Inner-unstable factorization of
stable rational transfer functions.
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1 Introduction

We develop in this paper a factorization involving inner functions
for linear constant stable dynamical systems, which is different from
the classical inner-outer factorization. In fact, we merely develop
further in the rational case a construction which is given in greater
generality (strictly noncyclic systems) in [1]. This provides one with
an alternative to classical polynomial factorizations, which may be of
interest for parametrisation purposes.

2 Linear systems and Fuhrmann’s realiza-
tion.

In this section, we recall some basic results concerning discrete
linear dynamical systems, namely Fuhrmann’s realization theory.
This should help stressing the link between the inner-unstable fac-
torization that we shall develop in the sequel, which pertains to the
analytical side of the theory, and the classical polynomial approach.
Proofs will be sketched only when necessary for a better understand-
ing. A complete treatment of these questions is given in [1][2].

To describe discrete-time dynamical systems (in short: systems),
it is customary to represent a sequence of inputs (ux)r>k,, ur € R™,
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ko € Z, where the intput u; has been applied at time ¢ = k, by the

formal series
u(A) = Z up AR
k>kq

and the associated sequence of outputs (yx)r>ky, y& € RP, ko € Z,
where the output y; occurs at time ¢t = k, by the formal series

y(A) =Y yA

E>ko

The time axis, which is the set of integers Z, is mapped in a one-to-
one way onto the set of powers of the indeterminate A by the rule
k— X7k,

In this way, a linear system may be described by a R-linear map

o: R™(1/)) — RP((1/)N)

U — Yy ’

where R™((1/))) is the set of all formal series of the form
> k>ko axA~*, ar € R™, and is a module over the ring R((1/))) ob-
viously isomorphic to [R((1/A))]".

It is easy to give the mathematical meaning of the following clas-
sical properties of the system. The system is stationnary if and only
if o is R(\)-linear, where R()) denotes the set of rational functions.
If moreover it is causal, then o is R((1/A))-linear. In this case, the
system may be represented in the canonical basis by a product of
matrices

oc:U—-TU

where U is the column vector associated with the input in R((1/X))™,
and T is a matrix whose coefficients, by causality again, lie in
1/X R[[1/]]]. The matrix T is the transfer function of the system.

2.1 Nerode’s representation.

We also have another description of the system, the internal one,
which we are going to deduce from the previous one.

The polynomial module R"[)\] of polynomials with coefficients
in R” is a R[)\] submodule of R"((1/A)), and the quotient mod-
ule R™((1/)))/R"[)\] can be identified with 1/A R™[[1/}]], where



R™[[1/]]] denotes the module of all formal power series in 1/A. In
other words, we have an R[\]-module isomorphism

R™((1/X)) = R*[A] @ 1/A R[[1/A]l. (1)

This decomposition corresponds to the splitting of the time axis be-
tween past and future.

Let us consider the restricted input-output map
[ RTA = 1/ARP[[1/A]],

defined by

[=7"ooRrmy;
where 7 is the projection onto R"((1/)))/R"[A] and ojgm[y) is the
restriction of o to R™[A].
From the R((1/)\))-linearity of o, we deduce that f is a R[A]-
homomorphism.
We can factor f as follows

R™[)] L 1/X RP[[1/A]
N e
R™[A]/ker f

The map f is the observability map and is injective, while the map
7 is the reachability map and is surjective. The space R™[A]/ker f
define the state space up to an isomorphism. Indeed, when you know
the “state” of the system, you have all the informations you need to
deduce the forthcomming output if the input stops.

Now try to compute the output step by step. Let g = 0 be the
state of the system at time ¢ = 0, and let u(\) = 345 ur A" be
some input. The state of the system at time ¢ =n + 1 will be

Tptl = 7'('(U0 AT+ + un)
T\ (o A" P Upg) Fun)
T\ (uo AP A wp1)) + 7(un)



Since f is a R[\]-homomorphism 7(\ (ug A" '+ ...+ u,_1)) depends
only on the state z,, = m(ug A" ' + ... + up_1).
Let
F: X
m(u)

— X
— 7w(Au) ’
and G = mRrm, then we have

Tpy1 = F(z,) + G(up).

