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Abstract: the aim of this work is to generalize to the weighted case some results and algorithms
concerning L? approximation by analytic and rational functions which are useful to perform the
identification of unknown transfer functions of a class of stable (linear causal time-invariant) sys-
tems from incomplete frequency data.
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1 Introduction

The approximation issues approached in this paper are mainly motivated by a frequency domain
identification problem related to a class of linear time-invariant causal single-input/single-output
systems in discrete time that possess the stability property of having finite weighted input—output
12 — 1 (or equivalently 1> — [*) gain, for a rather general class of weights.

Assume that we are given some of the (possibly noisy) pointwise values of the transfer function of
such a system, measured at frequencies belonging to a subset of the unit circle T that corresponds
to its bandwidth. Such measurements may be obtained using harmonic identification procedures.
Some rough information concerning the behavior of the system outside the bandwidth may be
available. In order to identify the unknown system, we want to find a rational stable function of
bounded Mac-Millan degree accounting well enough for these data.

Although the experimental data are discrete values, the stability constraint on the model we are
looking for cannot be guaranteed by a discrete least—square criterion as the degree increases, while
this is not even a convenient framework to approach convergence and robustness issues.

As in the worst case identification algorithms [GK, HKN, Par|, we perform a preliminary inter-
polation step which consists in getting a robust non—causal interpolant accounting for the given
experimental data. Our identification problem can then be approached by two consecutive stages
consisting in solving:

e 3 bounded extremal problem which furnishes the transfer function of an infinite dimensional
stable causal model for the system (analytic approximation step),

e 3 rational approximation problem that provides a transfer function of bounded Mac—Millan
degree (model order reduction step).

Both steps are handled here by minimizing a weighted integral quadratic criterion on a Hardy space
consisting of transfer functions that possess the above described stability property, or among its
rational functions of bounded degree.
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The case of white noise inputs corresponds to the unweighted issues where the cost is the classical
L? criterion for the Lebesgue measure on T. In this situation, the two approximation problems have
already been studied and resolution algorithms provided in [ABL, BL] and [BCO, BOW].
Our aim here is to generalize these results to more general inputs or criterion, namely when the
cost is induced by the norm i

=57 | 17 Pduco),
for a finite positive measure p on T, the quantity du/dA being the spectral density of the noisy
input [R] in the classical stochastic framework; this type of weighted L? approximation problems
comes up when minimizing the variance of the output error between the searched model and the
“true system”. In the literature, such a weighting is also present in criteria induced by either
quadratic, uniform, or operator norm, or else in model reduction via frequency balanced realizations
for various applications |[E, LA]. It arises in different forms of the standard problem of robust control
[BGR, F]. For example, when one pursues an identification procedure with the purpose of designing
a controller, then the weight represents the control performance specifications [E, Ge]. Moreover,
such a criterion is commonly used to weight some frequencies more than the others in order to get
through the frequency dependence of the model reduction error or to represent the confidence one
has in the available measurements for either identification, filtering or control issues (it is interesting
to give some importance to the bandwidth on which we initially got the data).
In section 2, we state our approximation problems and characterize the considered weights. Then,
in sections 3 and 4, the weighted analytic and rational approximation problems are studied and
resolution algorithms are given.

2 Statement of the problems

Since impulse responses are real-valued signals, the associated transfer functions possess the conjugate—
symmetry property f(Z) = f(z). For this reason we consider here real Banach spaces of conjugate-
symmetric functions.

Let 1 be any positive finite measure on the unit circle T satisfying u(I') = u(T) for any T C T
and let L?(u) be the real Hilbert space of functions on T that are square-summable w.r.t. p and
satisfy the conjugate-symmetry property (such functions possess real Fourier coefficients); L%(u) is
endowed with the inner product defined by:

<foooum g [ R gl ) o), 0

and with the associated norm || ||,.

