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Abstract

In this paper, the connections are investigated between
two different approaches towards the parametrization of
multivariable stable all-pass systems in discrete-time. The
first approach involves the tangential Schur algorithm,
which employs linear fractional transformations. It stems
from the theory of reproducing kernel Hilbert spaces
and enables the direct construction of overlapping local
parametrizations using Schur parameters and interpola-
tion points. The second approach proceeds in terms of
state-space realizations. In the scalar case, a balanced
canonical form exists that can also be parametrized by
Schur parameters. This canonical form can be constructed
recursively, using unitary matrix operations. Here, this
procedure is generalized to the multivariable case by es-
tablishing the connections with the first approach. It
gives rise to balanced realizations and overlapping canon-
ical forms directly in terms of the parameters used in the
tangential Schur algorithm.

1 Introduction
Stable all-pass systems of finite order have several applica-

tions in linear systems theory. Within the fields of system
identification, approximation and model reduction, they

have been used in connection with the Douglas-Shapiro-
Shields factorization, see e.g., [3, 2, 8, 5], to obtain ef-
fective algorithms for various purposes. They are one-
to-one related to rational inner functions, of which the
differential structure has been studied in [1]. There, a
parametrization for the multivariable case has been ob-
tained by means of a recursive procedure, the tangential
Schur algorithm, that involves Schur parameter vectors,
interpolation points and normalized direction vectors. In
the scalar case, a single coordinate chart suffices to entirely
describe the manifold of stable all-pass (or inner) systems
of a fixed finite order. In the multivariable case, the ap-
proach leads to infinite atlases of generic charts covering
these manifolds.

In another line of research, balanced state-space canon-
ical forms have been constructed for various classes of lin-
ear systems, with special properties of these classes (such
as stability) built in, see e.g., [9, 7]. Balanced realiza-
tions are well-known to have numerical advantages and
are useful for model reduction purposes in conjunction
with balance-and-truncate type procedures. In the con-
structions of [7], the case of stable all-pass systems in
continuous-time plays a central role. In the scalar case,
the resulting canonical form is balanced with a positive
upper triangular reachability matrix. In the multivariable
case, Kronecker indices and nice selections are used to ar-
rive at block-balanced overlapping canonical forms. For
discrete-time stable all-pass systems, canonical forms can
be obtained from the results in continuous-time by appli-
cation of a bilinear transformation. However, this destroys
certain nice properties of the canonical form, e.g., trunca-



tion of state components no longer leads to reduced order
systems that are balanced and in canonical form. There-
fore, the ideas of [7] are directly applied in [6] to the scalar
discrete-time stable all-pass case. This leads to a balanced
canonical form with the desired properties, for which it
turns out that it can in fact be parametrized using Schur
parameters.

In this paper, the connections between these two ap-
proaches are investigated. The main technical results
provide the basis for a recursive method for obtaining
balanced realizations for stable all-pass systems that are
parametrized directly in terms of the parameters used in
the tangential Schur algorithm. This generalizes the re-
sults of [6] to the multivariable case and opens up possibil-
ities for multivariable stable all-pass model reduction and
approximation methods along the lines indicated. Due to
space limitations, no proofs are given.

2 The tangential Schur algorithm
and linear fractional transfor-
mations

In this section we briefly outline the use of the tangen-
tial Schur algorithm for the recursive construction of a
parametrization of the space of stable all-pass systems of
fixed finite order. It is derived from the method of [1, 8, 5]
by relating p x p inner functions F(z) to stable all-pass
functions G(z) via G(z) = F(1/2)* = F(z)~!.

By Js, we denote the 2p x 2p block-partitioned matrix

given by
1 0
et 0]
R [0 ~I,

with I, the p X p identity matrix. Then a 2p x 2p matrix
function O(z) is called Jop-inner if ©(z)J2,0(2)* < Jop
at all points of analyticity z inside the open unit disk,
with equality at all points of analyticity on the unit circle.
Likewise, a p x p function G(z) is called stable all-pass
if it satisfies G(2)G(2)* > I, at all points of analyticity
inside the open unit disk, with equality at all points of
analyticity on the unit circle.

Along with each invertible 2px 2p function ©(z) we shall
associate a linear fractional transformation 7g.) that is
defined to act on p x p functions G(z) as follows:

(1)

To(z) : G(2) = [94(Z)G(Z)+93(z)][92(Z)G(z)+91(2)]z21),
where
_ | ©1(z) ©2(z)

is block-partitioned, with each block ©;(z), (i =1,...,4),
of size p X p. Linear fractional transformations satisfy the
group property To(:ya(z) = Zo(z) © Ta(z)- If O(2) is Jop-
inner it is known that 7g.) takes stable all-pass functions
again to stable all-pass functions.

