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1 Introduction

In [4] a gradient method for discrete-time H2-
approximation was developed which proceeds recursively
with respect to the order n of the approximants. Here, the
Douglas-Shapiro-Shields factorization (or inner-unstable
factorization, see [3]) is utilized to reduce the H2-
approximation problem into an optimization problem over
inner (or, equivalently, stable all-pass) functions of order
n, by optimizing analytically with respect to the unstable
factor. To implement this approach, the space of inner
functions of order n is parametrized by means of an atlas
of overlapping generic charts, obtained from application
of the tangential Schur algorithm in the spirit of [1]. This
construction supports the possibility to embed any given
approximant of order n − 1 into the boundary of a chart
of approximants of order n. If an approximant of order
n − 1 constitutes a local minimum for the “concentrated
criterion function” in the space of order n − 1 approxi-
mants, then the corresponding embedded boundary point
of a chart of systems of order n is taken as the starting
point for the next iteration run of the gradient-based ap-
proximation algorithm.

It can be shown that: (i) a boundary point does not
constitute a local minimum if the given system to be ap-
proximated is at least of order n; (ii) if the gradient of
the “concentrated” criterion is well-defined – which may
depend on the precise choice of parameters in this ap-
proach but can easily be achieved by making certain nat-
ural choices – then it is orthogonal to the boundary of the

chart; if in addition it is nonzero then it points outwards.

The result (ii) is in some sense not very surprising, be-
cause, due to normalization within the tangential Schur
algorithm which underlies the construction at hand, the
boundary of each generic chart consists entirely of lower
order systems, over which optimization has just taken
place in the previous iteration run. Improvement of the
criterion should therefore initially be looked for in a direc-
tion orthogonal to the boundary.

In the present paper we focus on a state-space imple-
mentation of the same idea. In this set-up, the “concen-
tration step” corresponds to analytic optimization of the
(C,D) pair for a fixed reachable input pair (A,B), which
without loss of generality can be assumed input normal.
The space of input normal pairs (A,B) is parametrized
using overlapping charts constructed with FU,V -mappings
defined in Section 3. This construction employs products
of unitary matrices, having distinguished numerical ad-
vantages. As before, it remains possible to embed any
given approximant of order n − 1 into the boundary of
a chart of input normal pairs of order n. However, the
boundary of a chart in this construction, in contrast to
the tangential Schur approach described above, does not
consist exclusively of input normal pairs of order n−1, but
instead generically of input normal pairs of order n. Nev-
ertheless, it can be shown that properties (i) and (ii) also
apply to the present construction, establishing feasibility
of this state-space analogue of the recursive gradient-based
algorithm for H2-approximation.
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2 A state-space approach to the
discrete-time H2-approximation
problem

In this paper we consider stable linear time-invariant
causal systems of finite dimension in discrete-time. Such
systems are studied from an input-output point of view,
and they are therefore identified with their associated
transfer function matrices, which are (complex) proper
rational matrices of finite McMillan degree. Discrete-time
stability is defined as BIBO stability, which comes down
to the property that all the poles of the transfer function
are strictly inside the open complex unit disk. We shall be
pursuing a state-space approach. From realization theory
it is well known that a q×p proper rational matrix Ĝ(z) of
McMillan degree n̂ always admits a minimal state-space
realization (Â, B̂, Ĉ, D̂) ∈ Cn̂×n̂ × Cn̂×p × Cq×n̂ × Cq×p,
so that it holds that Ĝ(z) = D̂ + Ĉ(zIn̂ − Â)−1B̂.
Minimality in this context is equivalent to the state-
space realization being both reachable and observable, i.e.,
the reachability matrix R̂ =

