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Schur parametrizations and balanced realizations
of real discrete-time stable all-pass systems.

Martine Olivi, Jean-Paul Marmorat, Bernard Hanzon, Ralf L.M. Peeters

Abstract. We investigate the parametrization issue for
real discrete-time stable all-pass multivariable systems
by means of a real tangential Schur algorithm. A recur-
sive construction of balanced realizations is associated
with it, that possesses a very good numerical behavior.
A chart selection strategy is given which makes use of
the real Schur form of the dynamic matrix. Application
to rationalL2-approximation is considered.

I. I NTRODUCTION

Stable all-pass systems of fixed order have several
applications in linear systems theory. Within the fields
of system identification, approximation and model re-
duction, they have been used in connection with the
Douglas-Shapiro-Shields factorization [2], to obtain ef-
fective algorithms for various purposes. In this respect,
an essential issue is that of the parametrization of this
class of systems. A ”nice” parametrization is such that
a small perturbation of the parameters preserves the
stability and the order of the system and allows for the
use of differential tools. In the multivariable case there is
no global parametrization of this kind. However, the set
of stable all-pass systems of fixed order possesses a man-
ifold structure with its local parametrizations (charts)
combined into an atlas which satisfy our requirements.
Such parametrizations have been constructed in [1] by
means of a tangential Schur algorithm. In each iteration
step a linear fractional transformation is employed which
is associated with aJ-inner rational function of McMil-
lan degree1. In [7], a recursive construction of balanced
realizations is associated with the Schur algorithm, that
can be implemented as a product of unitary matrices and
presents a very good numerical behavior. It combines
the technical advantages of the Schur parametrizations
to the practical ones of the state-space descriptions.
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The natural framework for these studies was that of
complex functions. However, in most applications sys-
tems are real-valued and their transfer functionsT are
real, that is satisfy the relationT (z) = T (z̄). Even if
the complex case includes the real case by restriction,
a specific treatment is actually relevant. Indeed, the
difficulty when dealing with atlases of charts, is to
select a ”good” chart or local parametrization for a
given lossless function. In the complex case, the Potapov
factorization of the function provides a chart in which
all the Schur parameters are zero. The interpolation
points of the Schur algorithm are then the poles of the
lossless function. On the level of realizations, they are
the eigenvalues of the dynamic matrix and the chart can
be easily determined from a realization in Schur form.
Of course, this very efficient strategy doesn’t work in
the real case. To solve this problem, we investigate here
a real Schur algorithmwhich allows for iteration steps
associated withJ-inner rational function of McMillan
degree2, with complex conjugate poles. This algorithm
also allows for a recursive construction of balanced
realization with real entries.

II. SCHUR PARAMETRIZATIONS OF COMPLEX

LOSSLESS FUNCTIONS.

Let

J =
[
Ip 0
0 −Ip

]
.

A functionG is (p×p)-lossless or stable all-pass, if and
only if

G(z)G(z)∗ ≤ Ip, |z| > 1,

with equality on the circle. We denote byLpn the set of
(p× p)-lossless functions of McMillan degreen and by
Up the set of constant unitary matrices.
For G ∈ Lpn, an interpolation condition is a relation of
the form

G(1/w̄)u = v, (1)

- w ∈ C, |w| < 1,
- u ∈ Cp, ‖u‖ = 1
- v ∈ Cp, ‖v‖ < 1.
Remark. Note that G(z) and w being given, some
directionu can always be found, such thatv given by
(1) has normstrictly lessthan1.



An interpolation condition being given, a(p×p) block-
matrix function

Θ(z) =
(

Θ1(z) Θ2(z)
Θ3(z) Θ4(z)

)
(2)

can be defined, depending onw, u, v, such that the
functionG(z) can be represented by the linear fractional
transformation

G = (Θ4Gn−1 + Θ3) (Θ2Gn−1 + Θ1)
−1
, (3)

for somelossless functionGn−1(z) of degreen−1. The
(J-unitary) matrix functionΘ(z) is uniquely determined
up to a constant (J-unitary) right factorH by

Θ(z) =
[
I2p + (z − 1)

1− |w|2

1− ‖v‖2

[
u
v

] [
u
v

]∗
J

]
H.

