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1 Introduction

Laplace transform is extensively used in control theory. It appears in the description of linear
time-invariant systems, where it changes convolution operators into multiplication operators
and allows to define the transfer function of a system. The properties of systems can be then
translated into properties of the transfer function. In particular, causality implies that the
transfer function must be analytic in a right half-plane. This will be explained in section 2
and a good reference for these preliminary properties and for a panel of concrete examples
is [11].

Via Laplace transform, functional analysis provides a framework to formulate, discuss and
solve problems in control theory. This will be sketched in section 3, in which the important
notion of stability is introduced. We shall see that several kind of stability, with different
physical meaning can be considered in connection with some function spaces, the Hardy
spaces of the half-plane. These functions spaces provide with their norms a measure of the
distance between transfer functions. This allows to translate into well-posed mathematical
problems some important topics in control theory, as for example the notion of robustness.
A design is robust if it works not only for the postulated model, but also for neighboring
models. We may interpret closeness of models as closeness of their transfer functions.

In section 4, we review the main properties of finite order linear time-invariant (LTI) causal
systems. They are described by state-space equations and their transfer function is rational.
We give the definition of the McMillan degree or order of a system, which is a good measure
of its complexity, and some useful factorizations of a rational transfer function, closely con-
nected with its pole and zero structure. Then, we consider the past inputs to future outputs
map, which provides a nice interpretation of the notions of controllability and observability
and we define the Hankel singular values. As claimed by Glover in [6], the Hankel singular
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values are extremely informative invariants when considering system complexity and gain.
For this section we refer the reader to [8] and [6].

Section 5 is concerned with system identification. In many areas of engineering, high-order
linear state-space models of dynamic systems can be derived (this can already be a difficult
problem). By this way, identification issues are translated into model reduction problems that
can be tackle by means of rational approximation. The function spaces introduced in section
3 provide with their norms a measure of the accuracy of a model. The most popular norms
are the Hankel-norm and the L2-norm. In these two cases, the role of the Hardy space H2

with its Hilbert space structure, is determinant in finding a solution to the model reduction
problem. In the case of the Hankel norm, explicit solutions can be found [6] while in the L2

case, local minima can be numerically computed using gradient flow methods. Note that the
approximation in L2 norm has an interpretation in stochastic identification: it minimizes the
variance of the output error when the model is fed by a white noise. These approximation
problems are also relevant in the design of controllers which maximize robustness with respect
to uncertainty or minimize sensitivity to disturbances of sensors, and other problems from
H∞ control theory. For an introduction to these fields we refer the reader to [4].

In this paper, we are concerned with continuous-time systems for which Laplace transform
is a valuable aid. The z-transform performs the same task for discrete-time systems. This is
the object of [3] in the framework of stochastic systems. It must be noted that continuous-
time and discrete-time systems are related through a Möbius transform which preserves
the McMillan degree [6]. For some purposes, it must be easier to deal with discrete-time.
In particular, the poles of stable discrete-time systems lay in a bounded domain the unit
circle. Laplace transform is also considered among other transforms in [12]. This paper also
provides an introduction to [2].

2 Linear time-invariant systems and their transfer func-

tions.

Linear time-invariant systems play a fundamental role in signal and system analysis. Many
physical processes possess these properties and even for nonlinear systems, linear approxima-
tions can be used for the analysis of small derivations from an equilibrium. Laplace transform
has a number of properties that makes it useful for analysing LTI systems, thereby providing
a set of powerful tools that form the core of signal and system analysis.

A continuous-time system is an ”input-output” map

u(t)→ y(t),

from an input signal u : R→ C
m to an output signal y : R→ C

p. It will be called linear if
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the map is linear and time-invariant if a time shift in the input signal results in an identical
time shift in the output signal.

