A Schur algorithm for symmetric inner functions.
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Abstract. Symmetric inner rational functions naturally in which j denotes the square root efl. Note that,

arise in the description of physical systems which satisfi, (22) = 221 ¢,,(1/22), ¥, (2%) = 22D 4, (1/22).

the conservation and reciprocity laws. Inner matrix function¥he matrice<),,(z) are symmetric inner matrices, of McMil-

can be parametrized by a sequence of interpolation vectdes degreen, with complex coefficients. In this example, the

obtained from a tangential Schur algorithm. In this papetomplex structure is very particular, but it can be much more

we present a Schur type algorithm which allows to describeomplicated if one considers a combination of filters. Ratio-

symmetric inner functions, based on a two-sided Nudelmamal complex matrices which are both inner and symmetric

interpolation problem. This Schur algorithm gives rise to aseem to be relevant objects in physics and electrical engineer-

interesting interpretation in the context of surface acousting. However, while there exists an important literature on

wave filters. inner functions and some papers on real symmetric rational
matrix functions [6], [7], to our knowledge symmetric inner

I. INTRODUCTION. matrices have not been studied.

Symmetric inner functions naturally arise in the descrip- Tangential Schur algorithms provide interesting tools to
tion of physical systems which satisfy the conservation angarametrize inner functions by means of interpolation values
reciprocity laws. This study was initially motivated by an[1], [5], [10]. The object of this paper is to present a Schur al-
application to the synthesis of SAW (surface acoustic wavegorithm which allows to describe symmetric inner functions.
filters. A SAW filter can be viewed as composed by a finitdn order to take into account symmetry, the usual Nevanlinna-
number of cells, each cell containing a reflection center witRick interpolation problem underlying the Schur algorithm
reflection coefficient;, r; €] —1,1[, and an electroacoustic will be replaced by a two-sided Nudelman interpolation
center [3]. The acoustic matrix which relates ingoing waveproblem.
to outgoing waves can be computed from the sequence of

reflection coefficients,rs,...,rn. Put
th=V1—12, P,=tity...t,, Il. SCHUR ALGORITHMS, INTERPOLATION AND

and define Schur polynomials, and1,, of degree(n — 1) PARAMETRIZATION.

satisfying the Levinson recursions
_ The Schur algorithm was originally a nice recursive test
{ zngg B zf"qgl(z)(;g Ti"’lgg for checking the boundedness of an analytic functitin)
" - ointnd noish in the disk: define a sequence of functions &= S and
with
{ p1(2) = 1
Yi(z) = 1. Sit1(2) =
z
Note that these polynomials have real coefficients. Also
define the reciprocal polynomial of a polynomia{z) of

formal degreen as

Si(2) —8:(0)
(1= 8i(0)*Si(2))’

then, |S(z)] < 1 for |z| < 1 if and only if |5;(0)] < 1

for all # > 0. Such an analytic function is called a Schur
p(z) =2"p(1/z) = 2"p(1/Z2). (1)  function and it is completely characterize by the sequence of
numbersy; = S;(0). Then, Schur type algorithms were used
to approach interpolation problems with metric constraints
(Nevanlinna-Pick problems): find a Schur function which
takes certain specified values at certain points inside the unit

The acoustic matrix associated with the firstells of the
filter is thus given by

) P e, @
P21 —ji,(22) e disk.
. . Generalizations of Nevanlinna-Pick problems to the matrix
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Qn(z) =2z



several forms, namely (i) w € C,|w| < 1 being given, we can always find
some directionu € C?, |lul]| = 1 such thatv given by the

Stwju = v, 3) interpolation condition

z'S(w) = y", 4

TS = p, (5) Qwju =v,
S(w) = M, (6) has normstrictly lessthan1.