(
B̂ ÂB̂ . . . Ân̂−1B̂

)
has full row rank n̂ and the observability matrix Ô =(

Ĉ∗ Â∗Ĉ∗ . . . (Â∗)n̂−1Ĉ∗
)∗

has full column rank
n̂. From a given minimal realization (Â, B̂, Ĉ, D̂) the
space of all minimal realizations of Ĝ(z) is obtained by
the action of the general linear group, representing the
freedom to choose a basis for the state space, which gen-
erates the minimal quadruples (TÂT−1, T B̂, ĈT−1, D̂) for
invertible T ∈ Cn̂×n̂. This freedom is commonly exploited
to impose additional structure on the matrix quadruple of
the state-space realization, e.g., when designing a canon-
ical form. Stability of a minimal state-space realization
is equivalent to asymptotic stability of the dynamical ma-
trix Â, since its eigenvalues then coincide with the poles
of Ĝ(z). See also [6].

A discrete-time stable proper rational transfer function
Ĝ(z) admits a Laurent series expansion about z = ∞,
denoted by Ĝ(z) = Ĝ0 + Ĝ1z

−1 + Ĝ2z
−2 + . . ., for

which it holds that the sequence of Markov matrices
{Ĝ0, Ĝ1, Ĝ2, . . .} is defined by Ĝ0 = D̂, Ĝk = ĈÂk−1B̂
(for k = 1, 2, . . .), converging exponentially to zero. The
H2-distance between two stable transfer functions Ĝ(z)
and G(z) can now be introduced as follows.

Definition 2.1 Let Ĝ(z) and G(z) be two q× p discrete-
time stable proper rational transfer function matrices, of
which the Laurent series expansions about z = ∞ are de-
noted by Ĝ(z) = Ĝ0 + Ĝ1z

−1 + Ĝ2z
−2 + . . . and G(z) =

G0+G1z
−1+G2z

−2+. . ., respectively. Then the (squared)
H2-distance between Ĝ(z) and G(z) is defined as

‖Ĝ(z)−G(z)‖2H2
= tr

{ ∞∑
k=0

(Ĝk −Gk)(Ĝk −Gk)∗
}

, (1)

where tr {·} denotes the trace operator, and ∗ denotes Her-
mitian transposition (i.e., the joint action of complex con-
jugation and matrix transposition).

Here, convergence of the infinite sum follows from the sta-
bility assumptions on Ĝ(z) and G(z).

The H2-approximation problem can now be stated as the
problem of finding a stable approximant G(z) of McMil-
lan degree ≤ n of a given stable transfer function Ĝ(z)
of McMillan degree n̂, which minimizes the H2-distance
between Ĝ(z) and G(z).

Obviously, as in the definitions above, one may study
this problem in the function theoretic language of the
frequency (transfer function) domain, but a state-space
approach is also possible. In the latter case, with ob-
vious notation, the H2-criterion expressing the squared
H2-distance to be minimized, assumes the form

V (A,B, C, D) = tr
{

(D̂ −D)(D̂ −D)∗
}

+ (2)

+tr

{ ∞∑
k=1

(ĈÂk−1B̂ − CAk−1B)(ĈÂk−1B̂ − CAk−1B)∗
}

.

For our purposes, the following definition will be useful.

Definition 2.2 Let (A,B) ∈ Cn×n × Cn×p be an input
pair. Then (A,B) is called weakly input normal if it holds
that AA∗ + BB∗ = In. If in addition (A,B) is reachable,
it is called input normal.

From the literature it well known that if n ≤ n̂, then
any local minimizer of V corresponds to a quadruple
(A,B,C, D) of McMillan degree n, see [2]. Therefore,
one may impose minimality of (A,B, C, D) without loss
of generality. It is also clear that state-space basis trans-
formations do not affect the value of the H2-criterion. Any
reachable input pair (A,B) with an asymptotically stable
matrix A can always be brought into input normal form
(TAT−1, TB), e.g., by choosing T = P−1/2 where P is
the (unique, positive definite, Hermitian) solution to the
discrete-time Lyapunov-Stein equation P−APA∗ = BB∗.
Therefore, one may also impose input normality of (A,B)
without loss of generality. For our considerations it will
be essential, however, to relax this condition somewhat
and also to admit weakly input normal pairs (A,B), as
this will enable us to embed approximants of order n− 1
into boundaries of charts of approximants of order n and
to study this in a consistent way. The following lemma
characterizes weakly input normal pairs to some extent.

