A New Parametrization of Rational Inner Functions of Fixed
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Abstract. We present a new parametrization of inner functions based on the Schur algorithm.
We make use of state space formulas (in practice we obtain a new parametrization of observable
pairs). The main advantage of our parametrization is that for each chart the observability
gramian is constant: this leads to a very good behavior in some approximation problems.
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1 Introduction

In recent years quite a lot of attention has been devoted to the problem of parametrizing efficiently
p X p matrix valued inner functions of a given degree n. The problem has a relatively long history:
in fact it is intrinsically related to the problem of parametrizing linear systems of degree n whose
first solution was provided by Hazewinkel and Kalman [HK]. Nevertheless, the atlas presented
in this work (nice selection) is not very practical from a computational point of view, since the
derivatives, the domain of the charts and the change of charts are quite difficult to compute
and not very well behaved numerically. More recently, the research of better representations has
been fostered by the use of matrix inner functions in approximation problems in L2 norm (see
[BOJ) and in some new orthonormal basis used in signal processing (see, e.g., [HBV]). Among
the papers on the subject we would like to recall the work of Ober (see [O]), who in a seminal
paper on balanced realizations derives a canonical form for inner functions: this form, although
it has a nice behavior in many respects (in particular it has good numerical properties), is not
an atlas. More recently Hanzon and Ober ([HO1] and [HO2]) have obtained a canonical form
based on balanced realizations which is an atlas. Still, Kronecker indexes are needed, and the
realization has a rather complicated form. Fuhrmann and Helmke (see [FH|) have provided
another parametrization by means of geometric control tools. Also in [ABG]| an atlas is provided
and it has been successfully used for actual computations in some model reduction problems (see
|[FOJ). Nevertheless, also here, although the domain of the chart is described very simply, the
actual computations of derivatives are quite involved.
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The atlas we present here has a very nice behavior with respect to differentiation and change of
charts. Also the problem of the domain of the charts, although not as simple as in [ABG], can
be handled relatively easily.

The main idea is to use an implicit version of the Schur algorithm to parametrize our functions.
It will be seen that the Schur algorithm yields in a rather canonical way a realization which
has a diagonal observability gramian. The Schur algorithm is generally used to solve a recur-

sive interpolation problem: in particular, n interpolation points wq,...,w, together with some
interpolating conditions are given; the algorithm consists in constructing recursively a sequence
of functions Q) for i = 1,...,n which satisfy (among other conditions):

u; QW (wi) = v (1)
where (u;,v;) for i = 1,...,n are suitably given (this process will be described in detail in
section 4). The coordinates in the chart are then the vectors v;, ¢ = 1,...,n. In practice, with

this choice of charts the observability gramian will change together with the v;. This leads to an
unsatisfactory behavior when we differentiate.

To avoid this problem, we do assume that for each chart the observability gramian is constant
and then show that there exist, under the proper assumptions, unique points {w;;i = 1,...,n}
such that (1) is satisfied for i = 1,...,n. It should be pointed out that we do not actually need to
compute the value of w; to construct our inner functions, so that all computations become quite
straightforward. The price to pay for this nice behavior is that we need, in theory, an infinite
number of charts as we approach the boundary of the manifold (see the example in section 6.2).
Nevertheless, this problem does not arise when we use this atlas for model reduction in L? norm:
under some extra assumptions that hold generically, the critical points of the L? criterion are
always in the interior of the manifold and finite in number (see [FO] for more details in the set-up
of the disk). They can therefore be reached with a finite number of changes of chart.

We would like to remark that we are actually parametrizing the inverses of inner functions (so the
Schur algorithm is turned around). This is because by using the standard Schur algorithm in our
context (i.e. for the parametrization of inner functions) it becomes natural, for the construction
of the charts, to consider also interpolation points in a vertical strip of the left-half plane; this
procedure clearly introduces a discontinuity along the imaginary axis. Although this approach
is feasible, it leads to unnecessary complications which can be avoided by the present choice of
parameters.

The paper is structured as follows: in section 2 we give some preliminaries and in section 3 we
present some background material about inner and J—inner functions. In section 4 a review
of the Schur algorithm is presented and realization formulas in terms of Schur parameters are
provided. In section 5 we give our new atlas. Section 6 is devoted to examples and section 7 to
an application to model reduction.



2 Preliminaries and notations

We shall denote by II" the open right half-plane and by H; the corresponding Hardy space of
vector or matrix valued functions (the proper dimension will be understood from the context).
The space Hs is naturally endowed with the scalar product,

1 o0
<FG>= T / F(iy)Gliy)* dy, @)

and we shall denote by || || the associated norm. Note that if M is a complex matrix, Tr stands
for its trace, M for its transposed and M* for its conjugate transposed.

The prefix R in front of the name of some set of vector or matrix functions will indicate that we
consider the real subspace of functions F' whose Fourier coefficients are real, or equivalently which
satisfy the relation F(5) = F(s). Such functions are relevant in most applications. However,
the natural framework for our study is the complex case which plainly includes the real case by
restriction. When necessary, the results will be stated for real transfer functions.