(i) in that case (v|| < 1), a J-inner matrix function can

in which w is a complex scalan, v, z, y, are vectors and pe pyilt from the interpolation data, u, v, namely
M is a complex matrix. The solutions of such interpolation

problems can be usually parametrized via a linear fractional ) { v } { v T
. . . 1 _ u u
transformation, that is a transformation of the form Owuw(2) = Inp+ (2 — 1) — |||1;f2 (=5 J (16)
T@(R) = (@1R+®2)(@3R+@4)71, (7)

) ) ) ) ) ) such that the functiod)(z) can be represented by the linear
associated with some rational matrix functién(z) with  fractional transformation (7) associated with,, ., ., for

block decomposition someinner functionQ,,_(z) of degree(n — 1).
0, O, The tangential Schur algorithm consists of repeating this
e = { 0; O, ] : process, and thus provides a sequence of inner functions,

The most popular interpolation problem, also called Qn =Q,Qn-1,...,Q1,Qo,
F\Ievanlmna—Pmk prpblem consists of a set of dllrectlonalln which for k = n,n — 1,....1, Qp has degreei and
interpolation conditions of the form (3). Schur algorithms to__,. .. . ! .

. : atisfies the interpolation condition
solve this problem were presented among others in [1], [10?.
In [1] a Schur algorithm is used to provide parameters for Qr(wi)ug = v, okl <1,

the set of rational inner functions of fixed McMillan degree. ) . .
We briefly recall this result. and Qg is a constant unitary matrix
A local parametrization (or chart) for the set of inner

Let functions of McMillan degreen can be associated with
J= [ I 0 }7 K = { 0 I ] (8) @ sequence of interpolation pointgu,ws,...,w,) and
0 -1 I, 0 interpolation directionguy,us, ..., u,). An inner function
For any matrix functionf'(z), we define of McMillan degreen can be parametrized in this chart,
4 = - if the Schur algorithm can be run unt, (i.e. for k£ =
Fiz) = F(2)", F(2) = F(2). ©) n,...,1, the interpolation values, = Q(wy)ux satisfy
A 2p x 2p rational matrix functiond(z) is called.J-inner [lvk[l < 1). Note that, by (i), for anyQ(z), we can find a
if, at every point of analyticity: of © it satisfies sequence of interpolation values and interpolation directions
such that this condition is satisfied. The interpolation values
0(2)J0(2)" < J, [z <1, (10) v, = v,v,_1,...,v1, are then the parameters ¢f in the
O(2)JO(2)* = J, |z|=1 (11) chart, together with the unitary matri@o.

Recall that a linear fractional transformati®y associated
ith such aJ-unitary matrix H is a bijection on the set of
inner functions which preserves the McMillan degree [8].
Moreover, if© is a J-inner function, we have that

The linear fractional transformation (7) possesses the f
lowing useful properties: it) = To(R) whereR and @ are
invertible, then

-1  _ —1
Q= Ixex(RT), (12) Ton(R) = To (Tu(R)).
= Tron/ax(R). 13
_ @ _ Ke(l/_)K( ). . ( _) This leads to the following remark.
A p x p rational matrix functionS(z) is Schur if it is Remark 1:The function ©,,,., satisfies the condition
analytic and contractive in the disk Ouwuw(l) = I. This implies that the constant unitary

matrix (o in the Schur algorithm is such th&l, = Q(1).
This choice naturally arises in a function space approach [4].
and inner if in addition it takes unitary values on the circleThe matrix©,, ., also has the nice factorization (obtained
from [8, Lemma 5.1] applied t&©! .  K)

S()SE) <L, |ol <1, (14)

S(2)S(2)" =1Ip, |z2|=1. (15) 0,0,0
A linear fractional transformation (7) associated with/a Ouw,u(2) I 0
inner matrix function® transforms inner functions into inner = H(vu*)~t| P H(vu?),

f o *
functions. 0 I+ (B(2) — Nuu

Let Q(z) be ap x p inner function of McMillan degree in which 3, andH (vu*) are defined by (18) and (21) respec-
n, then tively. However, assertion (ii) is still true if we replaég,, ., .



