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Abstract. This paper deals with the rational ap-
proximation of specified order n to transfer func-
tions which are assumed to be matrix valued func-
tions in the Hardy space for the complement of the
closed unit disk endowed with the Lo-norm. An ap-
proach is developed leading to a new algorithm, the
first one to our knowledge which concerns matrix
transfer functions in Ls-norm. This algorithm pro-
ceeds inductively on the order n of the approximant
using a gradient algorithm to find local minima
through the manifold of inner functions of McMil-
lan degree n. These functions are represented by
means of local coordinate maps that come from a
matricial version of the Schur algorithm.

1 Introduction

The identification of linear time-invariant systems
can be formalized as a rational approximation
problem in which some criterion function is opti-
mized over a set of systems. This approach has led
to a wide variety in model structure, performance
criteria and actual methods of estimation (see [16]
and the bibliography therein). Our interest is fo-
cused mainly on the particular class of discrete-
time, linear, time-invariant and strictly causal sys-
tems and their strictly proper transfer functions.
The criterion which is chosen here is the Ly-norm,
so that our approximation problem states in H. %m,
where H o denotes the orthogonal complement in
L?(T) of the Hardy space Hy of the unit disk U
(see [10]):  given a transfer function F € HJ(™,
we are concerned in MINIMIZINg

1

IF=HI3 = 5T [ [P=HY)(P - B’ dr

as H ranges over the set of rational stable (i.e. ana-
lytic for |z| > 1) strictly proper functions of McMil-
lan degree n.
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In [2], an algorithm to find local minima in this
problem is described for scalar systems. It proceeds
inductively on the McMillan degree, using at each
step a gradient algorithm to find one or several lo-
cal minima which provide initial points for the next
step. It is the purpose of this paper to present an
algorithm which enables the results of this previ-
ous paper to be extended to the multivariable case.
Such a generalization involves substantial new dif-
ficulties, mainly due to the fact that the domain
of the cost function is no longer an open subset of
a Euclidean space but it does possess a manifold
structure. A manifold has a covering by count-
ably many open coordinate neighborhoods, each
of these coordinate neighborhoods corresponding
to an open subset of some R? by a local coordi-
nate homeomorphism (d is then the dimension of
the manifold). The methods developed for the Eu-
clidean case then apply to each of the coordinate
neighborhoods separately. Over a manifold, an op-
timization problem can be tackled by using a search
algorithm through the manifold as a whole, using
the coordinate maps to describe the manifold lo-
cally and changing from one coordinate map to an-
other when required. Such a representation of the
set of approximants has the advantage to get rid of
redundancy and ensure identifiability [9]. A trans-
fer function will be represented by means of the
inner-unstable or Douglas—Shapiro—Shields factor-
ization (see. [4]):

H=Q'C, 1)

where @ is a (p x p)-rational inner function and C
a (p x m)-rational matrix whose columns belong to
H(Q) the orthogonal complement of QHY in HY.
The factorization is unique up to a common left
unitary factor and @ and H have same McMillan
degree. To ensure uniqueness in the inner-unstable
factorization, we shall require that () satisfies the
normalization condition

Q1) = 1. (2)

The set of CP*P-valued rational inner functions of
degree n will be denoted by ZZ, and by Z2(1) we

no



denote the subset of functions satisfying the extra
condition (2). It is proved in [1] that Z2 and Z2(1)
are smooth manifolds of dimension 2np + p? and
2np respectively.

The elimination of the parameters in which the sys-
tem is linear (namely those of the unstable factor)
leads to minimize the function

(VAL Inp(l) — R (3)
Q = [F-Q L5,

where L(Q) denotes the projection of QF onto
HZ*™. To describe 72(1) we shall use the tangen-
tial Schur algorithm which gives local coordinates.

The natural framework for our study is the complex
case, that is the case of functions whose Fourier
coeflicients can be complex. It plainly includes the
real case, which is relevant in most applications, by
restriction. Due to the space limitations, we give
no proofs here and refer the reader to [§].

2 Parametrization of inner matrices.

We give here a parametrization of the set of inner
functions obtained in [1] from a matricial version
of the classical Schur algorithm, involving repro-
ducing kernel Hilbert spaces [6]. Other extensions
of the Schur algorithm to matrix-valued analytic
functions are available for example in [5], [7], etc..
The one presented here, rather general, has the ad-
vantage to give rise in a simple way to an atlas of
charts for the manifold of inner functions of fixed
degree. The statements of this section are adapted

from [1].
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be a (2p x 2p)-rational J-inner function analytic
in U. For any (p x p)-rational inner function A,
(©21A + Oyy) is invertible in U and we define

Let

and let

To(A) = (0114 + O13) (014 +0) L. (5)

It is easily proved that Tg(A) is inner. Moreover,
if ©(1) = Iy, the normalization condition (2) is
preserved.