We say that a p x p rational matrix function @ analytic in IIT is inner if

Q(s)Q(s)" = I, s € iR,

where iR denotes the imaginary axis. As usual, the space of CP-valued functions, H(Q), is
defined by
H(Q) :=H2 © QHoa. 3)

We say (following Dym [D1]) that a Hilbert space H of CP-valued functions analytic in an open
domain 2 is a Reproducing Kernel Hilbert Space (RKHS) if there exists a CP*P-valued function
K(s,w) such that K(-,w){ € H for £ € CP and w € Q and, for any f in H, we have that
(f, K(-,w)é)g = & f(w). It is easily checked that K satisfies

T
D &K (si,5)€ 20, (4)
ij=1
for every choice of points s1,...,s, € Q and vectors &1,...,&. € (P, and that for a given space

the reproducing kernel is unique. An important result of Aronszajn (see e.g. [D1, th.2.1]) ensures
that, if K (s,w) is a function satisfying condition (4), then there exists a Hilbert space having K
as its reproducing kernel. This space is defined as

H =span{K(s,w);w € Q,6 € CP}
where the symbol span is the closure, of the span, in the induced inner product.
I

0
0 -1
matrix © is J, g-unitary if

Let Jp 4 := [ } for p, ¢ nonnegative integers. We say that a (p + ¢) X (p + ¢) rational

O(5)J,qO(s)" = gy sEIR (5)



A J, ;—unitary function is Jj, ;—inner if
O(8)Jp4O(8)* < Jp g, Res >0 a.e. (6)
For a J,, ;—inner function © we set H(©) to be the RKHS with kernel

Ipq — G(S)Jp,q@(w)*

s+w

K(s,w):= (7)

(it is easily verified that (4) holds [D1, ch.2]). Then, H(©) is a subspace of Hy (of CP-valued
functions) endowed with the J inner product [D1, th.2.8.]

<f’g>H(®) = <fa Jp,qQ)- (8)

Observe that in the case J, 4 = I,,, © is actually inner (see [D1, ch.1]) and the present definition
of the Hilbert space H(©) is consistent with the one given by (3).

3 State space formulas for the Schur linear fractional transfor-
mation.

We introduce here some material about J, 4-inner functions. The proofs can be found in [BGR|
and [D1]. If F(s) = C(sI, — A)"'B + D is a realization of some proper rational function F, we

shall write
(¢15)
F = .
C

Lemma 1 Let © be a (p+ q) X (p + q) rational function analytic at co, of McMillan degree n.

1. © is a J, 4 — unitary function if and only if for any minimal realization

-(42)

we have DJp (D* = Jp, and there exists a unique invertible solution P to the Lyapunov
equation

AP 4+ PA+C* ], C =0 (10)

for which
B=-Pc*J, D. (11)



2. The function © is J, q—inner if and only if P in (10) is positive definite. In this case, the
columns of

C(sI, —A)~! (12)
form a basis for the space H(©) and its reproducing kernel can be written as
K(s,w) =C(sI, — AP YL, — A*)"Lcx. (13)

Moreover, P is the Gram matriz associated to this basis with respect to the Jp4-inner
product (8).

These facts are well known and can be found in e.g. [BGR, th.6.1.1, th.6.2.2.] and [GVKDM].

Corollary 1 The C? -valued function Q s inner if and only if for any minimal realization

Q= A|B
=\ ,
we have DD* = D*D = I, and there exists a unique positive definite solution P to

A*P+ PA+C*C =0,
for which B= —P~'C*D.

Proof: it follows from Lemma 1 if we take Jp, , = I,. O

In this case, P is the observability Gramian associated to the realization.

I, 0

and ©(oo) = Iy, so that any J-inner
0 —I,

In the sequel, we will assume that J = (

‘[i ), where U and V

©11 O

0 = 14

( ©21 O (14)

be the block partition of © with each block of size p x p; let S be a (p x p)-rational inner function.
We define the linear fractional transformation Tg(S) as

To(S) = (0115 + ©13) (0215 + O2) . (15)

matrix is uniquely determined by the pair A,C. Now, let us write C = (

have dimension p X n and let

Then Tg(S) is still inner and we have

6(Te(S)) = 6(©) + 6(5),
where ¢ denotes the McMillan degree. Also note that if S and © have real coefficients, so does
To(S). These results can be found in [ABG] in the set-up of the disk.

From a realization point of view, the linear fractional transformation Tg, for a J-inner function
©, works as follows



Lemma 2 Let © be a J—inner function such that ©(co) = Iap:

Al -P~tur Py
e=\|U I, 0 ;
14 0 I,

where P is the positive definite solution to the Lyapunov equation

AP+PA+UU -V*V =0.

Al -pPlc*
Let S = ( o ; ) be an inner function, where P is the solution to the Lyapunov equation
P

A*P+ PA+ C*C =0. Then the inner function Te(S) has minimal realization:

A plcTv —plct
To(S)= | —P'U"C A+ PI(U* -VIV | -PH({U* - V") (16)
C U-V | I,

and [Te(S)](c0) = I,.

Again these are well known facts [K|. Taking S = I,, we immediately get the following special
but important case:

Corollary 2 The function Q = Te(Ip) is inner and an n-dimensional (minimal) realization is
given by

0- ( A+ P HU* = V¥V | =P [U* — V7] ) | an

U-V | I,

The observability gramian associated with this realization is P.