Define the real weighted Hardy spaces H?(u) and HZ(u) as the L%(u) closures of the families
{z* k> 0} and {1/2*, k > 0}, respectively. We may identify these functions with their traces on
T. Proofs or details about the considerations of this section can be found in [CS2, Ga, H]. The two
spaces H?(u) and H3(u) are isometric under the map defined on L?(u) by:

f(1/z <
o) - T ). )
Whenever ;1 = ), the Lebesgue measure, we write for the sake of simplicity: L?()\) = L*(T), together
with <, >y=<, > and || |[x = || ||, for its inner product and associated norm. Then, H?()\) = H?

is the classical real Hardy space of the unit disk D; it coincides with the closed subspace of L%(T) of



functions whose Fourier coefficients of negative index are zero. The orthogonal complement of H?
in L?(T) w.r.t. \is the space HZ(\) = H? of stable transfer functions consisting in L?(T) functions
which possess Fourier coefficients of non—negative index equal to zero (or, equivalently, in functions
analytic outside the closed unit disk, vanishing at infinity, and bounded in L?> norm on circles of
radius r > 1). Let L*°(T) be the real Banach space of essentially bounded conjugate-symmetric
functions and H*® = H% N L>®(T) [Ga, 11.4].

Concerning weighted Hardy spaces, it first follows from a result due to Szegd [H, ch.4] that u is
absolutely continuous w.r.t. A and such that H?(u) # L*(p) if and only if

du(0) = v(e”)| do 3)

for some outer H? function v; see [CS1, CS2], where Hardy spaces are studied for such Szegd weights.
We in fact settle here to the stronger case where:

LX(T) = L*(n), (4)

which is equivalent to Hf = HZ(n) or H? = H?(u) and provides the simplest assumption for our
weighted approximation problems to be well-posed. It turns out [LO, thm.1] that (4) is satisfied if
and only if (3) holds for some v € H* invertible in H>.

(H) In the remainder of this paper, we make the standing assumption that p satisfies (3) for a
function v belonging to H* and invertible in H.

In this case,
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and, for any symmetric subset T of T (i.e. such that ' = T'), if xr denotes its characteristic function,
then L(T) can be endowed with the L%(u) norm: ||f||r. = |Ixr fll.-

We now precisely state in this framework! the two approximation problems linked with the two
stages of our identification scheme. Assume that the bandwidth on which measurements have been
performed is a symmetric subset K of T (if K is not already symmetric, consider K U K and con-
jugate data on K). Recall that a preliminary interpolation procedure might have been performed,
which is supposed to furnish two functions ¢ € L?*(K) and h € L?(J) reflecting both available
measurements on K and further information outside K (if nothing is known there, take h = 0).
Trigonometric polynomials (Jackson, de La Vallée Poussin) provide robust interpolants for point-
wise data [MPG, T]. Using the (stable-unstable) transformation (2), the first step of our procedure
can be approached in H? where it amounts to solve:

(Py) Given p € L*(K), h € L*(J), and M > 0, find a function go € H? which minimizes le—9gllxu
among the functions g € H? which satisfy the constraint ||h — g||;, < M.

Now, the second step of our identification procedure applies to gy but we set it up as an approxi-
mation issue for an arbitrary H{ function:

'Hardy spaces of the unit disk are appropriate to describe a discrete time system behavior but continuous time
systems can also be handled that way using a M&bius transform.



(Py) Given f € H} and an integer n > 0, find a rational function ro which minimizes

1f =7l (6)

where r ranges over the rational functions in ﬂg of Mac—Millan degree at most n.

3 Weighted analytic approximation

In this section, we explain how to get a solution to problem (P;). For p = A, it has been solved when
h =0 [ABL] and when ¢ = 0 [KN]. Since then, it has been approached in the general H? setting,
1 <p < oo [BL] and in H* [BLP]|. Existence and a characterization of a solution to problem (P;)
for measures p satisfying (H) can be deduced from these results. Let h € L(J), M > 0, and define

Ci(n)=1{9,, 9€H*, ||h—glsu <M},

where gi « denotes the restriction of g to K. Denote by Py the A-orthogonal projection from L*(T)
onto H* and let T be the Toeplitz operator with symbol Y s:

T(g9) = Py2(xs9) , Vg € H”.