The following function will play a special role in
the sequel. Fix w € U, v € CP with ||u|| = 1, and

v € CP and define
( w ) ( u )*
1— 2
|w]| v v)

1—|v|Pl-wz 1—w

(6)
The function O, 4, is J-inner of degree one and
any J-inner function of degree one can be written
in this form up to a right J-inner constant function.
We then have:

Ou,u(2) = Irp—(1=-2)

Theorem 1 Let B be a rational inner function,
and let ©. 4, be the J-inner function (6). There
exists an inner function A such that

B = To,..(4)
if and only if the interpolation condition
B(w)'u = v
is satisfied. Then degB = degA + 1.

The tangential Schur algorithm then proceeds as
follows:

Tangential Schur algorithm: let Q € Z2(1),
and wp € U, k =mn,...,1. Then, for k =mn,...,1,
there exist unit vectors u, € CP, such that the
vectors y, € CP, given by

v = Q) (w) ug, (7)
satisfy |lyx|| < 1, where Q™ = Q,
Q" = Te, ("), (8)
and Oy = Oy, u, v, 18 given by (6). Then
Q =1Teo,(Te,_,...-To,(Ip))... = Te,..0,p).
Let w = (wq, w2, ..., w,), u = (u1,us,...,u,) and

define
Vo = {Q € Z2(1) / Q™) (wi) w]| < 1},

Pwu) © Viwa) — By
Q - y:(yhy?v"'vyn)v
where B denotes the product of n copies of the
unit ball of CP. Then, the family (V, ¢) defines a
C* atlas on ZZ(1) which is compatible with its nat-
ural structure of embedded sub-manifold of H5*?.



3 Local representations of the cost
function.

The elements of Z2(1) will be parameterized as ex-
plained in the previous section. In any chart of
this atlas, the local coordinates are the 2np real and
imaginary parts of the components of the Schur pa-
rameters yi, .. .,Yn- We shall work with the local
representations of ¥™ and denote by W7,y the lo-
cal representation associated with the chart defined
by (w,u):
\Il?w’u) . By — R
y=-yn) = o, ()

For any matrix-valued function A(z), we define
A¥(z) = A(1/2)%;

if ¢ is a polynomial of formal degree n, we define
its reciprocal polynomial as being

i(z) = 2" ¢*(2), (9)

and if D is a polynomial matrix whose degree does
not exceed n, we also put

D(z) = 2" D!(2). (10)

An inner matrix @) € Z% has a representation of the
form

Q=D/q (11)
by means of a polynomial matrix D whose degree
does not exceed n and a polynomial ¢ of exact de-
gree n. whose roots belong to the open unit disk,
satisfying DD = ¢ql, and detD = eqg? 1, € be-
ing a complex number of modulus one. Conversely,
these conditions are sufficient for the rational ma-
trix D /q to belong to Z7.

We introduce the map
S(w,u) : (A7 y) - T®w‘u,y (A)7

so that the inner matrix Q = @(vi u) (y) is computed
by the iterative process:

-Q=Q",

where QF = Sy (QF ™V, y1). A classical for-
mula (see [13, Appendix A.20]) allows us to com-
pute the inverse in (5) and we have

(1= Buw) (u—Ay)(y* —u*A)
1 —u*Ay — Bu(y*y —u*Ay)’

with By = by /bw, and by(2) = (z — w)(1 — ).

Ip—>Q(1)—>Q(2)—>...

S(w,u)(Avy) = A+

Proposition 1 A fractional representation Dy, /gy
of the inner matriz Q) = To,..0,(Ip) can be
computed by the recursion formulas:

Dy=1I, g =1, and fork=1,...,n,

Dk) = (Bwk - y:yk bwk )Dkfl - (Zwk - bwk)
[Uk up DEY 4+ DEL g g — Gy

+Usz71yk Dy 1 — Dy 1yru D1

Qk—1

(Yk = (Zwk - yzyk bwh)gk—l - (b’wk - b’wk) usz—lyka

where by, = (1 —wg)(z — wg).