A linear time-invariant system can be represented by a convolution integral

y(t) =
∫ ∞
−∞

h(t− τ)u(τ)dτ =
∫ ∞
−∞

h(τ)u(t− τ)dτ,

in terms of its response to a unit impulse [11]. The p ×m matrix function h is called the
impulse response of the system.

The importance of complex exponentials in the study of LTI systems stems from the fact
that the response of an LTI system to a complex exponential input is the same complex
exponential with a change of amplitude. Indeed, for an input of the form u(t) = est, the
output computed through the convolution integral will be

y(t) =
∫ ∞
−∞

h(τ)es(t−τ)dτ = est
∫ ∞
−∞

h(τ)e−sτdτ

Assuming that the integral converges, the response to est is of the form

y(t) = H(s)est,

where H(s) is the Laplace transform of the impulse response h(t) defined by

H(s) =
∫ ∞
−∞

h(τ)e−sτdτ.

In the specific case in which <{s} = 0, the input is a complex integral eiωt at frequency ω
and H(iω), viewed as a function of ω, is known as the frequency response of the system and
is given by the Fourier transform

H(iω) =
∫ ∞
−∞

h(τ)e−iωτdτ.

In practice, pointwise measurements of the frequency response are often available and the
classical problem of harmonic identification consists in finding a model for the system which
reproduces these data well enough.

The Laplace transform of a scalar function f(s)

Lf(s) =
∫ ∞
−∞

e−stf(t)dt

is defined for those s = x+ i y such that∫ ∞
−∞
|f(τ)|e−xτdτ <∞.
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The range of values of s for which the integral converges is called the region of convergence.
It consists of strips parallel to the imaginary axis. In particular, if f ∈ L1(R), i.e.∫ ∞

−∞
|f(t)|dt <∞,

then Lf is defined on the imaginary axis and the Laplace transform can be viewed as a
generalization of the Fourier transform.

Another obvious and important property of the Laplace transform is the following. Assume
that f(t) is right-sided, i.e. f(t) = 0, t < T , and that the Laplace transform of f converges
for <{s} = σ0. Then, for all s such that <{s} = σ > σ0, we have that∫ ∞

−∞
|f(τ)|e−στdτ =

∫ ∞
T
|f(τ)|e−στdτ ≤ e−(σ−σ0)T

∫ ∞
T
|f(τ)|e−σ0τdτ,

and the integral converges so that Laplace transform is well defined in <{s} ≥ σ0. If
f ∈ L1(R), then the Laplace transform is defined on the right half-plane and it can be
proved that it is an analytic function there. It is possible that for some right-sided signal,
there is no value of s for which the Laplace transform will converge. One example is the
signal h(t) = 0, t < 0 and h(t) = et

2
, t ≥ 0.

The importance of Laplace transform in control theory is mainly due to the fact that it
allows to express any LTI system

y(t) =
∫ ∞
−∞

h(t− τ)u(τ)dτ

has a multiplication operator
Y (s) = H(s)U(s),

where

Y (s) =
∫ ∞
−∞

y(τ)e−sτdτ, H(s) =
∫ ∞
−∞

h(τ)e−sτdτ, U(s) =
∫ ∞
−∞

u(τ)e−sτdτ,

are the Laplace transforms. The p×m matrix function H(s) is called the transfer function
of the system.

Causality is a common property for a physical system. A system is causal if the output at
any time depends only on the present and past values of the input. A LTI system is causal
if its impulse response satisfies

h(t) = 0 for t < 0,

and in this case, the output is given by the convolution integral

y(t) =
∫ ∞
0

h(τ)u(t− τ)dτ =
∫ t

0
h(t− τ)u(τ)dτ.
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Then, the transfer function of the system is defined by the unilateral Laplace transform

H(s) =
∫ ∞
0

h(τ)e−sτdτ, (1)

whose region of convergence is but what precedes a right half-plane (if it is not empty). In
the sequel, we shall restrict ourselves to causal systems.