in the linear fractional transformation by aty,, ., w = Consider the matrix

Ow.u,vH, where H is a constant/-unitary matrix. This A . _ R

matrix H may depend (smoothly) on the i)r/nerpolation data. B(z) =Y "B(x)Y = I, + (Bc(2) — L)yy",  (19)
The corresponding Schur algorithm will provide frofha wherey = Y*z. The matrixB(z) will be symmetric if and
different sequence of inner matric€s,. Such a choice may only if ey is real, for some unit complex number

be more convenient in some context. In [10], a similar Schur Lemma 3:The inner function B(Z) given by (17) is
algorithm is presented which gives rise to a circuit theoretic&lymmetric if and only if it can be written in the form
interpretation. It is described in the case of continuous-time

transfer functions, but it corresponds in our discrete-time B(z) =Y (I, + (Bc(2) = Dyy") YT,

setting to the choice ., ., H (vu*)~". In [8], the freedom , \yhich y is a unit realp-vector andY” a unitary matrix.
in the choice of the matri¥/ has been used to associate with |; is known [4, Th.1.2] that evergp x 2p J-unitary matrix
the Schur algorithm a nice recursive construction of balanced,, pe expressed in the form

realizations. This is possible with th&inner matrix

P 0
. H=H(E , 20
9w,u,v = H(wvu*) L]g’ Ip + (l—woz _ 1)UU* :| H(UU’*) ( ) |: 0 Q :| ( )
Now, we turn to the case of S)Z/Fﬁlfnetric functions. In viewwhere P and Q arep x p unitary matrices, andi (E) the
of (13) we have the following preliminary result: Halmos extension of a strictly contractiyex p matrix F,
Lemma 1:Let ©(z) be aJ-unitary function such that  thatis
— o *\—1/2 I. — E*E —1/2
0(1/2) = KO(2)K. _ | €-EE) E(I, )
( / ) ( ) H(E) E*(Ip_EE*)—]_/Q (Ip_E*E)fl/Q :
Then, the linear fractional transformati@iy preserves sym- (21)
metry. Lemma 4:The J-unitary matrix H(FE) satisfies

H(E) = KH(F)K if and only if E is symmetric.
IIl. ELEMENTARY SYMMETRIC INNER FUNCTIONS

The Schur algorithm we shall describe in the next section V. A SCHUR ALGORITHM FOR SYMMETRIC INNER
produces a sequence of symmetric inner functions whose FUNCTIONS.
McMillan degree decreases by at each step. Thus, it Let Q be ap x p symmetric inner function of McMillan
ends either on a symmetric unitary matrix or on an innetlegreen > 2 and assume it satisfies the Nevanlinna-Pick
function of McMillan degree 1. In this section, we shallinterpolation condition
characterize these elementary symmetric inner functions. As
mentioned previously, constatunitary functions also play Qw)u =, (22)

an important role in these questions. We shall also chagherew belongs to the open unit disk,andv are complex
acterize.J-unitary matricesd which satisfies the condition ,,.vectors,||u| = 1 and||v|| < 1. In order to take into account

H = KHK, so thatTy preserves symmetry. the symmetry of)(z), we shall consider simultaneously the

Symmetric complex matrices have been studied in [9]. Wgymmetric interpolation condition
recall the following result.

Lemma 2:A complex matrix X is both symmetric u' Qw) = v". (23)
and unitary if and only if it can be written a¥ =
OAOT where O is a real orthogonal matrix and =
diag()\l,)\g,...,)\n), |>\k| =1

Every inner function of McMillan degreé& can be written
in the form (see [4, th.1.4.])

