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Abstract. This paper deals with the rational approximation of specified order n to transfer
functions which are assumed to be matrix-valued functions in the Hardy space for the complement
of the closed unit disk endowed with the L2-norm. An approach is developed leading to a new
algorithm, the first one to our knowledge which concerns matrix-transfer functions in L2-norm. This
approach generalizes the ideas presented in [L. Baratchart, M. Cardelli, and M. Olivi, Automatica,
27(1991), pp. 413–418] in the scalar case but involves substantial new difficulties.

Using the Douglas–Shapiro–Shields factorization of transfer functions, the criterion for the ra-
tional approximation problem above is expressed in terms of inner matrix functions of McMillan
degree n. These functions, which possess a manifold structure, are represented by means of local
coordinate maps obtained in [D. Alpay, L. Baratchart, and A. Gombani, Oper. Theory Adv. Appl.,
73(1994), pp. 30–66] from a tangential Schur algorithm and for which the coordinates range over n

copies of the unit ball. A gradient algorithm is then employed to solve the approximation problem
using the coordinate maps to describe the manifold locally and changing from one coordinate map to
another when required. However, while processing the gradient algorithm a boundary point can be
reached. It is proved that such a point can be considered as an initial point for searching for a local
minimum of lower degree while a local minimum of McMillan degree k < n provides a starting point
for searching for a local minimum at degree k + 1. The minimization process then pursues through
different degrees. The convergence of this algorithm to a local minimum of appropriate degree is
proved and demonstrated on a simple example.
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1. Introduction. The identification of linear time-invariant systems can be for-
malized as a rational approximation problem in which some criterion function is op-
timized over a set of systems. This approach has led to a wide variety in model
structure, performance criteria, and actual methods of estimation (see [38] and the
bibliography therein). Our interest is focused mainly on the particular class of dis-
crete time, linear, time-invariant, and strictly causal systems and their strictly proper
transfer functions. The order of such a system is defined to be its McMillan degree,
that is, the dimension of the state space in its minimal realizations. The criterion
which is chosen here is the L2-norm, and our approximation problem states in the
Hardy space H̄p×m

2 of the complement of the unit disk: given a transfer function
F ∈ H̄p×m

2 , we are concerned in minimizing

‖F −H‖2
2 =

1

2π
Tr

∫ 2π

0

[F −H](eit)[F −H](eit)
∗
dt ,(1)

as H ranges over the set of rational stable (i.e., analytic for |z| > 1) functions of order
at most n. Here, the symbol Tr stands for the trace and the superscript ∗ denotes
transpose-conjugate. It should be noticed that in a stochastic framework, (1) is equal
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to the mean square error between the output of a given system and the output of a
model of fixed order when both systems have the same white noise input (see [32]).

The above problem has received attention in [41], [40], [4], and more recently [37]
and [30], either in the discrete-time form studied here or in the continuous-time equiv-
alent. Many qualitative results have been proved in [6], such as the existence of a best
approximant and the property usually called normality: if F is not itself rational of
degree at most n, then a best local approximant H has degree exactly n. In [8], an
algorithm to find local minima in the L2 rational approximation problem is described
for scalar systems. It is the purpose of this paper to present an algorithm which
enables the results of this previous paper to be extended to the multivariable case.

Let us recall the main line of our approach in the scalar case (see [8] and [13]). In
this case, the minimum in (1) must be performed over the set of irreducible fractions
p/q, where q is a polynomial of degree n whose roots belong to the unit disk U. Our
optimization problem being linear with respect to the parameters of the numerator p,
we are led to minimize a cost function Ψn defined on the set P1

n of monic polynomials
q of degree n whose roots belong to U. This set can be described by the coefficients
of q and is open and bounded in R

n; the function Ψn is smooth, so that we can
use a gradient algorithm, producing a sequence of improving estimates, which either
converges to a local minimum or meets the boundary of the domain at some point
having some roots of modulus one. However, roots on the unit circle cancel and the
cost function Ψn extends to a neighborhood of the closure of P1

n. At the boundary the
extension of Ψn can be interpreted as the cost function of a lower-order approximation
problem. Thus the search for a local minimum can continue through different orders,
until such a minimum (of order k ≤ n) is actually reached. Conversely, multiplying
by z − 1 or z + 1 a minimum of order k provides an initial point for the optimization
problem at order k + 1: at such a point, the opposite of the gradient points inside
the domain. Finally, the procedure can continue until a local minimum of order n is
actually found.

Transition to the multivariable case involves substantial new difficulties, mainly
due to the fact that the domain of the cost function is no longer an open subset of
a Euclidean space but it does possess a manifold structure. A manifold has a cov-
ering by countably many open coordinate neighborhoods, each of these coordinate
neighborhoods corresponding to an open subset of some R

d by a local coordinate
homeomorphism (d is then the dimension of the manifold). The methods developed
for the Euclidean case then apply to each of the coordinate neighborhoods separately.
Over a manifold, an optimization problem can be tackled by using a search algorithm
through the manifold as a whole, using the coordinate maps to describe the manifold
locally and changing from one coordinate map to another when required. Such a
representation of the elements of the domain has the advantage to get rid of redun-
dancy and ensure identifiability [22]. Using state space representations, it was first
established by Hazewinkel and Kalman [26] that the set of stable transfer functions
of fixed degree possesses a manifold structure. Several atlases of local coordinate
maps (called sets of overlapping canonical forms in system theory) have been derived
from this approach ([33], [25]). However, this manifold is never compact, and con-
vergence of a gradient algorithm to points outside can occur. To avoid this problem,
a transfer function will be represented by means of the inner-unstable or Douglas–
Shapiro–Shields factorization (see [15]). The elimination of the parameters in which
the system is linear (namely, those of the unstable factor) allows us to perform the
search for an optimum on the manifold of inner matrix functions of degree n. We are
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then in a position to proceed to the generalization to the multivariable case of the
above-mentioned procedure.

The paper is organized as follows: Section 2 states the problem within the frame-
work of the Hardy spaces and introduces the cost function by means of the inner-
unstable factorization. In section 3, we first recall some results of [1], in which the
theory of reproducing kernel Hilbert spaces is used to construct local coordinates of
the manifold of inner matrix functions of fixed McMillan degree: such functions are
obtained by iterating a linear fractional transformation which changes an inner func-
tion into another one, the McMillan degree being increased by one. Then, a fractional
representation of this transformation is given in which the numerator (a polynomial
matrix) and the denominator (a polynomial) are polynomial functions in the local
coordinates. This representation allows us, in section 4, to study the cost function on
the boundary of the domain and to elaborate an algorithm which converges generically
to a local minimum. The numerical aspects have been examined in section 5.

2. Minimizing over the set of inner matrices. The Hardy spaces H2 and
H∞ of the unit disk are the closed subspaces of L2(T) and L∞(T), respectively,
consisting of functions whose Fourier coefficients (an) satisfy an = 0 when n < 0;
while the Hardy space H̄2,0 consists of functions for which an = 0 when n ≥ 0. Note
the orthogonal decomposition

L2(T) = H2 ⊕ H̄2,0.

It is well known (see, e.g., [27]) that members ofH2 are the nontangential limits on T of
analytic functions f in the unit disk for which the functions fr(t) = f(reit), r < 1, are
bounded in L2-norm as r → 1. Members of H∞ correspond to bounded holomorphic
functions in this process. Similarly, members of H̄2,0 correspond to analytic functions
f in the complement of the unit disk vanishing at infinity and satisfying an analogous
growth condition for r > 1. Thus, f belongs to H2 (resp., to H̄2,0) if and only if it
can be written as

f(z) =
∑

k≥0

ak z
k

(
resp., f(z) =

∑

k>0

ak z
−k

)
,

∑
|ak|

2 < ∞.(2)

Note that (2) is the Taylor expansion at 0 (resp., at ∞) and at the same time the
Fourier expansion if we substitute z = eiθ.

The space Lp×m
2 (T) of (p ×m)-matrices whose entries belong to L2(T) becomes

a Hilbert space when endowed with the scalar product

〈F,G〉 =
1

2π
Tr

∫ 2π

0

F (eit)G(eit)
∗
dt.(3)

The corresponding norm will also be given, for F = (fij), by ‖F‖2
2 =

∑
i,j ‖fij‖

2
2, and

the orthogonal decomposition

Lp×m
2 (T) = Hp×m

2 ⊕ H̄p×m
2,0(4)

is still valid. Taking into account the fact that z̄ = z−1 on T, and using the notation

G](z) = G(1/z̄)
∗
,
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(3) may be converted into the line integral

〈F,G〉 =
1

2iπ
Tr

∫

T

G](z)F (z)
dz

z
.