Of course our signals must satisfy some conditions to ensure the existence of the Laplace
transforms. There are many way to proceed. We shall require our signals to belong to
some spaces of integrable functions and this is closely related to the notion of stability of
a system. This will be the object of the next section. Via Laplace transform, properties of
an LTI system can be expressed in terms of the transfer function and by this way, function
theory brings insights in control theory.

3 Function spaces and stability.

An undesirable feature of a physical device is instability. In this section, we translate this
into a statement about transfer functions. Intuitively, a stable system is one in which small
inputs lead to responses that do not diverge. To give a mathematical statement, we need a
measure of the size of a signal which will be provided by appropriate function spaces.

We denote by Lq(X) the space of complex valued measurable functions f on X satisfying

‖f‖qq =
∫
X
|f(t)|qdt <∞, if 1 ≤ q <∞,

‖f‖∞ = sup
X
|f(t)| <∞, if q =∞.

The most natural measure is the L∞ norm. A signal will be called bounded if there is some
M > 0 such that

‖u‖∞ = sup
t>0
‖u(t)‖ < M,

where ‖.‖ denotes the Euclidean norm of a vector. We still denote by L∞(0,∞) the space
of bounded signals, omitting to mention the vectorial dimension. A system will be called
BIBO stable if a bounded input produces a bounded output.

We may also be interested in the energy of a system which is given by the integral

‖u‖22 =
∫ ∞
0

u(t)∗u(t)dt.

We still denote by L2(0,∞) the space of signal with bounded energy.
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Notions of stability are associated with the requirement that the convolution operator

u(t)→ y(t) = h ∗ u(t),

is a bounded linear operator, the input and output spaces being endowed with some (may
be different) norms. This implies that the transfer functions of such stable systems belong
to some spaces of analytic functions, the Hardy spaces of the right half-plane [7]. We first
introduce these spaces.

3.1 Hardy spaces of the half-plane.

The Hardy space Hp is defined to be the space of functions f(s) analytic in the right half-
plane which satisfy

‖f‖p := sup
0<x<∞

{∫ ∞
−∞
|f(x+ iy)|pdy

}1/p

<∞,

when 1 ≤ p <∞, and, when p =∞,

‖f‖∞ := sup
<{s}>0

|f(s)| <∞.

A theorem of Fatou says that, for any f ∈ Hp, 1 ≤ p ≤ ∞,

f0(iy) = lim
x→0+

f(x+ iy),

exits a.e. on the imaginary axis. We may identify f ∈ Hp with f0 ∈ Lp(iR) and the
identification is isometric, so that we may consider Hp as a subspace of Lp(iR). The case
p = 2 is of particular importance since H2 is an Hilbert space. We denote by H2

− the left
half-plane analog of H2 : that is f ∈ H2

− if and only if the function s→ f(−s) is in H2. We
may also consider H2

− as a subspace of L2(iR). We denote by Π+ and Π− the orthogonal
projections from L2(iR) to H2 and H2

− respectively, and we have

L2(iR) = H2 ⊕H2
−.

If f ∈ L1(0,∞), then Lf is defined and analytic on the right half-plane. Moreover, we
may extend the definition to functions f ∈ L2(0,∞), since L1(0,∞) ∪ L2(0,∞) is dense in
L2(0,∞). The Laplace transform of a function f ∈ L2(0,∞) is again defined and analytic
on the right half-plane and we have the following theorem [13, Th.1.4.5]

Theorem 1 The Laplace transform gives the following bijections

L : L2(0,∞)→ H2,
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L : L2(−∞, 0)→ H2
−,

and for f ∈ L2(0,∞) (resp. L2(−∞, 0))

‖Lf‖2 =
√

2Π‖f‖2.

