Parameter determination for surface acoustic wave
filters!
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Abstract. Since many years now Surface Acoustic
Wave filters have been used in electronic devices;
nevertheless, some physical constraints make the
optimal tuning an interesting mathematical prob-
lem. We investigate some aspects of this problem
and its relation to the well-known Schur parame-
ters which naturally arise due to the presence of
internal reflectors.

1 Introduction

The filter we are interested in (see fig. 1) is
constituted of two transducers ¥; and Y5 with
inputs:
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Figure 1: The filter.

in this work is described in [4]. Each transducer is
made of a number of cells containing a reflection
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center with reflection coefficient r; and a electroa-
coustic center with coefficient g;. Each cell (see fig.
2) possess the same delay 7 and the position of the

Tn gn

AT

T

Figure 2: A cell of the left transducer.

electroacoustic center is determine so that, near
some given frequency, say fo, X1 is unidirectional
to the right while 3, is unidirectional to the
left. It happens when the delay between the
electroacoustic center and the boundary of the cell
is precisely .

Ar=
’ 8fo

Note that the two transducers then present a sym-
metric structure (see fig 3 and 4). The cells are
numbered from the left to the right, taking into ac-
count the distance between the transducers which
is a multiple T'7 of the delay 7 associated with a
cell.

The transfer function of the filter is the so-called
"mixed matrix" given by

MR

The matrix M is the diffraction or scattering ma-
trix, a is the electroacoustic matrix and Y the
admittance (they are two by two matrices). The
physical laws of reciprocity and energy conservation
imply the following relations: M and Y are sym-
metric, 3 = —a”, where the superscript T means



2

Figure 3: The left transducer.
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Figure 4: The right transducer.
transpose, and
MM* = Id, (1)
ofa = Y4+Y* (2)
a = Mp, ®3)

where the superscript * denotes transpose-
conjugate.

As we shall see, the entries of M, a, 3, and Y are
analytic functions of the complex variable

¥ = 67]27rf'r’

where f is the frequency and 7 the delay for one
cell. Thus, (1) means that M is inner, (3) is the
Douglas-Shapiro-Shields factorization of « (see [2]),
while (2) means that « is the spectral factor and Y
the real positive function of some density ®.

The problem is to find the electroacoustic and re-
flection parameters of both transducers in order to
produce a bandpass filter for some specified fre-
quency in terms of power transmission. The power

transmission is represented by the electrical trans-
fer function

where G; and G are the load impedances (see fig.
1), and is in fact equal to the entry 12 of the func-
tion

S= (Y +G)\(Y -Q), G:[Gl 0].

0 G»

In the sequel, we propose a mathematical descrip-
tion of the transfer functions M, 8, Y and S.

2 Chain and Diffraction matrices

We first focus on the acoustic waves. From this
point of view, the filter can be considered as a single
transducer, composed with

N:N1+N2+T

cells, where V; is the number of cells of ¥, N5 the
number of cells of X5 and T'7 is the delay between
the transducers, with reflection coefficients

T17r27"'7TN1707"'707TN1+T+17"'7TN7

which explain our notations (see fig. 3 and 4).

Let us consider a set of n —m + 1 cells containing
each a reflector. The diffraction or scattering ma-
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Figure 5: A set of cells

trix associated to this set relates incoming waves to
outgoing waves,

Gm—l _ Dm—l
N

while the chain matrix is defined by

Dn _ Dm—l
o ]=elan]



These two matrices are connected by the following
linear fractional transformation:

o = [[3 8 ]emnt [0 3]

HS?]QW+[30H1M)

The diffraction matrix of a single cell is known to
be

Gnor | _ | —Jrnz tn 2 D,
D, o tn 2 —jTn 2 Gn ’
tn, =1—12,

from which we deduce the chain matrix of a single
cell:

D, | l z  —jTh D,_1

Gn - tn j’rn % anl )
It is then easily established that the chain matrix
(i, has the form

o

o

1
Cin=
1 P,zm

$n(2%)  —jzpn(2?)
G2 Wn(2%) a(2?) |’

P, =tita... ty,

where ¢,,(¢) and 9¥,({) are the Schur polynomials
of degree n satisfying the Levinson recursions (see

[1])

¢n+1(o 7%71+1(O —
Ynt1(Q) Pnra(C)

[ ¢ Tapt ] [ $n(Q) Pnl() ] , (5)

Tn_|_1<' 1

¢o=1, 1o =0,

and where

6 () = C"6n(1/C),  n(C) = (" Pu(1/C),

are the reciprocal polynomials. Using the linear
fractional transformation (4), we have

Lemma 1 The inner matriz M; , has McMillan
degree 2n and can be written as

—j 27, (22) P, 2"
_ P,z _jz¢n(z2)
Ml,n - ggn(zz) . (6)

Suppose that we reverse the transducer, so that
from the left to the right the successsive cells are
numbered N, N —1,...,2,1. We shall denote with
a superscript R all the objects which refer to the
reverse transducer. We have that

01 - 0 1
Cn-|—1,N=|:1 O][C{?N—n]l[l O:|7

where

P,z"
PNZN

CIRN—n: - —1,,R 2 R 2
’ Je N (%) o, (2%)

Since C1,y = Cpn41,8C1,n, We obtain the following
relation between the two kind of polynomials:

OF (%) =ik () 1 .

