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of real discrete-time stable all-pass systems.
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Abstract. We investigate the parametrization issue foThe natural framework for these studies was that of
real discrete-time stable all-pass multivariable systenmmplex functions. However, in most applications sys-
by means of a real tangential Schur algorithm. A recurtems are real-valued and their transfer functidhsire
sive construction of balanced realizations is associatedal, that is satisfy the relatiofi(z) = T'(z). Even fif
with it, that possesses a very good numerical behaviahe complex case includes the real case by restriction,
A chart selection strategy is given which makes use ad specific treatment is actually relevant. Indeed, the
the real Schur form of the dynamic matrix. Applicationdifficulty when dealing with atlases of charts, is to
to rational L2-approximation is considered. select a "good” chart or local parametrization for a
given lossless function. In the complex case, the Potapov
factorization of the function provides a chart in which
all the Schur parameters are zero. The interpolation
Stable all-pass systems of fixed order have severpbints of the Schur algorithm are then the poles of the
applications in linear systems theory. Within the fielddossless function. On the level of realizations, they are
of system identification, approximation and model rethe eigenvalues of the dynamic matrix and the chart can
duction, they have been used in connection with thbe easily determined from a realization in Schur form.
Douglas-Shapiro-Shields factorization [2], to obtain efOf course, this very efficient strategy doesn’t work in
fective algorithms for various purposes. In this respecthe real case. To solve this problem, we investigate here
an essential issue is that of the parametrization of thisreal Schur algorithmwhich allows for iteration steps
class of systems. A "nice” parametrization is such thasissociated with/-inner rational function of McMillan

a small perturbation of the parameters preserves tliegree2, with complex conjugate poles. This algorithm
stability and the order of the system and allows for thalso allows for a recursive construction of balanced
use of differential tools. In the multivariable case there igsealization with real entries.

no global parametrization of this kind. However, the set
of stable all-pass systems of fixed order possesses a man-
ifold structure with its local parametrizations (charts)
combined into an atlas which satisfy our requirements.
Such parametrizations have been constructed in [1] dyet
means of a tangential Schur algorithm. In each iteration J = { I, 0
step a linear fractional transformation is employed which 0 —I
is associated with d-inner r_ational funct?on of McMil- A function G is (p x p)-lossless or stable all-pass, if and
lan degred. In [7], a recursive construction of balancedomy if
realizations is associated with the Schur algorithm, that

can be implemented as a product of unitary matrices and

presents a very good numerical behavior. It combinegith equality on the circle. We denote £, the set of

the technical advantages of the Schur parametrizatiogs x p)-lossless functions of McMillan degreeand by
to the practical ones of the state-space descriptions. U, the set of constant unitary matrices.

For G € £P, an interpolation condition is a relation of
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An interpolation condition being given, (@ x p) block-  such that the associateealization matrix

matrix function D C
o - (9 &) =l p 4] ©
O3(2) ©a(2) is unitary (see [7] and the bibliography therein).

can be defined, depending am u, v, such that the In [7] it is proved that for a particular choice of the

function G(z) can be represented by the linear fractionafactor  in ©(z) (see (4)), a very simple transforma-
transformation tion on realizations corresponds to the linear fractional

) transformation (10). Lef?,,_; be a unitary realization
G = (04Gn-1+063) (02G,-1+61) ", (3) matrix of G,_1(z), then a unitary realization matrik,,

for somelossless functiols,,_1 (z) of degreen—1. The of G(2) is given by

(J-unitary) matrix function®(z) is uniquely determined R o— vV o0 1 0 u* 0
up to a constantf-unitary) right factord by " 0 I, 0 R, 0 I, -
6
0(2) = Loy + (2 — 1) 1- \w|22 [ u ] [ u ] J} H wherleU andV areunitary (p+1) x (p+1) complex
L=l Lv]lv matrices depending on, v, w as follows
The tangential Schur algorithm proceeds consist in re- U = { fu I, = (1 +*w77)uu* } 7
peating this process (see [1] or [4] for more detalils). wn €u
A sequence of lossless functiof.(z) of degreek is B &v I,—(1—n) HU:H;
constructed(, satisfying the interpolation condition v = n —&v* ’
Gk(l/ﬂ}k)uk = Vg, H’UkH <1, with
/1 — 2 _ 2
until G which is aconstant unitary matrix ¢ = 1—|w" = 1—||U||
As in the scalar case, the interpolation valugs = 1 — |w[?[Jv]|? 1= w]?[v]?
U,Vp—1,...,v1, Can be taken as parameters to describg, a chart associated with this particular Schur algorithm,