4 The Schur algorithm

In the sequel, we shall denote by Z%(c0) the set of (p X p)-rational inner functions of McMil-
lan degree n which satisfy the condition Q(co) = I,. This normalization is quite standard in
the literature: in fact, in most applications (inner-outer factorization, Douglas-Shapiro-Shields
factorization, etc.) the inner function is only determined up to a constant unitary factor.

We consider now a particular case of the tangential Schur algorithm [D1] in which degree one
J—inner factors analytic in IIT are involved. In the set-up of the disk, such an algorithm is used
in [ABG] to construct an atlas of charts for the manifold of inner functions of fixed McMillan
degree. We shall follow this approach, but now in the set-up of the left half plane. Let A = —@,



w € O and C = [ :}L }, with w,v € € such that ||v]| < ||u|| (where || || denotes the usual

Euclidean norm), and define ©(w, u,v) as

~ —1,,* —1, %
—W | =0 U g v
. B
(U,U,’U) = (7 Ip 0 ; = W (18)
v 0 I,

The tangential Schur algorithm consists in constructing from an inner function Q € Z5(o0), a
sequence of inner functions

Q™ =0,Q",....Q", Q" =1,

of decreasing McMillan degree: assume that Q) of McMillan degree i has been constructed; let
w; € II'" and find w; € CP such that the vector v; € CP defined by the interpolation condition

vi o= QW (W) us, i=1,...n, (19)

satisfies ||v;|| < ||us]|. The term tangential comes from the fact that the interpolation is taken in
some direction u;. Such a vector u; can always be found since otherwise the matrix Q) would
be constant. Then, it can be proved that

QY = To,(Q0Y), i=2 .. .n, (20)

for some inner matrix QU~Y of McMillan degree i — 1, where ©; = ©(w;, u;j, v;) is the J-inner
matrix given by (18). Finally,

Q = To,oTo,_, To,(Iy) =Te,..0,p)

The tangential Schur algorithm enables us to construct explicit charts for Z5 (o) as follows: given
w = (W1, wg,...,wn), w; €T, i =1,....n,and U = (uy,us,...,u,), ||usl| = 1,7 =1,...,n,
define .
V(w,U) = {Q € Ig(oo) / ||Q(Z)(w1)*u%|| <lyi=1,... ’n}'

This set is open in Zh(oo) for the topology induced by the norm || ||, and each function
Q € Th(0) belongs to one of these sets. We thus have a covering of Z5(co) by open neighborhoods
of the form V), 7) and these "coordinate neighborhoods" correspond to open subsets of R?"P by
the local homeomorphism

Pyt Yoy — B

- (v1,v9,...,0,)

where the matrices Q") and the vectors v; are computed recursively by (19) and (20), and B,
denotes the product of n copies of the open unit ball of CP. The details can be adapted from
[ABG]. Note that an atlas for RZh(oc0) can be obtained in a similar way: we simply have to
impose the constraint that the points {w;;i = 1,...,n} belong to the positive real axis Rt and
the vectors u; and v; have real components. The range of the charts is thus the product of n
copies of the open unit ball of RP.

The following Lemma links the Schur algorithm to the general transformation T discussed in
the previous section:



Lemma 3 Let w; € II; and u;,v; € C° with ||vi|| < ||wil| fori=1,...,n. The J-inner matriz of
degree n

©=0,0,1...0;...064,

where ©; = O(w;, ui,v;), 1 = 1,...,n, is the J-inner matriz given by (18), has minimal realization
—ly By
8261 e Bz
(—) = : : (2]‘)
B.Ci ... B,Ch—1 —w, | B,
i ... ... G | Iy
where fori=1,...,n,
U _ _
G = ( v ) ; B = —0; 'C}J, i = (lwill® = [lvil|*)/ (ws + @)
(]
The Gram matriz associated with this realization is diagonal and equal to:
g1
02
Y= (22)

On

Proof: By induction over i. Clearly the statement is true for ¢ = 1 (by definition). Let now
0 .=0,0; ;---0;
and denote a realization of () as

o) _ A ‘ _[g(i)]—l[c(i)]*J
| O ‘ Iy

Then the cascade of two systems yields:

- -1 * J i— i— i—

o) — o061 — —w; | —o;'CrJ AGD) | _[5G=D)=Lcl-D]e

Cz‘ ‘ C(Z 1) I2p

A(z 1) 0 —[E(Z 1)] 1[C(z 1]

= —o;lcrgct-N g —olcr
C(z 1) C; ‘ IQP

It is then easily proved that ¥ = diag{o1,...,0,} is the unique solution to the Lyapunov equation
(10). O

It turns out that every J—inner function © can be represented in the above form: that means
that the Schur algorithm can be used to represent any rational transformation Tg. This could
be seen by using the Potapov factorization (see [P]) of a J—inner function and then applying
the above Lemma. Nevertheless we prefer to exhibit a direct proof, since it gives a constructive
method which will be needed in the sequel (a discrete time version of this proof can be found in
[LK]).



