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Abstract

The tangential Schur algorithm provides a means of constructing the class of p×p discrete-
time stable all-pass transfer functions of a prescribed McMillan degree n. In each of its n
iteration steps a linear fractional transformation is employed which is associated with a J-
inner rational matrix of McMillan degree 1 involving certain parameters. In this set-up, the
issue of generating corresponding state-space realizations in terms of these parameters is not
addressed. In the present contribution we present a unified framework in which linear frac-
tional transformations on transfer functions are represented by corresponding linear fractional
transformations on state-space realization matrices. When applied to the case of the tan-
gential Schur algorithm, minimal balanced realizations of stable all-pass systems in terms of
the parameters used are obtained. The balanced state-space approach of [9] for SISO stable
all-pass systems is incorporated as a special case.

1 Introduction

Stable all-pass systems of finite order have several applications in linear systems theory. Within
the fields of system identification, approximation and model reduction, they have been used in
connection with the Douglas-Shapiro-Shields factorization, see e.g., [3, 2, 13, 7], to obtain effective
algorithms for various purposes. The differential structure of the one-to-one related class of inner
functions has been studied in [1]. There, a parametrization has been obtained in the multivariable
case by means of the tangential Schur algorithm which involves Schur parameter vectors, interpo-
lation points and normalized direction vectors. In the scalar case, a single coordinate chart suffices
to entirely describe the manifold of stable all-pass (or inner) systems of a fixed finite order. In
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the multivariable case this no longer can be achieved, and the approach leads to infinite atlases of
generic charts covering these manifolds.

In another line of research, balanced state-space canonical forms have been constructed for
various classes of linear systems; see e.g., [15, 10]. Balanced realizations allegedly have numer-
ical advantages and are useful for model reduction purposes in conjunction with the popular
‘balance-and-truncate’ approach. In the constructions of [10], the case of stable all-pass systems in
continuous-time plays a central role. However, when those results are carried over to the discrete-
time case by means of a bilinear transformation, several nice properties of the realizations are not
preserved, e.g., truncation of state components no longer leads to reduced order systems that are
balanced and in canonical form. Therefore, the ideas of [10] have been applied directly in [9] to the
SISO discrete-time stable all-pass case. This gave rise to a balanced canonical form which could
in fact be parametrized with Schur parameters.

In this paper, a unified framework based on linear fractional transformations is presented which
clarifies the connections between these two approaches. It encompasses and extends the prelimi-
nary results on this subject communicated in [16]. The main result in Theorem 3.5 provides the
basis for a recursive method for obtaining balanced realizations for stable all-pass systems which
are parametrized directly in terms of the parameters used in the (reversed) tangential Schur algo-
rithm. This generalizes the results of [9] to the multivariable case and opens up possibilities for
multivariable stable all-pass model reduction and approximation. Proofs are only given for all the
new results in this paper.

2 Preliminaries

In this section we present some background material on the three topics that come together in
the research of this paper: linear fractional transformations, state-space realization theory and
Σ-lossless functions. We introduce the definitions and notation used in subsequent sections of the
paper and we present a number of relevant results known from the literature.

2.1 Linear fractional transformations

We shall be considering linear fractional transformations of two different types that are associated

with an invertible block-partitioned rational matrix Θ =
(

Θ1 Θ2

Θ3 Θ4

)
∈ K2p×2p(z) in the inde-

terminate z, where K denotes either the field of real numbers R or of complex numbers C. Most
of the results in this section can be found in [17, 18].

Definition 2.1 The linear fractional transformations TΘ and T̂Θ are defined by:

TΘ :MΘ →MΘ−1 , G 7→ (Θ4G+ Θ3)(Θ2G+ Θ1)−1, (1)

T̂Θ : M̂Θ → M̂Θ−1 , G 7→ (GΘ2 + Θ4)−1(GΘ1 + Θ3). (2)

with their domains and co-domains specified by

MΘ := {G ∈ Kp×p(z) | rk(Θ2G+ Θ1) = p}, (3)

M̂Θ := {G ∈ Kp×p(z) | rk(GΘ2 + Θ4) = p}. (4)

It then holds that TΘ and T̂Θ are bijections with T −1
Θ = TΘ−1 and T̂ −1

Θ = T̂Θ−1 . In fact, these
identities constitute special instances of the following well known group properties which hold for
the composition of such mappings:

TΘ ◦ TΨ = TΘΨ on MΨ ∩MΘΨ, (5)

T̂Θ ◦ T̂Ψ = T̂ΨΘ on M̂Ψ ∩ M̂ΨΘ, (6)
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with Θ,Ψ ∈ K2p×2p(z) both invertible. (Note the order in which the matrices Θ and Ψ are
multiplied.)

Each linear fractional transformation can be represented in both ways. Denoting

Jp =
(
Ip 0
0 −Ip

)
(7)

it holds that TΘ = T̂JpΘ−1Jp (and equivalently T̂Θ = TJpΘ−1Jp), where MΘ = M̂JpΘ−1Jp (and
equivalently M̂Θ =MJpΘ−1Jp).

For two invertible rational matrices Θ,Ψ ∈ K2p×2p(z) it is well known that TΘ = TΨ (or
equivalently T̂Θ = T̂Ψ) if and only if there exists a scalar rational function λ(z) ∈ K(z), not
identically zero, such that Ψ = λΘ. Thus, a linear fractional transformation determines the
associated (invertible) matrix Θ up to a (nonzero) scalar function λ.

2.2 State-space realization of transfer functions

In this section we present a review of a number of well known results from realization theory which
shall be of importance in the sequel. See also [11].