the spacelf,. But in the matrix case, they only describea unjtary realization matrixof the current lossless func-
an open subset of the manifold. Associated with th@on ¢ can be computed by iterating formula (6), which
sequences presents a very nice numerical behavior since it only
involves multiplications by unitary matrices

W= (W= w0, Observe that if the Schur parameteis equal to zero,
u = (up=UUp_1,...,u1), recursion (6) applied to a unitary realization matrix (5)
of interpolation points and interpolation directions, and'Ves
with a chart(OV, ¢) of U,, we define a chartV, ¢) by D ‘ 1—|w2Du C
its domain V1 — [w]Pu* w 0 7
V={GeLh | |Gi(l/wp)ur| <1,Go € W}, B(I, = (1 + wjuu) | /1 —|w}2Bu A

where D = D(I, — (1 4+ @)uu*). This suggests the

and its coordinate map :
P following strategy which leads to a chart in which all

v G— (v1,09,...,0,,Gp). the Schur parameters are equal to the null vector and
, i - . which corresponds to a Potapov factorization [8]. We
The family (V, o) defines aC"> atlas onLj. start with a balanced realizatiof¥,,, B,,, C,,, D,,) of

I11. BALANCED REALIZATIONS, SCHUR FORMS AND

each chart the value of the last matiig obtained in
ADAPTED CHARTS.
twherewn is a complex numbe#,, a row vector of size

In many application a parametrization of the quotienf,q |0ssless functio(z) € £2, in which A,, is lower
the Schur algorithm. A = [ wp 0---0 ] B
Bn Anfl
p, and ¢, a column vector of size. Comparing with
(7), we choosew, as first interpolation pointy, =

spacef? /U, is necessary. It is obtained by fixing in triangular (Schur form). Let
i
Con=1[cn Cuo1],
An important property of a lossless function is that i
admits a balanced realization
G(z) = C(zl, — A)"'B+ D, b’ /||br || andwv,, = 0. The corresponding functio@,,_,



1—|v|? u*u — v*o
- _

has realizatiofA,,_1, B,,—1,Cy—1, Dy,—1) Which is still _ ’ _ _ eiw‘5‘7 9)
in Schur form. Repeating this process, we get a sequence 1 —Jw|? 1—w?
of interpolation pointg(wy, ..., w1), the eigenvalues of anq it is easily proved thaP is strictly positive. This
Ay, and a sequence of unit vectofs,,, ..., u1) that s the necessary condition to run a Schur step (see [1,
index a chart in whichz has Schur parameters, = prop.3.2)): the functiorG(z) can be represented by the
o =u =0 linear fractional transformation

IV. A SCHUR ALGORITHM FOR REAL FUNCTIONS G = (04Gn_2+03) (02G,_2+ 91)*1, (10)

To deal with the case of real functions, we may Spefor somelossless functior?,, »(z) of degreen — 2.

cialize the Schur algorithm to real interpolations pomtsMoreover if we assumdl is real. therd is real as can
and directions and allow for the Schur parameters onlg ' . '
e seen from the following form

real values. This defines an atlas, but then the Schdr
form does not provide an adapted chart. To avoid this(z) =

problem, it is necessary to consider a more general Schufl,, + (z — 1)C, (I, — zA,) " 'Py (I — Ar)’*Cr% H,
algorithm which allows for steps of order two, in which 11)
the degree of the lossless function decreases by two. obtained by the transformation

We shall denote bR L? the set of realp x p)-lossless

of McMillan degreen and by O, the set ofp x p A. = SAST,
orthogonal matrices. LeG¢ € RLE and consider a . = CS7,
couple of interpolation conditions P, = SPS*,
Gl/w)u = v . . .
{ Gl/wa = (8) whereS is the unitary transformation
—it /2
cweCuw ¢ R ol <1, s= 1L
-ueCP, |ul| =1, V2 [ 1o 0 e

-veCP, v < 1.

