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Abstract: A new finite atlas of overlapping balanced canonical forms for multivariate
discrete-time lossless systems is presented. The canonical forms have the property that
the controllability matrix is positive upper triangular up to a suitable permutation of its
columns. This is a generalization of a similar balanced canonical form for continuous-
time lossless systems. It is shown that this atlas is in fact a sub-atlas of the infinite atlas
of overlapping balanced canonical forms for lossless systems that is associated with the
tangential Schur algorithm; such canonical forms satisfy certain interpolation conditions
on a corresponding sequence of lossless transfer matrices. The connection between these
balanced canonical forms for lossless systems and the tangential Schur algorithm for
lossless systems is a generalization of the same connection in the SISO case that was
noted before. The results are directly applicable to obtain a finite atlas of multivariate
input-normal canonical forms for stable linear systems of given fixed order, which is
minimal in the sense that no chart can be left out of the atlas without losing the property
that the atlas covers the manifold of stable linear systems of fixed given order.Copyright
c©2004 IFAC
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1. INTRODUCTION

In linear systems theory there has been a longstand-
ing program in developing balanced realizations and
balanced canonical forms and associated parameter-
izations for stable linear systems and for various
other classes of linear systems. The classical (Gramian
based) concept of balancing as introduced by Moore,
see (Moore, 1981), applies tostablesystems and al-
lows one to develop parameterizations in which sys-
tem stability is a built-in property. One of the motiva-
tions for the interest in balancing is that it leads to a
simple method for model order reduction, namely by
truncation of (the last entries of) the state vector.

However truncation does not always lead to a minimal
system. Therefore there has been research into bal-
anced canonical forms which have the property that
truncation of the last entries in the state vector leads
to a minimal system. For continuous-time systems
this has led to the original balanced canonical form
of Ober (cf. (Ober, 1987)) and to the new balanced
canonical form of Hanzon (cf. (Hanzon, 1995); see
also (Ober, 1996)). This last balanced canonical form
is based on the idea that if the controllability matrix
is positive upper triangular (i.e., the controllability
matrix forms an upper triangular matrix with positive
entries on the pivot positions), then truncation of the



last entries of the state vector leads again to a system
with a positive upper triangular controllability matrix,
hence is controllable. Because this is in the balanced
continuous-time case the controllability property im-
plies that the resulting system is again minimal and
balanced.

To use similar ideas to build overlapping balanced
canonical forms is more involved. For continuous-
time losslesssystems, which form the key to these
problems, a generalization of positive upper triangular
matrices is used in (Hanzon and Ober, 1998). The idea
used there is that it suffices if a column permutation
of the controllability matrix is positive upper triangu-
lar. Under certain circumstances there will exist an
associated column permutation (we also speak of a
shuffleof columns in this context) of the so-called
realization matrix, which allows one to proceed with
the construction.

In the case of discrete-time systems the situation is
somewhat more complicated because it is known that
starting from a balanced realization, truncation of the
state vector will normally not lead to a balanced state-
space system. In the case of SISO lossless discrete-
time systems a balanced canonical form for loss-
less systems, with a simple positive upper triangu-
lar controllability matrix was presented in (Hanzon
and Peeters, 2000). Also the possibilities for model
reduction by truncation, combined with a correction
of some sort to arrive at a balanced realization of a
lossless system, are discussed there.

In the current paper we treat the case of MIMO loss-
less discrete-time systems. We present overlapping
balanced canonical forms which have the property
that the corresponding controllability matrix is posi-
tive upper triangular, up to a column permutation. In
this sense it is close to the corresponding results in
(Hanzon and Ober, 1998); however, here a generaliza-
tion is presented which we think will greatly simplify
the presentation and which could also be used in the
continuous-time case. The precise relation with the
approach taken in (Hanzon and Ober, 1998) will be
made clear.

