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Abstract

A new finite atlas of overlapping balanced canonical forms for multivariate discrete-time loss-
less systems is presented. The canonical forms have the property that the controllability matrix is
positive upper triangular up to a suitable permutation of its columns. This is a generalization of a
similar balanced canonical form for continuous-time lossless systems. It is shown that this atlas is
in fact a finite sub-atlas of the infinite atlas of overlapping balanced canonical forms for lossless
systems that is associated with the tangential Schur algorithm; such canonical forms satisfy certain
interpolation conditions on a corresponding sequence of lossless transfer matrices. The connection
between these balanced canonical forms for lossless systems and the tangential Schur algorithm
for lossless systems is a generalization of the same connection in the SISO case that was noted
before. The results are directly applicable to obtain a finite sub-atlas of multivariate input-normal
canonical forms for stable linear systems of given fixed order, which is minimal in the sense that
no chart can be left out of the atlas without losing the property that the atlas covers the manifold.

Keywords: Lossless systems, input normal forms, output normal forms, balanced canonical forms,
model reduction, MIMO systems, tangential Schur algorithm.

1 Introduction

In linear systems theory there has been a longstanding program in developing balanced realizations,
balanced canonical forms and associated parameterizations for stable linear systems and for various
other classes of linear systems. The classical Gramian based concept of balancing as introduced by
Moore, see [10], applies &iablesystems and allows one to develop parameterizations in which system
stability is a built-in property. One of the motivations for the interest in balancing is that it leads to a
simple method for model order reduction, namely by truncation of (the last entries of) the state vector.
However truncation does not always lead to a minimal system. Therefore there has been research
into balanced canonical forms which do have the property that truncation of the last entries in the state
vector leads to a minimal system. Foontinuous-timesystems this has led to the original balanced
canonical form of Ober (see [11]) and to the new balanced canonical form of Hanzon (see [5]; see
also [12]). This last balanced canonical form is based on the idea that if the controllability matrix is
positive upper triangular (i.e., the controllability matrix forms an upper triangular matrix with positive
entries on the pivot positions), then truncation of the last entries of the state vector leads again to a



system with a positive upper triangular controllability matrix, hence is controllable. Because this is in
the balanced continuous-time case, the controllability property here implies that the resulting system
is again minimal and balanced.

To use similar ideas to build overlapping balanced canonical forms is more involved. For continuous-
time losslesssystems, which form the key to these problems, a generalization of positive upper trian-
gular matrices is used in [6]. The idea used there is that it suffices if a column permutation of the
controllability matrix is positive upper triangular. Under certain circumstances there will exist an as-
sociated column permutation (we also speak shaffleof columns in this context) of the so-called
realization matrix, which allows one to proceed with the construction.

In the case ofdiscrete-timesystems the situation is somewhat more complicated because it is
known that starting from a balanced realization, truncation of the state vector will normally not lead to
a balanced state-space system. In the case of SISO lossless discrete-time systems a balanced canonical
form with a simple positive upper triangular controllability matrix was presented in [8]. Also the
possibilities for model reduction by truncation, combined with a correction of some sort to arrive at a
balanced realization of a lossless system, are discussed there.

In the current paper we treat the case of MIMO lossless discrete-time systems. We present overlap-
ping balanced canonical forms which have the property that the corresponding controllability matrix
is positive upper triangular, up to a column permutation. In this sense it is close to the corresponding
results in [6]; however, here a generalization is presented which simplifies the presentation and which
can, as a spin-off, also be used in the continuous-time case. The precise relation with the approach
taken in [6] will be made clear. The results on the relation between a specific triangular pivot structure
in controllable pairs, which we call “staircase forms”, and an associated triangular pivot structure in
the controllability matrices are also of interest outside the context of lossless systems.

In [8] a connection was shown between the balanced canonical forms there presented and the Schur
algorithm for scalar lossless discrete-time transfer functions. In [7] it is shown how the parameteriza-
tions for multivariable rational lossless transfer matrices by Schur parameters, based on the so-called
tangential Schur algorithm, can likewise be lifted into parameterizations by Schur parameters of bal-
anced state-space canonical forms of lossless systems. One of the main results of the current paper is
to show how the atlas of overlapping balanced canonical forms presented in this paper can be obtained
as a finite sub-atlas of the infinite atlas of overlapping balanced canonical forms corresponding to the
tangential Schur algorithm. In fact, a certain well-specified choice of so-called direction vectors in the
tangential Schur algorithm leads to the balanced canonical forms presented here.

Although a generalization of the results of this paper to the case of complex-valued systems is
straightforward, we shall restrict the discussion to the case of real-valued systems only for ease of
presentation.

2 Preliminaries

2.1 State space systems and realization theory
Consider a linear time-invariant state-space system in discrete timenitputs andn outputs:

Tyr1 = Az + Buy, 1)
yr = Czy + Duy, (2

with t € Z, z, € R" for some nonnegative integer (the state space dimension), € R™ and
y: € R™. The matricesd, B, C and D with real-valued entries are of compatible sizesx n,
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n x m, m X n andm x m, respectively. The corresponding transfer matrix of this system is given by
G(z) = D + C(zI, — A)~!' B, which is anm x m matrix with rational functions as its entries. The
controllability matrix K and the observability matri® associated with this system are defined as the
block-partitioned matrices

C

CA
K =[B,AB,..., A" D], 0= , . (3)

CAn—l

The system (or its input pair4, B)) is called controllable ifK" has full row rankn and the system
(or its output pain(C, A)) is called observable i® has full column rank:. Minimality holds iff both
controllability and observability hold, which holds iff the McMillan degree(¥fz) is equal ton.
To any such state-space system we associate the following (square) block-partitionedRnatrix
which we call therealization matrix
R= [ p-c } . 4

B A

The matrixR, itsn x (m + n) sub-matrix B, A], and the associatedx nm controllability matrix X
will all play an important role in the sequel.

2.2 Stability and balancing

Let (A, B,C, D) be some state space realization of a transfer ma¥(ix). If the eigenvalues of
A all belong to the open unit disk in the complex plane, then the matrix called (discrete-time)
asymptotically stableand (A, B, C, D) is an asymptotically stable realization 6fz). (For more
details on state-space realization theory, see e.g. [9].)

If (A, B,C, D) is an asymptotically stable realization, then the controllability Grarfiiand the
observability Gramia, are well defined as the exponentially convergent series

W, = iAkBBT(AT)k, (5)
k=0

W, =Y (ADkcTcA*, (6)
k=0

These Gramians are characterized as the unique (and positive semi-definite) solutions of the respective
Lyapunov-Stein equations

W, — AW,AT = BBT, (7
w,—ATw,A = c'c. (8)

A minimal and asymptotically stable state-space realizatibnB, C, D) of a transfer matrix is called
balancedif its controllability and observability Gramiand’/. and W, are both diagonal and equal.
Minimality implies thatWV, andW, are non-singular, hence positive definite. Any minimal and asymp-
totically stable realizatioA, B, C, D) is similar to a balanced realization, meaning that there exists a
nonsingular state space transformation matrixhich makes the realizatiqi" AT !, 7B, CT~!, D)

into a balanced realization.



A system is callednput-normalif W, = I, and it is calledoutput-normalif W, = I,,. Balanced
realizations are directly related to input-normal and output-normal realizations, respectively, by diago-
nal state space transformations. The property of input-normality (resp. output-normality) is preserved
under orthogonal state space transformations.

2.3 Lossless systems, balanced realizations and the tangential Schur algorithm

A discrete-time system is callddsslessf it is stable and itsn x m transfer matrixG(z) is unitary for
all complexz with |z| = 1. Itis well-known (cf., e.g., Proposition 3.2 in [7] and the references given
D C

there) thatk = B A
orthogonal matrix andi is asymptotically stable. It then holds thHdf. = W, = I,,. For a further
background on lossless systems, see e.g. [3].

In [7] an atlas of overlapping balanced canonical forms for lossless discrete-time systems of order
n is presented. Also, a closely related atlas is given for (controllable) input-normal(paifs) by
considering the quotient space with respect to the orthogonal group. Each of these balanced canonical
forms is then characterized (in tineal case) by a fixed sequence mfinterpolation pointsw, € R,
lwg| < 1,k =1,...,n, and a fixed sequence afnormalizeddirection vectors., € R™, |lug| = 1,
k =1,...,n (which are not to be confused with the input signal applied to a system). Here we shall
consider the case, = 0, k = 1,...,n, hence each balanced canonical form that we consider is
determined entirely by the choice of direction vectors. Each such balanced canonical form for input-
normal pair§ A, B) is then parameterized by a sequence &chur vectorg;, € R™, with |jvg|| < 1
forall k = 1,...,n. For lossless systems the parameterization also involves an additiorain
orthogonal matrixDy.

In fact, the realization matri® in this set-up can be written as arthogonal matrix product

is a balanced realization matrix of a lossless system if and ortyisfan

R = Il FIROA?Ag T AZ? (9)
where fork =1, ..., n:
I, O 0
Fk = 0 Vk 0 )
0 0 Ip_q
L, O 0
Ay = 0 U O
0 0 Ix_q

with an(m + 1) x (m + 1) orthogonal matrix block/, given by

T
. [ R A R IR ] |
VI Tl —f

(for v, = 0 it holds thatV}, = [ (1) Ig‘ ] which makes thaV;, depends smoothly on the entriesig)

and an(m + 1) x (m + 1) orthogonal matrix block/;, given by

| ug Im—ukuf
o= |



and furthermore atn + m) x (n + m) orthogonal matrixR, given by

I, 0
RO_[O DO}

in which Dy is m x m orthogonal.