The Banach space Lp×m
∞ (T) is endowed with the norm

‖F‖∞ = sup
θ

||F (eiθ)||,

where || . || denotes the operator norm C
m → C

p. The prefix R in front of the name
of some set (RH̄p×m

2,0 , RHp×m
2 , etc.) will indicate that we consider the real subspace

of functions whose Fourier coefficients are real. Such functions are relevant in most
applications. However, the natural framework for our study is the complex case which
plainly includes the real case by restriction. When necessary, the results will be stated
for real transfer functions.

The normality result mentioned in the introduction allows us to state the rational
approximation problem in degree n as follows: Given F ∈ H̄p×m

2,0 , minimize (1) over
the set Σ−

p,m(n) of rational stable functions of McMillan degree exactly n. It is well
known that Σ−

p,m(n) possesses the structure of a real analytic manifold of dimension
2n(m+ p) (see, e.g., [24]). We shall now give a description of this set which suits our
purpose by using the inner-unstable or Douglas–Shapiro–Shields factorization (see [15]
and [11]).

Recall that a C
p×p-valued analytic function Q in the unit disk is called inner if

it is analytic in U and takes unitary values on the unit circle T:

Q(eit) Q(eit)
∗

= Q(eit)
∗
Q(eit) = Ip,(5)

where Ip is the identity matrix of size p. This equality implies that the inverse of
a rational inner functions agrees with Q] and thus is analytic outside the unit disk.
Naturally associated with Q is the space QHp

2 ⊂ Hp
2 which is invariant by the shift

operator (i.e., multiplication by z), and its orthogonal complement H(Q). Note that
H(Q) consists of vectors v ∈ Hp

2 of the form Qu for some u in H̄p
2,0. These spaces

and the inner-unstable factorization are closely related to the shift realization (see
[19]). Observe that the McMillan degree of a rational matrix may be defined even if
this matrix fails to be analytic at infinity, using, for instance, Smith–McMillan forms
(see [28]). Furthermore, the McMillan degrees of Q and Q−1 agree.

Proposition 1 (inner-unstable factorization). Any rational function H in H̄p×m
2,0

can be written

H = Q−1 C,(6)

where Q is a (p × p)-rational inner function and C a (p ×m)-rational matrix whose
columns belong to H(Q). The matrices Q and C may be chosen left co-prime. With
this condition, the factorization is unique up to a common left unitary factor and Q
and H have same McMillan degree.

The matrix Q is called the left inner factor of H and the matrix Q−1 is usually
named in system theory an all-pass stable transfer function. To ensure uniqueness in
the inner-unstable factorization, we shall require that Q satisfies the condition

Q(1) = Ip.(7)

The set of C
p×p-valued rational inner functions of degree n will be denoted by Ip

n,
and by Ip

n(1) we denote the subset of functions satisfying the extra condition (7). As
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previously mentioned, RIp
n and RIp

n(1) will denote the corresponding sets of real inner
functions. It is proved in [1] that Ip

n and Ip
n(1) are smooth manifolds of dimension

2np + p2 and 2np, respectively (embedded in Hp×p
∞ ), while RIp

n and RIp
n(1) have

dimension np+ p(p− 1)/2 and np, respectively. Moreover, the set Σ−
p,m(n) is a vector

bundle whose base space is Ip
n(1) and whose fiber above Q is the vector space FQ of

matrices C whose columns belong to H(Q) (see [12]).

Now, we can write our approximation problem as

min
Q,C

‖F −Q−1C‖2
2,

where Q ∈ Ip
n(1) and C ∈ FQ. Observe that for fixed Q, the minimum is obtained

when C is the projection of QF onto FQ. Since F ∈ H̄p×m
2,0 , C is also the projection of

QF onto Hp×m
2 that we shall denote by L(Q). Therefore, minimizing (1) is equivalent

to minimizing the function

Ψn : Ip
n(1) → R,
Q → ‖F −Q−1L(Q)‖2

2,
(8)

which is going to be the main purpose of the remainder of this paper. The first step
consists of studying the domain of this function and will be the content of the next
section.

First of all, we give a fractional representation of an inner matrix which will be
useful in the sequel. If q is a polynomial of degree n, we define its reciprocal polynomial
as being

q̃(z) = zn q](z),(9)

and if D is a polynomial matrix whose degree does not exceed n, we also put

D̃(z) = zn D](z).(10)

Recall that the degree of a polynomial matrix is defined to be the degree of its highest
degree entry. While both this degree and the McMillan degree are used in this work,
there should be no confusion from the context which is used.

Proposition 2. An inner matrix Q ∈ Ip
n has a representation of the form

Q = D/q̃ by means of a polynomial matrix D whose degree does not exceed n and
a polynomial q of exact degree n whose roots belong to the open unit disk, satisfying
DD̃ = qq̃Ip and detD = εqq̃p−1, ε being a complex number of modulus one. Con-
versely, these conditions are sufficient for the rational matrix D/q̃ to belong to Ip

n.

Proof. Since Q−1 is analytic outside the unit disk, it has a representation of
the form D̃/q, where q is, up to a constant factor, its polynomial of poles (see [28]).

Condition (5) yields an analogous representation for Q, i.e., Q = D/q̃, so that DD̃ =
qq̃Ip. It also implies that detQ is an inner scalar rational function, that is to say a
Blaschke product, and the number of zeros of detQ within U determines the McMillan
degree of Q, by the Potapov decomposition [35].

3. Parametrization of inner matrices. We describe here a parametrization
of the set of inner functions obtained in [1] from a matrix version of the classical Schur
algorithm that we now explain; in a fundamental paper [36], Schur proved that every
function f ∈ I1

n can be uniquely parameterized by a sequence yj , j = n, . . . , 1, of
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complex numbers with |yj | < 1. Moreover, Schur gave an algorithm for computing
these parameters:

yj = fj(0),

where fn = f and

fj−1(z) =
fj(z) − fj(0)

(1 − fj(0)fj(z)) z
, j = n, . . . , 1.(11)

Since fj is an inner function it follows from the maximum modulus principle that
|yj | < 1, and fj has degree j, since a zero is eliminated at each step. Since f has
degree n, f0 is equal to a constant of modulus one. Other sequences of inner functions
of decreasing degree may be constructed from f in a similar way. The most general
recursion formula is the following (see [21]):

fj−1(z) + µj

1 + µ̄jfj−1(z)
=

fj(z) − yj
1 − yjfj(z)

1 − w̄jz

z − wj

, j = n, . . . , 1,

where the wj ’s are the interpolation points, yj = fj(wj) and the µj ’s belong to U. The
wj ’s and the µj ’s being given, the sequence of numbers yj completely characterizes
the function f , which can recover inductively by the linear fractional transformations:

fj(z) =
[(z − wj) + µ̄jyj(1 − w̄jz)] fj−1(z) + [µj(z − wj) + yj(1 − w̄jz)]

[ȳj(z − wj) + µ̄j(1 − w̄jz)] fj−1(z) + [µj ȳj(z − wj) + (1 − w̄jz)]
.(12)

The map (y1, . . . , yn, f0) → f is a diffeomorphism from the product of n copies of the
open unit disk and of a copy of the unit circle onto I1

n.
This Schur algorithm is related to the classical interpolation problems of Nevanlin-

na–Pick and Carathéodory–Fejér (see [39]), which have a remarkable diversity of ap-
plications in systems engineering (see [5], [29]). Several approaches allow the extension
of these problems to matrix-valued analytic functions (see [42] and the bibliography
therein); however, the operator-theoretic one, involving reproducing kernel Hilbert
spaces, clarifies the connections between interpolation and realization theory and gives
a unified presentation of these problems (see, e.g., [17], [16], [3]). Another fundamen-
tal treatment can be found in [18], which emphasizes the relevance of the commutant
lifting theorem in these interpolations issues and also presents several applications to
engineering problems.

3.1. Reproducing kernel Hilbert spaces. For the convenience of the reader,
we shall recall some basic facts about reproducing kernel Hilbert spaces which may
be found in [16]. A complex Hilbert space H of C

p-valued functions defined on some
Ω open in C is called a reproducing kernel Hilbert space (RKHS) if there exists a
C

p×p-valued function K(z, w) defined on Ω × Ω such that for every choice of w ∈ Ω,
c ∈ C

p and f ∈ H:
(i) K(., w)c ∈ H,
(ii) 〈f,K(., w)c〉H = c∗f(w).

The function K is called the reproducing kernel, and the main facts are that it is
unique and it is a positive function in the following sense:

r∑

i,j=1

c∗jK(wj , wi)ci ≥ 0(13)
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for every choice of points w1, w2, . . . , wr ∈ Ω, and vectors c1, c2, . . . , cr ∈ C
p.