In (Hanzon and Peeters, 2000) a connection was
shown between the balanced canonical forms there
presented and the Schur algorithm for lossless discrete-
time transfer functions. In a recent report ((Hanzon
et al., 2004)) it is shown how the parameterizations
for multivariable rational lossless transfer matrices by
Schur parameters, based on the so-called tangential
Schur algorithm, can likewise be lifted into param-
eterizations by Schur parameters of balanced (state-
space) canonical forms of lossless systems. The main
result of the current paper is to show how the atlas
of overlapping balanced canonical forms presented in
this paper can be interpreted as a finite sub-atlas of the
infinite atlas of overlapping balanced canonical forms
corresponding to the tangential Schur algorithm. In
fact, a certain well-specified choice of so-called direc-

tion vectors in the tangential Schur algorithm leads to
the balanced canonical forms presented here.

Although a generalization of the results of this paper
to the case of complex-valued systems is straightfor-
ward, we shall restrict the discussion to the case of
real-valued systems only for ease of presentation.

2. BALANCED REALIZATIONS OF LOSSLESS
SYSTEMS BASED ON THE TANGENTIAL

SCHUR ALGORITHM

In (Hanzonet al., 2004) a new class of overlapping
balanced canonical forms for MIMO discrete-time
lossless systems is presented. There, each (local) bal-
anced canonical form is characterized by (i) the choice
of a number of fixed points, the so-called interpolation
points, and (ii) a number of fixed vectors, the so-called
direction vectors. Given the choices for the interpola-
tion points and for the direction vectors, the choice of
a sequence of parameter vectors, the so-called Schur
parameter vectors, and the choice of an orthogonal
matrix, together completely determine the balanced
state-space realization of a lossless system. Let us now
be more concrete.

Consider a linear time-invariant state-space system in
discrete time withm inputs andm outputs:

xt+1 = Axt + But, (1)

yt = Cxt + Dut, (2)

with t ∈ Z, xt ∈ Rn for some nonnegative integern
(the state space dimension),ut ∈ Rm andyt ∈ Rm.
Furthermore, the matricesA, B, C andD with real-
valued entries are of compatible sizes:n× n, n×m,
m × n andm × m, respectively. The corresponding
transfer matrix of this system is given byG(z) =
D + C(zIn − A)−1B, which is anm × m matrix
with rational functions as its entries. To any such
state-space system we associate the following (square)
block-partitioned matrix:

R =
[

D C
B A

]
(3)

which we call therealization matrix. It will play an
important role in the sequel.

Let (A,B,C, D) be some state space realization of
a transfer matrixG(z). If the eigenvalues ofA all
belong to the open unit disk, then the matrixA
is called (discrete-time) asymptotically stable, and
(A,B,C, D) is an asymptotically stable realization
of G(z). (For more details on state-space realization
theory, see e.g. (Kailath, 1980).)

If (A,B,C, D) is an asymptotically stable realization,
then the controllability GramianWc and the observ-
ability GramianWo are well defined as the exponen-
tially convergent series



Wc =
∞∑

k=0

AkBBT (AT )k, (4)

Wo =
∞∑

k=0

(AT )kCT CAk. (5)

These Gramians are characterized as the unique (and
positive semi-definite) solutions of the respective
Lyapunov-Stein equations

Wc −AWcA
T = BBT , (6)

Wo −AT WoA = CT C. (7)

A minimal and asymptotically stable state-space real-
ization(A,B,C, D) of a transfer matrix is calledbal-
ancedif its controllability and observability Gramians
Wc andWo are both diagonal and equal. Any minimal
and asymptotically stable realization(A,B, C, D) is
similar to a balanced realization.

A system is calledlosslessif it is stable and itsm×m
transfer matrixG(z) is unitary for all complexz with
|z| = 1. It is well-known (cf., e.g., Proposition 3.2 in
(Hanzonet al., 2004) and the references given there)

that R =
[

D C
B A

]
is a balanced realization matrix

of a lossless system if and only ifR is an orthogonal
matrix andA is asymptotically stable. For a further
background on lossless systems, see e.g. (Geninet
al., 1983).

In (Hanzonet al., 2004) an atlas of overlapping bal-
anced canonical forms for lossless discrete-time sys-
tems of ordern is presented. Each such balanced
canonical form is characterized by a fixed sequence
of n numberswk, |wk| < 1, k = 1, . . . , n, called the
interpolation points, and a fixed sequence ofn unit
vectorsuk ∈ Rm, ‖uk‖ = 1, k = 1, . . . , n, called
the direction vectors(which are not to be confused
with the input signal applied to a system). Here we
will consider the casewk = 0, k = 1, . . . , n hence
each balanced canonical form that we consider is de-
termined by the choice of direction vectors. Each such
balanced canonical form is then parameterized by an
m × m orthogonal matrixG(0) and a sequence ofn
vectorsvk, ‖vk‖ < 1, k = 1, . . . , n which are called
theSchur parameter vectors.