Theorem 1 Let K be a symmetric subset of T such that both K and its complementary subset J
are of positive | measure, where j satisfies (H). Then, there erists a unique solution gy € H? to
problem (Py). Moreover, |h — gol|;u = M whenever o & Ct(u) and go is given in this case by the
implicit equation:

go=v (A+IT)™ Pz (v(xx o+ (+1)xs b)), (7)

where | € (—1,400) is the unique number such that ||h — gol|j . = M.

Theorem 1 follows from [BL, thm.2,4] upon multiplication by the H* functions v or v~ *. Without
a norm constraint on go outside K, problem (P;) becomes ill-posed unless ¢ is already the trace on
K of an H? function; in this case, (P;) can be interpreted when M — oo as a recovery issue of the
H? function ¢ from its values on K, [BL, prop.3|, [BLP, prop.1].

In order to compute gg, we have to get through the implicit character in M of equation (7). To this
end, if ¢ ¢ H|2K, it can be shown as in |BL, prop.4| that M is a smoothly decreasing function of
the Lagrange parameter [ from (—1,00) onto (0,00). Hence, M being given, go can be numerically
computed using a dichotomy procedure on I. Furthermore, as [ — —1, the error e, = ||¢ — gol|kx
goes to zero while M — oo. Another characterization of go by a Carleman formula [A, Pat| can
also be obtained from [BL, cor.1].

4 Weighted rational approximation

4.1 A criterion depending on the denominators of the approximants.

We first establish a normality result which generalizes [BOW, prop.2.1]. Observe that a rational
function p/q belongs to H} if and only if p/q is stable (¢ has its roots inside the unit disk D) and
strictly proper (vanishes at infinity). The Mac-Millan degree of such a rational function is thus the
degree of ¢.

Proposition 1 If f € HZ is not a rational function of degree less than n, then the argument of any
local minimum of (6) is an irreducible fraction whose degree is equal to n.
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Proof: assume that pg/qo is a local minimum of (6) for which py and ¢g are coprime polynomials
and deg go < n. For a small enough and b such that |b] < 1, we have that
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or equivalently,

1 1
2 ; —2a<f—@, b> >0.
27l o 2=0/,
This holds if and only if < f —£2, L. >,=0, and since the family {1/(z —b), [b| < 1} is dense in
H?(u), we must have f = pg/qo. This contradicts the assumption on f. O

We assume in the following that f is not rational of degree less than n. Since by proposition 1, a
solution p/q to problem (P,) over the set of HZ rational functions of Mac-Millan has exact degree
n, we shall therefore assume q to be monic.

The next step is to eliminate the numerator p. Any local minimum p/q of (6) must be the orthogonal
projection of f onto Vg, the n—dimensional linear space of strictly proper rational functions whose
denominator is ¢, with respect to p. Thus p can be computed by solving a linear system and
becomes a function of ¢ denoted by L%(q, f). Finally, problem (P) can be solved by minimizing
the function (., f) defined on the set A, of real polynomials of degree n whose roots belong to I

by: .
W f) = IIf - @ni. (®)

Here L% (q, f)/q is the orthogonal projection of f onto V, = {z*/q, i =0,...,n—1} in L?*(x). When
it is clear from the context, the dependence on f will be omitted in 4 and L. In the case of the
Lebesgue measure, L(q) can be easily computed as the remainder of some division in H? [BOW].

Although the general situation is more complicated, we propose below an integral representation
formula for L (q).