The Hardy space Hp
2 is clearly a reproducing kernel Hilbert space whose kernel is

Ip
1 − w̄z

, w ∈ U, z ∈ U,

and property (ii) is just the Cauchy formula. Finite dimensional Hilbert spaces of
C

p-valued functions are also reproducing kernel Hilbert spaces. Let (f1, f2, . . . , fN )
be some base of a finite dimensional Hilbert space. Then its reproducing kernel is
easily computed to be

K(z, w) = (f1(z), f2(z), . . . , fN (z))P−1(f1(w), f2(w), . . . , fN (w))
∗
,

where P = (Pij) is the Gram matrix with entries Pij = 〈fj , fi〉. The space H(Q)
introduced in the previous section as being the orthogonal complement of QHp

2 in Hp
2

is a reproducing kernel Hilbert space with reproducing kernel

KQ(z, w) =
Ip −Q(z)Q(w)

∗

1 − w̄z
,(14)

which is the projection onto H(Q)
p

of the reproducing kernel of Hp
2 . This is readily

seen with the help of the evaluation

π+

(
Q(z)

−1 Ipc

1 − w̄z

)
=

Q(w)
∗
c

1 − w̄z
,(15)

where π+ denotes the orthogonal projection onto Hp
2 .

More generally, a RKHS is attached to every J-inner function. The study of
these spaces, which play a central role in the theory of realization and interpolation,
originates with de Branges and Rovnyak (see [14]). Put

J =

(
Ip 0
0 −Ip

)
.

A C
2p×2p-valued rational function Θ is called J-inner if at every point of analyticity

of Θ in U, J − Θ(z)JΘ(z)
∗

is positive semidefinite:

Θ(z)JΘ(z)
∗
≤ J,(16)

and equality holds for z point of analyticity on T. Consider the space H2p
2 endowed

with the sesquilinear Hermitian form, 〈f, g〉J = 〈f, Jg〉. This form is not positive
definite but it is nondegenerate. Hence, the space ΘH2p

2 has an orthogonal comple-
ment in H2p

2 , which we call H(Θ). Restricted to H(Θ), the form 〈., .〉J is positive
definite, so that H(Θ) is a Hilbert space. Moreover, it is a reproducing kernel Hilbert
space with reproducing kernel

KΘ(z, w) =
J − Θ(z)JΘ(w)

∗

1 − w̄z
(17)

and the dimension of H(Θ) agrees with the McMillan degree of Θ. In the next section,
we shall make an intensive use of one-dimensional H(Θ) spaces; let f be the function
defined by

f(z) =

(
u
v

)

1 − w̄z
,
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where w ∈ U, u ∈ C
p with ‖u‖ = 1, and v ∈ C

p; let M be the linear span of f
endowed with the form 〈 , 〉J . If ‖v‖ ≤ 1, then the Gram matrix P = 〈f, f〉J is
positive and M is of the form H(Θ), where Θ is unique up to a J-unitary constant
multiplier on the right. It can be specified by the formula

Θ(z) = I2p − (1 − ξ̄z)f(z)P−1f(ξ)
∗
J

for any point ξ ∈ T. In the sequel, we shall work with the J-inner function associated
with M which satisfies the condition Θ(1) = I2p. It is given by

Θ(w, u, v)(z) = I2p − (1 − z)
1 − |w|2

1 − ‖v‖2

(
u
v

)

1 − w̄z

(
u∗ v∗

)

1 − w
J.(18)

3.2. The linear fractional transformation associated with a J-inner

function. In this section we introduce the linear fractional transformation TΘ, which
generalizes (12) to the matrix case (for a precise comparison see the remark after The-
orem 7). The statements and the proofs of this section and the following are adapted
from [1].

Lemma 3. Let

Θ =

(
Θ11 Θ12

Θ21 Θ22

)
(19)

be a (2p× 2p)-rational J-inner function analytic in U and let A be a (p× p)-rational
inner function. Then (Θ21A+ Θ22) is invertible in U and

TΘ(A) = (Θ11A+ Θ12) (Θ21A+ Θ22)
−1

(20)

is inner. Note that if Θ(1) = I2p and A(1) = Ip, then [TΘ(A)](1) = Ip, and if A and
Θ have real coefficients, then TΘ(A) also has real coefficients.

Proof. First, let us show that (Θ21A + Θ22) is invertible at every point of U.
Indeed, condition (16) implies

Θ22Θ
∗
22 ≥ Ip + Θ21Θ

∗
21 in U,

so that Θ22Θ
∗
22 is positive definite, and Θ22 is invertible at any point of U. Now, we

have

Ip ≥ Θ−1
22 (Θ−1

22 )
∗

+ (Θ−1
22 Θ21)(Θ

−1
22 Θ21)

∗
in U,

and thus ‖Θ22(z)
−1

Θ21(z)‖ < 1, ∀z ∈ U. The matrix A, being inner, is contractive

in U: ‖A(z)‖ ≤ 1, ∀z ∈ U, so that ‖Θ22(z)
−1

Θ21(z)A(z)‖ < 1, ∀z ∈ U. Finally,
(Θ21A + Θ22) = Θ22 (Ip + Θ−1

22 Θ21A) is invertible at any point of U, and thus
B = TΘ(A) is analytic in U. Then, condition (5) for B can be written

B∗B − Ip =
(
B∗ Ip

)
J

(
B
Ip

)
= 0 on T.

Using the relation
(
B
Ip

)
= Θ

(
A
Ip

)
(Θ21A+ Θ22)

−1
,(21)

we obtain

B∗B − Ip = ((Θ21A+ Θ22)
−1

)
∗ (

A∗ Ip
)

Θ∗JΘ

(
A
Ip

)
(Θ21A+ Θ22)

−1
,

and since condition (5) is satisfied for A, it will be satisfied for B as well.
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Lemma 4. The matrix B = TΘ(w,u,v)(A), where Θ(w, u, v) is given by (18),
satisfies the interpolation condition

B(w)
∗
u = v.(22)

Proof. Indeed, it can be verified that Θ(w, u, v) satisfies the equation
(
u∗ −v∗

)
Θ(w) = 0.

Thus

(
u∗ −v∗

)
Θ(w)

(
A(w)
Ip

)
= 0,

and together with (21) this implies our interpolation condition.
Now, the question is the converse: let B be some rational inner matrix, and Θ

J-inner analytic in U. Can we write B in the form B = TΘ(A) for some inner matrix
A? First, note that if B = TΘ(A), then A is the rational function given by

A = (Θ11 −BΘ21)
−1

(BΘ22 − Θ12),(23)

unless det(Θ11−BΘ21) vanishes identically. This may not happen since condition (16)
for Θ implies Θ∗

11Θ11−Θ∗
21Θ21 = Ip on T. So, Θ11−BΘ21 is invertible at any point

of T. However, it may fail to be invertible at some point of U, so that A may not be
analytic in U. To ensure analyticity, we must make an additional assumption.

Theorem 5. Let B be a rational inner function, and let Θ(w, u, v) be the J-
inner function (18). There exists an inner function A such that B = TΘ(A) if
and only if the interpolation condition B(w)

∗
u = v is satisfied. We then have

degB = degA + 1.
Proof. This is a special case of a more general result proved in [1, Thm. 3.3]

which is based on the links between H(Θ) and H(Q) spaces. For more details on
these problems we refer the reader to [2]. The content of the result of [1] is the
following: let B ∈ Ip

n and Θ be a J-inner (2p × 2p)-rational function; consider the
map

τ : H(Θ) → Hp
2 ,(

f1
f2

)
→ f1 −Bf2.

Then there exists an inner function A such that B = TΘ(A) if and only if τ is an
isometry from H(Θ) to H(B). Moreover, degB = degΘ + degA. We shall admit
this result.

If Θ(w, u, v) is given by (18), the conditions:
(i) τ is an isometry from H(Θ) to H(B),
(ii) B(w)

∗
u = v

are equivalent. Indeed, τ sends the generator of H(Θ) as follows:

τ :

(
u
v

)

1 − w̄z
→

u−B(z) v

1 − w̄z
.

With the help of the evaluation (15), it is readily proved that u−B(z) v
1−w̄z

∈ H(B) if and
only if condition (ii) holds. In this case,
〈(

f1
f2

)
,

(
f1
f2

)〉

J

= ‖f1‖
2
2 − ‖f2‖

2
2 = ‖f1‖

2
2 − ‖Bf2‖

2
2 = ‖f1 −Bf2‖

2
2,
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and τ is an isometry from H(Θ) (endowed with the scalar product 〈 , 〉J) to H(B).
This proves the theorem.

3.3. Description of the charts. If Θ is of the form (18), then TΘ(A) and A
have the same value at z = 1. We can construct from the identity matrix Ip, using
n linear fractional transformations of this type, an inner matrix of degree n which
belongs to Ip

n(1). Conversely, any matrix of Ip
n(1) can be obtained in this way. This is

the content of the tangential Schur algorithm for which we need the following lemma.
Lemma 6. Let B be an inner function and w ∈ U. Then, there exists u ∈ C

p,
‖u‖ = 1, such that

‖B(w)
∗
u‖ < 1.