—jzdn(2?) | _
on(2%)
=iz PR (2%) ]
J2R_p(2%) PN _n(2?)
[ On(z?)  —jzn(2?) ] .
32 Mn(2?)  én(2?)

jz " N (2%)
[ PN —n(2?)

l on(2?)

3 The structure of 3

In the sequel, we assume that

§= €j27rfAT ~ ej27rf0A‘r

is constant in the bandwidth, which is actually the
case in most examples. For any matrix-valued func-
tion A(z) we define

Ab(2) = A(1/2)".
Recall that 3 is given by
ARIEESY
P E;=GnN
We put forn =1,..., N,
Vnzcl,nHé 8]+[? S]M] )

Now I; = 22’;1 I,, where the current I,, in the
nth cell of the transducer ¥; can be computed as

follows:

I, = jgn (6D, +6G,),
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In the same way, Ir = ETJY:N1+T+1 I,,, where the

current I,, in the nth cell of the transducer X5 can
be computed as follows:

In = ]gn (SDn—l + 6Gn—1) 9
. = D
]9n[5 6]Cl,n—1|:G2:|v

e D
= jgn[§ 5]VHI[G§].

Il

Theorem 1 The function 3 has representation

N1
3 w [86 58] Va
n=1
B=j (8)
N—1 )
Yo gn [6 6] W
n=N1+T

Also put
o[l 8] (2] o

Proposition 1 The columns of o = Mf! belongs
to the orthogonal complement H(M) of MH?. For
n=20,...,N, let v, and w, be the column vectors
of

VT = [v, wy)].
Then v = (v1,...,UN,Wq,--.,WN—1) 18 an orthog-
onal basis of H(M).

Proof. It is easily verified that for n =0,..., N,

] [ Y
_ P,z 0 . $N~(z2)
Vp = i 0 1133]:;771 ] iy %n(zz) )
L o (22)
_ ] R a)
_ P,z" ON - ~$N(22)
Wn = i 0 I;Z;L ] ?H(ZQ) )
L ¢N(Z2)
and that
v, = Mw,(1/2),
wy, = Mo,(1/2).

Except forvg = [ 1 0 ]T andwy = [0 1 ]T,
the vectors v, and w, clearly belongs to H(M). O

4 State-space realizations

From (8) we deduce an expression of « in the basis
v

a=—]
N1 Nl
l > gn (6vn +6wn) D gnt1 (6vn + bwy)
n=1 n=1

With the help of the recurrence relation
Vn = CnnVn—la

we obtain

Theorem 2 The strictly proper function o' has
McMillan degree 2(N — 1) and realization

af(z) = C(zlyn-1)— A)'B

where 4 4
a=[an
- o 0
ta 0 ..
Ap=| 0 ts O
S0 o
0 .ty O]
41 O 0
0 jra 0
A = 0
0
L O 0 Jgry-1 |
jre 0 ... 0
0 jrs 0
Ax = 0
0
0 Jrn
0 ta O 0
0 t3 0
Agy = . .
0 tn-a
0 0
c=i|§ & )lud m]



where Cy and Cy are given by:

Ci = [g192 --- gn, 0... 0]
02 = [0 ... 0 IN1+T+1 --- gN]
and
r |t 0 ... 0 O
B = 0 0 ... 0 tn (11)

The controllability gramian of (B, A) is the iden-
tity.

Corollary 1 Let of have realization

(22

as in Theorem 2, and suppose Y +Y' = afa and
S=Y+I)"Y(Y —1I). Then Y"* has realization:

. (Al Ac*
Y=o Trec (12)
2

and St has realization:

ot — As | Bs
~\ Cs | Ds )’

where
(As = A(I-cr(3C0C*+1)710)
Bs = V2ACc*(iccr +1)7!
S (13)
Cs = V2(icc*+I)"'C
| Ds = (3CC*—-I)(3CC*+1)7!

5 Optimization

We tackle our parameters determination problem
has an approximation problem in L? norm: given
a reference filter satisfying the specifications, we
minimize the distance from it to the set of trans-
fer functions of the form Si5. The criterion is ex-
pressed in terms of state space realizations. We
present some results on figure 7. The reference fil-
ter is a Chebyschev filter of degree 3 (dotted line)
and the model we obtain contains N; = 6 cells
in the left transducer and Ny = 6 cells in the right
transducer. Thought this model matches quite well
the specifications, the values of the parameters are
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Figure 6: Amplitude and phase of Sya.
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Figure 7: Amplitude and phase of Si2 in the band-
width.

not realistic from a physical point of view and at
this time we are not able to improve this result.
Being confident in this approach, we think that we
lack for a good reference filter taking into account
the particular form of the functions S12. Observe
that S is a rational function of degree 2(N — 1)
described by only 2(N; + N,) parameters r and g,
so that it cannot be any rational function. The
caracterization of these functions or at least their
asymptotic behavior is under study and would en-
able us to obtain a good reference filter.
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