If M is constant Jyp-unitary, its associated mapping
Tunr is a generalized Mobius transformation. It can be
represented in a unique way, see [4], as

P 0
0 @

where P and @Q are p x p unitary matrices and H(E) de-
notes the Halmos extension of a strictly contractive p x p
matrix E (i.e., all the singular values of E are strictly less
than 1). This Halmos extension H(E) is the Jo,-unitary
matrix defined by

= (4)

| ()

_[ U-EEY)E B, -EE)E

H(E) = [ E*(I, - EE*)"% (I, E*E)"3 ] B
— [ (I, - EE9)™% (I, - BE")7}E ] %)

(I, -E*E)":E* (I,-E*E)~: |’

In each recursion step of the tangential Schur algorithm,
the McMillan degree of the rational stable all-pass func-
tion available, is increased by 1 by the action of a linear
fractional transformation. This transformation is asso-
ciated with a Jyp-inner matrix function ©(z) of order 1
which has a particular form that stems from the theory of
reproducing kernel Hilbert spaces:

0(z) = O(u,v,w,§, H; z) =

(50~ o e Lo ) L

] .12,,) H.
(6)

Here, the associated parameters (that may be chosen in-
dependently for each recursion step) must satisfy the fol-
lowing properties.
(1) w € CP*! is a normalized direction vector such that
|lul]] = 1. (2) v € CPX! is a (generalized) Schur parameter
vector satisfying ||v]| < 1. (3) w is an interpolation point
with |w| < 1. (4) £ is a point with |{|] = 1. (5) H is a
constant Jo,-unitary matrix.

At the point z = £ it holds that ©(§) = H. From the
structure of ©(z) it also follows that G(z) = To(=)(G(2))
satisfies the interpolation condition

G@w Hu =wv.

(7)

In the standard case with w = 0 the value of G(o0) corre-
sponds to the direct feedthrough term D of any state-space
realization (A, B,C, D) of G(z), so that the interpolation
condition then takes the form Du = v.

The set of values for the parameters u, w, £ and H at the
first » recursion steps can serve to index a generic chart
for the manifold of stable all-pass systems of order n. The
Schur parameter vectors v together with an initial unitary
matrix, say G, then provide the local coordinates for this
chart. An infinite atlas of overlapping generic charts is
obtained by varying the choices for u, w, £ and H.

The following proposition plays a central role in our con-
struction of balanced parametrizations for discrete-time
stable all-pass transfer functions.



Proposition 2.1
The Jop-inner matriz function O(u,v,w,§, H;z) can be
factorized as:
O(u,v,w,€, H; 2) = H(uv")Su,uw(2)Su,w(§) ™ H(uw*) ™' H,
(8)

where H(uv*) denotes the Jop-unitary Halmos extension
of the strictly contractive matriz wv* and where Sy, (2) is
defined as the Jap-inner matriz function

] SNC)

_ _ (zmw) *
Su,w(z) _ I, (1 (1_52)) uu 0
0 I,
Note: for ||u|| =1 and ||v|| < 1, the matrix uv* is indeed
strictly contractive, with Halmos extension given by:
H(uv™) =
I, — (1 - ———)uu* ——L _uv*
» 1—||v|\2)

7’[)714* I — 1—*
Vi-lv|2 »

Its inverse satisfies H (uv*)™! = H(—uv*).

Note that the linear fractional transformations associ-
ated with the constant Ja,-unitary matrices H, H(uv*),
H(uv*)~! and Sy, (€)~! are all generalized Mobius trans-
formations which do not change the order (i.e., McMillan
degree) of the matrix functions on which they act. Only
the transformation associated with the matrix S, ,(2) ef-
fectuates an order increase by 1, but it has a simple form
that does not involve the Schur parameter vector v, nor
&, nor H.

3 Recursive construction of bal-
anced state-space realizations

We now turn towards the second approach for parametriz-
ing the space of stable all-pass systems, now in terms of
balanced state-space realizations. We start by introducing
some more notation.

With each pair (U, V) of (p+ 1) x (p+ 1) matrices we
associate a mapping Fy v that is defined to act on p x p
matrix functions G(z) as follows.