Since we are concerned with multi-input and multi-output systems, vectorial and matricial
versions of these spaces are needed. For p,m ∈ N, H∞p×m and H2

p×m are the spaces of p×m
matrix functions with entries in H∞ and H2 respectively endowed with the norm

‖F‖∞ = sup
−∞<w<∞

‖F (iw)‖ (2)

‖F‖22 = Tr
∫ ∞
−∞

F (iw)∗F (iw)dw, (3)

where ‖.‖ denotes the Euclidean norm for a vector and for a matrix, the operator norm or
spectral norm (that is the largest singular value). We shall often write H∞, H2 etc. for
H∞p×m and H2

p×m, the size of the matrix or vector functions (case m = 1) being understood
from the context.

Remark. Note that the following inclusions hold: H∞ ⊂ H2 ⊂ H1.

3.2 Some notions of stability.

We shall study the notions of stability which arises from the following choices of norm on
the input and output function spaces:

• stability L∞ → L∞ (BIBO). A system is BIBO stable if and only if its impulse
response is integrable over (0,∞). Indeed, if h(t) is integrable and ‖u‖∞ < M, then

‖y(t)‖ ≤ M
∫ t

0
‖h(t− τ)‖dτ

= M
∫ t

0
‖h(τ)‖dτ,

≤ M
∫ ∞
0
‖h(τ)‖dτ,

and y(t) is bounded. Conversely, if h(t) is not integrable, a bounded input can be
constructed which produces an unbounded output (see [13] in the SISO case and [1,
Prop.23.1.1] in the MIMO case).
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• stability L2 → L2. By Theorem 1
√

2ΠL is a unitary operator from L2(0,∞) onto
the Hardy space H2. Thus a system

y(t) = h ∗ u(t),

will be L2 → L2 stable if its transfer function H is a bounded operator from H2 to H2.
Now, the transfer function is a multiplication operator

MH : U(s)→ Y (s),

whose operator norm is ‖H‖∞ given by (2) and H must belong to the Hardy space
H∞.

• stability L2 → L∞. The interest of this notion of stability comes from the fact that
it requires that the transfer function H(s) belongs to the Hardy space H2 which is
an Hilbert space. Indeed, it can be proved that the impulse response of such a stable
system must be in L2(0,∞) and thus by Theorem 1 its transfer function must be H2.

4 Finite order LTI systems and their rational transfer

functions.

Among LTI systems, of particular interest are the systems governed by differential equations

ẋ(t) = Ax(t) +B u(t)
y(t) = C x(t) +Du(t),

(4)

where A,B,C,D are constant complex matrices matrices of type n × n, n ×m, p × n and
p×m, and x(t) ∈ Cn is the state of the system. Assuming x(0) = 0, the solution is

x(t) =
∫ t
0 e

(t−τ)ABu(τ)dτ, t ≥ 0
y(t) =

∫ t
0 Ce

(t−τ)ABu(τ)dτ +Du(t), t ≥ 0

and the impulse response given by

g(t) = CeAtB +Dδ0,

where δ0 is the delta function or Dirac measure at 0. Thus g is a generalized function.

As previously, we denote by the capital roman letter the Laplace transform of the function
designated by the corresponding small letter. Laplace transform possesses the nice property
to convert differentiation into a shift operator

Lẋ(s) = sX(s).
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so that the system (4) takes the form

sX(s) = AX(s) +B U(s)
Y (s) = C X(s) +DU(s),

(5)

and yields
Y (s) = [D + C(sI − A)−1B]U(s),

where G(s) = D + C(sI − A)−1B is the transfer function of the system. It is remarkable
that transfer functions of LTI systems are rational.

Conversely, if the transfer function of a LTI system is rational and proper (its value at infinity
is finite), then it can be written in the form (see [1])

G(s) = D + C(sI − A)−1B.

We call (A,B,C,D) a realization of G and the system then admits a ”state-space repre-
sentation” of the form (4). A rational transfer function has many realizations. If T is a
non-singular matrix, then (TAT−1, TB, T−1C,D) is also a realization of G(s). A minimal
realization of G is a realization in which the size of A is minimal among all the realizations
of G. The size n of A in a minimal realization is called the McMillan degree of G(s). It
represents the minimal number of state variables and is a measure of the complexity of the
system.