Proof. Suppose that for all unit vector u ∈ C
p, ‖B(w)

∗
u‖ = 1. Then, since

‖KB(., w)u‖2
2 = u∗KB(w,w)u =

1 − ‖B(w)
∗
u‖

1 − w̄w
,

for all u ∈ C
p, KB(., w)u = 0. So, KB(., w) is identically 0 and the matrix B must

be constant. But this contradicts the fact that B has McMillan degree n.
Theorem 7 (tangential Schur algorithm). Let Q ∈ Ip

n(1), and wk ∈ U, k =
n, . . . , 1. Then, for k = n, . . . , 1 there exist unit vectors uk ∈ C

p such that the vectors
yk ∈ C

p given by

yk = Q(k)(wk)
∗
uk(24)

satisfy ‖yk‖ < 1, where Q(n) = Q,

Q(k) = TΘk
(Q(k−1)),(25)

and Θk = Θ(wk, uk, yk) is the J-inner matrix given by (18). Then

Q = TΘn
(TΘn−1

. . . TΘ1
(Ip)) . . . = TΘn...Θ1

(Ip).

Proof. This is an obvious consequence of Theorem 5 and Lemma 6.
Let w = (w1, w2, . . . , wn) and u = (u1, u2, . . . , un). Define the subset V(w,u) of

Ip
n(1) by

V(w,u) = {Q ∈ Ip
n(1) / ‖Q(k)(wk)

∗
uk‖ < 1},

and the function ϕ(w,u) by

ϕ(w,u) : V(w,u) → Bn
p ,

Q → (y1, y2, . . . , yn),

where theQ(k)’s and the Schur parameters yk’s are defined recursively by (24) and (25),
and Bn

p denotes the product of n copies of the unit ball of C
p.

Remark. Note that in the scalar case and for wj = 0, the transformation Q(j) =
TΘj

(Q(j−1)) is given by

Q(j)(z) =
(z − |yj |

2)Q(j−1)(z) + (1 − z)uj ȳj
(z − 1)ūjyj Q(j−1)(z) + (1 − |yj |2z)

.
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This formula is exactly (12) in which yj has been replaced by uj ȳj , since the inter-
polation condition is now Q(j)(0) = uj ȳj , and µj is chosen to be −uj ȳj . The general
formula with an arbitrary µj can also be obtained by a TΘ transformation where Θ
is of the form (18) multiplied by an adequate constant J-inner function. In this case
the normalization (7) is not conserved.

Theorem 8. The family (V, ϕ) defines a C∞ atlas on Ip
n(1), which is compatible

with its natural structure of embedded submanifold of Hp×p
2 .

Proof. It follows from Lemma 6 that the collection of sets V(w,u) covers Ip
n(1).

It remains to prove that the map ϕ(w,u) is an homeomorphism and that the change
of chart ϕ(w,u) ◦ ϕ(w′,u′) is smooth. The map ϕ(w,u) is one-to-one and onto by con-

struction. The coefficients of Q(k) depend continuously on that of Q(k−1) and on
yk, . . . , y1, so that the coefficients of Q depend continuously on the Schur parame-
ters. Since the matrix Q is inner and thus bounded in the unit disk, ‖Q(z)‖ ≤ 1,
∀z ∈ U, Lebesgue’s theorem finally implies that ϕ−1

(w,u) is continuous. Conversely,

note that the evaluation map Q → Q(wn)
∗
un is continuous, so that Q → yn is con-

tinuous. The coefficients of Q(n−1) depend continuously on that of Q and on yn,
and, if two normalized rational functions of bounded degree are closed in Hp×p

2 , then
their coefficients must also be closed; then, the map Q → Q(n−1) from Ip

n to Ip
n−1,

both endowed with the H2-topology, is continuous. We thus prove inductively that
ϕ(w,u) is continuous and consequently is an homeomorphism. Furthermore, the map
ϕ(w,u) ◦ ϕ(w′,u′) : Bn

p → Bn
p is C∞, as a bounded rational function.

In any chart of this atlas, the local coordinates are the 2np real and imaginary
parts of the components of the Schur parameters. Note that an atlas for RIp

n(1) can
be obtained in a similar way, for which the wi’s lie in (−1, 1), the ui’s and the yi’s
have real components; indeed, in Lemma 6 u can be chosen real, and if A and Θ have
real coefficients, TΘ(A) also has real coefficients. The range of the charts is thus the
product of n copies of the unit ball of R

p.

3.4. Fractional representation in the local coordinates. In this section,
we give a fractional representation of the form D(k)/q̃(k) for the matrix Q(k) (see
Proposition 2). We introduce the map S(w,u) : (A, y) → TΘ(w,u,y)(A), so that the

inner matrix Q = ϕ−1
(w,u)(y) is computed by the iterative process:

Ip → Q(1) → · · · → Q(k) = S(wk,uk)(Q
(k−1), yk) → · · · → Q(n) = Q.

Lemma 9. For any A ∈ Ip
k , w ∈ U, u ∈ C

p, ‖u‖ = 1, and v ∈ C
p, ‖v‖ < 1, we

have

S(w,u)(A, y) = A+
1 − βw

1 − u∗Ay − βw(y∗y − u∗Ay)
(u−Ay)(y∗ − u∗A),(26)

with βw = bw/b̃w, where bw(z) = (z − w)(1 − w̄).
Proof. Using (18) yields

TΘ(w,u,y)(A) =

(
A+ (1 − βw)

u(y∗ − u∗A)

1 − y∗y

) (
Ip + (1 − βw)

y(y∗ − u∗A)

1 − y∗y

)−1

.

A classical formula (see [28, Appendix A.20]) allows us to compute the inverse as
follows
(
Ip + (1 − βw)

y(y∗ − u∗A)

1 − y∗y

)−1

= Ip − (1 − βw)
y(y∗ − u∗A)

1 − u∗Ay − βw(y∗y − u∗Ay)
,
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from which we deduce (26) by expanding the product.

Proposition 10. A fractional representation D(k)/q̃(k) of the inner matrix
Q(k) = TΘk...Θ1

(Ip) can be computed by the recursion formulas: D(0) = Ip, q̃
(0) = 1,

and for k = 1, . . . , n,

D(k) = (̃bwk
− y∗kyk bwk

)D(k−1) − (̃bwk
− bwk

)

{
uku

∗
kD

(k−1) +D(k−1)yky
∗
k

(27)

−q̃(k−1) uky
∗
k +

u∗kD
(k−1)yk D

(k−1) −D(k−1)yku
∗
kD

(k−1)

q̃(k−1)

}
,

q̃(k) = (̃bwk
− y∗kyk bwk

) q̃(k−1) − (̃bwk
− bwk

)u∗kD
(k−1)yk,(28)

where bwk
= (1− w̄k)(z−wk). The stable polynomial q(k) has degree k, and the coeffi-

cients of the polynomials q̃(k) and d
(k)
ij (the entries of D(k)) are polynomial functions

in the local coordinates.

Proof. Assume that such a fractional representation has been obtained for Q(k−1).
Replacing Q(k−1) by D(k−1)/q̃(k−1) in S(wk,uk)(Q

(k−1), yk) given by (26) yields a frac-

tional representation for Q(k). Note that (27) actually defines a polynomial matrix,
since q̃(k−1) does indeed divide u∗kD

(k−1)yk D(k−1) − D(k−1)yk u∗kD
(k−1). In order

to prove this, put u∗k = (ūk1 , . . . , ū
k
p), y

∗
k = (ȳk1 , . . . , ȳ

k
p ), and D(k−1) = (d

(k−1)
ij ). A

straightforward computation shows that

(
u∗kD

(k−1)ykD
(k−1) −D(k−1)yk u

∗
kD

(k−1)
)

ij

=
∑

l,m

(
d
(k−1)
lm d

(k−1)
ij − d

(k−1)
im d

(k−1)
lj

)
ūkl y

k
m,

where d
(k−1)
lm d

(k−1)
ij −d

(k−1)
im d

(k−1)
lj is a minor of order 2 of D(k−1). But in the fractional

representation q̃(k−1) is, up to a constant factor, the polynomial of poles of Q(k−1),
which is the least common denominator of all the minors of Q(k−1) (see [28]). Thus,
it must divide all the minors of order 2 of D(k−1).