F2(Z)F3(Z)
z— Fy(z)’ (D

with Fi(z) of size p x p, F»(2) of size p x 1, F3(z) of size
1 x p and Fy(z) scalar defined by:

56 R =716 et

F3(z) Fu(z)
When a state-space realization (A, B,C, D) of a transfer
function G(z) is available, then a state-space realization of
G(z) = Fu,v(G(z)) can be obtained by working directly

¢ ] This is

fU,V : G(z) — Fl(z) +

] U, (12)

D
B A
the contents of the following proposition.

on the associated ‘realization matrix’ [

Proposition 3.1 Let G(z) be a p x p proper rational
transfer function of finite McMillan degree, such that
G(2) = Fuv(G(2)) is well-defined. Let (A,B,C,D) be a
state-space realization of G(z) with n-dimensional state-
space. Then a state-space realization (A, B,C, D) of G(z)
with (n + 1)-dimensional state-space is given by:

5 5]

In case of a minimal balanced realization (A, B,C, D) of a
p X p discrete-time stable all-pass transfer function G(z),
it is well-known (see [6]) that the associated realization

1 0 0 .
]ODC[U(;IO].
0 B A n

(13)

matrix [ lj; i ] is unitary. Conversely, if the realiza-

tion matrix associated with a state-space realization of a
transfer function G(z) is unitary, then the transfer func-
tion is stable all-pass. If in addition it is minimal, then
the realization is balanced.

From these observations and (13) it is immediate that

for unitary matrices U and V, the mapping Fy,v takes
stable all-pass transfer functions of order (i.e., McMillan
degree) n into stable all-pass transfer functions of order
<n+1.
In the scalar case, mappings of the form Fy v with U = I
have been used in [6] to recursively construct a balanced
canonical form for the space of discrete-time stable all-pass
systems of finite McMillan degree. The parameters that
occur in this recursion have the interpretation of Schur
parameters, corresponding to the situation with interpo-
lation points w at zero. With this connection in mind, it is
the purpose of the following section to clarify the relation-
ship between the two classes of mappings 7g(.) and Fy,v,
with ©(z) Jop-inner of order 1 and U and V unitary.

4 Connection between the classes
of mappings 7g(,) and Fyy

We are interested in investigating the possibilities for rep-
resenting a mapping 7g(.) in terms of a corresponding
mapping Fy,v. This would give us balanced state-space
parametrizations directly in terms of the set of parameters
uw, v, w, £ and H used in the tangential Schur algorithm.
Moreover, unitary matrices would be involved in the com-
putation of these realizations, and these are known to be
numerically well-conditioned.

It will prove to be be essential to introduce the Jp-inner
matrix function (:)(u,v,w; z), defined by

O(u, v, w; 2) = H(uv*)Sy (2)H (Wuv*). (14)
The main result of this paper can now be stated as follows.

Theorem 4.1 Let u,v € CP*! and w € C such that
lu|| =1, ||lv]| <1 and |w| < 1. Then for all p X p proper



rational stable all-pass functions G(z) of finite McMillan
degree it holds that
T (u,0,52)(G(2)) = Fuv (G(2)), (15)

if U and V are taken to be the unitary (p+ 1) X (p+ 1)
matrices

Vil g (g Ry
U= | Vil Vi-[w] o]
wy/1-[Jo]? w? . ’
L V- fel el 1—fuw? ]2
(16)
AT S S VA T G
v | ViRl P 1 [w]2[[o]2 1]
L[ V1w
L Vi [wllel 1wl o2
(17)

Note that, according to Prop. 2.1, O(u,v,w,§, H;z)
is of the form ©(u,v,w;2z)M, with the matrix M =
O(u,v,w; €)' H constant and Jo,-unitary. As remarked
before, see Eqn. (4), M can be parametrized as M =
[ 1; C% H(FE) with unique, unitary matrices P and Q
and a unique strictly contractive matrix E. The follow-
ing proposition indicates for which matrices M the map-
pPing T, 0 w;2) i (G(2)) can be represented in the form

fU,V(G(Z)).

Proposition 4.2 Let u,v € CP*! and w € C such that
P 0

lull =1, |lv|l <1 and |w| < 1. Let M = [ 0 Q ] H(E)

be Jop-unitary, with P and Q) p X p unitary and E p X p

strictly contractive. Then the mapping Tg,, o 2y (G(2))

can be represented as a mapping Fu,v(G(z)) if and only

if E=0.

This proposition makes clear that in general it is im-
possible to carry out a full recursion step of the tan-
gential Schur algorithm by performing a mapping of the
form Fy,v(G(z)). However, if the action of a generalized
Mobius transformation 73, can be carried out in terms of
state-space realization matrices in some other way, then
the equivalence between 7Ty w,0,w32) and Fy,yv can still be
very useful. This is achieved in the following theorem. It
describes how the action of a generalized M&bius trans-
formation can be carried out in terms of state-space re-
alization matrices, with the additional property that bal-
ancedness of a realization is maintained.