For finite order systems all the notions of stability agree: a system is stable if and only if all
the eigenvalues of A lie in the left half-plane.

To end with this section, we shall answer to some natural questions concerning these rational
matrix functions: what is a pole? a zero? their multiplicity ? what could be a fractional
representation?

Let G(s) be a rational p×m matrix function. Then G(s) admits the Smith form

G(s) = U(s)D(s)V (s),

where U(s) and V (s) are square size polynomial matrices with constant non-zero determinant
and D(s) is a diagonal matrix

D(s) = diag

(
φ1

ψ1

,
φ2

ψ2

, . . . ,
φr

ψr

, 0, . . . , 0

)

in which for i = 1, . . . r, φi and ψi are polynomials satisfying the divisibility conditions

φ1/φ2/ . . . /φr,
ψr/ψr−1/ . . . /ψ1.
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This representation exhibits the pole-zeros structure of a rational matrix. A zero of G(s) is
a zero of at least one of the polynomial φi. The multiplicity of a given zero in each of the
φi is called a partial multiplicity and the sum of the partial multiplicities is the multiplicity
of the zero. In the same way, the poles of G(s) are the zeros of the ψ. They are also the
eigenvalues of the dynamic matrix A. It must be notice that a complex number can be a
pole and a zero at the same time. For more details on that Smith form, see [8]. It provides
a new interpretation of the McMillan degree as the number of poles of the rational function
counted with multiplicity, i.e. the degree of ψ = ψ1ψ2 · · ·ψr.

The Smith form also allows to write a left coprime polynomial factorization (see [1, Chap.11]
or [8]) of the form

G(s) = D(s)−1N(s),

where D(s) and N(s) are left coprime polynomial matrices, i.e.

D(s)E1(s) +N(s)E2(s) = I, s ∈ C,

for some polynomial matrices E1(s) and E2(s). In this factorization the matrix D(s) brings
the pole structure of G(s) and the matrix N(s) its zero structure.

This representation is very useful in control theory. In our function spaces context another
factorization is more natural. It is the inner-unstable or Douglas-Shapiro-Shields factoriza-
tion

G(s) = Q(s)P (s),

where Q(s) is an inner function in H∞, i.e. such that

Q(iw)∗Q(iw) = I, w ∈ R,

and P (s) is unstable (analytic in the left half-plane). We shall also require this factorization
to be minimal. It is then unique up to a common left constant unitary matrix and the
McMillan degree of Q is the McMillan degree of G. The existence of such a factorization
follows from Beurling theorem on shift invariant subspaces of H2 [5]. Here again, the inner
factor brings the pole structure of the transfer function and the unstable factor the zero
structure. In many approximation problems this factorization allows to reduce the number
of optimization parameters, since the unstable factor can often be computed from the inner
one. This makes the interest of inner function together with the fact that inner functions
are the transfer function of conservative systems.

4.1 Controllability, observability and associated gramians.

The notions of controllability and observability are central to the state-space description of
dynamical systems. Controllability is a measure for the ability to use a system’s external
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inputs to manipulate its internal state. Observability is a measure for how well internal
states of a system can be inferred by knowledge of its external outputs.

The following facts are well-known [8]. A system described by a state-space realization
(A,B,C,D) is controllable if the pair (A,B) is controllable, i.e. the matrix[

B AB A2B · · · An−1B
]

has rank n, and the pair (C,A) observable, i.e. the matrix

C
CA
CA2

...
CAn−1


has rank n. A realization is minimal if and only if it is both controllable and observable.
Note that the matrix D play no role in this context.