The interpolation conditions attain the for@, (w; ' )uy = vy, whereGy(z) denotes the transfer
function associated with thieth order lossless system for which the right lower + k) x (m + k)
sub-matrix ofRy, = T'yy_1---T1RoAT .- AT | AT is a realization matrix. In the present situation
with wy, = 0 it follows thatGk(wk‘l) = G(c0) = Dy, so that the interpolation conditions can be
written as

Dkuk = Vg

where (A, By, Cy, Dy) denotes the corresponding state-space realization of-theorder lossless
functionGy(z).

Note that here we considéine real casewith real direction vectors and real Schur parameter
vectors. Note further thay, I'1, ..., T, andAq, ..., A, are all orthogonal matrices. Itis important to
note that the orthogonal matrix proddgil',,—; - - - I'1 Rp in fact forms gpositivem-upper Hessenberg
matrix, i.e. an(m-+n) x (m+mn) matrix of which themn-th sub-diagonal has positive entries only and of
which the last: — 1 sub-diagonals are all zero. It also follows that if the direction veatgrs. . , u,,
are taken to be standard basis vectors, then the matrix praduat! - - - AT yields a permutation
matrix. Hence in that case the balanced realization matiobtained as a column permutation of an
orthogonal positiven-upper Hessenberg matrix.

3 Triangular structures in controllable pairs and their controllability
matrices

Itis not difficult to see that if the realization matriXis positivem-upper Hessenberg, then (i) the first
n columns of the partitioned x (m + n) matrix[B, A] form a positive upper triangular matrix, i.e. an
upper triangular matrix with only positive entries on the main diagonal, and (i) thexftstumns of
the corresponding controllability matriX = [B, AB, ..., A"~! B] also form a positive upper triangu-
lar matrix. (A matrix with this property is calledsimplepositive upper triangular matrix.) Therefore
the realization is controllable. In the discrete-time lossless cade,isf orthogonal, controllability
implies thatA is asymptotically stable which in turn implies that the realization is minimal.

A balanced realization of a lossless system is determined up to an arbitrary orthogonal change of
basis of the state space. The effect of such a change of basis on the controllability matrix is that it is
pre-multiplied with an orthogonal matrix. Now it is well-known that any nonsingular square matrix
can be written as the product of an orthogonal matrix and a positive upper triangular matrix in a unique
way (in numerical linear algebra this is known as the QR-decomposition). If thexfcetumns of
the controllability matrix are linearly independent then a unique orthogonal state-space isomorphism
exists which transforms the firgtcolumns of the controllability matrix into a positive upper triangular
matrix. This determines a unique local balanced canonical form for lossless systems. In the SISO case
it is in fact a global balanced canonical form and it is presented and investigated in [8].

In the MIMO case, the canonical form does not apply to systems which have a non-generic Kro-
necker structure. This is why this iacal canonical form. In order to see how the concept of requiring
the firstn columns of the controllability matri¥< to be positive upper triangular can be generalized



to obtain an atlas of local canonical forms in the MIMO case, we will consider the relation between
triangular structures in the partitioned matfi®, A] and triangular structures in the corresponding
controllability matrix K = [B, AB, ..., A"~! B]. The following definitions will turn out to be useful.

Definition 3.1 Letn be a fixed positive integer. Consider a vector R™.

(a) The vectow is called apivot vectorwith a pivot at positionk, or a pivot% vector for short, if
€ {1,...,n}is an integer for which the entry(k) is strictly positive and the entriesj) with j > k
are all zero.

(b) The vectow is called apositive pivotk vectorif it is a pivot-k vector for which in addition the
entriesv(j) with j < k are all strictly positive too.

Definition 3.2 For given positive integers andr, consider amapping : {1,...,n} — {0,1,...,r}
which is written in short-hand notation a= {j1, j2,...,Jn}-

(a) Associated withy, the mapping/* : D} — R7 is defined as the restriction of to D} which is
the largest subset dfL, ..., n} on which.J is nonzero; the co-domaiR | is the corresponding range
of positive values occurring as images under

(b) The mapping/ is called apivot structureif J* is a bijection. Then the inverse df* is denoted
by Q" and the extended mappidg: {1,...,r} — {0,1,...,n} is written in short-hand notation as
Q={q,q,-..,q}anddefined byg, = Q" (k) for k € R}F andg; = 0 otherwise.

(c) Ann x r matrix M is said to have a pivot structuté if for eachk € Dj it holds that columryy, of
M is a pivot vector. (Equivalently, each colundrof M is a pivotg, vector, where ‘a pivot vector’
is synonymous to ‘not a pivot vector’.)

(d) A pivot structure/ is called afull pivot structureif Dt = {1,...,n}.

Example. Letn = 5 andr = 8. Consider the mappingd : {1,...,5} — {0,1,...,8} given by
J = {j1,52, 43,74, J5} = {7,1,5,3,6}. It follows that the domain and co-domain &f are given by
Dj ={1,2,3,4,5} andR}r = {1,3,5,6, 7}, respectively. Note thaf™ is a bijection, so that is
a pivot structure. Sinc@j = {1,...,n} it holds thatJ defines dull pivot structure. The mapping
Q, which extends the inverse mappifg™ of J*, is given by: Q = {q1, 42,43, 44, 45,6, 97,93} =
{2,0,4,0,3,5,1,0}. Any 5 x 8 matrix M which has the full pivot structuré is of the following form:

_l’_

<
Il
oo o+ %
* X ¥ X %
o+ % % %
* % % X %
o o 4+ % ¥
* ¥ % X%
O O O O
* ¥ ¥ %X %

_|_

where the entries denoted byare allowed to have an arbitrary value and the entries denoteddre
required to be (strictly) positive. Note thdtaddresses the entries denoted4bjor each row and)
specifies the same entries for each column.

The construction of) from a given pivot structurd induces a mapping;, , : J — (. From the fact
that J* andQ™ are each others inverse, is not difficult to see that provides the inverse df;, ,.
The sets{(k, ji) |k € D3} and{(qs,¢) | ¢ € R}} obviously coincide: the mappingéand( both
serve to specify theameset of pivot locations for an x r matrix, satisfying the rule that in each row
and in each column of that matrix at most one pivot location is selected. The mapppegifies these
pivot locations in a row-oriented fashion, the mappipdgn a column-oriented fashion.
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For a full pivot structure it holds that < r. If J = {j1,72,...,7x} is a full pivot structure for
ann x r matrix M, then the ordered selection of columjiisjs, . . ., j, from M constitutes a positive
upper triangulan x n sub-matrix. In this way, positive upper triangularity is generalized by the concept
of a full pivot structure.

As explained before, if a block-partitionedx (m + n) matrix [B, A] is simple positive upper
triangular (i.e., it has the full pivot structurewith j, = k for k = 1, ..., n) then the associated (finite
or infinite) controllability matrix K = [B, AB, A’B,...] also is simple positive upper triangular.
We now proceed to investigate the question which full pivot structure$Hor| induce full pivot
structures for{. Conversely, it is of interest to determine which full pivot structuregfaare induced
by full pivot structures fof B, A]. The latter question is more involved and it is studied in detail in the
following section. Here we address the former question for which the following definition is useful.

Definition 3.3 Letm andn be given positive integers.

(a) A pivot structureF’ for ann x n matrix A is called astaircase fornfor A if F'* is monotonically
increasing having the rangR}C = {1,2,...,pa}. Herep, denotes the number of pivots, i.e. the
number of elements iR}..

(b) A pivot structure/ = {j1, ..., jn} forann x (m + n) block-partitioned matriXB, A] induces a
pivot structureP = {py, ..., p,} for the matrixA as given by, = max{j, —m,0}fork =1,... n.

(c) A full pivot structureJ = {ji, jo2, ..., jn} fOorann x (m + n) block-partitioned matri¥B, A] is
called anadmissible pivot structurlr [B, A] if it holds that: (i) B has a pivoti vector, i.e.l < j; <

m, and (i) the pivot structure® induced byJ constitutes a staircase form fat.

Of course, a pivot structuré = {j1,...,7,} for ann x (m + n) block-partitioned matri{B, A]
also induces a pivot structure for the matfx For several purposes, the induced pivot structures
for A and B are more conveniently described in terms of the associated column-oriented description

Q ={q1,-..,qm+n} for [B, A]l. For the matrixA it holds that the associated column-oriented pivot
structureS = {s1,...,s,} satisfiessy, = g+ forall k = 1,..., n. For the matrixB the associated
column-oriented pivot structure is the restriction(@to the domain{1, ..., m}, simply described by

the sequencéqy, ..., qmn}.

Example. Letm = 4, n = 6 and consider the full pivot structuré = {3,1,5,6,4,7} for the
n x (m + n) partitioned matrix B, A]. The corresponding column-oriented description is given by
Q=1{2,0,1,5,3,4,6,0,0,0}. The matrix| B, A] therefore has the form:

co o oo+

S SR S S
* X X X X ¥
EE I SR G

¥ ¥ ¥ ¥ ¥ ¥
O OO+ ¥ ¥
S O+ ¥ x ¥
4+ % x % ¥ %

co oo+ %
S+ * ¥ % ¥

The induced pivot structure for the mateixis given byP = {p1, p2, p3, p4, 05,06} = {0,0,1,2,0, 3},
which follows fromp, = max{jx — 4,0} for k = 1,2,...,6. The associated column-oriented de-
scription is then given by = {s1, s2, s3, s4, S5, 56} = {3,4,6,0,0,0} = {gs, g6, 97, g8, @9, q10}- The
function P* is given by the pairg3,1), (4,2) and (6, 3); the inverseS™ is given by(1,3), (2,4)
and (3,6). Clearly, P* is monotonically strictly increasing (and equivalenfly is monotonically
strictly increasing) so thaP is a staircase form foA. This is clearly illustrated by the pattern con-
stituted by the entries denoted hyin the matrixA above. Also, the matriB has a pivott column
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as its third column. Therefore] constitutes an admissible pivot structure &, A]. Note that the
column-oriented description of the pivot structure for the mafifollows from the restriction of)

aS:{Ql? 42,43, Q4} = {27 07 17 5}

Note that aradmissiblepivot structureJ for [B, A] is totally determined by the induced pivot struc-
ture for B. In that case, the pivot structuie for the matrix A having a staircase form is given by
{s1,....sn} = {@m+1, -, @m+pa,0,...,0} where the subsequenge,, 1, ..., gm+p, } IS pOSitive
and monotonically increasing, consisting of the elemen{d df, . . ., n} not occurring i{q1, . . ., gm }-
For admissibility, the only condition on the column-oriented pivot strucfuse. . ., ¢,,, } for B is that

1 occurs in this sequence.