M, M,
Ms M,
Jop-unitary matriz, with blocks of size px p. Let Ty be its
associated generalized Mobius transformation. Let G(z) be
a proper rational pX p discrete-time stable all-pass transfer
function of finite McMillan degree n, with minimal state-
space realization (A, B,C,D). Then G(z) = Ty (G(2))
is well-defined, i.e., (MaG(2) + My)™! exists. Moreover,

Theorem 4.3 Let M = be o partitioned

é(z) 18 again a p X p discrete-time stable all-pass trans-

fer function of order n. A minimal state-space realization
(A, B,C, D) for G(z) is given by:

= A— B(MyD + M)~ MC,

B(M,D + M;)™!,

[My — (M4D + M3)(M>D + M)~ " M>]C,
D = (MyD + Ms)(M>D + M)t

18

[a—
)

A
B
c

(18)
(19)
(20)
(21)

If in addition (A, B,C, D) is balanced, then (A,B,C,D)
1s also balanced.

From Prop. 4.2 it follows that there exist linear frac-
tional transformations that cannot be written as a map-
ping Fy,v. Conversely, if U and V are unitary then it
turns out to depend on the modulus of the left bottom
corner entries of U and V' whether the mapping Fy,y al-
lows for a representation of the form 7y, v, w ¢, m;2), COITE-
sponding to the tangential Schur algorithm, or not. The
precise result is as follows.

Proposition 4.4 Let (U,V) be a pair of (p+1) X (p+1)
unitary matrices. If p > 1, then the mapping Fy,v can be
represented in the form of a mapping To (uv,w.¢,H;-) if and
only if the modulus of the left bottom corner entry of U
is strictly less than the modulus of the left bottom corner
entry of V. If p = 1 such o representation exists if and
only if these two entries have different modulus.

If (U,V) is such that Fyy cannot be written in the form
of a mapping 7g(u,v,w,¢ H;-), then in many cases there
still exist linear fractional transformations that do the job.
(However, they are not of the form used in the tangential
Schur algorithm.) It can be shown that if (and only if)
the left bottom corner entries of U and V are both zero,
then the mapping Fy,y is not of the linear fractional type.

5 Concluding remarks

There are some differences between the scalar and the
multivariable case; see, e.g., Prop. 4.4. We do not fur-
ther go into detail about this, here. From Thms. 4.1 and
4.3 it is straightforward how the tangential Schur algo-
rithm can be supplied with balanced parametrizations of
discrete-time stable all-pass systems. By making special
choices for the parameters that index the generic charts,
additional properties can be obtained. If the interpolation
points w are all chosen at the origin, and the direction vec-
tors u are selected from the set of standard basis vectors
in a special way, depending on the Kronecker structure
of the system to be parametrized, then the balanced real-
ization can be tailored (analogous to the continuous-time
case, see [7]), e.g., for model reduction purposes of the
balance-and-truncate type.



References

[1]

[4]

(5]

[6]

[7]

[9]

[10]

[11]

D. Alpay, L. Baratchart and A. Gombani, On the
differential structure of matrix-valued rational inner
functions, Operator Theory: Adv. and Appl., 73, 30—
66, (1994).

L. Baratchart, On the topological structure of inner
functions and its use in identification, in: B. Bon-
nard, B. Bride, J.P. Gauthier and I. Kupka (eds.),
Analysis of Controlled Dynamical Systems, Progress
in Systems and Control Theory, Vol. 8, Birkh&user,
51-59, (1991).

R. Douglas, H. Shapiro and A. Shields, Cyclic vec-
tors and invariant subspaces for the backward shift
operator, Annales de I’Institut Fourier, (Grenoble),
20, 37-76, (1970).

V. Dubojov, B. Fritzsche and B. Kirstein, Matri-
cial Version of the Classical Schur Problem, Teub-
ner Verlagsgesellschaft, (1992).

P. Fulcheri and M. Olivi, Matrix Rational Hy Ap-
proximation: A Gradient Algorithm Based on Schur
Analysis, SIAM J. Contr. and Optimiz., 36, 2103—
2127, (1998).

B. Hanzon and R.L.M. Peeters, Balanced
Parametrizations of Stable SISO All-Pass Systems
in Discrete-Time, To appear in MCSS.

B. Hanzon and R.J. Ober, Overlapping block-
balanced canonical forms for various classes of linear
systems, Lin. Alg. Appl., 281, 171-225, (1998).

J. Leblond and M. Olivi, Weighted H? Approxi-
mation of Transfer Functions, MCSS, 11, 28-39,
(1998).

R.J. Ober, Balanced realizations: canonical form,
parametrization, model reduction, Int. J. Control,
46, 643-670, (1987).

V.P. Potapov, The multiplicative structure of J-
contractive matrix functions, Amer. Math. Soc.
Transl. (2), 15, 131-243, (1960).

V.P. Potapov, Linear Fractional Transformations of
Matrices, Amer. Math. Soc. Transl. (2), 138, 21-35,
(1988).