Lemma 4 (Potapov factorization) Let ©(s) be a rational J—inner function of McMillan de-

: o A|-xIc*J
gree n. Then there exists a realization © = c ‘ ; of the form (21), where ¥ =
2p
diag{o1,...,0n} is a prescribed diagonal positive definite matriz.

Proof: First observe that by Lemma 1 and equation (10) a minimal realization

A ‘ —pP-icxg
e =
| I
of a J-inner function in which A is lower triangular and P diagonal is necessarily of the form
described in Lemma 3.

Ay | —PIcgT - o . .
Let © = c ‘ ; be a minimal realization. Then we can diagonalize P by means
0 2p

of a unitary congruence transformation and, since P > 0, we can make it equal to the identity
by a diagonal congruence transformation. The induced state space transformation will yield

A" =) : . .
0 = c 7 . Now we can find a unitary matrix M which makes A" = M*A'M
2p

lower triangular. Since the identity is invariant by unitary congruence transformation, we obtain
./4” ‘ _(CII)*J
CII ‘ IZp

identity. Then, with the change of basis T = Y~/2, we obtain the desired realization with
A=3"12A"51/2 and ¢ =C"S1/2, 0

a realization © = ( ) of the form (21) and with a Gram matrix equal to the

In view of what we saw above, the Schur algorithm can be expressed in a very compact and
simple form, as the following Proposition shows.

Proposition 1 Let w = (w1, ws,...,wn), where w; € 0T, and U = (uy,us,...,u,), where u; is
a unit vector in CP. The local homeomorphism go(*wlU) has the explicit representation

o ) Al-xo1o*
v ,U ge e 71]” - 9
(p(w,U) 1,02 C Igp

where the observability gramian of Q = <p(;1U)(U1,112, .e.yUn) 8 equal the diagonal matriz ¥ =

diag{o1,...,0n}, with
o uiu; — v v;
! w; + W; ’
the matriz A has entries
oy iy —v)
+ @ >
(it @) e =g P
uiv; — U v; =
[Jugl[2 = [|vs]|2 ’
u;y — v;)v;
[Jwill? = llvill?

[Alij = ¢ —wi + (wi+ @)

(wz+u—jz) [ <]7



and
C’z(ul—vl e Up — Up )

Proof: this is an immediate consequence of Corollary 2 and Lemma 3. O

The realization of @) given by Proposition 1 is relatively simple to use in computations by state
space formulas. Nevertheless, the values o; can be arbitrarily small in a given chart, and this
leads to a bad behavior in numerical computations of the inverse of ¥ (which is well-known to
be the controllability gramian). Such computations are useful in many situations such as for
example the rational approximation problem addressed in section 7. To avoid this unsatisfactory
numerical behavior, a different atlas is constructed in the next section by imposing that ¥ is
constant.

5 A new atlas.

In the atlas described in section 4 we take the vector w and the matrix U to parametrize the
charts, and the matrix V' to construct the coordinates in each chart. This choice is made to build
that particular atlas; however it is not the only possible one. In fact, as long as we have a set of
points w; € II'" for ¢ = 1,...,n and a corresponding set of pairs u;,v; € CP such that ||v;|| < ||uil|,
we can construct an inner function @ satisfying (19). Conversely, given an inner function QW,
whenever we have such a triple (u;, v;, w;) satisfying (19), we can find QU~Y satisfying (20). So,
there is a lot of freedom in the way these triples (u;,v;,w;) are chosen at each iteration to build
an atlas. We will make use of this freedom to define a new atlas: we will impose that the Gram
matrix ¥ in (22) is constant and is given by ¥ = diag{oi,...,0,} where the o; are positive
numbers; we take these values instead of the interpolation points w; to be the parameters of our
charts. We will show the following result: if we impose that, for ¢« = 1,...,n, each w; is real, then
w; can be determined as the unique solution to the equation

lual? = 1QW (o) will* _
2w,~

g

In this manner, we construct a new atlas which presents a better computational behavior but in
which the domain of the charts is shortened. As illustrated in section 6.1, this can be improved
by taking the values v; in (19) to be the parameters of our charts while the vectors u; can be
used as coordinates.

Note that, since Q® is inner, [Q(i)]_l(s) = QW(—5)" ae. and, if w; is not a zero of Q¥ the
interpolation condition (19) can be rewritten as:

U; = Q('L)(—wz)vz (24)

In order to proceed we need to see under which conditions we can find such a w;, given v; and
0. This will give us the domain of our charts. This is the purpose of the next two lemmas.

10



A|-Plc*
Lemma 5 Let Q = < c 7 be a minimal realization of the inner function Q, the
P

observability gramian P being positive definite, and let sg be the smallest real number such that
2sqP — C*C > 0. Then, for any v € CP such that v ¢ ker C*, the function

QI ()QMs) Iy,
2s

gQ,v(s) =" (25)

is continuously differentiable and strictly decreasing on the open interval (sq, +00).