Note thatG being real, the two interpolation conditions

are equivalent. A [ A op }
T )

where) is the argument of: s = e'¥|s|. Then

Following [1], we associate to these interpolation con- - A
ditions theJ-inner function of McMillan degree two

and
O(z) = p o |THIsl 0
[Iop + (2 — 1)C(I3 — 2zA)"'P~H(I, — A)~*C*J| H, n 0 r—|s| |’
where _— The real Schur algorithmconsists in the construction
A= { w ] , W=+, of a sequence of real lossless functions of decreasing
0 w . .
degree using either a Schur step of degree 1 from a real
u U interpolation condition, or a Schur step of deggefeom
c=[" 1 Jul=1 wl<t, 1Hon, © . »
v v two complex conjugate interpolation conditions.

An atlas can be describe as follows. Each chart will

and P satisfies the equation . .
be associated with a chaf¥V,v) of O,, a sequence

P-A"PA=C"JC. of interpolation points and a sequence of associated
The function®(z) is associated with thé{(©) space directions :
spanned by w = (w:wm+l’wm+l_17,,_’w1)’
{u} {1}} U = (U= Unis Umi—1,---,U1)
v — v
f(z) = Q=0 f(z) = A= ws)’ wherem is the number ofw, € R, [ the number of

o wy ¢ R andm + 21 = n. A chart(V, ¢) is defined by
which is a subspace of the Hardy spalié endowed its domain

with the J-inner product< ,J >g2. It is well-known
thatP is the Gram matrix associated with this basis with V = {G € RLY / ||Gi(1/wk)uk| < 1,Go € W},

respect to the/-inner product. It is thus given by _ )
and its coordinate map :

p_|T s
Tl s or | v G— (v1,v2,...,0mt1,Go).



Then, the family(V, ) defines aC° atlas onR LY. As

© and ® coincides? This is only possible if (up to an

previously, the quotient space is described by fixing imrthogonal transformation)

each chart the last lossless functi6p.

Remark. Note that the Schur parametesgs are not all
of the same nature : ifv;, € R, thenv, € RP, while if
wy ¢ R, thenv, € CP and contain@p real parameters.

_ 1/2A ,P—1/2
Crpr_l/2

kuky !

W*] (16)
X
v |

- |

—1
aky,

This givesmp + 2lp = np real parameters which is The matrixV being unitary, we have

precisely the dimension of the manifoRIL? /O,,.

V. SECOND ORDER RECURSIONS ON BALANCED
REALIZATIONS.

Now we would like to be able to choodé in (11) so
that a Schur step of degr@en the real Schur algorithm

corresponds to a recursion on unitary matrix realizations

of the form
R - |4 0 I 0 U* 0
" 0 In—2 0 Rn—2 0 In—2 ’
12)

whereU andV areunitary (p 4+ 2) x (p + 2) complex
matrices depending on, v, w.

Recursion (12) does not depend on the choice of a

minimal realization and defines a mapping

G = Fuv(G)

on proper rational matrix functions as follows (see [7])

G(2) = Fi(2) + Fo(2) (21 — Fa(2)) ' Fa(2), (13)
with F(z) of sizep x p, F»(z) of sizep x 2, F3(z) of
size2 x p and Fy(z) of size2 x 2 defined by:

o

| Fi(2) Fa(z) | _ L 0
F(z) = [ F;(z) Fi(z) } _V[ 0 () (14)

Let the unitary(p + 2) x (p + 2) matricesU andV be
partitioned as
ay MU ay MV
U = * P V = * P
[ ku ﬂU :| [ kv ﬂv :|

with &y andky are(2 x2) matrices. The mappingy, v
can be written as a linear fractional transformation

Fuv(G) =Ts(G),
for ® given by

®(z2)
[Iop + (z — 1) by — zky) " (ky — ku) ™"
with

oz*J]K

K =M +a(ky —ky)~ '8, (15)
where
| My O | au | Bu
e R B P R

Now, the question is : can we choose the blockd/in
and V' and the leftJ-unitary matrix H in (11) so that