Now f(znt1) = f(uo A" + oo + un) = Ynt1 /A + yny2 1/A2 + .,
and thus, yn41 is the Taylor coefficient of 1 /A in the expansion of

f(xn41). We denote this R-homomorphism by H and we finally find
back the classical dynamical equations

Tny1 = F(xn)+ Guy)
{ Yn+1 = H(xn+1) (2)

Untill now, we did not assume the state space to be finite dimensional.
A classical result claims that the state space X is a finite dimensional
vector space over R if and only if the transfer function of the sys-
tem, 7', has rational coefficients. In this case the dimension of X is
called the Mac-Millan degree of the transfer function. Moreover, the
functions F, G, H, become linear maps on finite dimensional vector
spaces and may be represented in some basis by matrices. The triple
(F,G, H) is a minimal realization of the system, that is it corresponds
to a minimal size of F.

This is for the theoretic viewpoint and explains the interest of
a factorization of f for the realization problem (i.e. find a triple
(F,G, H) satisfying (2)). In fact, it is not difficult to see that the
two problems are completely equivalent. In what follows, we shall be
interested with finding an effective (i.e. computable) factorization of

f.

2.2 Fuhrmann’s factorization.

In the sequel, we shall consider a rational transfer function of Mac-
Millan degree n.
The rationality of T" may be expressed in the following way:

Ip € (R]\)), such that pT € (R[A])P*™,



where (R[A])P*™ is the ring of matrices with coefficients in R[A].
Consider the set

J ={M € (RA)PP/MT € (R]A)P*™}.

It is a left ideal in (R[A])?*P, and pI € J. Moreover, we have

Lemma 1 There ezists a nonsingular D € (R[A])P*P such that

J = (R[N)P*PD.

Proof. The ideal structure in R[A|P*? is well-known, and follows
from the existence of a greatest common divisor between polynomial
matrices. More precisely, let A € (R[\])P**¥ and B € (R[\])P*! be
two matrices with the same number of rows, then they have a greatest
common left divisor. Indeed, the set

M= AR+ BRI\,

is a R[)\] submodule of R[A]P. This module is free of rank r < p, as
a submodule of a free module over a principal ring. Thus

M =C R\,

where the columns of C' € R[A]"*" constitute a basis for M. It is
easily proved that C is a greatest common left divisor to A and B,
and is unique up to a right invertible factor in R[A]"*".

In the same way, two matrices with the same number of columns have
a greatest right common divisor.

This last result combined with the fact that every ideal in R[AJP*P
is finitely generated, proves that every left ideal Z in R[AJP*P writes
Z = R[\P*PD, for some D in R[A]P*P. In particular this result holds
for J, and since pI belongs to J, D is non singular. Q.E.D.

Putting N = D T, we get a factorization of T. More precisely

Theorem 1 A rational transfer function T has the representation
T =D"'N,
where D € (R[\))P*P, detD # 0, N € (R[\])P*™.

If D and N are left coprime, then they are unique up to a common
left invertible factor in R[A|P*P.



This factorization induces a factorization of the reduced input-
output map f.
We have

kerf = {P e R™[\, TP € RP[\|}
= {Pe€R™[A], NP e DRP[\} °

Now denote by Kp the quotient module RP[A]/DRP[)] and by 7p
the canonical projection.

Consider the map R : P — 7p(NP). We have kerR = kerf, and
since the matrices D and N are left coprime, ImR = Imnp = Kp,
so that R induces an isomorphism

R™[A]/kerf =~ Kp,

and we can take Kp as a model for the state space. In particular,
since the dimension of Kp over R is given by the degree of detD (this
is easily deduced from the Smith-Mac-Millan form of D), we have the

Theorem 2 The Mac-Millan degree of T' is equal to the degree of the
polynomial detD.

