resp. B̄n) the open (resp. closed) unit ball of Rn, and
by Sn−1 the unit sphere.
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Proposition 3 There exist an homeomorphism ϕ : Rn → Rn which maps
Bn onto P1

n, Sn−1 onto ∂∆n, and thus B̄n onto ∆n.

Proof: Consider the continuous function ϕ : Rn − {0} → Rn − {0}, which
maps the poynomial q to

ϕ(q) = q ∗ λ with λ =
‖q‖2e
M(q)

.

Now define µq : R+ → R+ by putting

µq(t) = ‖q ∗ t‖2e =
n∑
i=1

t2iq2n−i

As this map is strictly increasing, it is an homeomorphism, and one can
easily prove that

q = ϕ(q) ∗ ν with ν = µ−1ϕ(q) (M(ϕ(q)))

which ensures that ϕ is one-to-one.
We shall now show that putting ϕ(0) = 0 (we remind the reader that

0 is to be identified with the polynomial zn) defines a continuous bijection
ϕ : Rn → Rn. To this effect, it is sufficient to prove that

‖q‖2e/M(q)→ 0 when q → 0. (10)

Let ξ1 be a root of maximum modulus of q. Since the coefficients are sym-
metric functions of the roots,

∀i ∈ {1, ...n}, |qn−i| ≤ |ξ1|i
(
n

i

)

and since ([8], chap.11) |ξ1| ≤ 1 +
∑n−1
j=0 |qj | ≤ 1 + n

1
2 ‖q‖e, we have

∀i ∈ {1, ...n}, |qn−i|
|ξ1|

≤ (1 + n
1
2 ‖q‖e)i−1

(
n

i

)

which proves that ‖q‖e/M(q) remains bounded when q → 0, thereby imply-
ing (10). By invariance of the domain ([9], th.36.5), ϕ is now an homeomor-
phism. Q.E.D.

Though ∆n is a topological manifold with boundary by proposition 3, it
is however not smooth, i.e. its boundary ∂∆n has corners. The smooth part
of ∂∆n, which will play an important role in the sequel, consists of those
polynomials having exactly one irreducible factor over R whose roots are of
modulus 1. It will be denoted by F 1

n .

9



5 The index theorem.

Since ∂∆n is topologically a sphere, any continuous map u : ∂∆n →
Rn − {0} induces a continuous map

u

‖u‖e
: ∂∆n → Sn−1

and we can consider its Brouwer degree [9], [6].
Now, if f ∈ Hr has no critical point on ∂∆n, we define the index of f as

the Brouwer degree of ∇nf/‖∇nf‖e, where ∇nf is the gradient vector of Ψn
f .

So far, it is not clear that the index exists for a good deal of functions f . If
we topologize Hr with the sup norm, it can be proved by a transversality
argument [3] that it is defined on an open dense subset of Hr.

If, moreover, the critical points of Ψn
f which lie in P1

n are non degenerate
(as before, this is the case for an open dense set of Hr [3]), it is a classical
result that the index of f is also equal to the sum∑

xi

(−1)εi (11)

where xi ranges over the (necessarily finite) set of critical points as above
and εi denote the Morse index of xi (i.e. the number of negative eigenvalues
of the Hessian matrix of Ψn

f ) of xi [4]. In particular, a critical point which
is a minimum contributes by 1 to the sum.
This last property shows the relevance of the index to our study.
Now we shall establish the index theorem, which constitutes the main result
of this paper.

Theorem 1 Whenever it is defined, the index is equal to 1.

Proof: Choose f ∈ Hr for which the index is defined. We first prove that the
index does not depend on the function f . In order to do so, choose m ≥ n,
and define a vector field Wn

m by

Wn
m =

m∑
j=1

∇nz−j

We shall prove by double induction on n and the number ν of irreducible
factors of q whose roots are of modulus 1, that there is no q ∈ ∂∆n such
that

∇nf (q) = µWn
m(q) with µ < 0. (12)

It is easily seen that this condition is sufficient for ∇nf and Wn
m to be ho-

motopic, and thus for the degrees of ∇nf/‖∇nf‖ and Wn
m/‖Wn

m‖ to be equal,
which will prove our contention.
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Consider the smooth maps

φ1 : R× P1
n−1 → Pn given by φ1(a, q1) = (z − a)q1,

φ2 : R× P1
n−1 → Pn given by φ2(a, q1) = (z + a)q1.