Y*Y + I = ki Myt

The matrixY*Y + I, being positive definite, it admits
a unique positive square root (see [8]p + Y*Y)!/2
which is symmetric, and, is given (up to an orthog-
onal matrix on the right) by

ky = (I, + YY)~ Y/2,
Thus,
o= [ i,( } (I, + Y*Y)~1/2
Furthermore,
My M =1, - Y (I +Y*Y) "y,
and it is easily seen that
L —Y(L+Y*Y)'Y*=(,+YY*)!
and is positive definite. Thus we can take
My = (I, +YY*)"'/2,
and finally,
By ==Y (I, +YY")'/?,

so that
vo [ Y+ Y*Y)~1/2
— (12 +Y*Y)_1/2

Now, by (16)

(I, +YY*)~1/2
~Y*(I, + YY*)~1/2

X((Io+Y*Yy)~1/?
W*((Ip + Y*Y)~1/?

ay
ky

Exploiting the unitarity ofU, we obtain

go | X2+ Y*Yy)—1/2
= W*(I2 +Y*y)71/2
with

My
WX My |

My = (I, — X(I, + Y*Y) 71 X*)/2,

The matricesX, Y, andW can be computed from, v,
andw by the formulas

|

eWJ/vare*W’/zf)
ﬂ\/r+|s\

et¥/2y e i/2g

V2y/r+]s|

i(e/2u—e"1/2q)

\/E\/T*‘Sl

} (17)

i(e/2p—e ¥/ %)

\/5\/7"7\8|

} (18)



A _Vrolsl VII. A PPLICATION TO RATIONAL APPROXIMATION.

1
\/T+|s . . . . .
W= fp ! ) (19) In [6], the parametrization described in section Il and
/fml‘ A Il was used to compute a bestable rational L?

approximation of specified order to a givenultivariable

wherer, s andy are given by (9). transfer function. The fact that this parametrization takes
Now, if we chooseH = K, where K is given by into account the stability constraint and possesses a
(15), then® and @ coincides as required. A recursivegood numerical behavior makes possible the use of
construction of balanced realization can be associate@nstrained optimization techniques to find local min-
with the real Schur algorithm. ima. Moreover it provides a model in state-space form,
which is very useful in practice. This approach was
demonstrated on several numerical examples coming
from system identification or model reduction.

If the vectorv in the couple of interpolation conditions However, in most applications, systems are real-valued,
(8) is zero, thenY is equal to zero too and recursionand even if they can be handled by using complex ratio-
(12) applied to an unitary realization matrix of the formnal approximation, this is not satisfactory. The number of

VI. REAL SCHUR FORM AND ADAPTED CHARTS

(5) gives parameters is unnecessarily doubled, introducing extra-
DMy ‘ DBy C errors. Moreover, a "real” system may have a complex
X* w0 |. global minimum. For example, the function
BM} | BBy A 1— 22
1) =~

To find an adapted chart for a given lossless function ) o )
we shall proceed as follows: we start from a balance@dmits tree minima: a real and two complex ones, which
realization (A, B, C, D,,) of the lossless function 'ealize the best relative error.

G(z) € RLP in which A, is in real Schur form For all these reasons, a specific treatment for real sys-
tems is desirable and is provided by the parametrization
wy 0 -+ 0 of real stable all-pass systems presented in this paper.
. . Some numerical simulations will be presented
A, = x W ' ' , - a MIMO model reduction problem : the automobile
: .0 gas turbine model with 2 inputs, 2 outputs and 12
* e % Wy states, given by a realization in [5, p.168], and already

considered in [6].
where IW; is either a real number or & x 2) block . a scalar function known to be hardly approximated,
with complex conjugate eigenvalues.f; is a (2 x 2)  the scalar functioryf(z) = (1 — z)!/2. It can be shown
block, we shall impose its form that the poles of its rational approximants tends to the
[ A unit circle which leads to some numerical difficulties.

o /\], pr >0, Jpa| < fpzl.
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