The stable polynomial q, has degree k, and
the coefficients of the polynomials i and of the
entries of Dy are polynomial functions in the local
coordinates.

Though the quotient in the expression of Dy, is ex-
act, we fail in searching for an explicit formula for
it, and we do not know if such a formula exists.

Now, the cost function can be computed from the
fractional representation D /g of Q given by Propo-
sition 1 as follows: let R be the remainder in the
Weierstrass division in HY*™ of GD by g,

GD = Vg + R, (12)

then ¢ divides RD and if P is the matrix quotient,
of degree at most n — 1, we have that

Q) = |IFI3— <F7§ > (13)

4 A generic algorithm to find local minima.

The closure of Z2(1) in HY*? is a compact set, so
that we can think of using a gradient algorithm to
find a local minimum of the function ¥™. We then
have to study what happen when, running a gra-
dient algorithm, the norm of some Schur param-
eter tends to 1. In the scalar case, the structure
of T}(1) is particularly simple, since only one co-
ordinate map is needed: as some ||yg|| tends to 1,
the boundary of Z1(1) is reached. In the matrix
case, as some ||yx|| tends to 1, either the chart is



no more available and another one must be used,
or some point of the boundary of Z2(1) is reached.

Observe that if ||ly|| = 1, the J-inner function
O, u,y is no more defined, however, if u* Ay is not
identically equal to 1, the transformation S, .
keeps a sense and is given by

(u — Ay)(y*A — u*)
(I -w*dy)

S(w,u)(A7 y) = A +

Regular limit points in the chart given by
(w,u): a point y of the boundary of By, is a reg-
ular limit point in this chart if a sequence of inner
matrices

Ip—>Q(1)—>Q(2)—>...

where Q%) = S(,, 4)(QF Y, yi) can be com-
puted, that is if ufQ* 1) (wy)ys is not identically
equal to 1 as ||lyk|| = 1, or equivalently if g (com-
puted as in Proposition 1) does not vanish identi-
cally.

- Q™

In this case, if Q**) = D, /g is the fractional rep-
resentation computed as in Proposition 1, then
(a) g still has degree k,

(b) if |lyk|| = 1, then g and Dy, have common roots
on T and Q) has degree less than k.

Moreover, there exists a neighborhood W of y, such
that w(vi,u) extends smoothly to W.

Any inner matrix of degree strictly less than n can
be viewed, up to a unitary factor on the left, as a
boundary point of Z2(1) of this type. Regular limit
points play a central role in our algorithm, mainly
due to the fact that the local representations of the
criterion extends smoothly at the neighborhood of
such points.

Proposition 2 Assume that G(z) = F*(2)/z is
analytic in D, = {z, ||z|| < r} for somer > 1.
Let y be a reqular limit point in some chart defined
by (w,u) and let Q = go(*“}’u)(y) belong to I7 for
some d < n. Then, ¥7 . extends in some open
neighborhood of y to a smooth function still denoted
by \I!?w,u). Moreover, we have

™) = TH(QM)T'Q).

Let us give an important consequence of Proposi-
tion 2.

Lemma 1 Let Q € IL(1) for some k < n and

let y = (y1,...,yx) be its Schur parameters in
some chart defined by w = (w1,...,wg) and u =
(u1,...,ur). Let wy € U, ug and yo be two distinct

unit vectors and put

(Uo — yo)(uo — yo)*

U=1,- :
8 1 —ugyo
w' = (wg,w1,-..,wg), 0 = (ug, Uuy,..., Uuy)
andy,:(y07yla~-'7yk)‘

Then
(1) y' is a regular limit point in the chart defined
by (W', u’) and Q' =UQ is given by

Q' = 99(_‘,&',11')(3’/)-
Moreover,
wéc‘j,—ll,ul)(yl) = wécw,u) (y) (14)

(2) if y is a local minimum of prw,u)(y), the gra-

dient of wf‘j,lu,) at'y' is orthogonal to the surface

{(y07‘- -7yn)a ||?J0|| = 17 ”yj” < 17 .] = 17" '7"}
and points outwards.

4.1 The algorithm.
The algorithm searching for a local minimum at
order n splits into five main operations:

A. Choosing an initial point.

This choice involves the choice of (w, u) indexing a
chart. The initial point may have degree less than
or equal to the target order n. The choice of an
initial point is crucial for our purpose. In many
problems, we hope that some more information or
engineering judgment could help us to select an ini-
tial point which ensures rapid convergence of the
procedure to the global minimum. If this is not the
case, since the L, approximation problem possesses
many local minima and our final goal is to find the
global one, more efficient strategies must be inves-
tigated. For instance, we can find all the local min-
ima at order 1 and then, initialize our procedure
at order 2, by replacing them on the boundary of
Z2(1) as described in point E, choosing wg, uo and
9o in several ways, and so on, step by step, until
the target order. This strategy gives rather good
results [3].