If v is a pivot vector and/ is admissible, then the staircase structurd ahplies thatw = Avisa
pivot-s;. vector. For this reason, the functiéhwill be called thesuccessofunction. (For convenience
we also defineS(0) = 0 and we recall that the terminology ‘a pivotvector’ is synonymous to ‘not
a pivot vector’.) The sequence of pivot positions for the vectordv, A%v, A3v, . .. is then given by
k,S(k),S%(k),S3(k),.... Conversely, the induced pivot structufefor A is called thepredecessor
function (here we also introdude(0) = 0). Recall thatS™ and P* are each others inverse.

We have the following result.

Theorem 3.4 Letm andn be given positive integers.

(@) If J is an admissible pivot structure for am x (m + n) block-partitioned matri{ B, A], then
K = [B, AB, A?B, .. ] has a full pivot structure/.

(b) For every non-admissible full pivot structusethere exists am x (m + n) matrix [B, A] having
the full pivot structure/, for which K = [B, AB, AB, .. .] does not have a full pivot structure.

Proof. (a) Admissibility of J implies thatB has a pivott column. Thus, the (infinite) controllability
matrix K also has a pivol- column, becausé is a sub-matrix ofi. Now consider the induction
hypothesis that the controllability matrix is known to have pivots at positioRs. .., k, with1 < k <
n. From the admissible pivot structure[d?, A], eitherB or A has a pivottk + 1) column, depending
on the value ofji 1. If jx+1 < m, then this column is iB hence it also appears . Otherwise,
columnj,q of [B, A is in fact columnpy1 = jir1 — m of A. Equivalently,sy = ¢p10 = k+ 1
for { = piry1. Because of the staircase structuredofand because the prescribed pitotolumn is
in B) it holds that! < k. SinceK has a pivot¢ column according to the induction hypothesis, the
matrix product4A K now has a pivot{% + 1) column because of the staircase structurd oBut AK

is a sub-matrix ofi(, whence it follows tha# has a pivottk + 1) column. This shows the induction
step. Hence the controllability matrix has a full pivot structure.

(b) See Appendix A. O

Remarks.

(i) For an admissible pivot structutgfor [B, A] there is a uniquely determined full pivot structufe
which applies to every controllability matrix that may occur for each arbitrary matfi, A] having

the structure/. One can easily calculateusing the numbered Young diagram technique described in
the following section. It is most clearly displayed i for the example where each pivbteolumn in

[B, A] is set equal te;, and each non-pivot column is set to zero.

(ii) For givenm andn, the total number of different admissible full pivot structures can be computed
from the fact that an admissible pivot structure is completely determined by the pivot structiite for

Itis given by: > ™ ( TZ ) ( ?:11 >



4 The Young diagram associated with an admissible pivot structure

Starting from an admissible pivot structufdor [B, A] we now want to analyze the full pivot structure
J for the (finite) controllability matrixK = [B, AB, ..., A" !B] induced byJ and describe their
relation.

Admissibility of J implies thatl < j; < m, so thats; is either zero (in which casd has no
pivots) ors; > 1. Together with the staircase form df this means that for akk = 1,...,n either
s > kors, = 0. The sequencék, S(k), S%(k), S3(k),...} therefore is strictly monotonically
increasing until at some point the valG@ccurs after which the sequence remains zero. This happens
when St (k) attains a value ifp4 + 1,...,n}. Conversely, starting from a valde> 0 the sequence
{¢,P(0), P2(¢), P3(¢), ...} is strictly monotonically decreasing until at some point the valoecurs
after which the sequence remains zero. This happens Whegi attains a value ifqi, . . ., gm }-

In this way, an admissible pivot structugefor [B, A] generates a uniquely specified full pivot
structure.J for the controllability matrix/. To visualize this, it is helpful to introduce an x n
arrayY = (y; ;), defined as follows: entry; ; denotes the pivot position of vectoin the j-th block
AJ=1B of K (so thatJ(k) = (j — 1)m + i wherei and;j are such thag, ; = k). In terms of the
column-oriented descriptio@ = {q1,42, - .., qnm} Of the pivot structure ofX” associated with the
row-oriented full pivot structure/, it simply holds thaty; ; = q(j—1)m+; foralli = 1,...,m and
j =1,...,n. The arrayY” can therefore be regarded asranx n matrix representation a which
allows a clearer expression of the role played by the block-partitioning .ofObviously, there is a
one-to-one correspondence between such an &fi@jth entries in{0, 1, . .., n}) and the functiorQ
(from{1,...,nm}t0{0,1,...,n}).

Example. Letm = 4, n = 6 and consider the admissible full pivot structufe= {3,1,5,6,4,7}
and its associated column-oriented descriptos: {2,0, 1,5, 3,4,6,0,0,0} for the6 x 10 partitioned
matrix [B, A] given by:

* X X X X

cocooo o+

R
O+ % ¥ ¥ %
O OO HF *x ¥
O O+ ¥ ¥ %
¥ X X X % ¥
R
* ¥ K X % ¥

coco oo+ x

+

Then the successor functighis given byS(0) = 0 and{sy, s, s3, s4, S5, 56} = {3,4,6,0,0,0} and
the predecessor functiaf is given byP(0) = 0 and{p1, p2, p3, 4, 5,6} = {0,0,1,2,0,3}. Note
that the matrixk = [B, AB, A%2B, .. ] is of the form:

cocooo o+

* ¥ ¥ ¥ ¥ ¥
O+ % ¥ ¥ %
O O+ % ¥ %
* ¥ ¥ ¥ ¥ ¥
OO O+ x ¥
* ¥ ¥ ¥ ¥ ¥
* X ¥ ¥ ¥ ¥
¥ X ¥ ¥ ¥ %
4+ % ¥ ¥ ¥ *
¥ X X ¥ ¥ %

cocoo o+ x

This shows that the induced full pivot stiuctu?e‘or K is given byj ={3,1,7,5,4,11} and it has
an associated column-oriented descriptipe- {2,0,1,5,4,0,3,0,0,0,6,0,...}. The corresponding
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4 x 6 arrayY is filled with the values irQ column after column, yielding the diagram:

21410]0|0(0
0(0]0]0(0]O0
Y_136000
5/0]0]0|0(0

Note that the first column of specifies the pivot structure @, i.e.: {q1, 2, ¢3, 94} = {2,0,1,5}.
The other entries of” satisfy the ruley; 11 = S(vi ;).

Theorem 4.1 Let J be an admissible full pivot structure for the block-partitioned maftBx A], with
an associated column-oriented descriptiQn= {qi, . .., gm+n} and the successor functigh given
byS ={s1,...,sn} = {dm+1,- -+, @m+n} @ndS(0) = 0. ThenJ induces a full pivot structurd for
the (finite) controllability matrixk’ = [B, AB, ..., A"~ B] which is specified in terms of the x n
array Y associated witl) as follows:

® Yi,l = qi fori=1,...,m;

(II) Yij+1 = S(yz‘,j) fori = 1,... ,mandj =1,...,n—1.

Proof. As argued in the previous section, the admissible pivot struciue [B, A] is entirely de-
termined by the induced column-oriented pivot structure . . . , ¢, } for B. Given these (prescribed)
pivot positions for the columns aB, the resulting pivot positions for the columns of the blotk
are given by{S(q1), ..., S(qm)}. Likewise, the pivot positions for the columns of the bla¢kB are
given by {52(q1), ..., S%(gm)}. Proceeding in this fashion, it follows that the pivot structuréor

K induced byJ corresponds to an arrdy which is described by: (i) the first column &f, which
corresponds t@ and satisfieg; 1 = ¢; fori =1,...,m; (ii) the other columns of", which are given
by the recursiory; j1 = S(y; ;) fori =1,...,mandj = 1,...,n — 1. In part (a) of the proof of
Theorem 3.4 it has already been argued thabtained in this way describes a full pivot structure for
K. O

The arrayY in the theorem above has the property that the valu2s. . ., n all occur precisely once

while the other(m — 1)n entries are all zero. The set of arrayswith this property is denoted by
Y(m,n). Clearly, there is a one-to-one correspondence between this set of arrays and the set of full
pivot structures for finite controllability matricds of sizen x nm. However, not all the arrays in

the sety(m, n) are induced by somadmissiblepivot structure/ for [B, A]. The following definition

serves the goal of characterizing the subs@t(efi, n) of arraysY that are induced by admissible pivot
structures.

Definition 4.2 An arrayY € )(m,n) is called anadmissible numbered Young diagraiit has the
following three properties:
()foralli=1,...,mandj =1,...,n — 1itholds thaty; ;1 > 0impliesy; ; > 0

(i) the valuesn — pp + 1,...,n all occur in different rows ol” as their last nonzero entries, where
pp Is the number of nonzero rows Bt
(iii) for all i,7/ = 1,...,m andj,j’ = 1,...,n — 1 it holds thaty; j+1 > v 41 > 0 implies

Yij > Yir 5 > 0.