Lemma 2.3 Let (A,B) ∈ Cn×n × Cn×p be an input pair
which is weakly input normal. Then there exists a unitary
matrix Q for which the transformed matrices Ã := QAQ∗

and B̃ := QB admit the block-partitions

Ã =
(

Ã1 0
0 Ã2

)
, B̃ =

(
B̃1

0

)
, (3)

for which Ã1 is asymptotically stable of size r × r, Ã2

is unitary of size (n − r) × (n − r) and B̃1 is of size
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r × p such that (Ã1, B̃1) is (discrete-time) input nor-
mal, where r denotes the rank of the controllability matrix(

B AB · · · An−1B
)
.

We are now in a position to characterize all the optimal
choices of C and D globally minimizing V for a fixed
weakly input normal pair (A,B), and to give an expression
of the corresponding “concentrated” criterion value.

Proposition 2.4 Let (Â, B̂, Ĉ, D̂) be a minimal state-
space representation of a q× p discrete-time stable proper
rational transfer function Ĝ(z) of finite McMillan de-
gree n̂. Let (A,B) ∈ Cn×n × Cn×p be a given, fixed,
weakly input normal pair and consider the associated lin-
ear space of q×p proper rational transfer functions G(z) =
D + C(zIn −A)−1B of McMillan degree ≤ n. Then there
is a unique transfer function Gopt(z) within this space
which minimizes the discrete-time H2-distance to Ĝ(z).
The associated set of corresponding optimal state-space
realizations (A,B, Copt, Dopt) is given by Dopt = D̂ and
Copt = ĈP2 + Γ, where P2 denotes the unique solution to
the discrete-time Sylvester equation P2 − ÂP2A

∗ = B̂B∗

and Γ is any q × n matrix of which all the rows are in
the left kernel of the reachability matrix associated with
(A,B). The corresponding value of the (squared) H2-
distance between Ĝ(z) and Gopt(z) is then given in terms
of the weakly input normal pair (A,B) by

Vc(A,B) = ‖Ĝ(z)−Gopt(z)‖2H2
=

= tr
{

ĈP1Ĉ
∗
}
− tr

{
ĈP2P

∗
2 Ĉ∗

}
, (4)

where P1 denotes the unique solution to the discrete-time
Lyapunov-Stein equation P1 − ÂP1Â

∗ = B̂B̂∗.

This proposition makes clear how the H2-approximation
problem can be rephrased in state-space terms as a min-
imization problem over the space of weakly input normal
pairs (A,B) ∈ Cn×n ×Cn×p, using the ‘concentrated H2-
criterion’ Vc(A,B).

3 Schur parametrization of bal-
anced realizations of stable all-
pass systems and of input nor-
mal pairs

A practical implementation of the state-space approach
to the H2-approximation problem still needs to be sup-
plied with a suitable parametrization of the space of in-
put normal pairs (A,B) of order n. These may be de-
rived from balanced state-space realizations of (multi-
input multi-output) discrete-time stable all-pass systems
(see also [8, 5]). The parametrizations studied in the
present paper are based on the constructions of [9] and em-
ploy ‘realization matrices’ of stable all-pass systems which
are constructed as products of structured unitary matri-
ces. The construction of the charts in the atlas described

here, employs mappings FU,V acting on p × p proper ra-
tional discrete-time stable all-pass transfer functions G(z)
as follows:

FU,V (G(z)) = F1(z) +
F2(z)F3(z)
z − F4(z)

, (5)

where

F (z) =
(

F1(z) F2(z)
F3(z) F4(z)

)
= V

(
1 0
0 G(z)

)
U∗, (6)

with U and V unitary matrices of size (p + 1) × (p + 1)
and with F (z) partitioned such that F4(z) is scalar.