—P'A*p | P lCr
c |
K(s,w) = L@ W)=l o4 ducing kernel of H(Q~!) where Q! is viewed as a (—1I
S,w) = " is the reproducing kernel of H(Q~") where Q™" is viewed as a (—1I)-
inner function; thus this kernel can be represented by (13) with D = I, and J,, ; = —I,,. Consider
the restriction of the kernel to the set {(s,s)|s € (sg,+00)}:

Proof: Observe that Q! = ( ) is a minimal realization of Q™! and that

then gg(s) = v* L(s) v and we get

d

o [C(sI, + P~1A*P)~tP~(sI, + PAP™!)~!C¥]
S

d
L(S) = %
d

= - [CP~Y(sI, + A*) ' P(sI, + A)~'P~1C*]
S

= —CP7 (sl + A" ?P(sI, + A)~'P~lc*

CP Y(sI, + A*) 'P(sI, + A)*P 'C*

CP~Y(sI, + A*) ?[(sI, + A*)P + P(sI, + A)|(sI,, + A)*P'C*

= —CP (sl + A*)7?[2sP — C*C|(sI, + A)>P~C*.

Now, since we assume s > sq, it follows that 2sP — C*C > 0. Moreover, 2sP — C*C =
(sI, + A*)P + P(sI, + A), so that, if 7 is an eigenvector of A associated to the eigenvalue A,
then 2(s + Re(A\))n*Pn > 0 and thus s > —Re()\). This implies that for s > sg, (sI,, + A)™!
is well-defined. Finally, v* £ L(s)v = 0 is equivalent to v € ker C*. If this is not the case, the
function v*L(s)v is strictly decreasing on (s¢, 00); hence the conclusion. O

Remark that sg only depends on () and not on the realization. If v € ker C*, then the function

9Q, vanishes identically; this condition is still independent of the realization and we have: v €
ker C* if and only if Q(s)v = v for all s.

Lemma 6 Let o0 > 0, let v # 0 in CP, and define

D, := {Q inner; lim 9gou(s) > o} (26)
s1sQ

For Q € Dgy, the function gq. is invertible on (0,limg s, gou(s)) and the inverse gé}v is
continuously differentiable.

11



Proof: In view of Lemma 5, for all Q € D, , the derivative of gg, is always strictly negative
and thus the function is invertible on its range gg (s, c0). But this range is easily seen to be
(0,limy 5, 9@,(s)) since

Q@)

s——+oo 2s

v = 0.

Since the derivative never vanishes, the continuous differentiability of gélv now follows from the
differentiability and the invertibility of g, . O

Define the function
€ow * Do,v = R+
er0(Q) == ggu(0) (27)

Let now Q € Zh(oc) and let ¥ = diag{o1,...,0,} and V = (v1,...,v,), where ; > 0 and
v; € @ with ||vi]| =1 for i =1,...,n, be given. We would like to construct a chart having as
parameters X and V. The chart will be constructed using the Schur algorithm described below.
So, under which conditions can we define a sequence of Schur functions Q® from (Z,V)? The
answer is quite simple: we set Q™ = Q. If Q ¢ Dy, v,, then we stop since the function Q is
not in our chart and therefore the sequence cannot be constructed. Otherwise, the inductive
construction goes as follows:

1. if Q) ¢ D,, ,,, then stop. Otherwise, set w; := €q; 4; (Q™)

2. define u; := QW (—w;)v;, (see (24)) ‘
then, since o; > 0, ||v;|| < ||ui||, and the Schur algorithm allows to construct Q1) from

QW:
3. QU1 .= T(;_IQ(’)7 where ©; = ©(w;, u;,v;) is still given by (18).

Theorem 1 Let ¥ = diag{o1,...,0n}, with o; > 0,i = 1,...,n, and V € C*", with each
column v; of norm 1 (i.e. viv; = 1); define, for each pair (X,V'), the set V(x, vy and the function
os,vy (defined on V(s v)) as follows:

Vis,v) == 1{Q € Ih(0); QW ¢ Dgyis i =1,...,n}
pev)(@Q) = [Q(l)(—eal,vl @Q@DNor, ..., Q™ (—eq, 4, (Q))vn

Then the family (V(s,vy, @(s,v)) forms an atlas for the set Tj,(co) whose topology coincides with
the one induced by the H* topology.

Proof: In view of what we said above, the sets V(s y) are well defined and not empty. Now, we
show that they are open in the H*-induced topology. In fact, Dy, ., is the inverse image of the
open set (0;,+00) by the application f
. O(—s)*OD(—g) = I
£(Q9Y) = lim U*Q (=5)"Q(=s) Ly

slsg 2s

12



and this is a continuous function on Z}(00), since the evaluation of rational function is continuous
with respect to the topology induced on Z%(cc) by the H* topology (rational inner functions do
not have poles on the boundary).

The family V(s vy covers Zf(00). To prove this, let @ € Zf(oco) and run the Schur algorithm
described in section 4. At each step w; can be chosen arbitrarily so that we may assume that it is
real and it is not a zero of Q. Then v; = Q(w;)*u; cannot be equal to zero, and dividing by the
norm, we may assume that v; is a unit vector. Set o; = (wju; —v}v;)/2w;, ¥ = diag{o1,...,0n}
and V := [v1,...,v,]. Then clearly Q € Vs y.