Now, let us prove by induction that, for k = 1, . . . , n, the coefficients of d
(k)
ij and

q̃(k) are polynomial functions in the local coordinates. This is true for d
(1)
ij and q̃(1)

and we shall assume that this is also true for d
(k−1)
ij and q̃(k−1): for l = 1, . . . , n, put

ylj = ξlj + i ηlj ,

where ylj is the jth component of yl; then the coefficients of d
(k−1)
ij and q̃(k−1) belong

to the ring Pk−1 of complex polynomials in the 2(k − 1)p variables ξlj and ηlj , l =
1, . . . , k− 1, j = 1, . . . , p. In order to prove our assumption at order k, we must verify
that q̃(k−1) divides all the minors of order 2 of D(k−1) in the ring Pk−1[z]. Let

D(k−1)

(
i1 · · · il
j1 · · · jl

)

be the minor of D(k−1) computed from the lines i1, . . . , il and the columns j1, . . . , jl.
Since the matrix D/q̃ is the inverse of D̃/q, the minors of order 2 of D(k−1) are related
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to those of order p− 2 of D̃(k−1) by the formula (see [20]):

{q(k−1)}p−3D(k−1)

(
i1 i2
j1 j2

)

= (−1)
{i1+i2+j1+j2} D̃(k−1)

(
i′1 · · · i′p−2

j′1 · · · j′p−2

)
q̃(k−1),(29)

where {i1, i2, i
′
1, . . . , i

′
p−2} and {j1, j2, j

′
1, . . . , j

′
p−2} form complete sets of rows and

columns. If q̃(k−1) is irreducible we are done. We shall prove this still by induction.
First, q̃(0) is irreducible. Then, assume that q̃(l−1) is irreducible while q̃(l) can be
factored as

q̃(l) = αβ, α ∈ Pl[z], β ∈ Pl[z].

The polynomial q̃(l) can be viewed as a polynomial in the 2p coordinates ξl1, . . . , ξ
l
p,

ηl1, . . . , η
l
p, with coefficients in Pl−1[z]:

q̃(l) =


b̃wl

− bwl





p∑

j=1

(ξlj)
2 + (ηlj)

2






 q̃(l−1)−(̃bwl

−bwl
)

p∑

j=1

{
p∑

i=1

ūlid
(l−1)
ij

}
(ξlj+iη

l
j).

If α does not depend on ξl1, for example, then α must divide −bwl
q̃(l−1) and since

bwl
does not divide q̃(l), we must have α = q̃(l−1). Therefore, q̃(l−1) must divide

each component of u∗lD
(l−1) in Pl−1[z]. But this is clearly impossible; indeed, since

Q(l−1)(1) = Ip we should have u∗lD
(l−1) = q̃(l−1)ul for every choice of local coordi-

nates. Thus both α and β have degree one in each ξlj and ηlj . But then, writing

α = α1ξ
l
1 + · · ·+αpξ

p
1 +α′

1η
l
1 + · · ·+α′

pη
p
1 +α0 and β = β1ξ

l
1 + · · ·+βpξ

p
1 +β′

1η
l
1 + · · ·+

β′
pη

p
1+β0, we can see that such a factorization is impossible, so that q̃(l) is actually irre-

ducible.
Though the quotient in formula (27) is exact, we fail in searching for an explicit

formula for it, and we do not know if such a formula exists.

4. A generic algorithm to find a local minimum. The closure of Ip
n(1) in

Hp×p
2 is a compact set, so that we can think of using a gradient algorithm to find a local

minimum of the function Ψn defined by (8) in section 2. The elements of Ip
n(1) will

be parameterized as explained in the previous section, the local coordinates being the
real and imaginary parts of the components of the vectors y1, . . . , yn. We shall work
with the local representations of Ψn and denote by Ψn

(w,u) the local representation

associated with the chart defined by (w,u):

Ψn
(w,u) : Bn

p → R,

y = (y1, . . . yn) → Ψn ◦ ϕ−1
(w,u)(y).

4.1. Limit points in the charts. The object of this section is to study what
happens when, running a gradient algorithm, the norm of some Schur parameter
tends to 1. In the scalar case, the structure of I1

n(1) is particularly simple, since
only one coordinate map is needed; as some |yk| tends to 1, the boundary of I1

n(1) is
reached. This boundary has been completely studied in the case of real functions; it
has been proved in [7] that the set RI1

n(1) can be identified with the set P1
n of

monic stable polynomials of degree n and established in [10] that its closure is a
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topological manifold with boundary, this boundary having corners. The smooth part
of the boundary, which plays an important role in the algorithm, consists of those
polynomials having exactly one irreducible factor over R whose roots are of modulus
one. In the matrix case, as some ‖yk‖ tends to 1, either the chart is no more available
and another one must be used, or some point of the boundary of Ip

n(1) is reached.
Moreover, as we shall see later, the closure of Ip

n(1) is no more a topological manifold
with boundary, and possesses some singular boundary points (see Proposition 13).

Proposition 11 below, describes regular boundary points. Observe that if ‖y‖ = 1,
the J-inner function Θ(w, u, y) is no more defined; however, if u∗Ay is not identically
equal to 1, the transformation S(w,u) keeps a sense and is given by

S(w,u)(A, y) = A+
(u−Ay)(y∗A− u∗)

(1 − u∗Ay)
.

Proposition 11. Let y ∈ ∂Bn
p , the boundary of Bn

p , w ∈ U
n, and u ∈ ∂Bn

p , and

let (D(k), q̃(k)) be the sequence associated with w,u,y by the recursion formulas (27)
and (28). A sequence

Ip → Q(1) → · · · → Q(k) = S(wk,uk)(Q
(k−1), yk) → · · · → Q(n)

of inner matrices can be computed, provided that u∗kQ
(k−1)(wk)yk is not identically

equal to 1 as ‖yk‖ = 1, or equivalently, q̃(k) does not vanish identically. In this case,
y will be called a regular limit point in the chart defined by (w,u). Then Q(k) =
D(k)/q̃(k), and

(a) q(k) still has degree k,
(b) if ‖yk‖ = 1, then q̃(k) and D(k) have common roots on T and Q(k) has degree

less than k.
Moreover, there exists a neighborhood W of y, such that ϕ−1

(w,u) extends smoothly to
W.

Proof. Assume that these assertions have been proved until order k − 1, and let
us prove that they still hold at order k. If ‖yk‖ < 1, there is nothing to prove. If
‖yk‖ = 1, then

q̃(k) = (1 − |wk|
2)(1 − z)(q̃(k−1) − u∗kD

(k−1)yk),

and since Q(k−1) is inner, by the maximum modulus principle, either u∗kQ
(k−1)yk is

identically equal to 1, and q̃(k) vanishes identically, or

q̃(k)(0) = (1 − |wk|
2)q̃(k−1)(0)(1 − u∗kQ

(k−1)(0)yk)

does not vanish and thus q(k) has degree k. In this case, Q(k) = S(wk,uk)(Q
(k−1), yk) =

D(k)/q̃(k) is well defined and still inner; 1, which is a root of q̃(k), must also be a root
of D(k), and the degree of Q(k) cannot exceed that of Q(k−1). More precisely,

degQ(k) = degQ(k−1) − ]{ξ ∈ T, yk = Q(k−1)(ξ)
∗
uk}.

By induction, the first part of the proposition is proved. Now, ϕ−1
(w,u)(y) = D(n)/q̃(n)

and since, by Proposition 10, the coefficients of the polynomials q̃(n) and d
(n)
ij are

polynomial functions in the local coordinates, there exists a neighborhood W of y,
such that ϕ−1

(w,u) extends smoothly to W.
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In the next lemma, we shall prove that any inner matrix of degree strictly less
than n can be viewed, up to a unitary matrix, as a boundary point of Ip

n(1) of this
type.

Lemma 12. For each Q ∈ Ip
d (1) of degree d strictly less than n, there exist

w′ ∈ U
n, u′ ∈ ∂Bn

p , y′ ∈ ∂Bn
p , and a unitary matrix U , such that y′ is a regular limit

point in the chart defined by (w′,u′) and UQ = ϕ−1
(w′,u′)(y

′).

Proof. Let y = (y1, . . . , yd), w = (w1, . . . , wd), and u = (u1, . . . , ud) be such that
Q = ϕ−1

(w,u)(y):

Ip → Q(1) = S(w1,u1)(Ip, y1) → Q(2) · · · → Q = S(wd,ud)(Q
(n−1), yd).

The Schur transform S(w,u) applied to some unitary matrix X and some unit vector
y such that y 6= X ∗u will give another unitary matrix. Thus, we can construct a
unitary matrix U in the following way:

U0 = Ip → U1 = S(w′

1
,u′

1
)(Ip, y

′
1) → U2 · · · → U = S(w′

n−d
,u′

n−d
)(Un−d−1, y

′
n−d),

where w′
1, . . . , w

′
n−d, are chosen arbitrarily and u′1, . . . , u

′
n−d, y

′
1, . . . , y

′
n−d, are unit

vectors in C
p, satisfying for k = 1, . . . , n− d, u′k

∗
Uk−1 y

′
k 6= 1. Since we have

S(w,Xu)(XA, y) = XS(w, u)(A, y)

for any unitary matrix X , UQ can be computed by the following iterative process:

Ip → U1 = S(w′

1
,u′

1
)(Ip, y

′
1) → U2 · · · → U = S(w′

n−d
,u′

n−d
)(Un−d−1, y

′
n−d)

→ UQ(1) = S(w1,Uu1)(U , y1) → UQ(2) · · · → UQ = S(wd,Uud)(UQ
(n−1), yd).