(4)
The tangential Schur algorithm proceeds consist in re-
peating this process (see [1] or [4] for more details).
A sequence of lossless functionsGk(z) of degreek is
constructed,Gk satisfying the interpolation condition

Gk(1/w̄k)uk = vk, ‖vk‖ < 1,

until G0 which is aconstant unitary matrix.
As in the scalar case, the interpolation valuesvn =
v, vn−1, . . . , v1, can be taken as parameters to describe
the spaceLpn. But in the matrix case, they only describe
an open subset of the manifold. Associated with the
sequences

w = (wn = w,wn−1, . . . , w1) ,
u = (un = u, un−1, . . . , u1) ,

of interpolation points and interpolation directions, and
with a chart(W, ψ) of Up, we define a chart(V, ϕ) by
its domain

V = {G ∈ Lpn / ‖Gk(1/w̄k)uk‖ < 1, G0 ∈ W},

and its coordinate map :

ϕ : G→ (v1, v2, . . . , vn, G0).

The family (V, ϕ) defines aC∞ atlas onLpn.
In many application a parametrization of the quotient
spaceLpn/Up is necessary. It is obtained by fixing in
each chart the value of the last matrixG0 obtained in
the Schur algorithm.

III. B ALANCED REALIZATIONS , SCHUR FORMS AND

ADAPTED CHARTS.

An important property of a lossless function is that it
admits a balanced realization

G(z) = C(zIn −A)−1B +D,

such that the associatedrealization matrix

R =
[
D C
B A

]
(5)

is unitary (see [7] and the bibliography therein).
In [7] it is proved that for a particular choice of the
factor H in Θ(z) (see (4)), a very simple transforma-
tion on realizations corresponds to the linear fractional
transformation (10). LetRn−1 be a unitary realization
matrix ofGn−1(z), then a unitary realization matrixRn
of G(z) is given by

Rn =
[
V 0
0 In−1

] [
1 0
0 Rn−1

] [
U∗ 0
0 In−1

]
(6)

whereU andV areunitary (p+ 1)× (p+ 1) complex
matrices depending onu, v, w as follows

U =
[
ξu Ip − (1 + wη)uu∗

wη ξu∗

]
,

V =
[
ξv Ip − (1− η) vv

∗

‖v‖2

η −ξv∗

]
,

with

ξ =

√
1− |w|2√

1− |w|2‖v‖2
, η =

√
1− ‖v‖2√

1− |w|2‖v‖2
.

In a chart associated with this particular Schur algorithm,
a unitary realization matrixof the current lossless func-
tion G can be computed by iterating formula (6), which
presents a very nice numerical behavior since it only
involvesmultiplications by unitary matrices.
Observe that if the Schur parameterv is equal to zero,
recursion (6) applied to a unitary realization matrix (5)
gives D̂

√
1− |w|2Du C√

1− |w|2u∗ w 0
B(Ip − (1 + w̄)uu∗)

√
1− |w|2Bu A

 (7)

where D̂ = D(Ip − (1 + w̄)uu∗). This suggests the
following strategy which leads to a chart in which all
the Schur parameters are equal to the null vector and
which corresponds to a Potapov factorization [8]. We
start with a balanced realization(An, Bn, Cn, Dn) of
the lossless functionG(z) ∈ Lpn, in whichAn is lower
triangular (Schur form). Let

An =
[
wn 0 · · · 0
βn An−1

]
, Bn =

[
bn
...

]
,

Cn =
[
cn Cn−1

]
,

wherewn is a complex number,bn a row vector of size
p, and cn a column vector of sizep. Comparing with
(7), we choosewn as first interpolation point,un =
b∗n/‖bn‖ andvn = 0. The corresponding functionGn−1



has realization(An−1, Bn−1, Cn−1, Dn−1) which is still
in Schur form. Repeating this process, we get a sequence
of interpolation points(wn, . . . , w1), the eigenvalues of
An, and a sequence of unit vectors(un, . . . , u1) that
index a chart in whichG has Schur parametersvn =
. . . = v1 = 0.