Next we prove that QO(EI,V’)OQO(_El,V) is a diffeomorphism. We show first that (5, 1)(Q) is invertible
and that the inverse is continuously differentiable with respect to the H°°-induced topology. In
fact, given 3, V,Q, set U := ¢(x,y)(Q). Then, from ¥,U,V we can construct a unique ©
representing the Schur interpolation conditions as in Lemma 3. Since, from the formula (17),

Q- A+ E_l(U* -VHVv ‘ —Z_l(U* -V*
N U-v | I, ’
where . .
8 2
A= _lalP = fol?
20;
0 1 < 7,

the function ¢(x,y) is clearly invertible, and the inverse is a rational function of the coeflicients
of U. Therefore it is continuously differentiable with respect to U (always in the H* topology
on Z;(00)). To see that sy yry o ap(_zl vy is a diffeomorphism, observe that, in view of Lemma 6

and definition (27), e, ¢ is a smooth function, and thus also e, o (90(721 V)) is smooth. Since

Z o B (@)
Q( ) — T 1 oT 11-2 o0...0 T@:(¢(£,V)(U)) = [(p(z)l,v)(U)]

and the ©; are rational functions, also Q) is a smooth function of U, and thus so is €g! 0, for
1 =1,...,n which proves that for i = 1,...,n the column

i = (v 0w )], = [(%1 b©)” (_e ((%1 v>(U))(i))>] v

is continuously differentiable. Since we can interchange the role of the two maps, this is actually
a diffeomorphism.

The sets <p(_21 V)(V(g: vy N V(s,vy) are open in the H* topology, since cp(_zl V) is continuous and

V(=,v) is open in Th(o0). Since also ‘P(z V) is continuous with respect to the H* topology, we
immediately deduce that the topology induced by our atlas actually coincides with the H®°-
induced topology. O

As previously, an atlas of RZh(c0) is obtained if we impose the constraint that the vectors w;
and v; have real components.
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Given X, U, V, it’s easy to construct a minimal realization of @ = ¢(x 1)(V):

Proposition 2 Let ¥ = diag{o1,...,00n}, 0i > 0, i = 1,....n, and V = (v1,v2,...,0,),
l|lvil| =1, i =1,...,n. The local homeomorphism 4,0(_21 V) has the explicit representation

B Al —n-lc
@(Eyv)(ulau%"'aun) = C I )

where the matriz A has entries

_ u’t(uj v]) Z>]

(w Z oo (s — )

U, —V; )U; U \U; — Vs
Al = ) 1% Y\t % L 28
[]w 20, 20, t=] ( )

g;
and
C’:(ul—vl un—vn).

More difficult is to check the domain. To this end we have the following simple Lemma. Let
¥ := diag{oy,..,0;} and C©) = ( UL — V1 ... U — Y )

Lemma 7 Let (V(gy), (P(Eyv)) be the atlas defined in Theorem 1. Then U belongs to the domain
of the parameters Uis vy = ¢z, vy(Viz,v)) if and only if fori=1,....,n

uiU; — U v; V=120 (V1% (i) (i) — 172 i) ()1 L () 1*
Y. ([2< N2 cO) e ni) ) - p(cO[z( N o) ) (29)

(2

where p denotes the spectral radius.

Proof: A necessary and sufficient condition for U to belong to Uy, yy is that U = go(g,v)(Q) for
some @ such that Q(® belongs to Dy, v;, for @ = 1,...,n. Recall that Q™ has a realization of

the form ' N
Q(Z’) _ A®) _[g(z)] [C(z)] ‘
c | I,

By Lemma 5, if Q%) belongs to Dy, v;, then w; > s4ei), where s is the smallest positive number
such that
25Q(i)2(i) — [C'(i)]*c(i) > 0.

Conversely, if w; > sga, since goa ,, decreases for s > s, we then have that QY ¢ Dy, ;-
Now, let us compute sg), which is by definition the smallest positive number such that

lcWe|?

QSQ(Z') > m,

14



for any column vector . Therefore, putting n = [E(i)]l/ 25 , we have that

y (1201 P e0r ey ),
2553 = sup )
T [l
o that 1 1/2 1/2 1 1
sqo = 32 (IO COT 00RO = 2p (cO O er). (30)
Since w; = w the proof is achieved. ]

The condition (29) is quite complicated to check. But it is very easy to derive slightly more
restrictive conditions: for example, if w, < w; for ¢ = 1,...,n — 1, it is sufficient to verify the
condition only for ¢ = n.

What usually occurs in applications, is that we minimize a function over the manifold Z5(cc)
by making use of an iterative scheme which selects different points in a chart of the atlas; after
a while we might get at some inner function @ close to boundary of the chart: then we have
to change chart at this point @; to do that, we have to compute the coordinates of the inner
function @ in a different chart. An apparently difficult point is that, since the w; are defined by
implicit equations, when we change chart we run into problems because we have to solve those
equations. But when a new chart is needed, we do not have, in the actual implementation of the
algorithm, to go through the procedure outlined in Theorem 1. In fact, we can use the following
well-known result (for the proof we refer again to [D1]):

Proposition 3 (Nevanlinna-Pick problem) Let Q be an inner function normalized at oo, let
W1, wa, ..., wn be n distinct points in Ct and let x1,29,...,2, € CP be given. Define Ay :=
diag{—1,—@2,...,—n}, X 1= [11,%9,...,2,] and