Put

w′ = (w′
1, . . . , w

′
n−d, w1, . . . , wd),

u′ = (u′1, . . . , u
′
n−d,Uu1, . . . ,Uud),

y′ = (y′1, . . . , y
′
n−d, y1, . . . , yd),

then y′ is a regular limit point in the chart defined by (w′,u′) and UQ = ϕ−1
(w′,u′)(y

′)

as required.
The next proposition is concerned with singular boundary points.
Proposition 13. Let η(t) : [0, 1] → Bn

p be a smooth path whose terminal
point y = η(1) belongs to ∂Bn

p and let D(t)/q̃(t) be the fractional representation of

Q(t) = ϕ−1
(w,u)(η(t)) obtained by the recursion formulas (27) and (28). Assume that

q̃(t) vanishes identically as t → 1. Then, Q(t) converges to some inner function Qη,
depending in general on the path and whose degree may be less than or equal to n; it
is given by the number of roots of q(t) which converges within the unit disk.

Proof. Since D(t) and q̃(t) are polynomial functions in the local coordinates, they
do converge, respectively, to a polynomial matrix D and a polynomial q̃. We deal
with the case where q̃ is the zero polynomial. However, the quotient D(t)/q̃(t) must
converge to some inner function Qη. Let q(t)(z) = qn(t)zn + · · · + q1(t)z + q0(t). As
t→ 1, each coefficient tends to 0 while the quotients qk(t)/qn(t) being the well-known
elementary symmetric polynomials in the roots (of modulus at most 1) are bounded by
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the binomial coefficients (n
k
) and thus converges. The polynomial q(t)/qn(t) converges

to some monic polynomial, which may have roots of modulus one, while the number
of its roots within the unit circle gives the degree of Qη.

Now, we are going to show that the limit Qη actually depends on the path and
may have degree as well less than or equal to n. Let us study the case where n = 1
(η(t) = y1(t)). Formulas (27) and (28) yield

q̃(1)(t) = b̃w1
u∗1(u1 − y1(t)) + bw1

(u1 − y1(t))
∗u1 − bw1

(u1 − y1(t))
∗(u1 − y1(t)),

and

D(1)(t) = q̃(1)(t)Ip − (̃bw1
− bw1

)(u1 − y1(t))(u1 − y1(t))
∗
,

so that

Q(1)(t) = Ip −
b̃w1

− bw1

q̃(1)(t)
(u1 − y1(t))(u1 − y1(t))

∗.

Now, as t → 1, q̃(1)(t) vanishes identically by assumption, and thus y1(t) must con-
verge to u1. Let

y1(t) = u1 −
∑

k≥l

(1 − t)
k
ξk, ξl 6= 0, ξk ∈ C

p

be its expansion. Consequently, q̃(1)(t) ∼ (̃bw1
u∗1ξl + bw1

ξ∗l u1)(1 − t)l and Q(1)(t)
converges to Ip, unless u∗1ξl = 0. In this case, let s be the smallest index satisfying
s > l and u∗1ξs 6= 0. Then, if s < 2l, Q(t) still converges to Ip, while if s ≥ 2l,

q̃(1)(t) ∼ (̃bw1
u∗ξ2l + bw1

ξ∗2lu1 − b̃w1
ξ∗l ξl)(1 − t)2l,

and

Q(1)(t) → Ip −
b̃w1

− bw1

b̃w1
u∗1ξ2l + bw1

ξ∗2lu1 − b̃w1
ξ∗l ξl

ξlξ
∗
l ,

which is an inner function of degree 1. In conclusion, as y1(t) converges to u1, Q
(1)(t)

converges either to Ip or to some inner matrix of degree 1, in which case, we leave
the domain of the chart while staying inside the manifold. The same situation arises
at each order, though it may be more complicated if the norms of several Schur
parameters go to 1.

As an illustration, the closure of RI2
1 (1) can be viewed as a cone. The sum-

mit represents the identity matrix and is a singular boundary point while the base
represents the circle of orthogonal matrices of determinant −1 and forms a regular
boundary. Two charts are needed to describe this manifold. For example, the chart
given by w = 0 and u = (1, 0)∗ parametrizes all the inner functions except for those of
the form (a line of the cone) ( 1

0
0

z−a
1−az

), a ∈ (−1, 1), while the chart given by w = 0 and

u = (0, 1)∗ parametrizes all the inner functions except for those of the form (
z−a
1−az

0
0
1 ).

4.2. Properties of the local representations of the criterion. The object
of this section is to study the behavior of the local representations of the criterion at
the neighborhood of a boundary point of Ip

n(1). We have distinguished in the last
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section two kinds of limit points, the regular and the singular ones. In both cases,
if η(t) is a path whose terminal point y corresponds to a boundary point of degree
d < n, say Qη, then it is easily proved that

lim
t→1

Ψn
(w,u)(η(t)) = Ψd(Qη).

However, regular limit points play a central role in our algorithm, mainly due to
the fact that the local representations of the criterion extends smoothly at the neigh-
borhood of such points. To prove this result, we shall need the following expression
for Ψn.

Proposition 14. Let G(z) = F ](z)/z and Q = D/q̃ as in Proposition 2. Let R

be the remainder in the Weierstrass division in Hp×m
2 of GD̃ by q:

GD̃ = V q + R.(30)

Then q divides RD and if P is the matrix quotient, of degree at most n− 1, we have
that

Ψn(Q) = ‖F‖2
2 −

〈
F,
P̃

q

〉
.(31)

Proof. Since Q−1L(Q) and F − Q−1L(Q) are orthogonal, the cost function can
be rewritten:

Ψn(Q) = ‖F‖2
2 − 〈F,Q−1L(Q)〉.

The orthogonal projection L(Q) of QF onto Hp×m
2 is easily computed from the di-

vision (30) as being given by L(Q) = R̃/q̃, where R̃ = zn−1 R](z). Now, multi-

plying (30) by D on the right shows that q divides RD, and Q−1L(Q) = D̃/q R̃/q̃ =

P̃ /q.
Proposition 15. Assume that G(z) = F ](z)/z is analytic in Dr = {z, ‖z‖ ≤ r}

for some r > 1. Let y ∈ ∂Bn
p be a regular limit point in some chart defined by (w,u)

(see Proposition 11) and let Q = ϕ−1
(w,u)(y) belong to Ip

d for some d < n. Then, Ψn
(w,u)

extends in some open neighborhood of y to a smooth function still denoted by Ψn
(w,u).

Moreover, we have

Ψn
(w,u)(y) = Ψd

(
Q(1)−1Q

)
.

Proof. Let W be a neighborhood of y on which, by Proposition 11, ϕ−1
(w,u) extends

smoothly. We may assume that in W, |q̃(0)| ≥ µ, for some µ > 0. In order to proceed
to our extension, we shall use the expression (31) of Ψn, in which the polynomial
matrices D, R, and P , and the polynomial q, depend on the local coordinates. A
well-known integral representation for the remainder R (cf. [39]) is

R(z) =
1

2iπ

∫

T

GD̃

q

q(ξ) − q(z)

ξ − z
dξ.

We may also restrict W so that the roots of q lie in a disk Ds = {z, |z| < s} for some
s, 1 < s < r. Then, we can extend R in W by putting

R(z) =
1

2iπ

∫

Γ

GD̃

q

q(ξ) − q(z)

ξ − z
dξ,(32)
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where Γ is any contour lying in the open annulus between Ds and Dr. Indeed, the
coefficient of order k of R is given by

Rk =
1

2iπ

∫

Γ

GD̃

q
(ξn−k−1qn + · · · + qk+1)dξ

and since |q(ξ)| > µ d(Γ, Ds)
n, the integrand is bounded, and its derivatives are

also bounded. Finally, Lebesgue’s theorem says that the integral representation (32)
defines a smooth function. The extension of R is still the remainder of the division
(30). In W, q keeps on dividing RD and the quotient extends smoothly P . As for R,
Ψn

(w,u) extends smoothly by the integral representation

Ψn
(w,u)(y) = ‖F‖2

2 −
1

2iπ
Tr

∫

Γ

G(z)
P̃

q
(z)dz.

Let us give two important consequences of Proposition 15.