Note that the number of nonzero rows of the arragorresponding to the induced full pivot structure
J in Theorem 4.1 is equal to the number of nonzero entries in the first coluriih which is equal
to the number of pivots in the matri®¥. This explains the notatiopp in the definition above. The
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terminology ‘numbered Young diagram’ will become more clear below, when the relationship with
nice selections and Young diagrams is explained.

Theorem 4.3 (a) LetJ be an admissible full pivot structure for the block-partitioned maffix A],

then the induced full pivot structurfor the controllability matrixk = [B, AB, ..., A"~ B] corre-
sponds to an admissible numbered Young diagram

(b) LetY be an admissible numbered Young diagram. Then there exists an admissible full pivot struc-
ture J for [B, A] which induces the full pivot structutéfor K = [B, AB, ..., A*~! B] which corre-
sponds tay".

Proof. (a) From Theorem 4.1 we have thainduces the full pivot structurg for K which corre-
sponds to an array € Y(m,n) given by: ()y;1 = ¢ fori = 1,...,m; (i) yij+1 = S(yi;) for
i=1,...,mandj =1,...,n — 1. Clearly, thei-th row of Y is entirely zero if and only if; = 0.
Hence the number of nonzero rowsfis equal to the numbergs of (prescribed) pivots iB. As we
have seen, admissibility of implies thats;, = O ifand only ifk € {p4 + 1,...,p4 + pp = n}. This
shows that the last nonzero entries in thenonzero rows o™ have the values — pg +1,...,n
and they necessarily all occur in different rows. Nextyif.1 > 0, theny; ;11 = S(y; ;) with
vi; > 0 becauseS(0) = 0. This relationship is also described by the predecessor funétias
yij = P(yij+1) > 0. Note that in fact the restricted positive functiofi$ and P* describe this
relationship and they are both strictly monotonically increasing because of the staircase progerty of
Therefore, by application aP*, the relationshipy; j 11 > yi j+1 > 0 implies thaty; ; > y;7 j» > 0.
This shows that” is an admissible numbered Young diagram.

(b) Suppose that” € Y(m,n) is an admissible numbered Young diagram. Considepthaonzero
rows of Y. According to property (i), the last nonzero entries of these rows precisely cover the range
{n—pp+1,...,n}. Itfollows that all the other entries &f are< n—pp because every positive value
from {1,...,n} occurs exactly once. Now consider the function {0,1,...,n} — {0,1,...,n}
defined from the values iy as follows: S(0) = 0, S(y;;) = vij+1 foralli = 1,...,m and
j=1,...,n—1,andS(y;,) = 0foralli =1,...,m. Note that the pattern of positive values in the
arrayY is left-aligned according to property (i). This makes that the definifiéh) = 0 is consistent
with the prescriptionS(y; ;) = v j+1 in situations wherey; ; = 0, and also with the prescription
S(yin) = 0 in situations wherey; , = 0. Note also thalS(k) > Oforallk = 1,...,n — pp and
S(k)y=0fork=mn—pp+1,...,n (as well as fok = 0). The associated functioi* is a bijection
with domain{1,...,n — pp}.

Property (i) of Y now implies thatS* is monotonically increasing. To see this, choose positive
integersk and ¢ with S(k) > S(¢) > 0. Then choose the unique integérs’, j andj’ such that
yij+1 = S(k) andy; 41 = S(¢) and invoke property (iii) to obtain that > ¢ > 0. Consequently,
ST can be used to prescribe a staircase form for the matrikhepp positive values i1, ..., n} not
occurring in the range of ™ are precisely those occurring in the first columrivof This first column
of Y serves to describe a pivot structure for Together withS+ this determines a full pivot structure
J for [B, A] in which A has a staircase form. Fdrto be admissible, it remains to be shown tBdbas
a prescribed pivol-column, or equivalently that one of the entries in the first columir i equal to
1. To see this, suppose that for somg > 0 it holds thatS(y; ;) = vi;+1 = 1. Then the bijection
ST can only be monotonically increasingSf1) = 0 so thatl does not belong to the domain 8f",
which required to belong to the set gip largest value§n — pp + 1,...,n}. Buttheny; ; > 1 also
belongs to this set and occurs in a different rowygfproducing a contradiction. O

We thus have established a bijection between admissible pivot structdoesB, A] and admissible
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numbered Young diagrani$ associated with<. To relate these results to the well-known theory of
nice selections and dynamical indices, the following definition is useful.

Definition 4.4 Letm andn be given positive integers.

(a) The setD(m, n) is defined as the set of all multi-indicés= (di,ds, ..., d,) € Ni* for which
di+do+...+dy =n.
(b) A selection of: columns from am x nm controllability matrix K = [B, AB, ..., A" 'B]is

called anice selectionf there exists a multi-inde# € D(m, n) for which the selected set of columns
is given by{ A7~ Be; | j € {1,2,...,d;} fori =1,2,...,m}.

(c) Anice pivot structure/ for K is a full pivot structure forK which constitutes a nice selection of
columns fromk'.

(d) If J is a nice pivot structure fok, then the associated multi-indéx D(m, n) is called the vector
of dynamical indices and each numbgris called thei-th dynamical indexi(= 1,2,...,m) of the
nice pivot structure, or of the input paftd, B).

Nice selections and vectors of dynamical indidegre useful and well-known concepts for studying
the rank structures that can be exhibited by a controllability mdtrix The most well-known nice
selection is the Kronecker nice selection, which consists of therfiiaearly independent columns of
K. Every nice selection may occur as the Kronecker nice selection for some controllability fatrix
(Cf., e.g., [4] and the references given there.) In the concept of nice selections though, there are no a
priori rank or linear independence requirements and no triangularity conditions. Conversely, for a nice
pivot structure it is not required that the column selection is a Kronecker nice selection. Note also that
there aren! different nice pivot structures all corresponding to the same nice selection.

Above it has been shown that an admissible pivot structuré Bord] induces a corresponding
full pivot structure forK for which the associated arrdy € ) (m,n) is an admissible numbered
Young diagram. Conversely, all admissible numbered Young diagrams are induced in this way. An
admissible numbered Young diagram specifies a selectionaaflumns of K, which constitutes an
upper triangular sub-matrix; therefore theseolumns are linearly independent. From the definition
of a nice selection it should be clear that any nice selection can be representeah lxyralbinary array
Z = (zi;) in the following way:z; ; = 1 if column of the j-th block A’~! B of K is included in the
nice selection, and; ; = 0 otherwise. The nonzero entries in such an atragxhibit a left-aligned
pattern and the dynamical indéx denotes the number of nonzero entries indtle row of Z, while
di + ...+ d, = n. Such an array is closely related to the concept of a Young diagram, see [2]. As
we have seen, any admissible numbered Young diagfasieft-aligned and it therefore gives rise to
an associated nice selection; the induced full pivot strucfusea nice pivot structure foK. This also
explains our terminology. For the purpose of the design of local canonical forms for various classes of
linear multivariable systems, it is important that there exists an admissible numbered Young diagram
for everynice selection. We therefore continue to study the relationship between nice selections and
admissible numbered Young diagrams.

Let Z be aYoung diagrami.e., a left-alignedn x n binary array corresponding to a nice selec-
tion with an associated vector of dynamical indieges- (dy,...,d,,). A numbered Young diagram
is obtained fromZ by replacing the unit entries i@ by the numberd,2,...,n in some arbitrary
order, so that they all occur exactly once. The setof n numbered Young diagrams is the subset of
Y(m,n) of left-aligned arrays. We will now show that for every Young diagréithere exists an asso-
ciatedadmissiblenumbered Young diagram. More precisely, we will characterizdl the admissible
numbered Young diagrams that correspond t& .
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To do this, it is convenient to associate with eviefg-alignedarrayY € )Y (m,n) a corresponding
right-alignedarrayY, as follows. IfY is left-aligned then this means that there is an associated vector
of dynamical indices! = (di,...,d;,) such thaty;; > 0iff j < d;. Thus, thei-th row of Y has
positive entries at its firsf; positions and zero entries at the remaining d; positions. Thery, is
defined by:(Y;);; = 0forl < j <n—d; and(Y});j = ¥ j—n+d, forn —d; +1 < j < n. In other
words: thed; positive entries in thé-th row are all shiftedh — d; positions to the right.

Proposition 4.5 Let Z be anm x n Young diagram corresponding to a nice selection with an asso-
ciated vector of dynamical indices= (dy,...,d,). Anm x n left-aligned arrayY” corresponding

to the same vector of dynamical indicésis an admissible numbered Young diagram if and only if
there exists amn x m permutation matrix1 for the associated right-aligned arrayj,. such that the
nm-vector ve€IlY,) = ((I1Y;e1)7, (I1Y,e2)7, ..., (HYTen)T)T € R"™ obtained by stacking the

n columns of the array1Y,, has the property that if the zero entries are deleted themtivector
(1,2,3,...,n)T is obtained.