Let G(z) be a p×m rational matrix in Kp×m(z). A matrix quadruple (A,B,C,D) ∈ Kn×n ×
K
n×m ×Kp×n ×Kp×m is called a state-space realization of G(z) if it holds that

G(z) = D + C(zIn −A)−1B. (8)

From this formula it is obvious that state-space realizations may only exist for proper rational
matrices. Conversely, it is well known that every proper rational matrix G(z) admits a state-space
realization (A,B,C,D) for some suitably chosen n ∈ N.

The associated (discrete-time) state-space system is described by the set of equations

xt+1 = Axt +But, (9)
yt = Cxt +Dut. (10)

Here xt denotes the n-dimensional state vector, ut the m-dimensional input (or control) vector
and yt the p-dimensional output vector, all at the time instant t ∈ Z. When the (two-sided) z-
transformation is applied to this system of equations, it is found that G(z) appears as the transfer
function of this system, relating the z-transform U(z) of the input sequence to the z-transform
Y (z) of the output sequence in a linear fashion: Y (z) = G(z)U(z). Thus, in the absence of initial
conditions, G(z) provides a description of the state-space system regarded as a mechanism which
establishes an input-output mapping from sequences {ut} to sequences {yt}.

A state-space realization (A,B,C,D) of a transfer function G(z) is called minimal if the asso-
ciated state-space dimension n is as small as possible among all possible state-space realizations.
A minimal state-space realization (A,B,C,D) of a proper rational transfer function G(z) always
exists, and in fact it is well known that a state-space realization (A,B,C,D) of G(z) is minimal if
and only if the associated state-space dimension n is equal to the McMillan degree of G(z).

If (A,B,C,D) is a minimal n-dimensional state-space realization of G(z), then (A′, B′, C ′, D′)
is another minimal state-space realization of G(z) if and only if there exists a (unique) nonsingular
matrix T ∈ Kn×n such that (A′, B′, C ′, D′) = (TAT−1, TB,CT−1, D). Thus, the freedom in
choosing a minimal state-space realization for a given transfer function is that of the general linear
group G`n(K), corresponding to a change of basis of the state space. Here the states x′t for the
state-space realization (A′, B′, C ′, D′) are related to the states xt for (A,B,C,D) by means of the
linear transformation x′t = Txt. One common way of constructing canonical forms for (sub)classes
of linear systems is by fixing a particular choice of T such as to impose a special structure on the
matrices A, B, C and D.
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Two important system theoretic concepts are that of controllability and observability. A state-
space realization (A,B,C,D) happens to be controllable if and only if the associated controllability
matrix Cn :=

(
B AB . . . An−1B

)
has full rank n. Likewise, it is observable if and only if

the observability matrix On :=


C
CA

...
CAn−1

 has full rank n. It is well known that a state-space

realization is minimal if and only if it is both controllable and observable.
As is well known, a transfer function G(z) of McMillan degree n has exactly n poles when

counting algebraic multiplicities. If G(z) is not proper, some of its poles are located at infinity.
From the definition of a state-space realization (A,B,C,D) of a proper rational matrix function
G(z) it follows that the poles of G(z) are contained within the set of eigenvalues of the dynamical
matrix A. In case the realization is minimal the poles of G(z) coincide with the eigenvalues of the
dynamical matrix A, including algebraic multiplicities.

A transfer function G(z) is called asymptotically stable if all its poles are within the open
unit disk {z ∈ C | |z| < 1}. In the same spirit, a matrix A ∈ K is called asymptotically stable if
all its eigenvalues are within the open unit disk and state-space realization (A,B,C,D) is called
asymptotically stable if the dynamical matrix A is asymptotically stable. With regard to mere
stability, there exist a few slightly different concepts in the literature. These are of importance
only in situations where all poles (or eigenvalues) are inside the closed unit disk while some of
them are on the unit circle. As we shall see, in case of a stable all-pass system none of its poles lie
on the unit circle so it is in fact asymptotically stable.

For an asymptotically stable state-space realization (A,B,C,D) one often considers the follow-
ing two associated discrete-time Lyapunov equations:

Wc −AWcA
∗ = BB∗, (11)

Wo −A∗WoA = C∗C. (12)

Because of the asymptotic stability of A it follows that these equations admit unique solutions
Wc and Wo, respectively, which are positive semi-definite and can be expressed as exponentially
converging infinite sums:

Wc =
∞∑
k=0

AkBB∗(A∗)k = C∞C∗∞, (13)

Wo =
∞∑
k=0

(A∗)kC∗CAk = O∗∞O∞. (14)

If the realization is controllable then Wc is positive definite and Wc is called the controllability
Gramian. Likewise, if the realization is observable then Wo is positive definite and Wo is called the
observability Gramian. One speaks of a balanced realization if it is minimal (both controllable and
observable) and such that the two Gramians Wc and Wo are identical diagonal matrices. It is well
known that an asymptotically stable transfer function G(z) always admits a balanced realization
(A,B,C,D). Balanced realizations are well known for their allegedly good numerical properties
and they lie at the heart of the well-known ’balance and truncate’ procedure for state-space model
reduction.

2.3 Σ-lossless rational matrix functions and state-space realization

A p×p matrix Σ is called a signature matrix if it is diagonal with all its main diagonal entries equal
to ±1. In the spirit of [8] we employ the following (slightly generalized) definition of Σ-lossless
rational matrix functions.
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Definition 2.2 Let Σ be a p×p signature matrix. In discrete time, a p×p rational matrix function
G(z) ∈ Kp×p(z) in the complex variable z is called Σ-lossless if the following three conditions are
satisfied at all points of analyticity z:

Σ−G(z)ΣG(z)∗ ≥ 0 for |z| > 1, (15)
Σ−G(z)ΣG(z)∗ = 0 for |z| = 1, (16)
Σ−G(z)ΣG(z)∗ ≤ 0 for |z| < 1. (17)

In addition, a matrix function G(z) is called Σ-unitary if condition (16) is satisfied.