Each of the mappings FU,V takes the set of rational
stable all-pass transfer functions into itself. In state-space
terms it holds that if (A,B, C, D) is a state-space real-
ization of G(z) with A of size n × n, then a state-space
realization (Ã, B̃, C̃, D̃) of G̃(z) = FU,V (G(z)), with Ã of
size (n + 1)× (n + 1), is given by

(
D̃ C̃

B̃ Ã

)
=

(
V 0
0 In

)  1 0 0
0 D C
0 B A

 (
U∗ 0
0 In

)
.

(7)
This demonstrates that if the McMillan degree of G(z) is
equal to n, then the McMillan degree of G̃(z) is ≤ n + 1.
It can be established (see [9]) that if the left bottom cor-
ner entries of U and V have different modulus, then the
McMillan degree of G̃(z) is n+1. In that case the mapping
FU,V can also be rewritten into the form of a linear frac-
tional transformation associated with a particular J-inner
matrix of McMillan degree 1, as employed in the tangential
Schur algorithm. A particular choice for the unitary ma-
trices U and V which makes this connection with the tan-
gential Schur algorithm explicit and which provides G̃(z)
with a balanced state-space realization when starting from
a balanced state-space realization of G(z), is given by

U =


√

1−|w|2√
1−|w|2‖v‖2

u Ip − (1 + w
√

1−‖v‖2√
1−|w|2‖v‖2

)uu∗

w̄
√

1−‖v‖2√
1−|w|2‖v‖2

√
1−|w|2√

1−|w|2‖v‖2
u∗

 ,

(8)

V =


√

1−|w|2√
1−|w|2‖v‖2

v Ip − (1−
√

1−‖v‖2√
1−|w|2‖v‖2

) vv∗

‖v‖2√
1−‖v‖2√

1−|w|2‖v‖2
−

√
1−|w|2√

1−|w|2‖v‖2
v∗

 ,

(9)
where w ∈ C with |w| < 1 is an interpolation point in
the open unit disk, u ∈ Cp×1 with ‖u‖ = 1 is a normal-
ized direction vector, and v ∈ Cp×1 with ‖v‖ < 1 is a
Schur vector, through which the actual parametrization
of a corresponding chart of stable all-pass systems takes
place.

Each chart in the atlas constructed recursively along
these lines, is then indexed by a fixed set of n interpo-
lation points w1, . . . , wn and n normalized direction vec-
tors u1, . . . , un, while the local coordinates are specified
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through the set of n Schur vectors v1, . . . , vn and an ini-
tial (constant) unitary matrix D0 of size p × p. When
using this approach just to generate charts for the man-
ifold of reachable input normal pairs (A,B) of order n,
the freedom of the unitary group is factored out natu-
rally, by choosing D0 = Ip. This leads to the following
parametrization of a chart in this atlas of reachable input
normal pairs (A,B) of order n:

(
B A

)
=

(
0 In

) (
Vn 0
0 In−1

)
· · · (10)

· · ·
(

In−1 0
0 V1

) (
In−1 0

0 U∗
1

)
· · ·

(
U∗

n 0
0 In−1

)
,

where the matrix blocks Uk and Vk are of the form de-
scribed by Eqns. (8)–(9) with w = wk, u = uk and v = vk

(for k = 1, 2 . . . , n).

4 Embedding of a lower order ap-
proximant into the boundary of
a generic chart

In the construction above, a generic chart of reachable
input normal pairs (A,B) of order n requires Schur vec-
tors v1, . . . , vn of norm strictly less than 1. Points on the
boundary of such a chart are obtained when one or more
of these Schur vectors have norm equal to 1. For ‖v‖ = 1,
the unitary matrices U and V given by Eqns. (8)–(9) at-
tain the form

U =
(

u Ip − uu∗

0 u∗

)
, V =

(
v Ip − vv∗

0 −v∗

)
, (11)

and w no longer plays a role. The following lemma estab-
lishes a necessary and sufficient condition for a boundary
point of the chart to correspond to a stable all-pass system
of McMillan degree n.