Define the reciprocal polynomial P of a real polynomial P of formal degree k by P(z) = zF P(1/2).
Note that P has exact degree k if and only if P(0) # 0 and that P and P always have the same
roots on T.
Let {®%};>0 denote the system of orthonormal polynomials on T for the measure dy/ lq|? (see [S,
XI] and also [BCS]). The orthogonal polynomial ®?% has precisely degree j and its roots lie in I [S,
thm.11.4.1].

Proposition 2 The polynomial L}, (q) is given by

L) = 5 [ LTI = BENE, g g, o)

Proof: by choosing {@Z-/q}, j=0,---,n—1, as a basis of V,, we get that

n—1 (I) % n—1
TH@)(2) = 3 < £, 2L >, BI(z) = - Lo swomiemor .
§=0 §=0

q
q C %m



in view of (5). Using the Christoffel-Darboux formula [S, XI] for the Szegd kernel:

n—1 = =
OL (&) DL(z) — DL(E) P
; J J 1-¢2
7=0
we obtain (9). O
We shall restrict ourselves to the case where v = 1/w, for a monic polynomial w of degree d whose

roots lie inside the unit disk I and which does not vanish at zero. This class of weights is rich
enough to give some freedom in the choice of the desired shape while the technical complexity of
the computations remains limited. As we shall see, for a weight of this form, the numerator (9)

is given by a formula involving the d orthogonal polynomials ®, ..., (ID;JZ 4+d—1, Which can be easily

computed from @ +4 = qw using a descending recurrence. This is of particular interest when d is
not too large.

For such a weight, we have

zd
lv(2)|* = z€T, (11)

w(z)w(z)’
and the integral representation (9) can be rewritten as:
1 [ fuw )5% ()®4 (2) — F ()P (2)

i) = 5 [ o

a¢, (12)

where

f'w = i, (13)

w
so that f,(2) = f(z)2%/w(z) is analytic in ID. It is easily seen from (10) that, for d > 1,
n+d—1 1 fw

LHa, )+ D < f,8Y)q>, 3(2) = -~ _(g)aﬁ(ﬁ)iﬁf(@ — qu(§)qu(2)

2 Jr qw 1-¢&z

ag,

j=n

where the right hand-side is precisely the numerator L) 1alqw, fu) of degree n +d —1 associated to
the denominator qw in the unweighted approximation of f,, at degree n + d, so that Li‘b ralqw, fu)

can be interpreted as the remainder in the division of f,gw by qw as in [BCO]. We then relate the
weighted scheme to the unweighted one by:

Lh(g,f) = L)palaw, fu) = Y0200 < fu, ®1/qw > &7,
(e, f) = ¥)ialaw, fu) + 0501 < fu, ®1/qw >2 .
Following [BCO], we prove in the next sections that the function ¢/, defined by (8) does extend

smoothly to an open neighborhood of A, ; this will enable us to describe an algorithm to find local
minima of ¥4} (q, f) using a gradient algorithm and proceeding inductively on the degree.

4.2 Extension of the criterion.

Whenever v satisfies (11), the system {<I>;1-} can be computed by [S]:

®l(z) = 27 " (2)uw(z), j2n+d, (14)
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together with the induction formulas:

0)®I(z) = 1,009, ,(2) — @1, (0)8%,,(2), 0<j<n+d,
(15)
240 = @7.,(0)* — ®,,(0)* =34, ®L(0)?

Proposition 3 There exists a neighborhood V of A, such that, for ¢ € V and j > n, formulas (14)
and (15) define polynomials <I>;1- of degree j and the map q — @g is smooth. Moreover, if ¢ = uq'
where uw is monic of degree m and has all its roots of modulus 1 while ¢' belongs to A, _.,, then
3L =ud?! | .