In line with the terminology used in various parts of the literature (see [8, 5, 9, 12, 7, 1]) the
following terminology is adopted: Ir-lossless is also called lossless, or stable all-pass; (−Ir)-lossless
is also called Ir-inner, or inner, or anti-stable all-pass; more generally, (−Σ)-lossless is also called
Σ-inner; finally, Ir-unitary is also called all-pass.

If G(z) is Σ-unitary then it is invertible with its inverse given by G−1(z) = ΣG∗(z−1)Σ.
Here G∗(z) is obtained from G(z) by transposition and subsequent complex conjugation of all
the coefficients in the rational expressions that constitute its entries (but not of the variable z):
G∗(z) = G(z̄)∗ for all z ∈ C. Note that the class of Σ-lossless matrix functions is a subset of the
class of Σ-unitary matrices.

If G(z) is Σ-lossless, then G∗(z) is also Σ-lossless, while G−1(z) and G(z−1) are both (−Σ)-
lossless (or Σ-inner). As a matter of fact, it is well known (see [8]) that every two of the three
conditions (15)-(17) from the definition of the Σ-lossless property implies the remaining third. Also,
throughout the conditions (15)-(17) one may simultaneously replace all expressions Σ−G(z)ΣG(z)∗

appearing on the left-hand side by the expression Σ−G(z)∗ΣG(z) without affecting validity of the
definition.

It is well known that a p×p transfer function G(z) of McMillan degree n is discrete-time stable
all-pass, if and only if for each balanced state-space realization (A,B,C,D) the associated Gramians
Wc and Wo are both equal to the identity matrix In. In that case, one has that (A′, B′, C ′, D′) is
also a balanced state-space realization of G(z) if and only if there exists a unitary matrix Q such
that (A′, B′, C ′, D′) = (QAQ∗, QB,CQ∗, D). Since all the diagonal entries of the two Gramians
coincide, the class of stable all-pass systems actually constitutes a case in which the degree of
freedom for choosing balanced state-space representations is maximal.

We now make the following preparatory definitions, which set up a link between state-space
realizations and transfer functions by means of a linear fractional transformations and sub-matrix
selection.

Definition 2.3 The state-space realization matrix R associated with an n-dimensional state-space
realization (A,B,C,D) of a transfer function G(z) ∈ Kp×p(z), is defined as the block-partitioned
(p+ n)× (p+ n) matrix

R =
(
D C
B A

)
. (18)

Definition 2.4 Let p ≥ 1 and n ≥ 0 be integers. The mapping Rp,n :Mp,n →Mp,n is defined by

Rp,n(X(z)) :=
(
Ip 0

)
TR(z)(X(z))

(
Ip
0

)
(19)

for all rational (p + n) × (p + n) matrices X(z) in the domain Mp,n := MR(z), where R(z) =
Ip 0 0 0
0 −zIn 0 In
0 0 Ip 0
0 In 0 0

.
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Alternatively, the same mapping is given by Rp,n(X(z)) =
(
Ip 0

)
T̂R̂(z)(X(z))

(
Ip
0

)

where R̂(z) =


Ip 0 0 0
0 0 0 −In
0 0 Ip 0
0 −In 0 zIn

. Also, it is easily verified that if R denotes the real-

ization matrix associated with an n-dimensional state-space realization (A,B,C,D) of a proper
rational transfer function G(z) ∈ Kp×p(z), then R ∈Mp,n and Rp,n(R) = G(z).

When the mapping Rp,n is applied to a
(

Σ 0
0 In

)
-lossless matrix function, the result is Σ-

lossless. This is the content of the following theorem, of which the proof involves a generalization
of Eqn. (22) of [8].

Theorem 2.5 Let Σ be a p × p signature matrix and let G(z) be
(

Σ 0
0 In

)
-lossless, of size

(p+ n)× (p+ n). Then H(z) = Rp,n(G(z)) is Σ-lossless, of size p× p.

Proof. Let G(z) =
(
G1(z) G2(z)
G3(z) G4(z)

)
be block-partitioned conformably with

(
Σ 0
0 In

)
.

Then the expression Σ−G(z)ΣG(z)∗ can be cast into the form:(
Ip G2(z)(zIn −G4(z))−1

) [
Q(z) + (|z|2 − 1)

(
0 0
0 In

)](
Ip

(zIn −G4(z)∗)−1G2(z)∗

)
,

(20)

with Q(z) =
(

Σ 0
0 In

)
− G(z)

(
Σ 0
0 In

)
G(z)∗. Therefore it follows from the assumption of

G(z) being
(

Σ 0
0 In

)
-lossless and the fact that also the inertia of (|z|2 − 1)

(
0 0
0 In

)
depends

entirely on the sign of (|z|2 − 1), that G(z) is indeed Σ-lossless. �

In particular, if G(z) is lossless then also H(z) = Rp,n(G(z)) is lossless. When G(z) is a constant
unitary matrix, it therefore acts as a realization matrix for a lossless transfer function H(z). This
well known result is addressed in the following two theorems; see also [9, 8, 14].

Theorem 2.6 Let R =
(
D C
B A

)
be a unitary block-partitioned realization matrix of size (p +

n) × (p + n). Then the associated p × p transfer function G(z) = D + C(zIn − A)−1B is stable
all-pass (lossless) of McMillan degree ≤ n. The state-space realization (A,B,C,D) is minimal if
and only if A is asymptotically stable, in which case the realization is balanced.

Conversely, it can be established that every lossless transfer function admits a unitary realiza-
tion matrix corresponding to a minimal balanced realization.