Proof. Suppos€&’ is an admissible numbered Young diagram corresponding to the vector of dynam-

ical indicesd. Consider thez = n — p4 nonzero values in the last columnBf (wherepp denotes

the number of pivots iB, i.e. the number of nonzero entries{iqp, . . . , ¢, } which also is the number

of nonzero rows inY” as well as inY;). These values constitute a permutation of the set of values

{pa+1,...,p4 +pp = n}. Now consider the predecessdiB(p4s + 1),..., P(n)}. Note that the

nonzero values among these predecessors show up in an increasing order, Becaisgnotoni-

cally increasing. Repeating the argument, it follows thatgamepermutation of the nonzero rows

of Y, which makes that the nonzero entries in its last column appear in an increasing order, achieves

that such a property holds feachof the columns ofy;.. Consequently, when all the columns of the

row-permuted array, are stacked into a vector withm entries using the well-known vég¢ operator,

a column vector remains which is equal(fio 2, . .., n)” when all the zeros entries are deleted.
Conversely, starting from the given vector of dynamical indi¢esnd an arbitrary choice dil

permuting the nonzero rows &f, thenm-vector with the given property and the right-aligned arrays

IIY, andY, and the left-aligned array are completely determined. The left-alignment property (i) of

an admissible numbered Young diagr&mms built-in. Properties (ii) and (iii) ol are not difficult to

verify either, because they are easy Iy, andY,. and shifting the rows to move betwe&h andY

does not basically change the requirements (one only needs to take into account that zeros may occur

to the left of a string of nonzero entries¥h, but the dynamical indices now specify the length of such

a string in advance). O

Note that the technique used in the proof of this proposition is constructive and can be used to generate
all the admissible numbered Young diagrams corresponding to a given nice selection. Thesk are
different possibilities, whergg can be read off frond as the number of dynamical indicés> 0.

For givenm andn and for each nice selection with a vector of dynamical indit,esne can consider
the family 7 (d) of controllable pairs which have the additional property that the selected columns from
the controllability matrix are linearly independent. Then we know that each controllabléAdit)
lies in at least one of the famili€g(d), d € D(m, n).

Now consider théamily of all controllable pairg A, B) with A discrete-time asymptotically stable
and the question of how to parameterize this family up to state isomorphism. (l.e., up to multiplication
of the controllability matrix/<' by a nonsingular. x n matrix on the left.) Every such pait4, B)
corresponds to a positive definite controllability Grami#p, which can be factored intd/, = M* M
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by making a well-defined choice far, e.g. by prescribing it to be a positive upper triangular Cholesky
factor. Such a choice can be parameterized to involve precigely1) /2 independent real parameters.
Using M to act as a state isomorphism transfors B) into an input-normal controllable pair, but it
does not affect any linear dependence relations between the columns of the controllabilityAnatrix
Hence it allows one to restrict attention to the question of parameterizing the famiipwfnormal
controllable pair§ A, B) up toorthogonalstate isomorphism.

Note that an input-normal controllable pdid, B) corresponds to a row-orthonormal partitioned
matrix [B, A] for which A is asymptotically stable, and vice versa (see e.g. [7], [8]). Then for each
admissible numbered Young diagramthe family of row-orthonormalB, A] with A asymptotically
stable and with an admissible pivot structure corresponding,téorms a local canonical form for
this family. This set of local canonical forms is covering this family in the sense that for each row-
orthonormal B, A] with A asymptotically stable there exists an admissible numbered Young diagram
Y and an orthogonal matrig such thafQB, QAQ'] has the admissible pivot structure associated
with Y. Furthermore, because of uniqueness of the associated QR-decomposition due to positive upper
triangularity, for such a combination 68, A] andY the matrix@Q and hencéQ B, QAQT] is unique.

An interesting question is how to obtain a minimal sub-atlas of this atlas of local canonical forms,
minimal in the sense that no further local canonical forms can be left out without losing the property
of covering the family. To obtain a minimal sub-atlas we have to choose one of the local canonical
forms for eachi € D(m,n). This implies that for eacd € D(m,n) we have to choose one of the
pg! possible numberings of the associated Young diagram. As each such numbering is associated with
a permutation of the nonzero rows of the Young diagram this choice can be fixed by specifying that
permutation. One possible choice is the unique permutation for which the permuted dynamical indices
form a non-increasing sequence, while the order of the rows which have the same dynamical index
is kept the same. Note that this permutation is used only to determineuthberingin the Young
diagram, the ordering of the dynamical indices is left unchanged. With hindsight one can say that this
particular choice to obtain a minimal atlas was used in [6] in a similar approach for continuous-time
input-normal pairs and lossless systems. Just as in that paper for the continuous-time case, here each
local canonical form on discrete-time asymptotically stable input normal systems defines a balanced
local canonical form on minimal discrete-time lossless systems of ardeiow these balanced local
canonical forms for minimal discrete-time lossless systems of ar@ee related to those constructed
in [7] by means of the tangential Schur algorithm is the topic of the next section.

5 Atlases of balanced canonical forms for lossless systems

We now have two approaches to arrive at an atlas of overlapping balanced canonical forms for discrete-
time lossless systems: one using the balanced realizations associated with the tangential Schur algo-
rithm and one based on balanced realizations with an imposed pivot structure on the row-orthonormal
matrix [B, A], hence on the orthogonal realization matix However, one of our main results is that

the second approach corresponds to making special choices for the direction vectors in the first ap-
proach. Hence the atlas of overlapping balanced canonical forms resulting from the second approach
is a sub-atlas of the atlas of overlapping balanced canonical forms in the first approach. The precise
formulation is as follows.

Theorem 5.1 LetY be an admissible numbered Young diagram, corresponding to an associated nice
pivot structureJ (for controllability matrices) and an admissible pivot structukgfor n x (m + n)
matrices). For eachk = 1,2,...,n, choose the direction vectar,,; ; equal toe;), thei(k)-th
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standard basis vector iR™, where(i(k), j(k)) denotes the unique pair of indices such that) ;) =

k. Then for any choice of the Schur parameter vectqrss, .. ., v, (all of length< 1) and for any
choice of the orthogonal matriky, consider them + n) x (m + n) orthogonal realization matrix?

given by (9). It follows thaf is an admissible pivot structure for the sub-matiX A] andJ is a nice
pivot structure for the controllability matrix.

A detailed technical proof of this theorem is given in Appendix B.

From the point of view of the tangential Schur algorithm, it is of interest also to directly characterize
all the sequences of direction vectars us, . . ., u, that give rise to an admissible pivot structure for
the matrix[B, A] (and an accompanying nice pivot structure for the controllability mditr)x

Theorem 5.2 Consider a chart associated with the tangential Schur algorithm (with all the interpola-
tion pointswy, located at the origin), specified by a sequence of direction vegtors . ., u, }. Then
each[B, A] resulting from this chart exhibits an admissible pivot structure, irrespective of the choice

of Schur vectors, . . ., v,, if the sequence of direction vectors consists of standard basis vectors, say
ug = e, for some indicegi(1), ..., u(n) chosen from{1,2, ... ,m}, satisfying the following con-
dition:

foreachk = 1,2,...,n — 1, if there exists a largest indexstrictly less thark such thatu, = e, (),
thenu(k + 1) is from the se{u(¢ + 1), ..., u(k)}.

Proof. This follows directly from the properties of the three procedures introduced in Appendix B to
generate an admissible numbered Young diagram. Details are left to the reader. O

Example. Consider the same situation as for the example in Appendix B, whete5, n = 12 and
(q1,92,43,q4,95) = (4,1,9,0,7). There it is remarked that the choice of direction vecigys; _, =
ei(k) can be rewritten as; = e, ) whereu(k) denotes the index of the valuein the vectorn,
generated by the ‘third procedure’. In this example it follows that the sequiences, ..., ui2} is
given by{es, e5, €1, €3, €9, €5, €1, €2, €1, €2, €2, €2 }. Note that this sequence satisfies the condition of
Theorem 5.2 foralk = 1,2,...,11. E.g., fork = 6 the previous occurrence of the vecigy = e5
happened fof = 2. The condition of the theorem requires to occur in the sefus, ug, us, ug} =

{e1, €3, e2, €5}, which indeed is the case.

6 Conclusions and discussion

In this paper we have developed a detailed procedure to construct an atlas of overlapping (local) bal-
anced canonical forms for MIMO discrete-time lossless systetn®3, C, D) of a given ordem. To
achieve this, the concept of an admissible pivot structurgiforl| has been introduced, which induces
a full (nice) pivot structure for the associated controllability makix The approach taken in Sections
3 and 4 has a wider range of applicability though: it builds on the algebraic relationship béfwvedin
and K, and it neither relies on input-normality 6f1, B) nor on the discrete-time setting for the loss-
less systems. When one is dealing with a system having a special (non-generic) Kronecker structure,
this can be recognized in these local canonical forms by certain entries becoming zero. To demonstrate
the structure of the charts that constitute the atlases discussed in this paper, a detailed worked example
is included in Appendix C.

One of the main practical reasons for studying overlapping canonical forms is that (iterative) iden-
tification and optimization algorithms in the MIMO case may suffer from numerical ill-conditioning
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and slow convergence when they pass by systems that not too far from systems with a non-generic
structure. Switching charts may then help to improve the algorithmic performance. The connection
in Section 5 with the atlas of charts developed for discrete-time input-normal pairs involving the tan-
gential Schur algorithm is useful, because that set-up involves (well conditioned!) orthogonal matrix
computations while it is tailored to deal with the important class of stable systems. The tangential
Schur algorithm provides one with a lot of flexibility to design local canonical forms. Since it is com-
putationally expensive to switch charts at each and every iteration, a suitably chosen finite sub-atlas
is welcome. In the present paper we have indicated the restrictions that should be taken into account
when choosing direction vectong from the set of standard basis vectors, if a pivot structure is to show

up not only in[B, A] but also in the controllability matri¥. When a nice pivot structure is present in

K, this has the advantage that the impact of state vector truncation is easier to analyze; controllability
is then preserved. This is of importance in the context of model order reduction applications.