Proof: first, for j > n + d, formula (14) defines polynomials <I>;1- of degree j that are clearly smooth
functions of ¢ on any open neighborhood of A,,. Now, given any ¢, formula (15) allows to smoothly
deduce ®¢ from ®%,, as long as

1,1(0)" - @4,,(0)* £ 0. (16)

Let us prove by induction that (16) is satisfied for n < j < n+d —1 and ¢ in some neighborhood of
A,. Assume first that ¢ belongs to A,, so that ®%. .. being the limit of orthonormal polynomials

1 T
whose roots lie inside D), has all its roots in D. In this case, @7, ,(0)/@%,,(0) being the product
of the roots of @?H has modulus at most 1, and thus, unless each root of <I>;1-+1 belong to T, (16)

is true. Now, it is easily proved from the recurrence formulas that, when defined, the polynomials
(I>q+1 and <I>;1- have same roots on T. From (14), these roots are precisely the roots of ¢ on T. So,
Qi has at most n roots on the circle and (16) is true for j > n. By continuity it is still valid in a
neighborhood of A,,.

To get the second assertion, observe that formula (14) implies that &7 a = u@ZL’ d—m- Moreover,
using that u(0)? = %(0)2 = 1 and u(z) = u(0)au(z), it can be proved by induction from (15) that
@gzz@glm for j > n > m. =

Proposition 4 Whenever f and v are analytic in a disk D = {z,|z| <r} for somer > 1, the
map P smoothly extends to a neighborhood V of A,,.

Proof: from (13), the function f,, is analytic in the disk D,. In the integral representation (12) the
unit circle T can be deformed into any contour I' contained in D, that encompasses the roots of g.
Choosing the neighborhood V of A,, in proposition 3 in order for ¢ to have all its roots in D, allows
this integral on I' to remain defined for ¢ € ¥V and yields a smooth extension of L.

Furthermore, if ¢ € A,,, properties of the orthogonal projection show that

Li(q) L1 (q)
q q

Ynle) = IIf - i = G- <4, >y (17)

so that it is sufficient to smoothly extend the map ¢ —< f, 27 /q > u for every j, and this is done by
putting
&

. 1 3
<f,iZ)e>, = ﬁ/rfw('f)mdf-

a

Let us denote by V,,(q) the gradient vector of ¢}, at the point ¢. The following lemma can be proved
as in [BOW], using propositions 3 and 4.



Lemma 1 Let ¢ € A, and suppose that ¢ = uq' where u is monic of degree m and has all its Toots
of modulus 1 while ¢' belongs to Ay,_p,. Then Ly(q) =uLt_ (¢') and ¥5(q) = ¢h_, (¢').

Moreover, if q belongs to some smooth part of 0A,, ¢ € A,_1 is a critical point of ¥t |, then
V.(q) is orthogonal to 0A,, and points outwards.

4.3 An algorithm to find a local minimum.

We shall assume in this section that, for £k = 1...n, Vi does not vanish on dA; and that all the
critical points of ¢} on Ay, are non degenerate?. Whenever these assumptions are satisfied, Yk has a
finite number of critical points in Ay and an algorithm can be described following the same scheme
than in [BCO].

The function 4 is smooth and its local minima belong to A, by proposition 1, which is open
and bounded in R" (a polynomial ¢(z) = 2"+ gn_12""! + ...+ qo of A, is represented by its
coefficients (¢, _1,qn_2,---,qo)). Therefore, local minima are critical points of 14, and can be found
by a gradient algorithm. We integrate the vector field —V, from an initial point. If we meet the
boundary of A,, then, by lemma 1, we are led to solve a problem of lower order. Conversely, still by
lemma 1, a local minimum of ¢}, k < n, provides a suitable initial point to integrate —V1. The
procedure can thus continue through different orders (strictly positive, since ¢} = || f||f; > 9k on
A,) whereas the value of the criterion (which is 9} while integrating —Vj) decreases. Thus, a lo-
cal minimum cannot be met twice; since local minima are finite in number, the procedure converges.