The interpolation problem: find) which satisfies (22) and
(23), is a special case of the two-sided Nevanlinna-Pick
problem in which the interpolation points coincide. It can
be viewed as a two-sided Carétidory-Fegr problem [4,
th.6.3.] or as a particular case of a the two-sided Nudelman

B(z) = (Ip + (B¢(2) — )az™) X, (17) interpolation problem considered in [2, ex.18.5.3]. For this
) problem to be well-posed, an extra interpolation condition
where 3. (z) is the Blaschke factor of the form
5(2) (z—O)(1—=0) <1 18) ul' Q' (w)u = p, (24)
zZ)= T = N/1 )
¢ (1-¢2)(1-¢) in which Q' denotes the derivative ap, must be added to
X is a unitary matrix uniquely determined by = B(1) the previous ones.
andz* is a left kernel vector of3(¢) such that||z| = 1. Put 1= o2
If B(z) is symmetric, then the matriX = B(1) is 0="—"5, (25)
symmetric too. Since it is unitary, there exists a unitary 1~ |w|
matrix Y such that (see Lemma 2) and associate with the set of interpolation data

X=YYT. § = (w,u,v, p), (26)



the Pick matrix B then Q(z) = Q1(2)B(z) for some inner functior®,(z) of
As = { g p } 27) McMillan degree(n — 1), and

re Q1(2) =Q(2)B(2) ' =Q(0) (2, + (1 —2)uu*)+2x....

and theJ-inner matrix function
(2 —w)~! 0 ] We then have the following interpolation condition 195 (z2)

O5(2) = Iop+ (2 -1)C 0 (1—zw)~? uTQ1(0) = uTQ (0)uu* = pu*.

A—l (1 - w)il 0 C*J
g —w)7! This interpolation condition differs from (3) but can be
_ (28)  approached in a similar way [5]. Sindgu| = |p| < 1,
with ~ its solutions can be represented by a linear fractional trans-
C = { voTu ] ) (29) formation@, = Te, (R:) for some inner matrix functiotk,
wo—v of McMillan degree(n — 2) (since@; has McMillan degree

Remark 2:Note that©s(1) = I, and that®s(1/z) = (n — 1)), and where9; is the J-inner function
KOs(2)K, so that by Lemma 1 the linear fractional trans- a a1
formationTg, preserves symmetry. { u ] [ u }
It is proved in [2] that there exists a Schur function satisfying O1(z) =Ip+ (2 —1) 7 5
the interpolation conditions (22), (23) and (24) if and only if — el
the Pick matrixA; is positive definite. In the case of a sym-Thus
metric inner function we have the following representation ae1) S i
theorem. o Q)= (G + 2y an) () — (e’ )

Prqposition 1 I__et Q(z) be ap x p.symmgtrlic inner ((1(:;)2),5“@*31(2) I, - (1(:pl|)2)|/’|2uu*)
function of McMillan degreen > 2 which satisfies (22),

(23) and (24) and such thats is positive definite. Then, and

Q(z) can be represented as 1) 1) .
Q) = ((p+ (Eyaa) Ri(2) — o)

=To,(R), - - -
Q @5( ) ( (z—1) ﬁua*Rl(z)—i—Ip— Z((z 1) uu*) 7

L . . z(1=[pl?) 1-[pl?)
whereO; is given by (28) and? is ap x p symmetric inner

function of McMillan degreg(n — 2). which is precisely) = To,, (). Moreover, by Lemma 1
Proof. We give a constructive proof of this result which 21 is symmetric which proves the result in this case.

follows the approach developed by Potapov to describe the Then, we assume that the interpolation data are of the form

multiplicative structure of/-inner functions [11]. We first 61 = (w,u,0, p), so that (22) has the form

consider the case where the interpolation data are of the form Qw)u =0

do = (0,u, 0, p), so that (22) takes the simpler form
and that the associated Pick matrix

Q(0)u=0.
1 —
Fromd, we construct the positive definite matrlys, given As, = 1=w® f
by p T—[w]?
A, = { ; f ] .ol < 1, |bs positive definite. Consider the inner functigh, defined
y
and the matrix9;, (z) can be easily computed as Qu(Bu(2)) = Q(2),
I+ ﬁﬂuT _/i(_zﬁjllz)ﬂu* where 3,,(z) is the Blaschke factor defined in (18). The
Os,(2) = pe=l) Tzl | matrix Q,, is symmetric, has same McMillan degree@&:)
(1=1pl*)= P (-lel?)2 and satisfies the interpolation conditions
Then, we write the Taylor series ¢J(z) aboutO: 1—w
, QU,(O)U = 07 UTQL)(O)U = p(l - |w|2)m7
Q(z) =Q(0)+zQ'(0) + ...