Lemma 4.1 For a given vector u of norm 1, a given
vector v of norm 1 and a given stable all-pass function
G(z) of McMillan degree n − 1, the stable all-pass func-
tion G̃(z) = FU,V (G(z)) is of McMillan degree n if and
only if there does not exists a scalar λ of modulus 1 such
that v = −λ−1G(λ)u.

For given u and stable all-pass G(z), the set {v | v =
−λ−1G(λ)u, |λ| = 1} is obviously non-empty, so that there
are always stable all-pass systems of order < n on the
boundary of a chart of stable all-pass systems of order n.
For any vector u, any vector v of norm 1 may give rise to
some G̃(z) of McMillan degree < n, depending on the spe-
cific choice of G(z). In case n = 1, however, when using
the prescribed initialization G(z) = D0 = Ip, the choice of
G(z) is restricted so that G̃(z) is again of McMillan degree
0 if and only if v = −λ−1u for some |λ| = 1. In that case
it is easily computed that G̃(z) = Ip if and only if v = u.

It follows in the scalar case p = 1 for fixed stable all-
pass G(z) of McMillan degree n − 1 and fixed (scalar) u
and v of modulus 1, that FU,V (G(z)) = uv∗ is a constant
unimodular scalar, because Ip − uu∗ = Ip − vv∗ = 0, so
that the McMillan degree is 0. In the multivariable case
p > 1, however, the set {v | v = −λ−1G(λ)u, |λ| = 1}
constitutes a manifold of real dimension 1, whereas the
boundary set {v | ‖v‖ = 1} has real dimension 2p− 1 > 1.
This implies that the boundary of the chart in that case
generically consists of stable all-pass systems of McMillan
degree n, while on the other hand a ‘thin’ subset of lower
order stable all-pass systems does always occur.

The construction procedure above for a state-space
parametrization of stable all-pass systems of McMillan de-
gree n with the help of the mappings FUk,Vk

can be ex-
tended in a simple way to embed an arbitrary fixed stable
all-pass system of McMillan degree n into the boundary of
a corresponding chart of stable all-pass systems of McMil-
lan degree n + 1. This is achieved by the application of
an extra initial mapping FU0,V0 which takes D0 = Ip to
itself. We have already indicated that FU0,V0(Ip) = Ip if
and only if v0 = u0. In this case, the state-space realiza-
tion (Ã, B̃, C̃, D̃) of G̃(z) = G(z) becomes non-minimal
and attains the form(

D̃ C̃

B̃ Ã

)
=

 D C 0
B A 0
0 0 −1

 . (12)

The construction gives rise to an extra state component,
which is obviously both uncontrollable and unobservable
and may simply be removed by mere truncation of the
state vector.

When using the above way of embedding a stable all-pass
system of McMillan degree n into the boundary of a chart
of stable all-pass systems of order n+1 within the context
of H2-approximation, where we have to focus on the as-
sociated input pairs (A,B), the concentrated H2-criterion
takes the form

Ṽc(Ã, B̃) = tr
{

ĈP1Ĉ
∗
}
− tr

{
ĈP̃2P̃

∗
2 Ĉ∗

}
, (13)

where P1 − ÂP1Â
∗ = B̂B̂∗ and P̃2 − ÂP̃2Ã

∗ = B̂B̃∗.
This is an immediate consequence of Prop. 2.4, upon not-
ing that all boundary points of the chart of input normal
pairs (A,B) are weakly input normal because of continu-
ity. Partitioning P̃2 =

(
P̃21 P̃22

)
with P̃22 consisting

of a single column, leads to

(
P̃21 P̃22

)
−Â

(
P̃21 P̃22

) (
A∗ 0
0 −1

)
= B̂

(
B∗ 0

)
.