Remark: in the unweighted case, the approximation problem in H? reduces to the approximation
problem in HZ. This is an obvious consequence of the L?(T)-orthogonality between the space of
constant valued functions and ﬂg. This is no more true for the weighted approximation problem in
H?; however, it may be solved as (P,), using orthogonal polynomials from degree n + 1 instead of
degree n.

In the particular case of weights of degree one, Mobius transforms play an important role. Indeed,
let v(z) =1/(1 —wp z), wo € (—=1,1). By an easy computation, we obtain:

1
<fag >u:172<fo¢woago¢wo >,
- wj

where ¢,,, is the Mobius transform of the unit disk defined by:

_ z+wo
N 1—I—w0z'

Puwo(2)

The map f — f o ¢u,/+/1T — wp is an isometry from H?(u) onto H? (and also from H?2(y) onto H?)
which preserves the Mac-Millan degree of a rational function. It thus allows to handle a version of
(Py) stated in H? by solving analogous unweighted problems.

As an illustration, we numerically solve problem (P,) with n = 1 for the function

() = z —I—20.5’

z

2For the Lebesgue measure, these two properties hold in an open dense subset of the space of HZ functions that
are analytic outside a disk D, for » < 1 [B]. Although this has not been established yet in the weighted case, it seems
reasonable that this “genericity” result still holds.



and different weights of degree one, given by (11) for some w(z) = z — wy, |wg| < 1. Figures 1 and
2, show the Nyquist diagrams of f together with its the best rational approximants of degree one
for wy = 0 (unweighted approximation), wy = 0.5, and wg = 0.9.

Figure 1: wy=0; a=0.366; wp=0.5; a=0.3194

2
Figure 2: wy=0.9; a=0.289; ‘ for wg = 0, 0.5, 0.75, and 0.8

e —wyg

Such weights act more or less on low frequencies. This suggests to use them in order to approach the
rational approximation problem when one is mainly concerned with the quality of the approximation
around 0 or 7 (where the same phenomenon would occur for wg < 0). The use of a higher degree
w would allow to build more refined shapes for the weight and to insist on arbitrary symmetric
frequencies by choosing complex conjugate roots.

5 Conclusion

For the family of measures satisfying hypothsesis (H ), the solution of the weighted bounded extremal
problem (P;) can be deduced from the solution of the unweighted one by an explicit change of



variable. Note that (P;) could be approached for more general measures on T, namely the ones
induced by Szegd weights for which the Adamjan—Arov—Krein theory has already been extended
[CS1, CS2]. Concerning the weighted rational approximation issue (P), orthogonal polynomials
on T for du/|q|> are used to express the best numerator in the criterion (8) and to establish its
smoothness property if (11) holds. The natural idea to appeal to a basis of orthogonal polynomials
on T has been used in [BCS]. In this note, an unweighted rational approximation problem is studied,
which can be expressed as (P,) for 4 = A with the additional and difficult constraint that the degree
of the numerator should be less or equal to some fixed m < n — 1. This constraint prevents from
smoothly extending the criterion. This relies on the fact that, if ¢ has more than m roots on T,
then &%, does not extend smoothly to A,. Generalizations of our present work and of results in
[BCS| to analogous (m,n) weighted rational approximation problems remain under study.

It would also be interesting to answer further theoretical questions such as the consistency problem:
if f is already rational of degree n, is it the single critical point of the problem? Once again, the
answer does not come straightfully as in the unweighted scalar case (for which consistency holds)
and depends on the measure u. It appears that consistency may fail when y is given by (3) and (11)
for a polynomial w of degree larger than 2. This is a relevant question when studying identification
schemes, which is classically handled in a stochastic framework, see [L]. For arbitrary f in P_Ig, the
criterion v, generally has several local minima and despite our algorithm will converge to one of
these, we cannot get sure to find them all. This is an additional motivation for introducing a weight
in the rational approximation problem (P2) since it allows to consider the following uniqueness issue:

given f in HZ, is it possible to find a measure y which ensures uniqueness of the critical points of
Ho
o
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