Theorem 2.7 Let G(z) be a p × p rational lossless transfer function of McMillan degree equal
to n. Then it is proper and it admits a minimal balanced realization (A,B,C,D). In that case
A is asymptotically stable of size n × n, the Gramians Wc and Wo are both equal to In, and the

realization matrix R =
(
D C
B A

)
is unitary.

The results above can actually be generalized to the case of proper Σ-lossless transfer functions
in the following way. As in [8, 14] a state-space realization (A,B,C,D) is called Σ-balanced if it
is minimal and the solutions W ′c and W ′o of the generalized discrete-time Lyapunov equations

W ′c −AW ′cA∗ = BΣB∗, (21)
W ′o −A∗W ′oA = C∗ΣC, (22)
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exist, are unique, and are identical diagonal matrices. Then if G(z) is a p × p proper Σ-lossless
transfer function of McMillan degree n, it admits a Σ-balanced state-space realization (A,B,C,D)
with W ′c = W ′o = Σ, while conversely such a Σ-balanced state-space realization with W ′c = W ′o = Σ
corresponds to a proper Σ-lossless transfer function.

To conclude this section we state the following proposition.

Proposition 2.8 Let Σ be a p× p signature matrix.

(i) If Θ(z) ∈ K2p×2p(z) is
(
−Σ 0
0 Σ

)
-lossless and G(z) ∈ MΘ(z) is lossless, then G̃(z) :=

TΘ(z)(G(z)) is Σ-lossless.

(ii) If Θ(z) ∈ K2p×2p(z) is
(

Σ 0
0 −Σ

)
-lossless and G(z) ∈ M̂Θ(z) is lossless, then G̃(z) :=

T̂Θ(z)(G(z)) is Σ-lossless.

Proof. We first address part (ii). Let Θ be partitioned into p × p blocks, as usual. Then
G̃ = (GΘ2 + Θ4)−1(GΘ1 + Θ3) and the expression Σ − G̃ΣG̃∗ can be seen to attain the form

(GΘ2 + Θ4)−1
(
G Ip

) [[( Σ 0
0 −Σ

)
−Θ

(
Σ 0
0 −Σ

)
Θ∗
]
−
(

Σ 0
0 −Σ

)](
G∗

Ip

)
(GΘ2 +

Θ4)−∗. From the assumptions on Θ and G it now follows directly that this expression is positive
semi-definite for |z| > 1, zero for |z| = 1 and negative semi-definite for |z| < 1, whence G̃(z) is
indeed Σ-lossless.

To see part (i), note that this follows from part (ii) because TΘ = T̂JpΘ−1Jp with now JpΘ−1Jp

being
(

Σ 0
0 −Σ

)
-lossless. �

3 A state-space framework for linear fractional transforma-
tions

In this section we establish a framework in which the linear fractional transformations TΘ(z)(G(z)
and T̂Θ(z)(G(z) are represented, respectively, as the linear fractional transformations TΦ̃(R̃) and
T̂Ψ̃(R̃), in which Φ̃, Ψ̃ and R̃ denote constant block-partitioned matrices involving state-space
realizations of Θ(z−1), Θ(z) and G(z). More precisely, the matrix R̃ denotes a (non-minimal,
extended) realization matrix for G(z) and the outcomes TΦ̃(R̃) and T̂Ψ̃(R̃) constitute realization
matrices for TΘ(z)(G(z) and T̂Θ(z)(G(z), respectively. This makes it possible to supply a sequence
of transfer functions generated by iterative application of linear fractional transformations, with
corresponding state-space realizations. The importance of this issue lies in the fact that the avail-
ability of state-space realizations enables the application of many tools from linear algebra and
modern control theory, enabling the development of new theory and proofs along different lines as
well as achieving a decrease of the gap between theory and practical applications.

We first consider the following four lemmas. The first lemma will come as no surprise, since a
change of basis of the state space leaves the transfer function of a system unchanged.

Lemma 3.1 Let S =


Ip 0 0 0
0 T 0 0
0 0 Ip 0
0 0 0 T

 where T is a rational invertible matrix of size n × n.

It then holds that

Rp,n = Rp,n ◦ TS = Rp,n ◦ T̂S . (23)
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Proof. Note that S commutes with the matrices R(z) and R̂(z) in the definition of the mapping
Rp,n (or its alternative form). Note also that TS and T̂S leave the p × p block in the left upper
corner of their arguments unchanged. �

The next lemma, like in the definition of the mapping Rp,n, combines the action of sub-matrix
selection with the action of a linear fractional transformation.

Lemma 3.2 Let X ∈ K
(p+n)×(p+n)(z) and Θ =

(
Θ1 Θ2

Θ3 Θ4

)
a block-partitioned invertible

rational matrix of size 2p × 2p with blocks Θi (i = 1, . . . , 4) of size p × p. Denote Θ̃ :=
Θ1 0 Θ2 0
0 In 0 0

Θ3 0 Θ4 0
0 0 0 In

. Then:

TΘ(
(
Ip 0

)
X

(
Ip
0

)
) =

(
Ip 0

)
TΘ̃(X)

(
Ip
0

)
(24)

if TΘ̃(X) is well-defined. Likewise:

T̂Θ(
(
Ip 0

)
X

(
Ip
0

)
) =

(
Ip 0

)
T̂Θ̃(X)

(
Ip
0

)
(25)

if T̂Θ̃(X) is well-defined.