Future research addresses the issue of monitoring the conditioning of a chart (i.e., a local canonical
form) at a given system, and the issue of selecting a better chart when switching becomes necessary.
Since the total number of charts in an atlas quickly grows large with the dimensiansin (even for
the case of admissible pivot structures) it may not be attractive to carry out a full search for a better
chart over the entire atlas. The rank structurdsirtan then be instrumental in designing a quick on-
line algorithm which guarantees a certain degree of conditioning improvement. This is currently under
investigation.
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A Proof of part (b) of Theorem 3.4

Consider a non-admissible full pivot structufe= {j1, jo,...,j,} for [B, A]. Then it either holds
that: (1)J does not prescrib& to have have a pivot-column, or (2)J does prescribés to have a
pivot-1 column, but/ does not impose a staircase structuredon

In case (1) it holds that; > m. We distinguish between two situations. (i)jif = m + 1, then the
first column ofA is a pivotd column. Then consider the following example: for edchk 1,...,n

let columnyjj, of [B, A] be equal to thé-th standard basis vectef, € R™ and let the remainingn
columns of{ B, A] all be zero. ClearlyjB, A] exhibits the given full pivot structurd, bute! B = 0
andel A = eI so thate] K = 0. HenceK does not have a pivdtcolumn, so it does not have a full
pivot structure.

(ii) If instead j; > m + 1, then consider the following example: for edek- 1, ..., n choose column

Jjr of [B, A] to be a positive pivof: vector and let the remaining columns of[B, A] all be chosen

to be strictly positive (so that effectively they are all positive piwotectors). Clearly] B, A] exhibits
the given full pivot structure/. Note that each column iR is (effectively) a positive pivof: vector
with £ > 2. Now, if v is a positive pivotk vector, thendw is a positively weighted linear combination
of the firstk columns ofA. Since all columns ofl are (effectively) positive pivot-vectors for certain
values of?, the vectordv is a positive pivotp vector wherep is the maximal (effective) pivot position
among the firsk columns ofA. Now, the first column ofd has at least two nonzero entries, because
j1 > m + 1. Therefore, each column oA B is (effectively) a positive pivo vector withp > 2.

By induction it follows that all columns of< are (effectively) positive pivop vectors withp > 2.
ConsequentlyK does not have a pivat-column, so it does not have a full pivot structure.

In case (2) it holds that; < m, but the staircase structure does not necessarily hold fie again
distinguish between two situations. (i) Suppose that for shraen there is a pivotk vector in A for
which there is either a non-pivot column ihpreceding it, or a pivot-vector preceding it witld > k.
Then consider basically the same example as used in case (1) part (ii): fok eadh. .., n choose
columnji, of [B, A] to be a positive pivot: vector and let the remaining columns of[ B, A] all be
chosen to be strictly positive (so that effectively they are all positive pivaeetors). For this example

it now follows thatK does not have a pivadt-vector, becaus® does not have one and because for
allp =1,...,n the maximum (effective) pivot position among the fipstolumns ofA can never be
equal tok.

(i) For all & < n the pivot% vectors inA respect the staircase structure, but there is a prescribed
pivot-n vector in A which is directly preceded by a non-pivot column. If this pivotector occurs in
the last column of4, then one may consider the same kind of example as used in case (1) part (i): for
eachk = 1,...,n let columny of [B, A] be equal ta;, and let the remaining: columns of[ B, A]

all be zero. Now:! B = 0 ande! A = el so thate? K = 0. HenceK does not have a pivot-column,

so it does not have a full pivot structure. If the pivoirector does not occur in the last columnAf
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then the last column ofl is a non-pivot column. Summarizing, we then are in a situation where the
firstp4 — 1 columns ofA exhibit a staircase structure, columpn= j, — m > p4 of A is a pivotn
column and the two columns- 1 andn of A are both non-pivot columns. Then consider the following
example. Columnj,_; of [B, A] is defined as the pivafp — 1) vectorZe,_;. Columnj, of [B, A] is
defined as the pivat-vectorZe, + 1%e, 1. The3 x 3 sub-matrixS of A constituted by the intersection
36 48
0 B B

3 18 13

25 25

5
remaining entries at pivot positions B, A] are defined to bé and all other entries are set to zero.

For this example it will be shown that the entries in the last rowkoére never positive, so thadt
does not have a full pivot structure. Note that all column&ihave a last entry that is equal to zero.
All other columns inK are of the formAv for some vectow € R™. For Av to have a nonzero last
entry, at least one of the entries in positigns 1, p andn of v must be nonzero. Such vectarsnust
come from repeated pre-multiplication of the columng3aby the matrixA. The first vectors to have
such a structure are the pivgi— 1) vector and the pivop-vector that both occur among the columns
of B and the firsip4 — 1 columns ofA. Once such vectors are multiplied byA, only the entries in
positionsp — 1, p andn can become nonzero: the subspace spanneg hye, ande,, is an invariant
subspace ofA. Restricting to this subspace, the matdxis represented by the sub-matitxgiven
above. Consequently, the entries in the last rowkodre either zero or obtained as the entries in the

of its rows and columns with indicas— 1, p andn is defined as5 = 0 Al

3 16
5 25

last row of the controllability matrix of the paiff’, S) with 7" = | 0 g which represents the
0 0

pivot-(p — 1) and the pivotp vector in this new notation. For the matrikit is easily established that
S3 = 5415 |t therefore suffices to compute the last row of the mdtfixST, S>T7], which is equal to

62
(0,0, —% , —%, —%). This proves that all these entries are indeed non-positive. O

Remark.

In the case of balanced realizations of lossless systems we will in addition refuirg to have
orthonormal rows. The proof above does not entirely apply to this restricted situation. For example if
[B, A] only has non-negative entries then orthogonality of the rows requires that in each column there
is at most one nonzero entry. This requirement is violated by the counterexamples presented in case
(1) part (ii) and in case (2) part (i) of the proof, because non-pivot columns are chosen to be positive
pivot-n vectors. How to obtain a proof for this more restricted orthonormal case is an open problem at
this point. Note however that the counterexamples presented in case (1) part (i) and in case (2) part (ii)
of the proof have in fact already been designed to invaB/eA] with orthonormal rows.

B Proof of Theorem 5.1

To prove this theorem it is helpful first to reconsider the precise relationship betiieén/ and the

pivot structure{qi, ..., ¢, } of the matrixB. Recall that the number appears in the pivot structure
{q1,...,qm} for B because of admissibility and this sequence completely characterizes the successor
function S, the column-oriented descripti@p, the admissible pivot structutg the nice pivot structure

J and the admissible numbered Young diagrerm the way explained before.

We have previously introduced the following construction procedur&from {q1, . . ., g }:
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Procedure 1
(a) Construction the successor functiofi is defined as the increasing sequence of all positive num-

bersin{1,2,...,n} notoccurring in{qu, ..., g, } completed by a sequence @t zeros; in addition
S(0) =0.

(b) Initialization: sety; ; :=g¢; fori =1,...,m.

(c) Recursionsety; j+1 := S(y;;) fori=1,...,mandj=1,...,n— 1.

A second way to generaié in a dynamical fashion which avoids the explicit constructiors'pis by
means of the following procedure:

Procedure 2

(a) Initialization: sety; ; = ¢; fori =1,...,m.

(b) Recursionfor k = 1,2, ..., n, if the valuek has not yet been assigned to an entry’dhen select
the smallest nonzero numbey; in Y for which the entryy; ;1 immediately to its right has still not
been assigned some value andiget.; = k.

(c) Termination set all the remaining entries &f equal to zero.

It is not very hard to establish that the arreyconstructed in this fashion is indeed admissible and
identical to the array” constructed previously with the help 6f

A third way to generat&” from {q, ..., ¢, } employs a sequence of vectoys(k = 0,1,2,...,n)
and proceeds as follows in a backward fashion:

Procedure 3

(a) Initialization: setn,, = (q1,...,qm)".

(b) Backward recursionfor k = n — 1,...,1,0 constructy, from 7, by executing the following
three rules in the given order:

(1) if (nk+1): = 0 then sel(n); := 0;

(2) if (1k41)i > 1then seng )i := (mrt1)i — 15

(3) if (mk+1): = 1 then defin&, as the smallest positive number different from all the entrieg,of
already assigned by rules (1) and (2)4if< k then se{(n); := & else setny); := 0.

(c) Construction for eachi = 1,...,m consider thel; values ofk for which (n,,1-x); = 1 and
assign these values (in increasing order) to thedirsitries of row; of Y; set all other entries t0.

The validity of this third procedure for generatiifgcan be seen as follows. First, note that because of
rule (2) in each recursion step (b), the first columiadttains the required form containigg, . . . , ¢,

since the numbet first occurs in position of 1,1 for k = ¢;. Also note that the positive integers

in n,, are all different (since this holds fai, . . ., ¢,,) and that the rules in each recursion step (b) are
such that this property is preserved for all vectgrs Next, these rules are such that each vegtor

has precisely one entry equaltpfor all £ = 1,...,n. The construction in step (c) is such that all the
numbers from{1, ..., n} show up precisely once in a corresponding left-aligned numbered Young dia-
gramY’. Finally, rule (3) in each recursion step (b) guaranteesythgais followed byy; ;1 = S(vi ;):

note thaty; ; = k is equivalent tdn,,1-x); = 1 and(n,—x); = & implies thaty; ;-1 = k + &; here

& > 0is chosen as small as possible, precisely in line with the second procedure for genérating

Example. Consider the situation with. = 5, n = 12 and(q1, 2,93, 94,¢5) = (4,1,9,0,7). Then
the successor functiof is described by{si, so,...,s10} = {2,3,5,6,8,10,11,12,0,0,0,0}. It
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follows thatpp = 4 and the corresponding admissible numbered Young diadfasgiven by:

416 |10

1123|5812
Y=|9

7111

where all the zeros are omitted for clarity. The second procedure for geneyatiigpout the explicit
construction of the successor functiSryields the same result. It proceeds from the given first column
of Y by putting the valu@ after the valud, then the valug after the value, then the valué after
the value3, then the valué after the valuel, and so on. The valuds 4, 7 and9 are skipped, because
they have already been assigned to the first colunin.of

The third procedure for generating involves the backward recursion for the construction of the

vectorsny, for k =n,n —1,...,1,0. This produces the following sequence:
M2 [T | Mo [ Mo [ M8 | M7 [ Me [T | M4 | M3 |72 M | Mo

4 3 2 11211141321 ,0]0]0

1 1 1 21113211413 [2]|1|0

9 | 8| 7 |6|5[4]3]2]1]0]0]0]|0
oOojo0ofjojo0ojofojojofjojojojoyo

716 |5 |43|2|1]4]3|2[1]0/|0

For instance, the vectay, is obtained from the vectojs as follows. First all the entries equal to zero
are copied and all the valuégg); > 2 are decreased hiyto produce the corresponding valuesof);.
The value of(n7). is addressed last, becausg), = 1. At that stage the valuesand2 have already
been assigned to some entriesypfand it holds that; = 3. Becaus&; = 3 is not larger than the
indexk = 7, this value is assigned {@7)2.