IV. A SCHUR ALGORITHM FOR REAL FUNCTIONS.

To deal with the case of real functions, we may spe-
cialize the Schur algorithm to real interpolations points
and directions and allow for the Schur parameters only
real values. This defines an atlas, but then the Schur
form does not provide an adapted chart. To avoid this
problem, it is necessary to consider a more general Schur
algorithm which allows for steps of order two, in which
the degree of the lossless function decreases by two.
We shall denote byRLpn the set of real(p× p)-lossless
of McMillan degreen and by Op the set ofp × p
orthogonal matrices. LetG ∈ RLpn and consider a
couple of interpolation conditions{

G(1/w̄)u = v
G(1/w)ū = v̄,

(8)

- w ∈ C, w /∈ R, |w| < 1,
- u ∈ Cp, ‖u‖ = 1,
- v ∈ Cp, ‖v‖ < 1.
Note thatG being real, the two interpolation conditions
are equivalent.
Following [1], we associate to these interpolation con-
ditions theJ-inner function of McMillan degree two

Θ(z) =[
I2p + (z − 1)C(I2 − zA)−1P−1(I2 −A)−∗C∗J

]
H,

where

A =
[
w̄ 0
0 w

]
, w = λ+ i µ,

C =
[
u ū
v v̄

]
, ‖u‖ = 1, ‖v‖ < 1,

andP satisfies the equation

P −A∗PA = C∗JC.

The functionΘ(z) is associated with theH(Θ) space
spanned by

f(z) =

[
u
v

]
(1− w̄z)

, f̄(z) =

[
ū
v̄

]
(1− wz)

,

which is a subspace of the Hardy spaceH2 endowed
with the J-inner product< , J >H2 . It is well-known
thatP is the Gram matrix associated with this basis with
respect to theJ-inner product. It is thus given by

P =
[
r s
s̄ r

]
,

r =
1− ‖v‖2

1− |w|2
, s =

u∗ū− v∗v̄

1− w̄2
= eiψ|s|, (9)

and it is easily proved thatP is strictly positive. This
is the necessary condition to run a Schur step (see [1,
prop.3.2]): the functionG(z) can be represented by the
linear fractional transformation

G = (Θ4Gn−2 + Θ3) (Θ2Gn−2 + Θ1)
−1
, (10)

for somelossless functionGn−2(z) of degreen− 2.
Moreover, if we assumeH is real, thenΘ is real as can
be seen from the following form

Θ(z) =[
I2p + (z − 1)Cr(I2 − zAr)−1P−1

r (I2 −Ar)−∗Cr
]
H,

(11)
obtained by the transformation

Ar = SAS∗,

Cr = CS∗,
Pr = SPS∗,

whereS is the unitary transformation

S =
1√
2

[
1 1
−i i

] [
e−iψ/2 0

0 eiψ/2

]
,

whereψ is the argument ofs: s = eiψ|s|. Then

Ar =
[

λ µ
−µ λ

]
,

and

Pr =
[
r + |s| 0

0 r − |s|

]
.

The real Schur algorithmconsists in the construction
of a sequence of real lossless functions of decreasing
degree using either a Schur step of degree 1 from a real
interpolation condition, or a Schur step of degree2 from
two complex conjugate interpolation conditions.
An atlas can be describe as follows. Each chart will
be associated with a chart(W, ψ) of Op, a sequence
of interpolation points and a sequence of associated
directions :

w = (w = wm+l, wm+l−1, . . . , w1) ,
u = (u = um+l, um+l−1, . . . , u1) ,

wherem is the number ofwk ∈ R, l the number of
wk /∈ R andm+ 2l = n. A chart (V, ϕ) is defined by
its domain

V = {G ∈ RLpn / ‖Gk(1/w̄k)uk‖ < 1, G0 ∈ W},

and its coordinate map :

ϕ : G→ (v1, v2, . . . , vm+l, G0).