Moreover, f factors through Kp. Let us make this precise.

The factorization 7= D' N induces a factorization of f:

R™[A] — /A RP[[1/A]]
P n_(D"1P")
@ Y
N /!
RP[A]

Let P’ € RP[A]. From (1), D~'P' decomposes as decomposition

D7'P'=P"'"+S, P'eRP[N, Se€1/\RP[1/)\] (3)



and 7_ (D 1P') = S. Therefore, keryy = D RP[\| = kernp, and
factor through Kp:

R[)] 2 1ARP[L/N]

Kp

Now, (3) shows that the polynomials P’ and DS are in the same class
in Kp. Moreover, from (1) there is in each class a unique element of
the form DS, with S € 1/X RP[[1/}]].

Identifying Kp with the set of polynomials of this form, we can see
that O is nothing else than multiplication by D!.

Finally, f factors through Kp as follows:

R™N L 1ARe[N]

/R
AN¢

Kp

The main inconvenience of this factorization comes from the fact
that the matrices D and N are seriously non-unique and, moreover,
the degrees of the polynomials in D and N are not a priori bounded,
whereas, in practice, you couldn’t work with an infinite number of
coefficients! In the next section, we are going to enrich the algebraic
context to a topological one. To this end, we shall introduce some
convergence conditions in order to convert formal series into complex
functions.

3 Transfer functions in Hardy spaces .

The relevant spaces of complex functions here will be the Hardy
spaces. Let us recall some facts about them. We denote by L? the Ba-
nach space of all complex functions defined on the unit circle T" whose



gth power is integrable with respect to the normalized Lebesgue mea-
sure, and L* the space of all essentially bounded functions.

Thus we have for 1 < ¢ < ¢’ < oo that L' D L? > LY > L. Each
f € L' has well-defined Fourier coefficients given by

1 . .
U = _/f(ezt)e—zntdt
2

We define for 1 < ¢ < oo the Hardy space H? to be the closed
subspace of L? consisting of all functions for which a,, = 0 when
n < 0. We shall also use the Hardy space HY of functions for which
ay, = 0 when n > 0.

It is well-known that functions in H? turn out to be restrictions to
the unit circle of holomorphic function on the unit disk satisfying
growth conditions at the boundary, while functions in H? come from
holomorphic functions outside the unit disk ([1]).

For ¢ = 2, the spaces H? and H? are subspaces of the Hilbert
space L?. Recall ([3]) that the scalar product in L? is given by

L2 it
<f.g>= %/0 f(e™)g(e™)dt,
and if f = 3", axz® and g = 3" bp2¥, Parseval’s equality yields

< frg>= apby.
k

Moreover, we have the orthogonal decomposition
L*=H*>®1/z H. (4)
Let us close this section with the Beurling-Lax theorem. A sub-

space X € H? is called invariant if it is an invariant subspace of the
so-called “shift operator”.S, that is if X' is a closed subspace such that

S(X)cC X,
where S is defined by
Vfe H? Sf(z)=zf(2).

A celebrated theorem of Beurling ([3]) describes the invari-
ant subspaces of H? by mean of inner functions, namely functions



f € H*™ for which |f| =1 a.e. on the unit circle T

The Beurling-Lax theorem extends this result to vector-valued Hardy
spaces, which are a generalization of Hardy spaces to complex func-
tions taking their values in a Hilbert space. As it is sufficient for our
purpose, we shall give the statement in the particular case of a finite
dimensional range, and for full-range subspaces only. Consider the
space (H?)P of complex functions with values in CP such that each
component function belongs to HY.

An invariant subspace of (H?)P is said to be of full range if, a.e. on
the unit circle, {f(e®), f € X'} spans CP. An inner function will be
now a p X p matrix Q with entries in H> such that Q(e®) is unitary
a.e. on the unit circle, that is

Q(eM)'Q(e™) = I, (5)

where I, the identity matrix of order p.

Theorem 3 (Beurling-Lax) Let X be an invariant subspace of full
range of (H*)P . Then there exists an inner function Q € (H®)PXP
such that

X =Q (HP.