Once the vectors;2, m1, . - ., 11 have been constructed, the arays constructed by considering
the positions of the entrids For the first row, these positions are subsequehtyand10 (proceeding
in the given order fromy;2 to 7; corresponding to the index+ 1 — k). For the second row we have:
1,2, 3, 5,8and12, and so on.

The third way of characterizingy in terms of the pivot structuréqgi, . .., ¢} has a number of prop-
erties that are worth noting in view of the proof of Theorem 5.1 below. First, note that rule (3) in step
(b) implies that the maximum value among the entrieg,ofs at mostk. (Thereforeng is the zero
vector.) Second, all the positive entries of a veajprare different. This makes that (f;11); = 1
then a positive valugy, is assigned tdny); for £ > pp and the valué is assigned fok < pg. Third,
note that the sequence of valugs 1, &,—2, - .., &, (in that backward order) is increasing. Fourth,
the choice of direction vectors, 1 = e;) can be rewritten ag;, = ¢,y whereu(k) denotes
the index of the valué in the vectorn,. Note that according to this notatiofyy,) ,x+1) = & for
k=n—1n-2,...,pg. Finally, it will be shown that the vectorng, represent the pivot structures
for the sequence of lossless systems of ordees 1,2,...,n encountered in the tangential Schur
algorithm for the particular choice of direction vectors specified in Theorem 5.1.

Proof of Theorem 5.1. Consider the matrix product

R:Fn"TlRoﬁlT'--AZ-
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Note that the produck’, - - - T'1 Ry is positivem-upper Hessenberg for any choice of Schur vectors
v1,...,v,. Post-multiplication by the matriA? only affects the lastn + 1 columns, because the
matrix AT is given by

L 0 0
T
Ap=1 0 €h(1) 0

0 Im—euneln) €u(n)

wherey (1) denotes the location of the enttyin the vector;; which features in the third method for
the construction ot” from {q¢1, ..., ¢, }. The precise effect is as follows:

(i) columnn of T',, - - - "1 Ry (having a pivot in its last position) is moved into columnat p(1) — 1;

(if) columnn + p(1) of T'y, - - - 'y Ry is moved into columm + m;

(i) columnsn +1,...,n + p(1) — landn + u(1) + 1,...,n+mof I',, - - - T'; Ry are moved one
position to the left, into columns, ..., n + (1) —2andn + p(1),...,n + m — 1, respectively.
Note that the last row df,, - - -FlRoAlT can be regarded to have the structure:

[0 B1 A ]

with A; of sizel x 1 andB; of sizel xm. Thelx (m+1) partitioned matriXB;, A;| has an admissible
pivot structure for which the column-oriented pivot structurésfis given by{0,...,0,1,0,...,0}
with the valuel in positiony(1). In other words, the pivot structure &f is described by;.
Consider the last rows of the matrix product’, - - -FlROA{ e A}g. Note that these can be
regarded to constitute the structure:
[0 By A |

with Ay, of sizek x k and By, of sizek x m. Now suppose that the x (m + k) partitioned matrix

[By, Ag] is known to have an admissible pivot structure for which the column-oriented pivot structure
of By is given by the vectorny. (This is the induction hypothesis.) We consider what happens under
post-multiplication by the matriA{H. Note that this matrix is given by:

L1 0 0 0
T
r 0 €kt 1) 0 0
A =
0 T = Culern€uger)  Cuthtn) O
0 0 0 Iy,
Therefore, post-multiplication b&{H only acts on the columns — &, ..., n — k + m of the matrix

Fn"'FlRoAip“'Az-
The partitioned matriXxBy, 11, Ax+1] is then formed as

T
v B a Culk+1) 00
[Bry1, Apt1] = [ 0 Bp A, ] Im = euer1)Cpeyry  Cuter1) 0
0 0 I

where~ is a positive scalar and anda arel x m andl x k row vectors, respectively. It follows that
the post-multiplying matrix carries out the following action:
() the columns involving4, remain unchanged;

v B« } having a pivot in its first position, is moved into columfk + 1);

(ii) column 1 of [ 0 B A,
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(iii) column p(k 4+ 1) + 1 of { v foa ] is moved into colummn + 1;

0 By A
v B o« "
0 B, A :| are moved one position

to the left, into columng, ..., u(k+ 1) — landu(k + 1) + 1,...,m, respectively.
This shows that the pivot structure B, ; is obtained from the pivot structure &%, in the following
way: all the nonzero entries of the structure vectoare increased by except for the entry with index
wu(k + 1), which is reset td. This means that the pivot structure®f_, ; is indeed given by the vector
Me+1-

It remains to show that the matrix;, ., again has a staircase form. Na#;, has a staircase form
according to the induction hypothesis aAg, ; is recognized to be of the form

0 «
Ak+1_|:6 Ak:|

wheres is the u(k + 1)-st entry of the row vectop ande is the u(k + 1)-st column of B,. This
means that the pivot in the first column.4f.; shows up in positiofn ) ,x+1) + 1, which is equal to
&k + 1. However, it has already been established that the seq@gnees,—», . . ., &, is increasing.
Therefore, Ay, also has a staircase form.

By induction this shows for alkt = 1,2,...,n, that[ By, Ax] has an admissible pivot structure for
which the vector, specifies the pivot structure of the mat#y. In particular, fork = n the claim of
the theorem follows. O

(iv) columns2, ..., u(k+1)andu(k+1)+2,...,m+1of {

C An atlas for input-normal pairs (A, B) under orthogonal state-space
equivalence, withm =3 andn =4

To illustrate the results and constructions of this paper, we here present an atlas for the manifold of
(controllable) input-normal pair§A, B) under orthogonal state-space equivalence, for the non-trivial
casem = 3 andn = 4. Each of the charts in this atlas gives rise to a particular full pivot structure in
the controllability matrixX” and an admissible pivot structure for the row-orthonormal mamixA].

For givenm andn, the number of differenadmissible numbered Young diagrafsee the end
of Section 3) is specified by ;™™ 41 TZ Z - 11
amounts ta39. To obtain aminimal sub-atlas, precisely one chart should be included for each nice
selection, i.e. for each vector of dynamical indides D(m,n). The cardinality ofD(m, n) is easily
m+n—1

m—1

consists ofl5 charts. In Tables 1-3 the 15 different vectors of dynamical indices for this example are
displayed, along with the corresponding 39 admissible numbered Young diagrams and their associated
pivot structures i’ and in[B, A].

To arrive at an expliciparameterizatiorof a chart in these tables, one may proceed irdiberete-
time case by exploiting Eqgn. (9) for the construction of orthogonal realization matrices, correspond-
ing to balanced realizations of discrete-time lossless systems. Here the sequence of direction vectors
{u1,u9,us,us} is chosen to consist of particular standard basis vectors, as indicated for each chart in
these tables too. The parameters are then provided by the sequence of Schur{vectorss, v4}
which are all required to be of length 1. The 3 x 3 orthogonal matrix blockD, can be set to

. For the casen = 3 andn = 4 this

computed a{ . For the casen = 3 andn = 4 this implies that a minimal sub-atlas
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any fixed value; the choic®, = I3 is a convenient one. The latter is a consequence of the general

fact that if an orthogonal realization matri = [ D is generated by Eqn. (9) for sonigy,

> 4l

{u,...,up} and{vy,...,v,}, then the alternative choicés,, {u1,...,u,}and{D¢v1,..., Dl'v,}

DoD DyC
B A

From such a (minimal or non-minimal) atlas for input-normal pairs under orthogonal state-space
equivalence, a corresponding atlas for all input-normal pairs of the given dimensiangr. is directly
obtained by regarding the associated manifold as a Cartesian product of the previous manifold with the
orthogonal grou(n), related to the choice of state-space transformation.

To arrive at a corresponding atlas farx m lossless systems of ordeione may instead regard this
space as a Cartesian product of the previous manifold with the orthogonal @(@up now related to
the choice ofDy.

To obtain an atlas for asymptotically stable discrete-time systems of ardith m inputs andp
outputs, one may proceed by taking all the entrie§'@ind D (of sizesp x n andp x m, respectively)
to be free parameters, only subject to the constraint that observability needs to hold for (& @air
(a property which is then generically satisfied in each chart, i.e. it only excludes a thin subset of
parameter vectors). Such an approach is useful in system identification, for instance in conjunction
with the method of separable least-squares (see [1]). Then we may have to consider output-normal
forms instead, but this can be achieved easily using input-output duality.