In fact the realization matrix can be written as a
product of matricesof size(m + n)× (m + n):

R = ΓnΓn−1 · · ·Γ1Γ0∆T
1 ∆T

2 · · ·∆T
n , (8)

where fork = 1, . . . , n:

Γk =

 In−k 0 0
0 Vk 0
0 0 Ik−1

 ,

∆k =

 In−k 0 0
0 Uk 0
0 0 Ik−1


with an (m + 1) × (m + 1) orthogonal matrix block
Vk given by

Vk =

 vk Im − (1−
√

1− ‖vk‖2)
vkvT

k

‖vk‖2√
1− ‖vk‖2 −vT

k

 ,

and an(m+1)× (m+1) orthogonal matrix blockUk

given by

Uk =
[

uk Im − ukuT
k

0 uT
k

]
and furthermore

Γ0 =
[

In 0
0 G(0)

]
.

Note that here we consider the real case with real
direction vectors and real Schur parameter vectors.
Note further thatΓ0, . . . ,Γn and∆1, . . . ,∆n are all
orthogonal matrices. It is important to note and not
too difficult to see that the orthogonal matrix product
ΓnΓn−1 · · ·Γ1Γ0 in fact forms apositive m-upper
Hessenberg matrix, i.e. an(m+n)×(m+n) matrix of
which them-th sub-diagonal only has positive entries
and of which the lastn− 1 sub-diagonals are all zero.
It also follows almost directly that if the direction
vectorsu1, . . . , un are taken to be standard basis vec-
tors, then the matrix product∆T

1 ∆T
2 · · ·∆T

n yields a
permutation matrix. Hence in that case the balanced
realization matrixR is obtained as a column permu-
tation of an orthogonal positivem-upper Hessenberg
matrix.

3. BALANCED LOSSLESS SYSTEMS WITH
TRIANGULAR STRUCTURE IN THE

CONTROLLABILITY MATRIX

It is not difficult to see that if the realization matrix
R is positivem-upper Hessenberg, then (i) the firstn
columns of the partitionedn× (m + n) matrix [B|A]
form a positive upper triangular matrix, i.e. an upper
triangular matrix with only positive entries on the
main diagonal, and (ii) the firstn columns of the corre-
sponding controllability matrix[B|AB|A2B| . . .] also
form a positive upper triangular matrix. Therefore the
realization is controllable. In the discrete-time loss-
less case, ifR is orthogonal this implies thatA is
asymptotically stable which in turn implies that the
realization is minimal.

A balanced realization of a lossless systems is deter-
mined up to an arbitrary orthogonal change of basis of
the state space. The effect of such a change of basis
on the controllability matrix is that it is pre-multiplied
with an orthogonal matrix. Now it is well-known that
any non-singular square matrix can be written as a
product of an orthogonal matrix and a positive upper
triangular matrix in a unique way (this is the well-
known QR-decomposition). If the firstn columns of
the controllability matrix are linearly independent then
a unique orthogonal state-space isomorphism exists
such that the firstn columns of the controllability
matrix form a positive upper triangular matrix. This
determines a unique local balanced canonical form



for lossless systems. In the SISO case it is in fact a
global balanced canonical form and it is presented and
investigated in (Hanzon and Peeters, 2000).

In the MIMO case controllability implies that the con-
trollability matrix has at leastn independent columns,
but not necessarily the firstn columns have to be
independent. Instead we know that there has to be at
least onenice selectionof n columns from the con-
trollability matrix that will form a square nonsingular
matrix (cf., e.g., (Hanzon, 1989) and the references
given there).

We now consider[B|A] such that a column permuta-
tion of this matrix leads to a so-called simple positive
upper triangular matrix, i.e. a matrix of which the first
n columns form a square positive upper triangular
matrix. If a column vector has a positivek-th entry
and eachj-th entry of the vector is zero forj > k then
we will express that by saying that the column has a
pivotat positionk.