Moreover, @ s unique up to right multiplication by some unitary
matriz.

Proof. Let us sketch a proof.
Since X doesn’t reduce to 0, there exists a smallest integer ng such
that X contains a function f of the form

f(z) = Z 2", cn € CP.

n>no

But f ¢ zX, and thus zX is a proper subspace of X. Let L be its
orthogonal complement

X=L&zAX,

and let (®,)aco be an orthonormal system in L.

It can be proven that (®,2")acq,n>0 form an orthonormal system in
X and this implies that, for almost every ¢, the family (®,(e')) is
orthogonal in CP. Thus (®,) has at most p elements.



Now the condition to be of full range implies that the family
(®4(e™))acn spans CP for almost every ¢, and thus (®,) has at least
p elements.

Finaly, dimL = p.

Now, define the p x p matrix Q(e*), whose columns are the ®,(e*).
The function @ satisfies the conclusion the theorem. Q.E.D.

For system-theoretic applications, we have to restrict ourselves to
real subspaces consisting of functions whose Fourier coefficients are
real. We shall indicate this restriction by the subscript r, and write
L4, HY , HY for the real Hardy spaces.

Now, we need a real version of the Beurling-Lax theorem. It is not
difficult to see that the previous proof works for real spaces. In this
case, it yields a function Q € (H°)P*P.

Corollary 1 (Beurling-Laz, real version) Let X be a real invariant

subspace of full range of (H2)P . Then there exists an inner function
Q € (H)P*P such that

X =Q (H).

Moreover, Q is unique up to right multiplication by some orthogonal
matriz.

We want to consider transfer functions as functions of the com-
plex variable z. Since our transfer functions are series of negative
powers of the variable z, they must be holomorphic outside the unit
disk. Thus, they must be stable, namely with poles in the unit disk
only.

The transfer functions involved in the sequel will be stable rational
and therefore elements of (1/z H®)PX™,

It will be also necessary to consider the input and the output as com-
plex functions. This will be done by assuming /2-convergence for our
series. Indeed, 1/z HZ® acts on L? by multiplication, and we may
view our system as a function from (L2)™ to (L2)P.

Restricted input-output maps are now defined between Hardy spaces

fo(HN™ =1z (H)

With this in mind, let us come back to the factorization problem.



4 The inner-unstable factorization.

Let T be some stable rational transfer function. Consider the set
V ={M € (H?)P*?/MT € (H?)P*™}.

It is a real subspace of (H2)P*P, and we have

Lemma 2 There exists an inner function Q@ € (H°)P*P such that
YV = (H2)P*PQ. The matriz Q is unique up to an orthogonal left
factor.

Proof. Let

£ ={me (H})F/'mT € (H)"}.

Clearly, £ is an invariant real subspace of (H?2)P. Now, let F(e') be
the family {f(e), f € £}, where € is fixed on the unit circle. If
(e1, ..., en) denotes the canonical basis in CP, and since

Jp € (R[z]), such that pT € (R[z])P*™,

the family {p(e%)eq,...,p(e)e,} C F(e) spans CP if and only if
p(et) # 0. Thus, F(e') spans CP a.e. on the unit circle. So, & is
an invariant real subspace of full range of (H?2), and the real version

of the Beurling-Lax theorem applies: there exists an inner function
Q € (H°)P*P such that

£=Q (H)
Since the rows of M € V belong to £, we have
‘M e Q (Hy)P"P.
Our result follows at once, replacing @ by ‘Q. Q.E.D.
Let C = QT, then we have a new factorization of T" of the form
T=Q'C,

where C € (H2)P*™. Moreover, since () and T have their elements in
L%, the same holds for C. But L H? = H>, so that C belongs
to (HX)Pxm.

We are going to stress the link between this factorization and
Fuhrmann’s factorization 7= D~'N, used in Theorem 1.