Proof. Let X be block-partitioned as
(
X1 X2

X3 X4

)
with X1 of size p × p. Consider TΘ̃(X) =(

Θ4X1 + Θ3 Θ4X2

X3 X4

)(
Θ2X1 + Θ1 Θ2X2

0 In

)−1

, from which it follows that the p × p block

in the left upper corner is given by (Θ4X1 + Θ3)(Θ2X1 + Θ1)−1 = TΘ(X1). This proves the first
identity; the second one is proved likewise. �

The following lemma presents a result on the composition of a linear fractional transformation
with the mapping Rp,n.

Lemma 3.3 Let Θ(z) =
(

Θ1(z) Θ2(z)
Θ3(z) Θ4(z)

)
be a block-partitioned rational matrix in K2p×2p(z)

with blocks Θi(z) (i = 1, . . . , 4) of size p×p. Denote Θ̃(z) :=


Θ1(z) 0 Θ2(z) 0

0 In 0 0
Θ3(z) 0 Θ4(z) 0

0 0 0 In

. Then:

Rp,n ◦ TΘ̃(z) = TΘ(z) ◦ Rp,n. (26)

Likewise:

Rp,n ◦ T̂Θ̃(z) = T̂Θ(z) ◦ Rp,n. (27)

Proof. To see the first identity, note that (for all rational X(z) for which the mappings are

well-defined) one may write Rp,n ◦ TΘ̃(z)(X(z)) =
(
Ip 0

)
TR(z) ◦ TΘ̃(z)(X(z))

(
Ip
0

)
where

R(z) =


Ip 0 0 0
0 −zIn 0 In
0 0 Ip 0
0 In 0 0

. From the structure of Θ̃(z) it is clear that it commutes with
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R(z). Application of Lemma 3.2 now yields the first stated result. The second identity is proved
in an analogous fashion. �

Finally, we have an associativity property for the composition of (compatible) mappings of the
form Rp,n.

Lemma 3.4 Let p > 0, n ≥ 0 and m ≥ 0 be integers. Then

Rp,n ◦ Rp+n,m = Rp,n+m (28)

on the whole domain of rational matrices of size (p+n+m)×(p+n+m) for which the composition
of mappings on the left-hand side is well-defined.

Proof. For X ∈ K2(p+n+m)×2(p+n+m)(z) consider the expression Rp,n ◦Rp+n,m(X) (provided it

is well-defined); this is equal to
(
Ip 0

)
TR1(z)(

(
Ip+n 0

)
TR2(z)(X)

(
Ip+n

0

)
)
(
Ip
0

)
, where

R1(z) =


Ip 0 0 0
0 −zIn 0 In
0 0 Ip 0
0 In 0 0

 and R2(z) =


Ip+n 0 0 0

0 −zIm 0 Im
0 0 Ip+n 0
0 Im 0 0

. Using Lemma 3.2

this can be rewritten as
(
Ip 0

) (
Ip+n 0

)
TR̃1(z) ◦ TR2(z)(X)

(
Ip+n

0

)(
Ip
0

)
with R̃1(z) =

Ip 0 0 0 0 0
0 −zIn 0 0 In 0
0 0 Im 0 0 0
0 0 0 Ip 0 0
0 In 0 0 0 0
0 0 0 0 0 Im

. Note that R̃1(z)R2(z) =


Ip 0 0 0
0 −zIn+m 0 In+m

0 0 Ip 0
0 In+m 0 0

, from

which the lemma follows. �

We now come to the main result of this section.

Theorem 3.5 Let (A,B,C,D) be an n-dimensional state-space realization of a p × p proper

rational transfer function G(z) and let R :=
(
D C
B A

)
be its associated realization matrix.

Also, let (A,
(
B1 B2

)
,

(
C1
C2

)
,

(
D1 D2

D3 D4

)
) be an m-dimensional state-space realization

of a 2p × 2p proper rational transfer function Θ(z) =
(

Θ1(z) Θ2(z)
Θ3(z) Θ4(z)

)
, conformably block-

partitioned with blocks Θi(z) (i = 1, . . . , 4) of size p × p. In addition, denote R̃ :=
(
R 0
0 Im

)
,

G̃(z) :=
(
G(z) 0

0 Im

)
, Θ̃(z) :=


Θ1(z) 0 Θ2(z) 0

0 In 0 0
Θ3(z) 0 Θ4(z) 0

0 0 0 In

, Φ :=


D1 C1 D2 0
B1 A B2 0
D3 C2 D4 0
0 0 0 Im

 and

Φ̃ :=


D1 0 C1 D2 0 0
0 In 0 0 0 0
B1 0 A B2 0 0
D3 0 C2 D4 0 0
0 0 0 0 In 0
0 0 0 0 0 Im

. Then:

TΘ(z−1)(G(z)) = Rp,n ◦ TΘ̃(z−1)(R) = Rp,m ◦ TΦ(G̃(z)) = Rp,n+m ◦ TΦ̃(R̃) (29)
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provided that R̃ ∈MΦ̃. Likewise:

T̂Θ(z)(G(z)) = Rp,n ◦ T̂Θ̃(z)(R) = Rp,m ◦ T̂Φ(G̃(z)) = Rp,n+m ◦ T̂Φ̃(R̃) (30)

if R̃ ∈ M̂Φ̃.

Proof. We concentrate on the first series of identities (29), involving linear fractional transfor-
mations of the type TΘ. The second series of identities (30) can be handled in a similar fashion.

To see the first equality in (29) we simply invoke Lemma 3.3 with the mappings applied to the
realization matrix R.