B. Minimizing ot fized order k.
A software is used which integrates the vector field
—grad U7, . from an initial point y; € Bf. One of

(w,u)



the following possibilities occurs:

(i) a local minimum is reached.

If kK = n, we are done, while if £ < n, this local
minimum provides an initial point for searching for
a minimum of order k£ + 1, as described in point E.
(ii) the norm of some Schur parameter tends to 1.
Either a change of chart is necessary, or a boundary
point of the manifold is reached. More precisely, if
the polynomial G nearly vanishes while its roots
stay far from the unit circle, then the limit point
belongs to I% (1), and the first eventuality is true.
In any other case, a boundary point is reached.

C. Meeting a boundary point.

Such a boundary point, up to a unitary matrix, is
an element @, of Z%(1) for some d < k, and the
criterion at order k converges to ¥¢(Q;). Then, a
minimization process at order d can restart from
Q- If only the first Schur parameter has norm 1,
we can directly deduce from Lemma 1 some chart
and Schur parameters for . Otherwise, the ma-
trix @, must be computed and an adequate chart
has to be provided.

D. Choosing an adequate coordinate chart.

The choice of a local chart at the neighborhood of a
given point is an important and difficult task. The
main purpose of using coordinates is to be able to
perform calculations on a computer and as such it
is desirable that the numerical conditioning of the
chart is good. A criterion must be chosen to de-
cide upon the quality of local coordinates around
a point on a manifold. Moreover, a distortion oc-
curs when mapping part of a manifold to Euclidean
space, so that the sequence of improving estimates
produced by an optimization algorithm is depen-
dent on the choice of the chart, and it would be
interesting to select the charts with the view to im-
prove the convergence of the algorithm. But in this
case, the selection strategy will depend upon the
problem at hand and bring along a lot of ‘overhead
costs’. The present version of our algorithm uses a
basic selection strategy, which minimizes the norm
of the Schur parameters at each step of the Schur
algorithm over a finite atlas. This point must be
improved and is presently under study.

E. Increasing the degree.

When the minimization procedure leads to a local
minimum of order k < n, say @, then Lemma 1,
for any choice of wg, uo and yo # ug, provides
a boundary point @), of Z} (1) together with a

local parametrization @, = ap(_vi,’u,)(yin), deduced

from a local parametrization <p(_“} u) (Ym) of @, and

k+1

(W’,u’
at y’, this point can be used as an initial point for
a minimization process at order k + 1. m|

satisfying (14). Since —grad ¥ ) boints inwards

The point is that the value of the criterion, where
the criterion must be understood as being ¥* when
working at order k, decreases continuously, being
conserved while the order changes, so that the min-
imization process pursues through different orders.
Under some generic assumptions, it can be proved
that critical points in Z} (1) are finite in number.
Since the criterion decreases continuously, we never
meet twice the same local minimum and this en-
sures that the procedure eventually comes to an end.

5 Conclusion

A rational approximation problem in Ly-norm has
been studied. A new parametrization of the sta-
ble all-pass transfer functions has been used, based
on the tangential Schur algorithm [1], allowing us
to use classical optimization procedures. Using the
state space approach, other parametrizations of the
stable all-pass transfer functions are now available
as the one obtained in [12], based on the work of
Ober on balanced canonical forms [14], involving
nice selections and Kronecker indices. It must be
noticed that a link between the two approaches has
been established in [15] generalizing the work of
Peeters and Hanzon in [11]. It gives rise to bal-
anced realizations and overlapping canonical forms
directly in terms of the parameters used in the tan-
gential Schur algorithm. This can be very useful
and help us in the choice of a good chart.

The algorithm described here has been imple-
mented by J. Grimm! to solve a problem provided
by the French CNES: identify from frequency data
a 2 x 2 hyperfrequency filter of order 8. Very good
results have been obtained on this problem [3]. An-
other domain of application for this study could be
the surface acoustic wave filters. As in geophysics
(see [7]), in this technology Schur parameters ap-
pear as reflection coefficients and the synthesis of
SAW filters could be approach by rational approx-
imation.
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