Lemma 3 The matriz Q is rational, and we have the representation
Q' =D'A,

where A is a polynomial matriz of order p, D and A being left coprime.
Moreover, A is invertible in (H°)P*P and we have

Y = (H?)P*PD.

Proof. Since D € V, there exists A € (H2)P*P such that
D = AQ.

We have A = DQ™!, where D is polynomial and the elements of
Q™! belongs to H®. Thus A is the sum of a polynomial matrix
and a matrix with elements in H®. Since A € (H2)P*P, it must be
polynomial.
As

Q~t=Dpa,

it follows that @ is rational.
Now, there exists A € (R[z])P*P and B € (R[z])"™*P such that
DA+ NB =1, (6)
Multiplying by D~ gives
D' = A4 TB,

and
A1 =QD™ 1 =QA+ CB e (H®)P*?,

Hence, A is invertible in (H2°)P*P.

Since A~ € (H®)P*P, it follows that detA has all its roots out-
side the unit disk, while detD has all its roots inside. Consequently
D and A must be left coprime.

Moreover the invertibility of A implies
(H?P*PA = (H)P?,

and thus
Y = (H?)P*PD.



In fact, we have proven that the set J of Lemma 1 is dense in V.
Q.E.D.

Remark. The relation
D = AQ,

is nothing else than the inner-outer factorization of D ([1]).

Theorem 4 (Inner-Unstable factorization for rational functions) A
rational transfer function T € 1/z (H°)P*P can be represented as

T=Q'C,

where @ € (H)P*P is inner, C belongs to (HX°)P*™, and where
Q and C are left coprime. With this condition, the decomposition
s unique up to a common left orthogonal factor. The Mac-Millan
degree of T is equal to the Mac-Millan degree of Q™ ".

Proof. The first assertion has been already proven.

Before proving the left coprimeness of our matrices let us make
precise what sort of condition we can expect. Since HX° is a ring,
divisibility makes sense for matrices with elements in H2°. Although
H? is no longer principal, every finitely generated ideal is, and every-
thing works as for matrices with entries in R[z] (cf. proof of lemmal).
The greatest common left divisor C' of two matrices A € (HZ®)P**
and B € (HX)P*! having the same number of rows exists, and is
determined by

A HP)" + B (HX) = C (HP),

up to some right invertible factor in (H°)"*".

One can notice, at least if A or B is regular since we did not appeal
to a more general version of the Beurling-Lax theorem which deals
with non full-range subspaces as well ([1]), that corollary 1 as applied
to the invariant subspace

A (HX)* + B (H)

yields an inner matrix which provides a somewhat unique represen-
tant of the greatest common left divisor since it is defined up to some
orthogonal matrix.



We now proceed with the proof. Condition (6) of left coprimeness
between D and N gives

A (DA+ NB)A = I,

that is
Q(AA) + C(BA) = I,

which ensures the left coprimeness of Q and C. Now, if T = Q'~1C’,
where Q' € (H®°)P*P is inner and C’' € ((H2°))P*™, then Q' € V and
there exists U € (HZ®)P*P such that Q' = UQ and C' = UC. Since
Q' and C' are supposed to be left coprime, then U is invertible in
(H>®)P*P, and we have V = (H2)P*PQ'. By the uniqueness part of
the Beurling-Lax theorem, we are done. Q.E.D.

This new factorization is of some interest in practice. Indeed, it
allows us to point out another type of pair (D, N) than the coprime
one in Fuhrmann’s factorization, for which a boundedness condition
on the degree of polynomials holds. This is stated in the next result.

Proposition 1 Let ¢ = detD be of degree n. Then detQ = +q/q,
where § is the reciprocal polynomial §(z) = 2"q(1/z). The matrices
Dg = ¢Q and Ng = ¢C are polynomial matrices. Moreover, the
degree of the entries does not exceed n in Dg and n —1 in Cg.

Proof. The proof is quite easy. The relation D = AQ implies
detD = detA detQ.

where detQ is a scalar inner function and detA is invertible in H2. In
other words, this is the inner-outer factorization in H? ([3]). Since
such a factorization is unique up to a complex factor of modulus one,
it must be

qg=uq uq/q, ue'T.