We now give an alternative description of these notions which is more adapted to our func-
tional framework [6, Sect.2]. If the eigenvalues of A are assumed to be strictly in the left
half-plane, then we can define the controllability gramian as

P =
∫ ∞
0

eAtBB∗eA
∗tdt,

and the observability gramian as

Q =
∫ ∞
0

eA
∗tC∗CeAtdt.

It is easily verified that P and Q satisfy the following Lyapunov equations

AP + PA∗ +B∗B = 0,
A∗Q+QA+ C∗C = 0.

A standard result is that the pair (A,B) is controllable if and only if P is positive definite
and the pair (C,A) observable if and only if Q is positive definite.

These gramians can be illustrated by considering the mapping from the past inputs to the
future outputs, γg : L2(−∞, 0)→ L2(0,∞), given by

(γgu)(t) =
∫ 0

−∞
CeA(t−τ)Bu(τ)dτ =

∫ ∞
0

CeA(t+τ)Bv(τ)dτ, (6)

where v(t) = u(−t) is in L2(0,∞). The mapping γg can be view as a composition of two
mappings:

u(t)→ x(0) =
∫ ∞
0

eAτBu(−τ)dτ,
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and
x(0)→ y(t) = CeAtx(0),

where x(0) is the state at time t = 0. Now, consider the following minimum energy problem

min
u∈L2(−∞,0)

‖u‖22 subject to x(0) = x0.

Since x0 is a linear function of u(t), the solution û exists provided that P is positive definite
and is given by the pseudo-inverse

û(t) = B∗e−A
∗tP−1x0.

It satisfies
‖û‖22 = x∗0P

−1x0.

If P−1 is large, there will be some state that can only be reached if a large input energy is
used. If the system is realized from x(0) = x0 with u(t) = 0, t ≥ 0 then

‖y‖22 = x∗0Qx0,

so that, if the observability gramian Q is nearly singular then some initial conditions will
have little effect on the output.

4.2 Hankel singular values and Hankel operator.

We now introduce the Hankel singular values which turn out to be fundamental invariants
of a linear system related to both gain and complexity [6]. The link with complexity will be
further illustrated in section 5.1.

The problem of approximating a matrix by a matrix of lower rank was one of the earliest
application of the singular-value decomposition ([10], see [6, Prop.2.2] for a proof).

Proposition 1 Let M ∈ Cp×m have singular value decomposition given by

M = UDV,

where U and V are square unitary and D =

[
Dr 0
0 0

]
, Dr = diag(α1, α2, . . . , αr), where

α1 ≥ α2 . . . ≥ αr > 0 are the singular values of M . Then,

infrank M̂≤k‖M − M̂‖ = αk+1,

and the bound is achieved by

D̂k =

[
Dr 0
0 0

]
, Dk = diag(α1, α2, . . . , αk).
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This result can be generalized to the case of a bounded linear operator T ∈ L(H,K) from
an Hilbert space H, to another, K. For k = 0, 1, 2, . . . , the kth singular value σk(T ) of T is
defined by

σk(T ) = inf{‖T −R‖, R ∈ L(H,K), rankR ≤ k}.
Thus σ0(T ) = ‖T‖ and

σ0(T ) ≥ σ1(T ) ≥ σ2(T ) ≥ · · · ≥ 0.

When T is compact, it can be proved that σk(T ) is an eigenvalue of T ∗T [15, Th.16.4].
Any corresponding eigenvector of T ∗T is called a Schmidt vector of T corresponding to the
singular value σk(T ). A Schmidt pair is a pair of vectors x ∈ H and y ∈ K such that

Tx = σk(T )y, Ty = σk(T )x.

The past inputs to future outputs mapping γg associated with a LTI system by (6) is a
compact operator from L2(−∞, 0) to L2(0,∞). The Hankel singular values of a LTI system
are defined to be the singular values of γg. Via the Laplace transform, we may associate
with γg, the Hankel operator

ΓG : H2
− → H2,

whose symbol G is the Laplace transform of g. It is defined by

ΓG(x) = Π+(Gx), x ∈ H2
−.