: " associated with the interpolation data
and the singular value decomposition @f0)

1—w
Q(0) = Vdiag(0,...,0,A1,..., AU, 0< A < ... < Ay, o = (07%0,9(1 - Iw2)1_w> :

for some unitary matrice¢/ and V. From (22) we may The Pick matrix associated with these data
choose the vectos as first column vector of/. Now, let 1 A1 — w[2) =z
- i—w ]

B(z) = I, + (z — 1)uu* = Udiag(z,1,...,1)U", Agp = { p(1 — Jw|?) =% 1



is positive definite since\s, is. The previous result thus It is not difficult to prove thatF« = v and the previous proof

applies to the matrixQ,,, so that can be adapted to this case. O

Remark 3:If both v and p are zero in the interpolation
Qu = T(")ag (Buw), conditions (22), (23) and (24), the linear fractional represen-

for some symmetric inner functioR,, of McMillan degree tation @ = To, (R) is a symmetric Potapov factorization

(n —2). It is then easily verified that Q2) = (I + (Bu(2) - DauT)R(2)(I, + (Bu(2) = Lyuw”).
O (Bu(2)) = O, (2), Th_e Schur algorithm: let Q(z) be an inner function of

McMillan degreen > 2. Then,
so that (i) we can find a set of interpolation data= (w, u, v, p)
Q(2) = Qu(Bu(2)) = Te;, (R), such thatQ)(z) satisfies (22), (23), (24) and the Pick matrix

As given by (27) is positive definite.

in which R(2) = R, (0.(2)) is symmetric and has degree |ngeed, we can take for example a zer®f Q(z) and an

(n —2). associated direction, so that
Now, we come to some general data= (w,u, v, p) for
which v is a nonzero vector. We first assume that Q(w) Q(w)u = 0.
is a strictly contractive matrix and we consider the funCtiOE\'hen letp — u” Q' (w)u. By Schwartz lemma [12, chap.12]
— TH(fE) (Q) 0 - . ) . y .
(BB ) QeB) (1B Q) (I, B/ applied to the Schur analytic functiarf Q(z)u, we have
where H(E) is the Halmos extension (21) associated with o] < 1
the symmetric matrixy. This ensures thaf) is symmetric. Pr=1 lw]|?
Moreover, we have that The equality is strict and thus the Pick matrbs positive
Q/(w) =(I—- EE*)_l/QQ’(w)(I _ E*E)‘W, definite unless ifu” Q(2)u = £3,, & unit complex number.

. In this case, the matriQ)(z) is of the form
so that@) satisfies the set of interpolations conditions

Q(2) = X diag(fu(2), Q1(2)) X",
Ow)a =0, a’Q (w)a=—-2— o - . .
’ 1—|v||?’ and it is not difficult to find a unit vecton, such that
uT'Q (w)u = p = 0 and Q(w)u = v, with |jv]| < 1. The
7 = * 1 2771 I I a . . . . e .' .
wherei = (I — E*E)Y e The Pick matrixA; - picy matrix A; is again positive definite.
associated with the interpolation data= (w, 8,0, 7=fo) (i) given a set of interpolation data such that the

is again strictly positive sincés is. Thus, by what precedes, associated Pick matrid; is positive definite, any matrix
Q satisfying (22), (23), (24) can be represented by a linear

Q =Te,(R), fractional transformation of the form

for some symmetric inner functio® of McMillan degree Q =Te,(R),

(n —2). We then have (note thaf (E)~' = H(—E)) o . .
for some symmetric inner functio®® of McMillan degree

Q =Turmyo,n(-r)(R), (n —2).
Repeating this process we construct a sequence of sym-
metric inner function

Qn = Qa Qn727 cee 7Q’n72i7 cee va
in which @, _2; has McMillan degre€n — 2¢). The Schur

in which R = TH(E)(R) is again symmetric of McMillan
degree(n — 2). It remains to prove that

H(E)O;H(~E) = 0.