We can now pose the following question. Which dis-
tributions of the pivots at positions1, 2, . . . , n over the
columns of then × (m + n) matrix [B|A] imply that
the associated controllability matrix contains a column
with a pivot at positionk for eachk = 1, 2, . . . , n?

We claim that the answer is that one of the columns of
B has to contain the pivot at position1, and that if the
columns ofB containpB pivots then the remaining
pA = n − pB pivots have to be located in the first
pA columns of A with increasing pivot positions.
This implies thatA has astaircase structure. A pivot
structure of this form will be called anadmissible
pivot structure. The implication is that each choice of
assigning (distinct) pivot positions to one or more of
the columns ofB satisfying the requirement that the
pivot at position 1 has to be assigned to one of the
columns ofB, leads to a (local) balanced canonical
form for lossless systems.

4. THE YOUNG DIAGRAM ASSOCIATED WITH
AN ADMISSIBLE PIVOT STRUCTURE

We now want to describe the pivot structure of the
controllability matrix. This can most easily be done by
way of a numbered Young diagramY = (yi,j). In our
case this consists of anm×n matrix with non-negative
integer entries. Thei-th row is associated with thei-
th column ofB and its images under repeated mul-
tiplication by A: in the i-th row the pivot positions
of Bei, ABei, A

2Bei, . . . , A
n−1Bei respectively are

displayed, where as a convention we write zero if the
corresponding column does not have a pivot. Hereei

denotes thei-th standard basis vector inRm.

The Young diagram of an admissible pivot structure
has the property that if an entry of the Young diagram
is zero then all the entries to the right in that same
row are zero. The Young diagram hasn nonzero
entries, each of the numbers1, 2, . . . , n appears once.

The number of nonzero entries of thei-th row of
the Young diagram will be called thei-th dynamical
index di of the pivot structure. Clearlyd1 + d2 +
. . . + dm = n. The right-aligned version Yr =
(yr

i,j) of the numbered Young diagramY is obtained
by shifting the nonzero entries of each rown − di

positions to the right; i.e.,yr
i,j := yi,j+di−n. We

claim that the right-aligned version of the numbered
Young diagram of an admissible pivot structure has
the property that its numbering is fully determined by
the permutation of the non-zero rows ofYr (hence
of Y ) which make that the nonzero entries in its
last column form an increasing sequence of integers.
In fact we claim that the same permutation makes
that each column of the resulting right-aligned matrix
will have the property that the nonzero entries in the
column form an increasing sequence.

Given any numbered Young diagram of this kind, we
can order the correspondingn columns of the control-
lability matrix according to the numbering in the dia-
gram. If the nice selection associated with the Young
diagram is such that thesen columns are all linearly
independent (such a nice selection always exists in
case of minimality) then an orthogonal change of basis
can be applied such that the resulting matrix is posi-
tive upper triangular. Then the resulting controllability
matrix has the required pivot structure and it can be
shown that the corresponding pair(B,A) has the as-
sociated admissible pivot structure as defined above.

In (Hanzon and Ober, 1998) a similar approach
was used for continuous-time lossless systems, how-
ever there with each sequence of dynamical indices
d1, d2, . . . , dm the unique permutation of the rows
of Y was chosen which makes the corresponding
permuted sequence of dynamical indices into a non-
increasing sequence, while the order of the rows which
have equal dynamical index is kept the same.

The finite atlas presented here is covering the man-
ifold of losslessm-input, m-output systems of fixed
McMillan degreen. The proof is analogous to the
proof for the continuous-time case in (Hanzon and
Ober, 1998).

In (Hanzon and Ober, 1998) one obtains one chart for
each sequence of dynamical indicesd1, . . . , dm. If the
same approach is taken here in the discrete time case
one obtains a minimal atlas in the sense that no chart
can be left out without losing the property that the atlas
covers the manifold.