Since γg and ΓG are unitarily equivalent via the Laplace transform, they share the same set
of singular values

σ0(G) ≥ σ1(G) ≥ σ2(G) ≥ · · · ≥ 0.

The Hankel norm is defined to be the operator norm of ΓG , which turns out to be its largest
singular value σ0(G):

‖G‖H = ‖ΓG‖ = σ0(G).

Note that

‖G‖H = sup
u∈L2(−∞,0)

‖y‖L2(0,∞)

‖u‖L2(−∞,0)
,

so that the Hankel norm gives the L2 gain from past inputs to future outputs.

If the LTI system has finite order, then its Hankel singular values correspond to the sin-
gular values of the matrix PQ, where P is controllability gramian and Q the observability
gramian. Indeed, let σ be a singular value of γg with u the corresponding eigenvector of
γ∗gγg: (γ∗gγgu)(t) = σ2u(t). Then, since the adjoint operator γ∗g is given by

(γ∗gy)(t) =
∫ ∞
0

B∗eA
∗(−t+τ)C∗y(τ)dτ,

we have that
(γ∗gγgu)(t) = (γ∗gy)(t) = B∗e−A

∗tQx0,
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so that
u(t) = σ−2B∗e−A

∗tQx0 (7)

Now,

σ2x0 =
∫ ∞
0

e(Aτ)Bσ2u(−τ)dτ = PQx0,

and σ2 is an eigenvalue of PQ associated with the eigenvector x0. Conversely, if σ2 is an
eigenvalue of PQ associated with the eigenvector x0, then σ is a singular value of γg with
corresponding eigenvector of γ∗gγg given by (7). A useful state-space realization in this respect
is the balanced realization for which P = Q = diag(σ0, σ1, . . . , σn−1).

Remark. The Hankel norm of a finite order LTI system doesn’t depend on its ’D matrix’.

5 Identification and approximation.

The identification problem is to find an accurate model of an observed system from measured
data. This definition covers many different approaches depending on the class of models we
choose and on the data we have at hand. We shall pay more attention on harmonic identifi-
cation. The data are then pointwise values of the frequency response in some bandwidth and
the models are finite order linear time-invariant (LTI) systems. A robust way to proceed
is to interpolate the data on the bandwidth into a high order transfer function, possibly
unstable. A first step consists in approximating the unstable transfer function by a stable
one. This can be done by solving bounded extremal problems (see [2]).

For computational reasons, it is desirable if such a high-order model can be replaced by a
reduced-order model without incurring to much error. This can be stated as follows:

Model reduction problem: given a p×m stable rational matrix function G(z) of McMillan
degree N , find Ĝ stable of McMillan degree n < N which minimizes

‖|G− Ĝ‖|. (8)

The choice of the norm ‖|.‖| is influenced by what norms can be minimized with reasonable
computational efforts and whether the chosen norm is an appropriate measure of error. The
most natural norm from a physical viewpoint is the norm ‖.‖∞. But this is an unresolved
problem : there is no known numerical method which is guaranteed to converge. In Banach
spaces other than Hilbert spaces, best approximation problems are usually difficult. There
are two cases in which the situation is easier since they involve the Hardy space H2 which is
an Hilbert space: the L2-norm and the Hankel norm, since the Hankel operator acts on H2.
In this last case an explicit solution can be computed.
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5.1 Hankel-norm approximation

In the seventies, it was realized that the recent results on L∞ approximation problems,
such as Nehari’s theorem and the result of Adamjan, Arov and Krein on the Nehari-Takagi
problem, were relevant to the current problems of some engineers in control theory. In the
context of LTI systems, they have led to efficient new methods of model reduction.

A first step in solving the model reduction problem in Hankel-norm is provided by Nehari’s
theorem. Translated in the control theory framework, it states that if one wishes to approx-
imate a causal function G(s) by an anticausal function, then the smallest error norm that
can be achieved is precisely the Hankel-norm of G(s).