This follows immediately from the fact that algorithm stops when the degreeli®r 0. If n is odd, then
0 -4 1 v —i Q¢ is a symmetric inner function of McMillan degrek
H(E) [ a0 } = W { - ] while if n is even, thenl); is a symmetric unitary matrix.

These elementary symmetric inner functions were described
In the case wheré&)(w) is not strictly contractive, we can in section llI.
write the Takagi's factorization ([9, Cor.4.4.4] fo)(w)
O(w) = Udiag (o, 0, . .. ,Un)UT, V. SCHUR PARAMETERS FOR ASAW FILTER.
NORMALIZATION ISSUES.

whereU is a unitary matrix and the;’s are real nonn.egative We return to the example proposed in the introduction.
numbers of modulus less than or equal to one, sij¢@) et M, (2) = Q,(z)/z whereQ,(z) is the acoustic matrix

is contractive. Assume thab| = |o2| = --- = [o1] =1  given by (2). It satisfies the interpolation condition (22) with
while |oy| < 1, for k > I, and choose

o w0 [ o
E = Udiag(0,...,0,0041,...,0,)U". W=D U= T e |



It can be verified that” Q’,(0)u = 0, so that the associated complex number\. This raises the question of the choice

t2 I, is clearly positive definite. The of a symmetric contractive matri¥, such that the Schur
algorithm associated witl®sH(E) allows for a recursive

construction of balanced realizations.

Pick matrix A =
associated/-inner matrix can be computed as
1 0 0 0
2 2 - 2
0 2Ty 0 ]7‘71,(2 _1)
_ zt2 zt2
On2) = | 0 1 0
0 Jra(22—=1) 0 1—r2 22 (1]
zt2 22

We may also run two steps of the classical tangential Schui2l
algorithm described in section Il, with

0 0 [3]
wn—07 un—|:1:|7 U’ﬂ_|:0:|7
(4]
o Jo [ o
Wp—1 =Y, Up—1 = 1 ) Un—1 = 7]-7,"
(5]
We get
M, = T@,,,(Mn—l)y [6]
with [7]
1 0 0 0
0o 2 0 = [8]
tn ztn
Pnlz) =1 g 0 1 0
0 % 0 Zin [9]
Note that this matrix doesn’t satisfy the conditidn, (1) =
I, that was imposed to thg-inner functions®; in the [0
symmetric Schur algorithm. The matri®,, (1) is in fact
equal toH (vu*). Note that, in this particular case, [11]
[12]

vu* = 00
B 0 _jrn ’

is symmetric, so that by Lemma 4 and Lemma 1 the
linear fractional transformatiois; (...~ preserves symmetry.
Moreover, we have that

®, = 0,3,(1).

It appears that the sequence of acoustic matridgscorre-
sponds to a symmetric Schur algorithm in which théner
function ©5H (vu*) has been chosen instead ®f.

This leads us to some considerations on the choice of
the J-inner function in a Schur algorithm. Concerning the
tangential Schur algorithm described in section Il, we have
already mentioned that several choices have been made in the
literature (see remark 1) and in particular, that of [10] which
allows for a nice circuit interpretation, and that of [8] which
leads to a recursive construction of balanced realizations. In
the context of SAW filters, the Schur algorithm associated
with the matricesd,, has a nice physical interpretation: it
gives the sequence of acoustic matridds corresponding
to the firstn-cells of the filter. Moreover, it can be proved that
it allows for a recursive construction of balanced realizations
as described in [8]. This is not very surprising since, when
the interpolation pointw is zero, the choices in [10] and
[8] for the matrix © agree. In general, the matrixu* is
not symmetric. It is symmetric only it = Az for some
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