Finally, to deal with thecontinuous-timease, the well-known bilinear transform can of course be
applied. However, this will in general destroy the pivot structuré&(imnd in[B, A]. To employ the
resultsdirectly in the continuous-time case too, note that the pivot structures for (controllable) input-
normal pairs/B, A] as given in the Tables 1-3 do in fact apply to the continuous-time case already,
giving rise to local canonical forms that can be computed numerically for a given state-space realization
in a straightforward way. What at present seems to be lacking in the continuous-time case is an explicit
parameterization of these local canonical forms (such as may be required in system identification).
This is currently the topic of ongoing research.

yield the realization matri{ , which exhibits exactly theamenput pair(A, B).
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Chart Young diagran¥ and Admissible numbered Full~pivot Sequence of direction Admissible pivot Structure of
ynamical inde: ‘oung diagram structureJ for vectors{uy, uz, uz, ug structureJ for [B, ,
d ical indexd Yo di Lg J for K J for [B, A B, A
TT1[1]1 T[2[3]4 Jg o i o
1 {1,4,7,10} {e1,e1,e1,e1} {1,4,5,6} 0 + x| 0 + % =
0 * * 0 0 + *
(4,0,0)
EENE NN AR
2 1 4 {1,4,7,2} {e2,e1,e1,e1} {1,4,5,2} 0 % x| 0 4+ =
0 + * 0 0 * *
T2 T2 ] =+ * * * * * *
= 0 * * =+ * * *
(3,1,0) 3 {1,4,2,7} {e1,ea2,e1,e1} {1,4,2,5} 0 + x| 0 x % =
0 0 * 0 + * *
1111 1723 Jg A I
* *
3 - . {1,4,7,3} {es,e1,e1,e1} {1,4,5,3} 0 % x| 0 4+ =
0 * + 0 0 * *
1 5 I —+ * * * * * *
0 * * —+ * * *
(3,0,1) . {1,4,3,7} {e1,e3,e1,e1} {1,4,3,5} 0 %« + 0 % =
0 * 0 0 + * *
T T AR D
4 111 214 {1,2,4,5} {e2,e1,e2,e1} {1,2,4,5} 0 0 x|+ % % =
0 0 * 0 + * *
5 1 * =+ * * * * *
: 0 * * * * *
(2,2,0) N {2,1,5,4} {e1, ez, e1,e2} {2,1,4,5) P IS
0 0 * 0 + * *
1 1 1 3 + * * * * * *
0 * * =+ * * *
5 1 Z {1,4,2,3} {es,e2,e1,e1} {1,4,2,3} 0 4+ x| 0 % =
: 0 0 + 0 * * *
T ) —+ * * * * * *
0 * * * * *
2,1,1) ! {1,4,3,2) {e2.es,e1,e1} {1,4,3,2} A I S
3 0 —+ 0 0 * * *
T 3 =+ * * * * * *
0 + * * * ok ok
i {1,2,4,3} {es,e1,e2,e1} {1,2,4,3} 0 0 x| 4+ % =
0 0 +]0 % * x
1 3 =+ * * * * * *
0 * + * * * *
;1 {1,3,4,2} {e2,e1,e3,e1} {1,3,4,2} 0 %« 0| 4+ % =
0 + 0 0 * * *
1 1 + * * * * * *
2 {1,2,3,4} {e1,e3,e2,e1} {1,2,3,4} s
= 2,3, °1, €3, €2, €1 » 253, 0 0 + | * % o x
0 0 0|+ % % =
1 1 -+ * * * * * *
0 * + * * * *
g {1,3,2,4} {e1,e2,e3,e1} {1,3,2,4} 0 4+ 0| % % =
0 0 0| + * * =

Table 1: Charts 1-5 fdiB3, A], for the casen = 3 andn = 4.
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Chart Young diagran¥ and Admissible numbered Full~pivot Sequence of direction Admissible pivot Structure of
dynamical indexd Young diagram&” structureJ for K vectors{uy, ug, uz, uq ; structureJ for [B, A] [B, A]
* —+ * * * * *
6 T1]1]1 12|32 {2,5,8,11} {e2,e2,e2,ea} {2,4,5,6} : 8 : g j: : i
* 0 * 0 0 + *
(0,4,0)
* + * * * * *
5 - = * 0 * + * * %
7 1171 112713 {2,5,8,3} {e3,e2,e2,e2} {2,4,5,3} 0 x| 0 4 =
1 4 « 0 4+ |0 0 = =«
— * —+ * * * * *
* 0 * =+ * * *
(0,3,1) I[2[4 {2,5,3,8} {e2,e3,€2,e2} {2,4,3,5} v 0 +10 % o« =
3 * 0 0 0 —+ * *
1 1 * + * * * * *
* 0 * =+ * * *
8 1171 11213 {2,5,8,1} {e1,e2,e2,e2} {2,4,5,1} 0 x| 0 o+ s 9«
+ 0 * 0 0 * *
3 * =+ * * * * *
* 0 * =+ * * *
(1,3,0) I[2[4 {2,5,1,8} {e2,e1,e2,e2} {2,4,1,5} B
0 0 * 0 + * *
* + * * * * *
* 0 —+ * * * *
9 111 113 {2,3,5,6} {es,e2,e3,e2} {2,3,4,5} £ 0 0|+ o« s o«
L]t 214 « 0 0] 0 4+ = =«
* * + * * * *
* 0 * * * *
(0,2,2) 34 {3,2,6,5) {e2, €5, e, e3} (3,2,4,5) S I
1 3 * 0 0 0 + * *
1 1 * + * * * * *
10 [I]71 |2 {2,5,3,1} {e1,es, e, 2} {2,4,3,1} O IS
1 3 + 0 0 0 * * *
3 * =+ * * * * *
* 0 * * * *
(1,2,1) 1z {2,5,1,3} {es, e1, e, 2} {2,4,1,3} S
0 0 + 0 * * *
1 * + * * * * *
- * 0 + * * * *
113 {2,8,5,1} {e1,e2,e3,e2} {2,3,4,1} 0 0| 4 % s o«
2 + 0 0] 0 * x =x
3 * =+ * * * * *
=+ 0 * * * * *
113 {2,1,5,3} {e3,e2,e1,e2} {2,1,4,3} 0 0 x| 4+ % =
4 0 0 + 0 * * *
3 * =+ * * * * *
1|4 {2,3,1,5} {e2,e1,e3,ea} {2,3,1,4} A
5 >3, 1, °2, €1, €3, €2 »3, 1, + 0 0 % % %
0 0 0|+ % % =
3 * -+ * * * * *
—+ 0 * * * * *
14 {2,1,3,5} {e2,e3,e1,e2} {2,1,3,4} 0 0 4+ | % & % =
3 0 0 0|4+ x =

Table 2: Charts 6-10 fdB3, A], for the casen = 3 andn = 4.
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Chart Young diagran¥ and Admissible numbered Full~pivot Sequence of direction Admissible pivot Structure of
dynamical indexd Young diagram&” structureJ for K vectors{uy, ug, uz, uq ; structureJ for [B, A] [B, A]
* * =+ * * * *
* * 0 + * * *
1 {3,6,9,12} {es, e, es,e3} {3,4,5,6} x % 0|0 + = o«
1 1 1 1]2)31]4 * * 0 0 0 + *
(0,0,4)

I * * —+ * * * *
. - * * 0 + * * *
12 {3,6,9,1} {e1,e3,e3,e3} {3,4,5,1} « % 0|0 4+ x =
T 1 1|23 + % 0] 0 0 x =«
BT T T * * + * * * *
* * 0 =+ * * *
(1,0,3) {3,6,1,9} {es,e1,e3,e3} {3,4,1,5} + o« 0|0 % % o«
1124 0 % 0|0 + x =
* * + * * * *
* * 0 =+ * * *
13 1 {3,6,9,2} {e2,e3,€e3,€e3} {3,4,5,2} % 0] 0 4+ %
1 1 1 2 3 * + 0 0 0 * *
* * + * * * *
. * * 0 + * * *
0,1,3) 3 {3,6,2,9} {e3,e2,e3,e3} {3,4,2,5} s 4+ 00 x % =
11214 *« 0 0|0 4+ *x x
* * + * * * *
1 2 4 . + * 0 * * * *
14 {3,1,6,4} {e1,e3,e1,e3} {3,1,4,5} 0 % 0|+ + % =
1 113 0 * 0|0 + % =
i 3 —+ * * * * * *
0 * * * * *
(2,0,2) {1,3,4,6} {e3,e1,e3,e1} {1,3,4,5} 0« 3 ok ok ox
214 0 % 0|0 4+ x =
3 * * + * * * *
15 1 3.6.1.2 3412 * * 0 =+ * * *
1 i {3,6,1,2} {e2,e1,e3,e3} {3,4,1,2} + x 00 x =
0 =+ 0 0 * * *
i * * + * * * *
k * * 0 + * * *
(1,1,2) 3 {3,6,2,1} {e1,e2,e3,e3} {3,4,2,1} o+ 0|0 % & =
1 2 + 0 0 0 * * *
3 * * + * * * *
+ * 0 * * * *
1 {3,1,6,2} {e2,e3,e1,e3} {3,1,4,2} 0 « 0|+ x = =
1 3 0 + 0 0 * * *
7 * * —+ * * * *
* =+ 0 * * * *
2 {3,2,6,1} {e1,e3,€e2,e3} {3,2,4,1} " 0 0 +ox s s
1 3 + 0 0 0 * * *
3 * * + * * * *
+ * 0 * * * *
3 {3,1,2,6} {e3,e2,e1,e3} {3,1,2,4} 0 + 0| % % % =
1]4 0 0 0|+ = * =
B * * =+ * * * *
5 3.2 1.6 3914 * =+ 0 * * * *
21 {3,2,1,6} {e3,e1,e2,e3} {3,2,1,4} L 00 0|« % % o«
0 0 0| + = =* =

Table 3: Charts 11-15 fdiB, A], for the casen = 3 andn = 4.
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