Y =[y1,02,- -5 yn] := [(Qw1)) 21, (Q(w2)) 32, - .., (Q(wn)) 2]

If the Pick matrixz P given by
D BT Uil

A w; + W; (31)
Ao | -P1x* P iy
is positive definite, then Q = To(I,), where © = | X ‘ I, 0
Y 0 I,

In other words, given any inner matrix @), it’s very easy to obtain a J-inner matrix © such that
Q = To(Ip); indeed, the Pick matrix is the gramian of the projection Ppq) on H(Q) of the set

)
s+ wi i=1,...m

this is easily shown from the relations

(3]

P Z; _ Ip - Q(S)Q(w1)*
HO\s+@ )~ s + @;

15



and
b= Q()Qwi)* I — Q(s)Q(w;)" oI — Qi) Qw;)"

— (3 — x] >= Z; —
5+ Wi 5+ Wj w; + Wj

j.

Thus, the Pick matrix is positive definite if and only if the projection of E on H(Q) is injective.
This is equivalent to saying that ENQHy = 0. But E is a subspace in Hy coinvariant for the shift
(its orthogonal complement is invariant), of dimension n, while QHs is an invariant subspace
of codimension n. Thus, generically, the intersection is zero: if we choose wy,...,w, distinct
positive numbers and vectors x1,...,T,, we will generically get a positive definite Pick matrix
and we will have Q = Tg(I,), where © is the J-inner matrix given in Proposition 3.

Next, using the procedure described in the proof of Lemma 4, we can change basis to obtain ©
in Schur form (21) with a Gram matrix equal to the identity; The two realizations are linked by
the relations

A=TAT™, UT=X, VI =Y, P=T,

where T is the Cholewski factor of P (i.e. P = T*T). If none of the vectors v; vanishes
for i = 1,...,n, (and this is still a generic condition), we can set s; := (viv;)~"/? and S :=
diag{si,...,s,}; we can eventually set A" := ST1AS, C" :=CS. Then ¥ = S? and we obtain a
chart of the new atlas which contains Q.

6 Examples.

6.1 Inner matrices of size 2 x 2 and McMillan degree 1.

It is easily proved that an inner matrix @ € Z2(co) is necessarily of the form

( p1(s) P2(8)>
—pa(s) pi(s)
q(s)

where p; and ¢ are monic polynomials of degree n, ¢ having all its roots in the left half-plane, po
is a polynomial of degree strictly less than n, p is defined for a polynomial p of formal degree n
by p(s) = (—=1)"p(—s), and the following equation is satisfied: p1p; + p2p2 = ¢¢. When n =1

and Q is real,
( s+ o e %) )
(65) S —Qq
Qls) = s+a

where a1 € R, as € R and o = y/a? + o} must be strictly positive. In conclusion the set
RI%(c0) is completely and uniquely described as (a1, az) varies in R?\{(0,0)}.

Q(s) =

; (32)

Now, let us compute such an inner matrix using our Schur algorithm. Let

ogeR u:(xl)ERQ, v:(zl)ERQ, ||| < ||l
2

Z2
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Using Proposition 2, we obtain
205 — (z1 — y1)* + (x2 — y2)° —2(w1 — y1)(w2 — y2)

—2(x1 — y1)(w2 — ¥2) 205 + (z1 — y1)* — (2 — y2)?
205+ (1 —y1)%2 + (22 — y2)?

[0 (o) (@15 22)](5) =
This matrix is of the form (32) with

_ (@ —y)? (22— ) lu—v|?
20 20

Remark. Observe that if we fix u to have norm 1 and let v vary, the condition ||v|| < ||ull
implies that o remains bounded by 1/0, while when we fix v and let u vary, then o may go to
infinity, and this leads to a larger domain for the chart. This is why we choose the vectors v; as
chart parameters and the vectors u; as Schur parameters.

1 . . . .
Now, let for example v = ( ) Using any realization of the inner matrix (32), we can see that

0
the smallest real sg of Lemma 5 is equal to «, and the function

o — Qq

gQ,u(S) = W

actually decreases on (a,00). For @ to belong to D, ,, the limit of gg ,(s) as s tends to o must

be greater that o. But lim,_ .+ gg(s) = co unless a = ay. Since a = \/af + a3, this can only
happen if ap = 0 and a7 > 0. In this case gg , is the constant null function. Consequently, the
domain of the chart is

V(a,v) = RQ\{(O‘DOQ); a; >0, ag = 0}

By Lemma 7, the range of the chart is the open set
U = {ueC u'v>1}={(z1,29) €R®; 1 >1}.

According to the theory, it can be verified directly that the map <P(_(,1U) is a diffeomorphism,

sta 0
(p(;l’v): Z/{—>Rl'12(oo)\{< 360‘ 1 ),a>0}.

In order to describe the whole manifold RZ?(00), we need another chart, for instance the chart

indexed by ¢ and v/ = ( (1) ) which describes all the manifold except for the matrices of the

" (1 0 )
orm .
0 &2
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6.2 Scalar inner functions of McMillan degree 2.