φ3 : R×]− 1, 1[×P1
n−2 → Pn given by φ3(β, α, q1) = (z2 − 2αz + β)q1.

Then for q ∈ F 1
n , we define V n(q) as follows:

-If q = (z − 1)q1, V n(q) =
∂φ1
∂a

(1, q1)

-If q = (z + 1)q1, V n(q) =
∂φ2
∂a

(1, q1)

-If q = (z2 − 2αz + 1)q1, V n(q) =
∂φ3
∂β

(1, α, q1)

Lemma 4 If “.” denotes the scalar product in Rn, for any f ∈ Hr, and
q ∈ F 1

n ,
∇nf (q).V n(q) ≥ 0 and Wn

m(q).V n(q) > 0

Proof: The first inequality follows easily from the corollary to lemma 3.
Moreover, if q = q1q2 where q2 is irreducible over R and has all its roots of
modulus 1, the equality holds if and only if Qq1(q̃1f

σ) does not vanish on
the roots of q2. Now, to see the second inequality is true, and since

Wn
m(q).V n(q) =

m∑
j=1

∇nz−j (q).V
n(q),

it suffices to prove that one term at least in the sum is strictly positive. But,
if l is the multiplicity of the root 0 in q1, Qq1(zlq̃1) is a nonzero constant.
Q.E.D.

Now, we come back to the proof of the theorem and assume (12) is true
for some q ∈ ∂∆n.

If ν = 1, q ∈ F 1
n , and we see that the two inequalities of lemma 4 cannot

be simultaneously satisfied. This also completes the case n = 1.
If ν > 1, we put q = q1q2 where q2 is irreducible over R of degree k and

has all its roots of modulus 1.
Consider the linear map θ : P1/r

n−k → P
1/r
n defined by θ(s) = q2s. By lemma

2
Ψn
f ◦ θ = Ψn−k

f .

Differentiating and identifying θ with its matrix in the canonical bases of
Rn−k and Rn yields

∇nf (q).θ = ∇n−kf (q1).

Since this last equality holds for all f ∈ Hr, we have Wn
m(q).θ = Wn−k

m (q1),
and (12) would imply

∇n−kf (q1) = µWn−k
m (q1).
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But q1 has one less irreducible factor whose roots are of modulus 1 than q,
which leads by induction to a contradiction and achieves the proof of the
invariance of the index.

To end with, we must compute the index for some funtion f ∈ Hr.
Though this has been impossible so far for any precise function, we have

Lemma 5 For every f in an open dense subset of Σ−n , the index is well
defined and is equal to 1.

Proof: The well definedness of the index is established in [3].
As to its value, suppose r0/q0 is a rational fraction in Σ−n for which the
index is well defined. We shall prove that Ψr0/q0 has one and only one
critical point, namely r0/q0, which is obviously a minimum and is easily
checked to be non degenerate.
Let q = q1d be a critical point of Ψr0/q0 in P1

n, where d is the g.c.d. of q and
Lnr0/qo(q). Thus (7) is true and implies

p0
q0

q1
q̃1q̃

= h+ + z−nh−

where h+ ∈ H+
2 and h− ∈ H−2 . Upon multiplying by qo, we see that q0z

−nh−

is at the same time in H−2 and in H+
2 , and thus h− is 0. As a consequence,

we have
p0
q0

q1
q̃1q̃
∈ H+

2

which is possible if and only if q1 = q0. Q.E.D.
This achieves the proof of the theorem. Consequently, we see that if the

critical points of Ψn
f which lie in P1

n are, in addition, non degenerate, the
sum in (11) is equal to 1, and the number of critical points is thereby odd.
This can be proved to hold generically in Hr [3].

6 Concluding remarks.

The extension of the index theorem to the multi-input multi-output case
needs an ad hoc definition for Ψn

f , and is currently under consideration.
The index introduced in this paper is the first invariant of the problem we
know of. Using lemma 2 and the stratified structure of ∆n, one can derive
a numerical continuation method to find recursively a local optimum of the
criterion, but we shall not discuss this here.

Bibliographie.

[1] BARATCHART L. Existence and generic properties of L2 approximants
for linear systems, IMA J. Math. Cont. & Information, vol. 3, pp. 89-101,
1986.

12



[2] BARATCHART L. Recent and new results in rational L2 approximation,
to appear in N.A.T.O. A.S.I. series.

[3] BARATCHART L. Sur l’Approximation Rationnelle L2 pour les Systèmes
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