(14)
Working out the partition, it is obtained that P̃21 −
ÂP̃21A

∗ = B̂B∗ and P̃22 + ÂP̃22 = 0, from which it fol-
lows that P̃2 =

(
P2 0

)
yields the unique solution. As a
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consequence Ṽc(Ã, B̃) = tr
{

ĈP1Ĉ
∗
}
− tr

{
ĈP̃2P̃

∗
2 Ĉ∗

}
=

tr
{

ĈP1Ĉ
∗
}
− tr

{
ĈP2P

∗
2 Ĉ∗

}
= Vc(A,B), which shows

that the embedding is well-behaved with respect to the
current context of H2-approximation.

5 The gradient of the concen-
trated H2-criterion at a lower or-
der embedded approximant

The foregoing exposition has made clear that the value of
the concentrated H2-criterion Vc(A,B) at a weakly input
normal pair (A,B) inside or on the boundary of one of the
charts in our construction, can be computed as

Vc(A,B) = tr
{

ĈP1Ĉ
∗
}
− tr

{
ĈP2P

∗
2 Ĉ∗

}
(15)

where P1 − ÂP1Â
∗ = B̂B̂∗ does not involve (A,B), and

P2 − ÂP2A
∗ = B̂B∗ does. Any directional derivative

V̇c(A,B) is therefore given by

V̇c(A,B) = −tr
{

ĈṖ2P
∗
2 Ĉ∗ + ĈP2Ṗ

∗
2 Ĉ∗

}
(16)

where Ṗ2 can be computed from the discrete-time
Sylvester equation

Ṗ2 − ÂṖ2A
∗ = ÂP2Ȧ

∗ + B̂Ḃ∗. (17)

Note that the structure of the left-hand side of this linear
matrix equation is similar to that of the Sylvester equa-
tion determining P2, so that a unique solution for Ṗ2 exists
provided that the right-hand side matrix is well-defined.
Since this involves directional derivatives of A and B, the
particular parametrization of (A,B) at hand plays a cru-
cial role.

When the parameters are chosen as the entries of the
Schur vectors vk (for all k = 1, 2, . . . , n), it follows that no
problems of differentiability emerge as long as ‖vk‖ < 1
for all k, i.e., inside the open charts. However, at the
boundaries of the charts the entries in Uk and Vk involv-
ing the expression

√
1− ‖vk‖2 will cause differentiability

problems. These can be cured, in general, by employing
local reparametrizations of the Schur vectors vk which ap-
proach the boundary at a slow enough rate. One instance
of such a local reparametrization is offered by writing each
Schur vector as vk = cos(rk)ṽk, with rk ≥ 0 and with ṽk a
smoothly parametrized vector of norm 1 (using any con-
venient smooth local parametrization of the unit sphere in
Cp), since then

√
1− ‖vk‖2 = sin(rk) is a smooth function

of rk exhibiting no differentiability problems at rk = 0.

Above we have also seen that if (A,B) constitutes an in-
put normal pair underlying an approximant G(z) of order
n to the given transfer function Ĝ(z), and (A,B) is em-
bedded into the boundary of a chart of input normal pairs

(Ã, B̃) of order n+1 by the application of an extra initial
mapping FU0,V0 , then (A,B) is represented for v0 = u0 by
the extended weakly input normal pair (Ã, B̃) given by

(Ã, B̃) = (
(

A 0
0 −1

)
,

(
B
0

)
). (18)

Then the associated matrix P̃2 which uniquely solves the
discrete-time Sylvester equation P̃2 − ÂP̃2Ã

∗ = B̂B̃∗ is of
the form P̃2 =

(
P2 0

)
, with the zeros constituting a

single column and with P2 uniquely solving the discrete-
time Sylvester equation P2 − ÂP2A

∗ = B̂B∗.
We are interested in computing directional derivatives

of Ṽc(Ã, B̃) at the given boundary point. If the local
parametrization is such that ˙̃A and ˙̃B are well-defined (i.e.,
having finite values), then also ˙̃P2 is well-defined and we
have, upon partitioning ˙̃P2 =

(
˙̃P21

˙̃P22

)
where ˙̃P22

consists of a single column:

˙̃Vc(Ã, B̃) = −tr
{

Ĉ ˙̃P21P
∗
2 Ĉ∗ + ĈP2

˙̃P ∗
21Ĉ

∗
}

(19)

where ˙̃P21 satisfies the equation

˙̃P21 − Â ˙̃P21A
∗ = ÂP2

˙̃A∗
11 + B̂ ˙̃B∗

1 , (20)

with ˙̃A11 and ˙̃B1 denoting the directional derivative of the
n×n left upper block of Ã and of the n× p upper part of
B̃, respectively.