Lemma 16. Let Q ∈ Ip
k(1) for some k < n and let y = (y1, . . . , yk) be its Schur

parameters in some chart defined by w = (w1, . . . , wk) and u = (u1, . . . , uk). Let
w0 ∈ U, u0 and y0 be two distinct unit vectors and put

U = Ip −
(u0 − y0)(u0 − y0)

∗

1 − u∗0y0
,

w′ = (w0, w1, . . . , wk), u′ = (u0, Uu1, . . . , Uuk), and y′ = (y0, y1, . . . , yk). Then y′

is a regular limit point in the chart defined by (w′,u′) and Q′ = UQ is given by
Q′ = ϕ−1

(w′,u′)(y
′). Moreover,

ψk+1
(w′,u′)(y

′) = ψk
(w,u)(y).(33)

Corollary 17. Suppose that y is a local minimum of ψk
(w,u)(y). Then, the

gradient of ψk+1
(w′,u′) at y′ is orthogonal to the surface S = {(y0, . . . , yn), ‖y0‖ =

1, ‖yj‖ < 1, j = 1, . . . n} and points outwards.

Proof. From Proposition 15 we see that the projection of the gradient of ψk+1
(w′,u′)

at y′ on S is just the gradient of ψk
(w,u) at y, whence orthogonality holds. Moreover,

it cannot point inwards because this would imply that Q′ which is rational of order k
is a local minimum at order k+ 1, and this is impossible except if F itself has degree
k + 1 (cf. [6]).

4.3. The algorithm. The algorithm searching for a local minimum at order n
splits into four main operations.

A. Choosing an initial point. This choice involves the choice of (w,u) indexing
a chart. The initial point Qi = ϕ−1

(w,u)(yi) may have degree less than or equal to the

target order n.

B. Minimizing at fixed order k. A software is used which integrates the vector
field −grad Ψk

(w,u) from an initial point yi ∈ Bk
p . The cost function is computed by

(31) where q = q(k) and D̃ = D̃(k) are given by the following recursion formulas,
immediately deduced from (27) and (28),
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D̃(l) = (bwl
− y∗l yl b̃wl

)D̃(l−1) − (bwl
− b̃wl

)

{
D̃(l−1)ulu

∗
l + yly

∗
l D̃

(l−1)

(34)

−q(l−1) ylu
∗
l +

y∗l D̃
(l−1)ul D̃

(l−1) − D̃(l−1)uly
∗
l D̃

(l−1)

q(l−1)

}
,

q(l) = (bwl
− y∗l yl b̃wl

) q(l−1) − (bwl
− b̃wl

) y∗l D̃
(l−1)ul,(35)

and initialized by q(0) = 1 and D̃(0) = 1. Then, one of the following possibilities
occurs:

(i) a local minimum is reached. If k = n, we are done, while if k < n, this local
minimum provides an initial point for searching for a minimum of order k + 1, as
described in point D.

(ii) the norm of some Schur parameter tends to 1. This situation has been studied
in section 4.1; either a change of chart is necessary, or a boundary point of the manifold
is reached. More precisely, if the polynomial q̃(k) nearly vanishes while its roots stay
far from the unit circle, then the limit point belongs to Ip

k(1), and the first eventuality
is true. In any other case, a boundary point is reached.

C. Meeting a boundary point. Such a boundary point, up to an unitary matrix,
is an element Qb of Ip

d (1) for some d < k, and the criterion at order k converges to
Ψd(Qb). Then, a minimization process at order d can restart from Qb. If only the
first Schur parameter has norm 1, we can directly deduce from Lemma 16 some chart
and Schur parameters for Qb. Otherwise, the matrix Qb must be computed from the
recursion formulas (27) and (28), eliminating the roots of modulus one. Then, an
adequate chart has to be provided.

D. Choosing an adequate coordinate chart. Given a normalized inner matrix Q,
of order k, we must find a couple (w,u) such that Q belongs to the local neigh-
borhood V(w,u) defined in section 3.3, or equivalently such that a sequence Q(k) =

Q,Q(k−1), . . . , Q(1) = Ip of inner functions of decreasing degree can be constructed by
the Schur algorithm. The fractional representation of Q(l−1) is computed from that
of Q(l) by the recursion formulas

bwl
b̃wl

D̃(l−1) = (b̃wl
− y∗l yl bwl

)D̃(l) − (b̃wl
− bwl

)(
D̃(l)ulu

∗
l + yly

∗
l D̃

(l) − q(l) ylu
∗
l +

y∗l D̃
(l)ul D̃

(l) − D̃(l)uly
∗
l D̃

(l)

q(l)

)
,

bwl
b̃wl

q(l−1) = (b̃wl
− y∗l yl bwl

) q(l) − (b̃wl
− bwl

) y∗l D̃
(l)ul.

The polynomial bwl
b̃wl

divides the right-hand sides, so that D̃(l−1) and q(l−1) actually
are polynomial, and Q(l−1) has degree l − 1 as required.

E. Increasing the degree. When the minimization procedure leads to a local
minimum of order k < n, say Qm, then Lemma 16, for any choice of w0, u0, and
y0 6= u0, provides a boundary point Q′

m of Ip
k+1(1) together with a local parametriza-

tion Q′
m = ϕ−1

(w′,u′)(y
′
m), deduced from a local parametrization ϕ−1

(w,u)(ym) of Qm,

satisfying (33). Since by Corollary 17, −grad Ψk+1
(w′,u′) points inwards at y′, this point

can be used as an initial point for a minimization process at order k + 1.
The point is that the value of the criterion, where the criterion must be understood

as being Ψk when working at order k, decreases continuously, being conserved while
the order changes, so that the minimization process pursues through different orders.
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To ensure the good behavior of the algorithm, we shall make two extra assumptions.
First, we shall assume that grad Ψk does not vanish on the boundary of Ip

k(1), for
1 ≤ k ≤ n. Second, we shall require all the critical points of Ψk in Ip

k(1) to be
nondegenerate, i.e., to have a second derivative which is a nondegenerate quadratic
form. These two properties hold generically, that is for almost every F in some sense,
and we refer the reader to [8] for the first one, and [6] for the second one. They ensure
in particular that critical points in Ip

k(1) are finite in number. Since the criterion
decreases continuously, we never meet twice the same local minimum and this ensures
that the procedure eventually comes to an end. Note that if the minimization process
stops at a critical point which is not a minimum, since this point is nondegenerate,
it will be unstable under small perturbations, thereby allowing us to continue the
procedure.

The choice of an initial point is crucial for our purpose (see the example in the
next section). In many problems, we hope that some more information or engineering
judgment could help us to select an initial point which ensures rapid convergence
of the procedure to the global minimum. However, it is well known that the L2

approximation problem possesses many local minima. Since our final goal is to find
the global minimum, we may think of initializing the algorithm at enough points
to reach all local minima and compare between them. But we do not know what
“enough” means and we do not have a bound for the number of initializing points.
Consequently, more efficient strategies should be investigated. For instance, we can
find all the local minima at order 1 and then, initialize our procedure at order 2, by
replacing them on the boundary of Ip

2 (1) as described in point D, choosing w0, u0,
and y0 in several ways, and so on, step by step, until the target order. This strategy
gives rather good results.

The choice of a local chart at the neighborhood of a given point is an important
and difficult task. The main purpose of using coordinates is to be able to perform
calculations on a computer and as such it is desirable that the numerical condition-
ing of the chart is good. A criterion must be chosen to decide upon the quality of
local coordinates around a point on a manifold. Moreover, a distortion occurs when
mapping part of a manifold to Euclidean space, so that the sequence of improving
estimates produced by an optimization algorithm is dependent on the choice of the
chart, and it would be interesting to select the charts with the view to improve the
convergence of the algorithm. But in this case, the selection strategy will depend
upon the problem at hand and bring along a lot of “overhead costs.” The present
version of our algorithm uses a basic selection strategy, which minimizes the norm of
the Schur parameters at each step of the Schur algorithm over a finite atlas. This
point must be improved and is presently under study.

4.4. A numerical example. The sole purpose of the following example is to
demonstrate the procedure of computing local minima. For more real-data simula-
tions, we refer to the scalar case paper [8] or [9]. This example has been first considered
in [31] to demonstrate the procedure of computing the minimal degree approximation
in a Hankel-norm model reduction problem and refers to a fourth-order system:

F (z) =




1 + z

z2 − z + 1/4

1

z − 1/2

−z2 + z + 1

z3 + 1/2z2 − 1/4z − 1/8

z − 1/4

z2 + z + 1/4


 ,
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or equivalently F = N/d, where

d(z) = z4 − 1/2z2 + 1/16

and

N(z) =




z3 + 2z2 + 5/4z + 1/4 z3 + 1/2z2 − 1/4z − 1/8

−z3 + 3/2z2 + 1/2z − 1/2 z3 − 5/4z2 + 1/2z − 1/16


 .

The system has four poles located at 1/2, 1/2, −1/2, −1/2. According to the theory,
if we look for a minimum of (1) with n = 4, we must recover the function F itself,
since from consistency, the criterion has no other critical points [12]. We shall use
this fact to test the procedure.