A scalar inner real function can be written in the form
q -~
Q = pt q(s) = (=1)" q(-s),

where ¢ is a monic polynomial of degree n which has all its roots in the left half-plane. The
function @ is completely determined by the coefficients of ¢ which range over the subset of R":

An:{(qn—la"'7q0)/ q1<:>07 k=0,...,n—1}.

Now let ¥ = diag{c1,02}, V=( 1,1 ),and U = ( uy,us ), 01, 09, u1, us being real numbers.
Using Proposition 2, we can compute the denominator ¢(s) = det(sly — A) of (p(_Elv)(U):

(2 R 1>2) e —1)? (w +1>2> |

20’1 20’2 20’1 20’2

q(s) =s

By Lemma 7, the set of parameters is given by

—1)2
Ui vy = U:(ul,uz), up > 1, UQ>1-I—M .
(7) 20'1

Now the domain of the chart, that is the set of couples (go, ¢1) which satisfy
{ © = (u1=1)* (u2+1)
- 201 200
—1)2 —1)2 (33)
@ = (U120'1) + (7130'2) ’

for (u1,u2) € YUz vy, can be obtained either directly or following the line of section 5: from any
realization ,
—1p— 5" —qs+qo
s)=1—C(sl, — A)7'P7IC* of Q(s)= Z%——"-F,
Q) = 1= C(sI — 4) Qs) = S
we can see that the smallest positive number 38) such that 288)]3 + C*C > 0 is equal to ¢1.
Since )
2q1(s* + qo)
52 —q1s +q0)?’

gQ,Uz(S) = (

for () to belong to Dy, +,, we must have
2¢1(4% + o)

2

%

Studying the sign of the polynomial o2¢3 — 2¢190 — 2¢3 in g, we can see that (34) is equivalent

to
1
@ < 3_—2 (1+ /14 202q1).

Now, observe that a scalar inner function of degree one belongs to D,,, for all ¢ > 0 and v # 0
in C?. The domain of the chart is thus given by

Vevy =1(2,q01), 0<q < Z—z 1+ /14 202q1)}-

In order to describe the whole manifold, an infinite number of charts associated with a sequence
of positive numbers o9 that goes to zero, is necessary. This is the price to pay for having a
constant Gramian within one chart (see the introduction).

> 09. (34)
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7 Application to the L? rational approximation problem.

The L?-approximation problem can be stated as follows: given F' € Hy of McMillan degree N,
find H which minimizes
IF — R,

as R ranges over the set of rational functions analytic in IIT of McMillan degree at most n. Let

= QG

be the Douglas—Shapiro—Shields factorization (see [F]) of such a best rational approximation H
to F', @ being inner, while G € H, , the "left half-plane analogue" of Hj. It is then obvious
that the columns of H must be the projection of the columns of F' onto the space H(Q). The
following proposition allows to compute this projection by solving a Lyapunov equation. We will
denote by F; € Hs the entry (j, k) of F, by [M]* the k—th column of a matrix M and by [M];
its j—th row.

Proposition 4 Let H be a best rational approzimation to F' of McMillan degree n, and let

()

be a minimal realization of H. Let ¥ be the observability gramian solution to the Lyapunov
equation
AL+ YA+ C*C =

Then, the columns of B are given by:
[B]* = Z —AN)[CY. (35)
Moreover, we have

IF —HI3 = [IF|I3 - > [Cl;F(~A")*S™ Fi(-A")[C*]". (36)

j=1 k=1 1=1

Proof. Since the columns of H are the projection of that of F' onto the RKHS H(Q), we have

EHWI = <[FOI", Ko(,w) >
1

- im / Z[F@y)]k[KQ(iy,w)a* dy

o | € Koty [Fa) dy
= 5 [ eor-ayts iy - 4 ) do
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using formula (13). Changing iy into s, we get

1
B=x"1_— I+ A% YC*F(s)ds.
5 ZR(s + A*) (s)ds

Finally,
S|
k —1 *\—1 *17 1.
B = X E_ ﬁ/iR(SIJFA )[CY Fir(s) ds

using the Riesz-Dunford functional calculus (see [F, II.2]). Now,
IF —H|; =|IFl3~ < F.H >,

and it is easily proved that < F, H >= Tr(B*YB), which gives (36). O

Our approximation problem can then be approached by minimizing the criterion ¥,,(C, A) given
by (36) over the set of equivalence classes of observable pairs (C, A) for which the spectrum of A
is in the left-half plane. This set is diffeomorphic to the set Zh(co) and can be described using
our atlas and the formulas given in Proposition 2. Then, the optimization can be tackled by
using a search algorithm (gradient, Newton, etc.) through the manifold as a whole, using the
charts to describe the manifold locally and changing from one chart to another when required
(see |[FO|). The gradient can be computed as

" s S o e na(-| L 0[]

=1 k=1 Ju;

where B is still given by (35) and then also depends on ¥~!. It is therefore clear that the
parametrization of inner functions and then observable pairs described above is a very natural one
for this problem since the observability gramian 3 is constant so that inversion and differentiation
become much simpler to compute. An extensive study of this approximation problem, including
numerical examples, will be provided in [GO|.
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