To prove the second equality in (29), we elaborate on the expression Rp,m ◦

TΦ(G̃(z)) which is first rewritten into the form
(
Ip 0

)
TV (z) ◦ TΦ(G̃(z))

(
Ip
0

)
with

V (z) =


Ip 0 0 0
0 −zIm 0 Im
0 0 Ip 0
0 Im 0 0

. The matrix product W (z) := V (z)Φ takes the form

W (z) =


D1 C1 D2 0
−zB1 −zA −zB2 Im
D3 C2 D4 0
B1 A B2 0

. Working out the structure of G̃(z) the expres-

sion TW (z)(G̃(z)) is equivalent to
(
D4G(z) +D3 C2
B2G(z) + B1 A

)(
D2G(z) +D1 C1
−z(B2G(z) + B1) Im − zA

)−1

.

We are looking for the left upper p × p block of this matrix, which is given by the

product
(
D4G(z) +D3 C2

)( Ip
(z−1Im −A)−1(B2G(z) + B1)

)
(D2G(z) + D1 + C1(z−1Im −

A)−1(B2G(z) + B1))−1 using a well known result on the inversion of block-partitioned matrices;
see, e.g., [19, App. A.1]. From the definition of the state-space realization of Θ(z) it then follows
that this is equal to (Θ4(z−1)G(z) + Θ3(z−1))(Θ2(z−1)G(z) + Θ1(z−1))−1 = TΘ(z−1)(G(z)).

To prove the third equality in (29), note that Rp,n+m ◦ TΦ̃(R̃) can be written as Rp,n+m ◦
TΠ̃ ◦ TΠ̃∗ ◦ TΦ̃ ◦ TΠ̃ ◦ TΠ̃∗(R̃) where Π̃ denotes the block-partitioned permutation matrix Π̃ :=

Ip 0 0 0
0 Π 0 0
0 0 Ip 0
0 0 0 Π

, in which Π denotes the permutation matrix Π :=
(

0 In
Im 0

)
. Note that

according to Lemma 3.1 it holds that Rp,n+m ◦ TΠ̃ = Rp,n+m, which can be rewritten using

Lemma 3.4 as Rp,m ◦ Rp+m,n. Also, TΠ̃∗ ◦ TΦ̃ ◦ TΠ̃ = TΦ̂ with Φ̂ :=


Φ1 0 Φ2 0
0 In 0 0

Φ3 0 Φ4 0
0 0 0 In

, where

Φi (i = 1, . . . , 4) denote the four blocks of size (p + m) × (p + m) of a corresponding block-

partition of Φ. Moreover, TΠ̃∗(R̃) =

 D 0 C
0 Im 0
B 0 A

. Taken together this yields the expression

Rp,m ◦ Rp+m,n ◦ TΦ̂(

 D 0 C
0 Im 0
B 0 A

). Application of Lemma 3.3 then yields the equivalent

expression Rp,m ◦ TΦ ◦ Rp+m,n(

 D 0 C
0 Im 0
B 0 A

) = Rp,m ◦ TΦ(G̃(z)). �

These representations of linear fractional transformations entirely in terms of associated state-space
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realizations as expressed by the right-most expressions in (29) and (30), have the computational
advantage that only constant matrices are involved, which are conveniently handled by standard
methods from numerical linear algebra. The theorem makes clear that the resulting realization
matrices on the right-hand sides are of size (p+n+m)× (p+n+m) whence the resulting transfer
function matrices on the left-hand sides are of McMillan degree at most n + m. In contrast, the
linear fractional transformations on the left-hand sides involve rational matrices in the symbolic
variable z, initially giving rise to common denominator polynomials of degree 2(n + m). The
cancellation of common factors which is guaranteed to take place by theory, presents one with the
nontrivial task of adequately detecting and removing these common factors in this mixed numerical
and symbolic context.

4 Balanced realization of the class of discrete-time stable
all-pass functions

We now turn to the subject of constructing parametrizations of the class of discrete-time stable
all-pass systems. We shall discuss two different approaches. The first approach (see [7, 1]) proceeds
entirely on the level of transfer functions by means of the (reversed) tangential Schur algorithm
which employs linear fractional transformations. The second approach (see [9]) instead acts on the
level of balanced state-space realizations by means of unitary matrix operations and also happens to
involve Schur parameters. Using the tools developed in the previous sections these two approaches
are captured in a unified framework which helps to clarify their interrelationships and enables the
construction of balanced state-space realizations associated with the tangential Schur algorithm.
The material presented here yields a significant extension of the preliminary results on this topic
in [16].

4.1 The tangential Schur algorithm

In each recursion step of the (reversed) tangential Schur algorithm, the McMillan degree of the
rational stable all-pass function at hand is increased by 1 by the action of a linear fractional trans-
formation. This transformation is associated with a Jp-inner matrix function Θ(z) of McMillan
degree 1 which has a particular form that stems from the theory of reproducing kernel Hilbert
spaces (see also [5, 6, 7]):

Θ(z) = Θ(u, v, w, ξ,H; z) =
(
I2p −

(1− ξz)(1− |w|2)
(1− ‖v‖2)(1− wz)(1− ξw)

(
u
v

)(
u
v

)∗
Jp

)
H. (31)

Here, the associated parameters (that may be chosen independently for each recursion step) are
required to satisfy the following properties. (1) u ∈ Cp×1 is a normalized direction vector such
that ‖u‖ = 1. (2) v ∈ Cp×1 is a (generalized) Schur parameter vector satisfying ‖v‖ < 1. (3) w is
an interpolation point with |w| < 1. (4) ξ is a point with |ξ| = 1. (5) H is a constant Jp-unitary
matrix.

At the point z = ξ it holds that Θ(ξ) = H. From the structure of Θ(z) it also follows that
G̃(z) = TΘ(z)(G(z)) satisfies the interpolation condition

G̃(w−1)u = v. (32)

In the standard case with w = 0 the value of G̃(∞) corresponds to the direct feedthrough term D̃

of any state-space realization (Ã, B̃, C̃, D̃) of G̃(z), so that the interpolation condition then takes
the form D̃u = v.