Theorem 2 For G ∈ H∞

σ0(G) = ‖G‖H = infF∈H∞− ‖G− F‖∞.

The model reduction problem, known under the name of Nehari-Takagi, was first solved
by Adamjan, Arov and Krein for SISO systems and Kung and Lin for MIMO discrete-time
systems. In our continuous-time framework, it can be stated as follow:

Theorem 3 Given a stable, rational transfer function G(s) then

σk(G) = inf
Ĝ∈H∞

‖G− Ĝ‖H , McMillan degree of Ĝ ≤ k.

The fact that ‖G− Ĝ‖H ≥ σk(G), for all Ĝ(s) stable and of McMillan degree ≤ k, is no more
than a continuous-time version of Proposition 1 [6, Lemma 7.1]. This famous paper [6] gives
a beautiful solution of the computational problem using state-space methods. An explicit
construction of a solution Ĝ(s) is presented which makes use of a balanced realization of G(s)
[6, Th.6.3]. Moreover, in [6] all the optimal Hankel norm approximations are characterized
in state-space form.

Since,
‖G− Ĝ‖H = inf

F∈H∞−
‖G− Ĝ− F‖∞,

the Hankel norm approximation Ĝ(s) can be a rather bad approximant in L∞ norm. How-
ever, the choice of the ’D matrix’ for the approximation is arbitrary, since the Hankel-norm
doesn’t depend on D, while ‖G−Ĝ‖∞ does depend on D. In [6, Sect.9, Sect.10.2] a particular
choice of D is suggested which ensures that

‖G− Ĝ‖∞ ≤ σk(G) +
∑
j>k

σj(G).
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It is often the case in practical applications that ΓG has a few sizable singular values and
the remaining ones tail away very quickly to zero. In that case the right hand-side can be
made very small, and one is assured that an optimal Hankel norm approximant is also good
with respect to the L∞ norm.

5.2 L2-norm approximation

In the case of the L2 norm, an explicit solution of the model reduction problem cannot be
computed. However, the L2 norm being differentiable we may think of using a gradient
flow method. The main difficulty in this problem is to describe the set of approximants,
i.e. of rational stable functions of McMillan degree n. The approaches than can be found
in the literature mainly differ from the choice of a parametrization to describe this set of
approximants. These parametrizations often arise from realization theory and the parameters
are some entries of the matrices (A,B,C,D). To cope with their inherent complexity, some
approaches choose to relax a constraint : stability or fixed McMillan degree. They often run
into difficulties since smoothness can be lost or an undesirable approximant reached.

Another approach can be proposed. The number of optimization parameters can be reduced
using the inner-unstable factorization (see section 4) and the projection property of an Hilbert
space. Let Ĝ be a best L2 approximant of G, with inner-unstable factorization

Ĝ = QP,

where Q is the inner factor and P the unstable one. Then, H2 being an Hilbert space, Ĝ
must be the projection of G onto the space H(Q) of matrix functions of degree n whose left
inner factor is Q. We shall denote this projection by Ĝ(Q) and the problem consists now in
minimizing

Q→ ‖G− Ĝ(Q)‖2,

over the set of inner functions of McMillan degree n.

Then, more efficient parametrizations can be used which arise from the manifold structure
of this set. It consists to work with an atlas of charts, that is a collection of local coordi-
nate maps (the charts) which cover the manifold and such that changing from one map to
another is a smooth operation. Such a parametrization present the advantages to ensure
identifiability, stability of the result and the nice behavior of the optimization process. The
optimization is run over the set as a whole changing from one chart to another when nec-
essary. Parametrizations of this type are available either from realization theory or from
interpolation theory in which the parameters are interpolation values. Their description
overcomes the aim of this paper, and we refer the reader to [9] and the bibliography therein
for more informations on this approach.
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