Then, the family(V, ϕ) defines aC∞ atlas onRLpn. As
previously, the quotient space is described by fixing in
each chart the last lossless functionG0.
Remark. Note that the Schur parametersvk ’s are not all
of the same nature : ifwk ∈ R, thenvk ∈ Rp, while if
wk /∈ R, thenvk ∈ Cp and contains2p real parameters.
This givesmp + 2lp = np real parameters which is
precisely the dimension of the manifoldRLpn/Op.

V. SECOND ORDER RECURSIONS ON BALANCED

REALIZATIONS.

Now we would like to be able to chooseH in (11) so
that a Schur step of degree2 in the real Schur algorithm
corresponds to a recursion on unitary matrix realizations
of the form

Rn =
[
V 0
0 In−2

] [
I2 0
0 Rn−2

] [
U∗ 0
0 In−2

]
,

(12)
whereU andV areunitary (p+ 2)× (p+ 2) complex
matrices depending onu, v, w.
Recursion (12) does not depend on the choice of a
minimal realization and defines a mapping

G̃ = FU,V (G)

on proper rational matrix functions as follows (see [7])

G̃(z) = F1(z) + F2(z)(zIk − F4(z))−1F3(z), (13)

with F1(z) of sizep× p, F2(z) of sizep× 2, F3(z) of
size2× p andF4(z) of size2× 2 defined by:

F (z) =
[
F1(z) F2(z)
F3(z) F4(z)

]
= V

[
I2 0
0 G(z)

]
U∗.

(14)
Let the unitary(p+ 2)× (p+ 2) matricesU andV be
partitioned as

U =
[
αU MU

kU β∗U

]
, V =

[
αV MV

kV β∗V

]
,

with kU andkV are(2×2) matrices. The mappingFU,V
can be written as a linear fractional transformation

FU,V (G) = TΦ(G),

for Φ given by

Φ(z) =[
I2p + (z − 1)α(kV − z kU )−1(kV − kU )−∗α∗J

]
K

with
K = M + α(kV − kU )−1β∗J, (15)

where

M =
[
MU 0
0 MV

]
, α =

[
αU
αV

]
, β =

[
βU
βV

]
.

Now, the question is : can we choose the blocks inU
andV and the leftJ-unitary matrixH in (11) so that

Θ and Φ coincides? This is only possible if (up to an
orthogonal transformation) kUk

−1
V = P1/2

r ArP−1/2
r = W ∗

αk−1
V = CrP−1/2

r =
[
X
Y

]
.

(16)

The matrixV being unitary, we have

Y ∗Y + I2 = k−∗V k−1
V .

The matrixY ∗Y + I2 being positive definite, it admits
a unique positive square root (see [3])(I2 + Y ∗Y )1/2

which is symmetric, andkV is given (up to an orthog-
onal matrix on the right) by

kV = (I2 + Y ∗Y )−1/2.

Thus,

α =
[
X
Y

]
(I2 + Y ∗Y )−1/2

Furthermore,

MVM
∗
V = Ip − Y (I2 + Y ∗Y )−1Y ∗,

and it is easily seen that

Ip − Y (I2 + Y ∗Y )−1Y ∗ = (Ip + Y Y ∗)−1

and is positive definite. Thus we can take

MV = (Ip + Y Y ∗)−1/2,

and finally,

β∗V = −Y ∗(Ip + Y Y ∗)−1/2,

so that

V =
[
Y (I2 + Y ∗Y )−1/2 (Ip + Y Y ∗)−1/2

(I2 + Y ∗Y )−1/2 −Y ∗(Ip + Y Y ∗)−1/2

]
.