Now suppose that (A,B) of order n constitutes a sta-
tionary point of Vc(A,B), then all the directional deriva-
tives of Vc(A,B) with respect to the parameters that com-
pose the Schur vectors v1, . . . , vn, are zero. As a conse-
quence, since Ṽc(Ã, B̃) = Vc(A,B) and since the choice
v0 = u0 makes that the additional (n + 1)-st state com-
ponent is uncontrollable and can be truncated, also the
corresponding directional derivatives of Ṽc(Ã, B̃) with re-
spect to the parameters in v1, . . . , vn at the boundary
point (Ã, B̃), are zero.

On the other hand, if we consider directional deriva-
tives involving the Schur vector v0 only, under the re-
striction that ‖v0‖ = 1, i.e., along the boundary of the
chart (or more precisely, along the boundary of the sub-
chart obtained by keeping v1, . . . , vn fixed and varying
only v0), then the following proposition makes clear that
these directional derivatives can alternatively be obtained
by jointly varying v1, . . . , vn in a specific way and keeping
v0 = u0 fixed.

Proposition 5.1 For a given q × p discrete-time sta-
ble proper rational transfer function Ĝ(z), with minimal
state-space realization (Â, B̂, Ĉ, D̂) of order n̂, consider
the associated ‘concentrated H2-criterion’ Ṽc(Ã, B̃) on a
parametrized chart of weakly input normal pairs of order
n+1, constructed in conjunction with a sequence of n+1
mappings FUk,Vk

, with wk and uk indexing the chart and
vk containing the parameters as in Eqns. (8)–(9), such
that ‖vk‖ ≤ 1 for k = 0, 1, 2, . . . , n.
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On the boundary of this chart, consider a parametrized
curve of points, with Schur vectors vk(t) given by v0(t) =
etXu0 and vk(t) = etXv0

k for k = 1, 2, . . . , n, where X is
a constant skew-Hermitian p × p matrix satisfying (Ip −
u0u

∗
0)X(Ip − u0u

∗
0) = 0. Then the function Ṽc(Ã, B̃) is

differentiable along this curve, having a stationary point
at the lower order embedded input pair on the boundary
occurring for t = 0.

Note that for an arbitrary vector ν such that ν∗u0+u∗0ν =
0, it holds that X = −u0ν

∗ + νu∗0 + (ν∗u0)u0u
∗
0 is skew-

Hermitian and satisfies the condition (Ip − u0u
∗
0)X(Ip −

u0u
∗
0) = 0, while v̇0(0) = Xu0 = ν. As a result, if the em-

bedded boundary point corresponds to a stationary point
of order n, then also all the directional derivatives with
respect to v0 ‘along the boundary of the subchart’ are
zero. It therefore follows that the gradient of Ṽc(Ã, B̃) is
orthogonal to the boundary of the chart at the embedded
lower order stationary point of Vc(A,B).

6 Conclusions

The H2-approximation problem may be reduced, in state
space, to an optimization problem over input normal pairs
(A,B). These input normal pairs can be parametrized by
means of sparse products of unitary matrices, facilitating
efficient numerical computation, as described by [9]. A
gradient-based approach may be followed along the lines
of [4], proceeding recursively with respect to the order n
of the approximant. Starting the iteration run for order
n at an approximant constituting a local minimum for
order n− 1, embedded at the boundary of a chart in this
atlas, corresponds to a gradient which is orthogonal to
that boundary. This method was implemented recently
and is found to perform satisfactorily. It is intended to
present an example in the final paper.
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