5. CONNECTION BETWEEN THE TWO
APPROACHES

We now have two approaches to arrive at an atlas
of overlapping balanced canonical forms for discrete-
time lossless systems, one using the balanced realiza-
tions associated with the tangential Schur algorithm
and one based on balanced realizations with an im-



posed pivot structure on the partitioned matrix[B|A],
hence on the realization matrixR. However, one of
our main results is that the second approach can be ob-
tained by making a special choice of direction vectors
in the first approach. Hence the atlas of overlapping
balanced canonical forms in the second approach is a
sub-atlas of the atlas of overlapping balanced canon-
ical forms in the first approach. The precise formula-
tion is as follows.

Theorem 1.Let Y be a numbered Young diagram
corresponding to an admissible pivot structure. For
eachk = 1, 2, . . . , n there exists a unique pair of
indices(i(k), j(k)) such thatyi(k),j(k) = k. Choose
the direction vectorun+1−k = ei(k), the i(k)-th
standard basis vector for eachk = 1, 2, . . . , n. Then
for any admissible choice of the Schur parameter
vectorsv1, v2, . . . , vn and the orthogonal matrixG(0),
the realization matrix given by (8) has that admissible
pivot structure and its controllability matrix has a pivot
structure indicated by the Young diagramY .

6. EXAMPLE

To illustrate our results we consider an example. Let
the number of inputs and outputs be equal tom =
3, let the order of the class of lossless systems be
n = 7, and consider the situation in which the three
dynamical indices are given byd1 = 2, d2 = 1,
d3 = 4. If we use the identity permutation on the
rows of the corresponding Young diagram to generate
the numbered Young diagramsY andY r we get the
following:

Y =
3 5
6
1 2 4 7

Yr =
3 5

6
1 2 4 7

(9)

By contrast, if one uses the permutation (3,1,2), as
is done effectively in the approach taken in (Hanzon
and Ober, 1998), then we get the following alternative
Young diagrams:

Y =
4 6
7
1 2 3 5

Yr =
4 6

7
1 2 3 5

(10)

Now let us return to the numbered Young diagrams
(9). Then the corresponding pivot structure of the
matrixB is:

B =



∗ ∗ +
∗ ∗ 0
+ ∗ 0
0 ∗ 0
0 ∗ 0
0 + 0
0 0 0


and the corresponding pivot structure ofA is:

A =



∗ ∗ ∗ ∗ ∗ ∗ ∗
+ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗
0 + ∗ ∗ ∗ ∗ ∗
0 0 + ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗
0 0 0 + ∗ ∗ ∗


The pivot structure of the initial part of the controlla-
bility matrix [B|AB|A2B|A3B] is then given by:

∗ ∗ + ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 ∗ ∗ + ∗ ∗ ∗ ∗ ∗ ∗
+ ∗ 0 ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ 0 ∗ ∗ 0 ∗ ∗ + ∗ ∗ ∗
0 ∗ 0 + ∗ 0 ∗ ∗ 0 ∗ ∗ ∗
0 + 0 0 ∗ 0 ∗ ∗ 0 ∗ ∗ ∗
0 0 0 0 ∗ 0 ∗ ∗ 0 ∗ ∗ +


The corresponding (reversed) sequence of direction
vectors in the tangential Schur algorithm is now given
by (u7, u6, . . . , u1) = (e3, e3, e1, e3, e1, e2, e3) where
ei denotes thei-th standard basis vector inR3, i =
1, 2, 3.

It is left to the reader to verify that with this choice of
direction vectors one obtains the permutation matrix

∆7∆6 · · ·∆1 = [e3, e4, e1, e5, e6, e2, e7, e8, e9, e10]

where ej denotes thej-th standard basis vector in
R10, j = 1, 2, . . . , 10. The transpose of this per-
mutation matrix effectively permutes the columns of
the orthogonal positive 3-upper Hessenberg matrix
Γ7Γ6 · · ·Γ1Γ0 to yield the general form of the orthog-
onal realization matrixR which describes the associ-
ated (local) canonical form.

7. CONCLUDING REMARKS

Just as discussed in (Hanzonet al., 2004) the same
approach also leads to overlapping (local) canoni-
cal forms for input-normal stable systems as well as
output-normal stable systems. We refer to that paper
for details. Future research includes investigation of
various model reduction schemes based on truncation
etc., as a generalization to similar results in the SISO
case presented in (Hanzon and Peeters, 2000).
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