The matrix @ having real coefficients, © must be £1, so that

det@ = £q/q.

Now, since @ is rational the inner condition (5) extends to all
complex numbers as

Q7'(2) ='Q(1/2),



and thus, Q! € (HX)P*P.
Now, by Cramer formula,

Q! ="com(Q)/det(Q),

or else
qQ " =+ fcom(Q) §.

Now, the right hand-side lies in (H2°)?*P, while the left hand-
side, being the product of the polynomial ¢ by Q! € (H®)P*P, writes
as the sum of a polynomial matrix and a matrix in 1/z (H®)P*P.
Thus, ¢Q ! is a polynomial matrix and its degree does not exceed
the degree of g, that is n.

The same holds true for §@) since

i(2)Q(z) = 2"q(1/2)Q" 1 (1/2).

A similar argument gives now the desired conclusion for the matrix

iC = (§Q) T. Q.E.D.

5 Application to realization theory.

Following the first section, we are going to factor the restricted
input-output map

fo(HD™ — 1)z (H)P

The factorization 7 = Q~'C induces a factorization of f:
@y L @y

g g
N /!
(H?)P

where 7_ in the definition of ¢ is now the projection onto
1/z (H?)P.



Let g € (H2)P. From (4), Q@ 'g can be decomposed as
Qilg = h+ + h—7 h+ € (va)pv h- € 1/Z (Hf)p

and 7_(Q 'g) = h_. Therefore, keryy = Q (H?)P. Denote by Kg
the quotient vector space (HZ)?/Q (H?)P, and by m¢ the projection
onto K¢ Then 9 factors through Kg:

(=Y L 1/ (HEY

Kq
Moreover, K¢ is isomorphic to a subspace of (H?)? by the or-
thogonal Hilbert space decomposition
(H2)" = QUHEY & Kq.

Now compare this decomposition with the vector space decomposition
of (R[z])?, we had in the first section

(R[2])" = D(R[z])" & Kp.
Since, (R[2])P is dense in (H2)P and D(RJz])? is dense in Q(H2)P (cf.
lemma 3), Kp must be dense in K¢. Since Kp is a finite dimensional

vector space we have a R[z] — module isomorphism:

KQ ~ K D-
This is capsulized in the next statement.

Theorem 5 Let T = Q7 'C be the inner-unstable factorization of
the rational transfer function T'. Then the state space is isomorphic
to the space K in the orthogonal decomposition

(H2P = QUHZY @ Ko



The function f factors through Kq as follows

(H2)™ A 1/z (HZ)P

mQ(C.) Q!

Kq

6 Application to parametrization problems.

Another respect in which the inner-unstable factorization may be
useful, is bounded parametrisation problems in system-theory. Con-
sider the smooth manifold SP"" of stable p x m transfer functions of
fixed Mac-Millan degree n, as imbedded in (H2)PX™ [4]). Consider
further the set 7P of inner matrices of size p x p and of Mac-Millan
degree n, and let Co be the subspace of (HZ2)P*™ consisting of those
C such that Q 'C belongs to (H2)?*™. If P denotes the subset
of (H2)P*P x (H2)P*™ consisting of pairs (Q,C) where C € Cq is
coprime to ), then P endowed with the map

r: p—spm

given by T'(Q,C) = Q~'C is a fibered space with compact base over
SP™_ This is of importance in several rational approximation prob-
lems, where the criterion can be brought down to the compact set
P [5].

7 Conclusion.

Among the many parametrizations for stable transfer functions, the
one presented here exhibits in some sense the maximal number of
bounded parameters, because Q~'C, for fixed Q and C € Cois a
vector space included in S2™. We expect this form to be of interest
in identification problems where numerical optimisation on SP"* has
to be performed. The set of inners, which has been recognized for
a long time to be of importance in system parametrization, plays



here again an interesting role, as “carrying” the bounded part of the
model.
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