The function to be approximated is represented in the program by a great number
of Fourier coefficients (computed from frequency data in practice). Thus in this
example, the input of the program is not actually the function F but the 200 first
Fourier coefficients of its rational entries. The software package Scilab is used for the
implementation. We have run a great number of tests changing the starting point and
the initial chart. We present here a case in which every step of the algorithm must
be visited before, according to the theory, we finally recover the function F .

Step 1. We integrate at order 4 and reach the boundary. The initial point has
parameters y = ((0.5, 0.5)∗, ((0.5, 0.5)∗, (−0.5,−0.5)∗, (0.5, 0.5)∗) in the chart indexed
by w = (0, 0, 0, 0) and u = ((1, 0)∗, (1, 0)∗, (0, 1)∗, (1, 0)∗), and corresponds to the
inner matrix Qi = Di/q̃i, where

D̃i(z) =(
−0.3 + 0.4z + 0.4z2 − 0.8z3 + 0.5z4 −0.5 + 0.8z − 0.4z2 + 0.4z3 − 0.3z4

0.3 − 0.4z + 0.4z2 − 0.8z3 + 0.5z4 0.5 − 0.8z + 0.4z2 + 0.4z3 − 0.3z4

)
,(36)

qi(z) = z2(z2 − 1.2z + 0.4).(37)

Note that qi is not exactly the stable polynomial q(4) computed from the recursion
formulas (34) and (35) which has a leading coefficient equal to 0.3125. As we integrate
the opposite of the gradient using the Scilab function “ode,” the norm of the first
parameter tends to 1, while q̃(1)(0) = 0.49 stays far from 0. Thus we have reached a
regular boundary point Qb of parameters

yb = ((0.509, 0.86)∗, (0.357, 0.55)∗, (−0.659,−0.405)∗, (0.556, 0.264)∗).

The criterion is equal to 3.786.
Step 2. We integrate at order 3 and get a local minimum. We put u0 = (1, 0)∗

and y0 = (0.509, 0.86)∗ and we compute the unitary matrix

U = Ip −
(u0 − y0)(u0 − y0)

∗

1 − u∗0y0
.

Lemma 16 implies that Qb = UQ, where Q is the normalized inner matrix of degree 3
of parameters y = ((0.357, 0.55)∗, (−0.66,−0.405)∗, (0.556, 0.265)∗)) in the chart in-
dexed by w = (0, 0, 0) and u = ((0.509, 0.86)∗, (0.86,−0.509)∗, (0.509, 0.86)). Accord-
ing to the theory, the criterion at Q is still equal to 3.786. We restart the minimization
procedure from this point and find a third degree minimum for

ym = ((−0.574, 0.652)∗, (0.0214,−0.433)∗, (0.205, 0.428)∗),

where the criterion is equal to 0.997 and the relative error to 0.05.
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Step 3. We increase the degree and get out of the domain of the chart. This third
order local minimum provides starting points for fourth order minimizations. For
instance, applying Lemma 16 with w0 = 0, u0 = (1, 0)∗, and y0 = (0, 1)∗, which are
distinct unit vectors, yields to the initial point of parameters

y = ((0, 1)∗, (−0.574, 0.652)∗, (0.021,−0.433)∗, (0.205, 0.428)∗)

in the chart indexed by w = (0, 0, 0, 0) and

u = ((1, 0)∗, (0.86, 0.509)∗, (−0.509, 0.86)∗, (0.86, 0.509)∗).

The minimization process leads us to leave the domain of the chart. Indeed, it pro-
duces a sequence of inner functions whose denominators computed by formulas (27)
and (28), have leading coefficients which tends to 0 but roots which stay far from the
unit circle. We stop at

y = ((0.88, 0.096)∗, (−0.688, 0.102)∗, (0.169, 0.232)∗, (0.264,−0.027)∗)

at which the value of q̃(0) is about 0.125 which can produce important errors in the
computation.

Step 4. We change the chart and recover the function F . We choose to work with
a finite subset of the atlas described in section 3.3; the family (V(w,u), ϕ(w,u)) where
w = (0, 0, 0, 0), and u is composed of unit vectors either equal to e1 = (1, 0)∗ or to
e2 = (0, 1)∗. This family is a covering of the manifold Ip

n(1). At each step of the Schur
algorithm, we choose uk = ej , where ej is the vector for which the norm of the Schur
parameter yk = Q(k)(0)∗(ej) is the smallest. It may happen that this process provides
Schur parameters of norm almost equal to 1. In this case we can try each chart of our
finite atlas to find a better one. In our case this process gives a new chart indexed by
w = (0, 0, 0, 0) and u = ((1, 0)∗, (1, 0)∗, (0, 1)∗, (1, 0)∗). The parameters of the point
are given in this chart by y = ((0.632,−.278)∗, (−0.578,−.337)∗, (0.262, 0.192)∗,
(0.157,−.142)∗). The minimization can continue and the minimum is reached for

ym = ((0.495,−0.32)∗, (−0.57,−0.328)∗, (0.266, 0.202)∗, (0.146,−0.129)∗).

The approximant computed from these parameters agrees with F with four significant
digits.

If we start in the same initial chart w = (0, 0, 0, 0), and

u = ((1, 0)∗, (1, 0)∗, (0, 1)∗, (1, 0)∗),

from the point

y = ((0.5,−0.5)∗, (−0.5,−0.5)∗, (0.5, 0.5)∗, (0.5,−0.5)∗),

we immediately reach the minimum with a very good accuracy. This emphasizes
the importance of the choice of the initial point. On the other hand, if we start
from the same initial point Qi given by (36) and (37), but in the chart indexed by
w = (0, 0, 0, 0) and u = ((0, 1)∗, (1, 0)∗, (0, 1)∗, (0, 1)∗) (the Schur parameters are
given by y = ((−.338,−.444)∗, (.0476, .506)∗, (.515, .515)∗, (−.3,−.3)∗)), then we do
not meet the boundary and we again reach the minimum with a very good accuracy.
This illustrates the dependence on the chart of the iterative path produced by the
gradient algorithm.
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5. Conclusion. A rational approximation problem in L2-norm has been studied.
A new parametrization of stable all-pass transfer functions has been used, based on
Schur analysis [1]. Such an overlapping parametrization (in differential geometry
an atlas of charts) has allowed us to use classical optimization procedures within
a local neighborhood, changing the neighborhood when necessary, in order to solve
our minimization problem. Using the state space approach, other parametrizations of
stable all-pass transfer functions are available as the one obtained in [25] in continuous-
time, based on the work of Ober on balanced canonical forms [33]. A link between
the two approaches is probable and a better understanding of the situation seems
desirable. In this connection, a state space formulation of the Schur algorithm has
been described in continuous-time in [23]. A balanced canonical form for discrete
time stable all-pass systems has been obtained in the SISO case [34] by requiring the
realization to be balanced and such that the reachability matrix is upper triangular
with positive diagonal entries. This canonical form can be parametrized by the Schur
parameters obtained in the classical algorithm (11). The generalization of these results
to the multivariable case is under study.

Using this parametrization, a minimization algorithm has been described and its
convergence to local minima has been proved. We have implemented this algorithm
using the matrix-based scientific software Scilab and demonstrated the procedure of
computing a local minimum in many simple examples. Later, using this work, a soft-
ware package named Hyperion has been implemented by J. Grimm to solve a problem
provided by the French CNES: identify from frequency data a 2 × 2 hyperfrequency
filter of order 8. Very good results have been obtained on this problem [9]. How-
ever, the selection strategy algorithm used in this package is still basic and must be
improved. This is going to be the object of forthcoming research.

Acknowledgments. The authors would like to thank D. Alpay who introduced
them to Schur analysis and L. Baratchart for providing them with several helpful
suggestions during this research. We would also like to thank E. Saff, A. Gombani,
and N. Duddley Ward for their very careful reading of this paper and useful criticisms.

REFERENCES

[1] D. Alpay, L. Baratchart, and A. Gombani, On the differential structure of matrix-valued

rational inner functions, Oper. Theory Adv. Appl., 73 (1994), pp. 30–66.
[2] D. Alpay and H. Dym, Hilbert spaces of analytic functions, inverse scattering and operator

models I, Integral Equations Operator Theory, 7 (1984), pp. 589–641.
[3] D. Alpay and H. Dym, On application of reproducing kernel spaces to the Schur algorithm

and rational J–unitary factorization, Oper. Theory Adv. Appl., 18 (1986), pp. 89–159.
[4] J. Aplevich, Gradient method for optimal linear system reduction, Internat. J. Control, 18

(1973), pp. 767–772.
[5] J. Ball, I. Gohberg, and L. Rodman, Interpolation of rational matrix functions, Birkhäuser
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