If G(z) is stable all-pass of McMillan degree n then (for each set of admissible choices of the
parameters) it is well known that it belongs to the domain MΘ(u,v,w,ξ,H;z) of the linear fractional
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transformation involved; moreover its image G̃(z) = TΘ(u,v,w,ξ,H;z)(G(z)) is also stable all-pass and
of McMillan degree n+ 1.

Conversely, if G̃(z) is stable all-pass of McMillan degree n+1 and Θ(u, v, w, ξ,H; z) is a Jp-inner
function (stemming from an admissible set of choices of the parameters) then there exists a stable
all-pass function G(z) of McMillan degree n such that G̃(z) = TΘ(u,v,w,ξ,H;z)(G(z)) if and only if
u, v and w are such that G̃(z) satisfies the interpolation condition (32). Note that for all w in the
open unit disk it holds that G̃(w−1)G̃(w−1)∗ ≤ Ip; therefore, if G̃(z) is not constant unitary, one
can indeed always find a vector u of norm 1 for which v := G̃(w−1)u has norm strictly less than 1.

It then can be shown that each set of admissible values for the parameters u, w, ξ and H at
the first n recursion steps may serve to index a generic chart for the manifold of stable all-pass
systems of order n. The Schur parameter vectors v together with an initial unitary matrix, say
G0, provide the local coordinates for this chart. An infinite atlas of overlapping generic charts is
obtained by varying the choices for u, w, ξ and H, but atlases containing less charts may also be
obtained by limiting the freedom for choosing these parameters.

The following proposition (see [16]) shows how a linear fractional transformation in an iteration
step of the tangential Schur algorithm can be written as a composition of a number of more simple
linear fractional transformations.

Proposition 4.1 The Jp-inner matrix function Θ(u, v, w, ξ,H; z) can be factored as:

Θ(u, v, w, ξ,H; z) = H(uv∗)Su,w(z)Su,w(ξ)−1H(uv∗)−1H, (33)

where H(uv∗) denotes the Jp-unitary Halmos extension of the strictly contractive matrix uv∗ and
where Su,w(z) is defined as the Jp-inner matrix function

Su,w(z) =

(
Ip −

(
1− (z−w)

(1−wz)

)
uu∗ 0

0 Ip

)
. (34)

Here, the Halmos extension H(E) of a strictly contractive matrix E (i.e., having all its singular
values strictly less than 1) is the Jp-unitary matrix defined by

H(E) =
(

(Ip − EE∗)−
1
2 E(Ip − E∗E)−

1
2

E∗(Ip − EE∗)−
1
2 (Ip − E∗E)−

1
2

)
=
(

(Ip − EE∗)−
1
2 (Ip − EE∗)−

1
2E

(Ip − E∗E)−
1
2E∗ (Ip − E∗E)−

1
2

)
.

(35)

For ‖u‖ = 1 and ‖v‖ < 1, the matrix uv∗ is indeed strictly contractive, with Halmos extension
given by

H(uv∗) =

 Ip − (1− 1√
1−‖v‖2

)uu∗ 1√
1−‖v‖2

uv∗

1√
1−‖v‖2

vu∗ Ip − (1− 1√
1−‖v‖2

) vv
∗

‖v‖2

 . (36)

Its inverse satisfies H(uv∗)−1 = H(−uv∗).
Note that the linear fractional transformations associated with the constant Jp-unitary matrices

H, H(uv∗), H(uv∗)−1 and Su,w(ξ)−1 are all generalized Möbius transformations; they do not
change the McMillan degree of a matrix function on which they act. Only the transformation
associated with the matrix Su,w(z) effectuates an order increase by 1, but it has a simple form
that does not involve the Schur parameter vector v, nor ξ, nor H.

For reference we mention that if M is a constant Jp-unitary matrix it can be represented in a
unique way, see [4], as

M =
(
P 0
0 Q

)
H(E), (37)

where P and Q are p × p unitary matrices and H(E) denotes the Halmos extension of a strictly
contractive p× p matrix E.
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4.2 The balanced state-space approach

We now turn towards the second approach for parametrizing the space of stable all-pass systems,
in terms of balanced state-space realizations. We start by introducing some more notation, re-
formulating concepts previously introduced in [16] in the language of the present framework of
linear fractional transformations.

With each pair (U, V ) of constant (p+ 1)× (p+ 1) matrices we associate a mapping FU,V that
is defined to act on p× p rational matrix functions G(z) as follows:

FU,V (G(z)) := Rp,1 ◦ T U 0
0 V

(
(

1 0
0 G(z)

)
) (38)

for all G(z) for which the right-hand side expression is well-defined. Let (A,B,C,D) be an n-
dimensional state-space realization of G(z). Then an (n + 1)-dimensional state-space realization
(Ã, B̃, C̃, D̃) of G̃(z) := FU,V (G(z)) is given by:(

D̃ C̃

B̃ Ã

)
=
(
V 0
0 In

) 1 0 0
0 D C
0 B A

( U∗ 0
0 In

)
. (39)

From the earlier observations on balanced state-space realization of stable all-pass functions and
Eqn. (39) it is immediate that for unitary matrices U and V , the mapping FU,V takes stable all-
pass transfer functions of McMillan degree n into stable all-pass transfer functions of McMillan
degree ≤ n+ 1.