Now, by (16)

αU = X((I2 + Y ∗Y )−1/2

kU = W ∗((I2 + Y ∗Y )−1/2

Exploiting the unitarity ofU , we obtain

U =
[

X(I2 + Y ∗Y )−1/2 MU

W ∗(I2 + Y ∗Y )−1/2 −W−1X∗MU

]
,

with

MU = (Ip −X(Ip + Y ∗Y )−1X∗)1/2.

The matricesX, Y , andW can be computed fromu, v,
andw by the formulas

X =
[

eiψ/2u+e−iψ/2ū√
2
√
r+|s|

i(eiψ/2u−e−iψ/2ū)√
2
√
r−|s|

]
(17)

Y =
[

eiψ/2v+e−iψ/2v̄√
2
√
r+|s|

i(eiψ/2v−e−iψ/2v̄)√
2
√
r−|s|

]
(18)



W =

 λ −
√
r−|s|√
r+|s|

µ
√
r+|s|√
r−|s|

µ λ

 , (19)

wherer, s andψ are given by (9).
Now, if we chooseH = K, whereK is given by
(15), thenΘ and Φ coincides as required. A recursive
construction of balanced realization can be associated
with the real Schur algorithm.

VI. REAL SCHUR FORM AND ADAPTED CHARTS.

If the vectorv in the couple of interpolation conditions
(8) is zero, thenY is equal to zero too and recursion
(12) applied to an unitary realization matrix of the form
(5) gives  DMU DβU C

X∗ W 0
BM∗

U BβU A

 .
To find an adapted chart for a given lossless functionG,
we shall proceed as follows: we start from a balanced
realization (An, Bn, Cn, Dn) of the lossless function
G(z) ∈ RLpn in which An is in real Schur form

An =


W1 0 · · · 0

? W2
...

...
...

...
... 0

? · · · ? Wk

 ,
whereWi is either a real number or a(2 × 2) block
with complex conjugate eigenvalues. IfWi is a (2× 2)
block, we shall impose its form[

λ µ1

µ2 λ

]
, µ1 > 0, |µ1| < |µ2|.

This ensures uniqueness of the real Schur form up to a
permutation of the diagonal blocks.
If W1 is real, we proceed as in section III. If it is a
(2 × 2) block, the interpolation pointw and direction
u of the corresponding Schur step of degree2 can be
determined by solving{

W = W1

X = X1

whereX∗
1 is the matrix consisting in the two first rows

of Bn, andW and X are given by (19) and (17) in
which v is zero. Then, running the second order Schur
step provides a new realization matrix of ordern−2 still
in real Schur form. Then we can continue and determine
the sequencesw andu of a chart in whichG as all its
Schur parameters equal to the null vector.

VII. A PPLICATION TO RATIONAL APPROXIMATION.

In [6], the parametrization described in section II and
III was used to compute a beststable rational L2

approximation of specified order to a givenmultivariable
transfer function. The fact that this parametrization takes
into account the stability constraint and possesses a
good numerical behavior makes possible the use of
constrained optimization techniques to find local min-
ima. Moreover it provides a model in state-space form,
which is very useful in practice. This approach was
demonstrated on several numerical examples coming
from system identification or model reduction.
However, in most applications, systems are real-valued,
and even if they can be handled by using complex ratio-
nal approximation, this is not satisfactory. The number of
parameters is unnecessarily doubled, introducing extra-
errors. Moreover, a ”real” system may have a complex
global minimum. For example, the function

f(z) =
1− z2

z3
,

admits tree minima: a real and two complex ones, which
realize the best relative error.
For all these reasons, a specific treatment for real sys-
tems is desirable and is provided by the parametrization
of real stable all-pass systems presented in this paper.
Some numerical simulations will be presented
- a MIMO model reduction problem : the automobile
gas turbine model with 2 inputs, 2 outputs and 12
states, given by a realization in [5, p.168], and already
considered in [6].
- a scalar function known to be hardly approximated,
the scalar functionf(z) = (1− z)1/2. It can be shown
that the poles of its rational approximants tends to the
unit circle which leads to some numerical difficulties.
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