In the SISO case, mappings of the form FU,V with U = I2 have been used in [9] to recursively
construct a balanced canonical form for the space of discrete-time stable all-pass systems of finite
McMillan degree. The parameters that occur in this recursion have the interpretation of Schur pa-
rameters, corresponding to the situation with interpolation points w at zero. Note that on the level
of state-space realization matrices, a composition of mappings of the form FU,V is implemented as a
product of unitary matrices, which has several corresponding numerical advantages. The question
thus arises whether it is possible to represent a linear fractional transformation TΘ(u,v,w,ξ,H;z) from
an iteration step of the tangential Schur algorithm as a mapping of the form FU,V . This would
give us balanced state-space parametrizations directly in terms of the set of parameters u, v, w,
ξ and H used in the tangential Schur algorithm. In [16] the conditions under which this can be
achieved have been completely analyzed.

Let the Jp-inner matrix function Θ̂(u, v, w; z) be introduced as

Θ̂(u, v, w; z) = H(uv∗)Su,w(z)H(wuv∗). (40)

The main result of [16] then reads as follows.

Theorem 4.2 Let u, v ∈ Cp×1 and w ∈ C such that ‖u‖ = 1, ‖v‖ < 1 and |w| < 1. Then for all
p× p proper rational stable all-pass functions G(z) of finite McMillan degree it holds that

TΘ̂(u,v,w;z)(G(z)) = FU,V (G(z)), (41)

if U and V are taken to be the unitary (p+ 1)× (p+ 1) matrices

U =


√

1−|w|2√
1−|w|2‖v‖2

u Ip − (1 + w
√

1−‖v‖2√
1−|w|2‖v‖2

)uu∗

w
√

1−‖v‖2√
1−|w|2‖v‖2

√
1−|w|2√

1−|w|2‖v‖2
u∗

 , (42)

V =


√

1−|w|2√
1−|w|2‖v‖2

v Ip − (1−
√

1−‖v‖2√
1−|w|2‖v‖2

) vv
∗

‖v‖2√
1−‖v‖2√

1−|w|2‖v‖2
−
√

1−|w|2√
1−|w|2‖v‖2

v∗

 . (43)
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According to Proposition 4.1 the matrix Θ(u, v, w, ξ,H; z) is of the form Θ̂(u, v, w; z)M , with
the matrix M = Θ̂(u, v, w; ξ)−1H constant and Jp-unitary. Thus M can be parametrized as M =(
P 0
0 Q

)
H(E) for unique, unitary matrices P and Q and a unique strictly contractive matrix

E. The following proposition indicates for which matrices M the mapping TΘ̂(u,v,w;z)M (G(z)) can
be represented in the form FU,V (G(z)).

Proposition 4.3 Let u, v ∈ Cp×1 and w ∈ C such that ‖u‖ = 1, ‖v‖ < 1 and |w| < 1. Let

M =
(
P 0
0 Q

)
H(E) be Jp-unitary, with P and Q p×p unitary and E p×p strictly contractive.

Then the mapping TΘ̂(u,v,w;z)M (G(z)) can be represented as a mapping FU,V (G(z)) if and only if
E = 0.

This proposition makes clear that in general it is impossible to carry out a full recursion step
of the tangential Schur algorithm by performing a mapping of the form FU,V (G(z)). However, if
one is willing to give up some of the freedom available for choosing the constant Jp-unitary right
multiplier matrix H, it can always be achieved that E = 0, e.g., by putting H = Θ̂(u, v, w; ξ).
On the other hand, as remarked in [16], one may also still construct a sequence of balanced real-
izations corresponding to the tangential Schur algorithm with the most general choices of H, by
alternating application of mappings of the form FU,V relating to the linear fractional transforma-
tions TΘ̂(u,v,w;z), and Möbius transformations TM implemented with the help of Lemma 3.3. Since
M is Jp-inner, balancedness is then maintained by virtue of Proposition 2.8 and Theorem 2.5.

4.3 A unified framework based on linear fractional transformations

In addition to the connections described above between the two approaches towards the
parametrization of discrete-time stable all-pass systems we make the following remarks.

The representation of linear fractional transformations on transfer functions in terms of asso-
ciated state-space realizations, as described in Theorem 3.5, can also be applied directly to the
tangential Schur algorithm. Note that from the expression (31) an explicit 1-dimensional state-
space realization of Θ(u, v, w, ξ,H; z) is readily computed. In fact, with Θ(u, v, w, ξ,H; z) being
Jp-inner it also is not difficult to compute a (−Jp)-balanced realization in terms of the parameters
used. From Proposition 2.8 and Theorem 2.5 it then follows that application of Theorem 3.5 gives
rise to a sequence of balanced realizations for the sequence of all-pass functions encountered in the
tangential Schur algorithm.

It should be noted that the balanced realizations obtained in this way are usually different
from the ones described in the previous subsection. Indeed, the matrices Φ̃ employed in Theorem
3.5 are in general not block-diagonal with blocks of size (p + n + m) × (p + n + m), so that
the associated linear fractional transformations are not of the form FU,V . This is due the fact
that the extended non-minimal realization matrices R̃ to which the mappings TΦ̃ are applied, are
structured, containing zeros and ones in specific locations. Therefore, in contrast to the relatively
simple uniqueness remarks about linear fractional transformations at the end of Section 2.1, there
exists a non-trivial class of equivalent linear fractional transformations with respect to their action
on matrices of the form R̃.

5 Conclusions

In this paper we have presented a unified framework, based on linear fractional transformations,
in which two different approaches towards the parametrization of the class of discrete-time stable
all-pass systems come together. It enables the construction of atlases of balanced realizations
associated with the (reversed) tangential Schur algorithm, expressed explicitly in terms of the
parameters used. It also yields guidelines for the choices to be made in the tangential Schur
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algorithm in order to arrive at a recursive construction of balanced realizations exclusively in
terms of multiplication of unitary matrices. An implementation of this state-space approach in
the field of rational H2-approximation (as previously studied in [13, 7] in the context of transfer
functions) is currently under investigation.
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