Parameter determination for surface acoustic wave filters1

Laurent Baratchart, Andrea Gombani, Martine Olivi2

Abstract. Since many years now Surface Acoustic Wave filters have been used in electronic devices; nevertheless, some physical constraints make the optimal tuning an interesting mathematical problem. We investigate some aspects of this problem and its relation to the well-known Schur parameters which naturally arise due to the presence of internal reflectors.

1 Introduction

The filter we are interested in (see fig. 1) is constituted of two transducers Σ_1 and Σ_2 with inputs:

- incoming waves $E = \begin{bmatrix} E_g \\ E_d \end{bmatrix}$
- voltages $V = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$,

and outputs:

- outgoing waves $S = \begin{bmatrix} S_d \\ S_g \end{bmatrix}$
- currents $I = \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$. The physical model used center with reflection coefficient r, and a electroacoustic center with coefficient g. Each cell (see fig. 2) possess the same delay τ and the position of the

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{A cell of the left transducer.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2.png}
\caption{The filter.}
\end{figure}

Note that the two transducers then present a symmetric structure (see fig 3 and 4). The cells are numbered from the left to the right, taking into account the distance between the transducers which is a multiple $T\tau$ of the delay τ associated with a cell.

The transfer function of the filter is the so-called "mixed matrix" given by

$$
\begin{bmatrix} S \\ I \end{bmatrix} = \begin{bmatrix} M & \alpha \\ \beta & Y \end{bmatrix} \begin{bmatrix} E \\ V \end{bmatrix}.
$$

The matrix M is the diffraction or scattering matrix, α is the electroacoustic matrix and Y the admittance (they are two by two matrices). The physical laws of reciprocity and energy conservation imply the following relations: M and Y are symmetric, $\beta = -\alpha^T$, where the superscript T means
transmission is represented by the electrical transfer function

\[E = 2\sqrt{G_1 G_2} \frac{V_1}{I_0}, \]

where \(G_1 \) and \(G_2 \) are the load impedances (see fig. 1), and is in fact equal to the entry 12 of the function

\[S = (Y + G)^{-1}(Y - G), \quad G = \begin{bmatrix} G_1 & 0 \\ 0 & G_2 \end{bmatrix}. \]

In the sequel, we propose a mathematical description of the transfer functions \(M, \beta, Y \) and \(S \).

2 Chain and Diffraction matrices

We first focus on the acoustic waves. From this point of view, the filter can be considered as a single transducer, composed with

\[N = N_1 + N_2 + T \]

cells, where \(N_1 \) is the number of cells of \(\Sigma_1 \), \(N_2 \) the number of cells of \(\Sigma_2 \) and \(T \) is the delay between the transducers, with reflection coefficients

\[r_1, r_2, \ldots, r_{N_1}, 0, \ldots, 0, r_{N_1+T+1}, \ldots, r_N, \]

which explain our notations (see fig. 3 and 4).

Let us consider a set of \(n - m + 1 \) cells containing each a reflector. The diffraction or scattering matrix associated to this set relates incoming waves to outgoing waves,

\[\begin{bmatrix} G_{m-1} \\ D_n \end{bmatrix} = M_{m,n} \begin{bmatrix} D_{m-1} \\ G_n \end{bmatrix}, \]

while the chain matrix is defined by

\[\begin{bmatrix} D_n \\ G_n \end{bmatrix} = C_{m,n} \begin{bmatrix} D_{m-1} \\ G_{m-1} \end{bmatrix}. \]

\[z = e^{-j2\pi f\tau}, \]

where \(f \) is the frequency and \(\tau \) the delay for one cell. Thus, (1) means that \(M \) is inner, (3) is the Douglas-Shapiro-Shields factorization of \(\alpha \) (see [2]), while (2) means that \(\alpha \) is the spectral factor and \(Y \) the real positive function of some density \(\Phi \).

The problem is to find the electroacoustic and reflection parameters of both transducers in order to produce a bandpass filter for some specified frequency in terms of power transmission. The power
These two matrices are connected by the following linear fractional transformation:

$$M_{m,n} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} C_{m,n} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} G_{m,n} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} C_{m,n} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} G_{m,n} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \left[\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right]^{-1} \cdot (4)$$

The diffraction matrix of a single cell is known to be

$$G_{n-1} = \begin{bmatrix} -j r_n z & t_n z \\ t_n z & -j r_n z \end{bmatrix} \begin{bmatrix} D_{n-1} \\ G_{n-1} \end{bmatrix}, \quad t_n = \sqrt{1 - r_n^2},$$

from which we deduce the chain matrix of a single cell:

$$D_n = \frac{1}{t_n} \begin{bmatrix} z & -j r_n \\ j r_n & \frac{1}{z} \end{bmatrix} \begin{bmatrix} D_{n-1} \\ G_{n-1} \end{bmatrix}.$$

It is then easily established that the chain matrix $C_{1,n}$ has the form

$$C_{1,n} = \frac{1}{P_n z^n} \begin{bmatrix} \phi_n(z^2) & -j \tilde{\psi}_n(z^2) \\ j \tilde{\psi}_n(z^2) & \phi_n(z^2) \end{bmatrix}, \quad P_n = t_1 t_2 \ldots t_n,$$

where $\phi_n(\zeta)$ and $\psi_n(\zeta)$ are the Schur polynomials of degree n satisfying the Levinson recursions (see [1])

$$\begin{bmatrix} \phi_{n+1}(\zeta) & \tilde{\psi}_{n+1}(\zeta) \\ \tilde{\psi}_{n+1}(\zeta) & \tilde{\phi}_{n+1}(\zeta) \end{bmatrix} = \begin{bmatrix} \zeta & r_{n+1} \\ r_{n+1} & 1 \end{bmatrix} \begin{bmatrix} \phi_n(\zeta) & \tilde{\psi}_n(\zeta) \\ \psi_n(\zeta) & \phi_n(\zeta) \end{bmatrix}, \quad (5)$$

$$\phi_0 = 1, \quad \psi_0 = 0,$$

and where

$$\tilde{\phi}_n(\zeta) = \zeta^n \phi_n(1/\zeta), \quad \tilde{\psi}_n(\zeta) = \zeta^n \psi_n(1/\zeta),$$

are the reciprocal polynomials. Using the linear fractional transformation (4), we have

Lemma 1 The inner matrix $M_{1,n}$ has McMillan degree $2n$ and can be written as

$$M_{1,n} = \begin{bmatrix} -j \tilde{\psi}_n(z^2) & P_n z^n \\ P_n z^n & -j \tilde{\phi}_n(z^2) \end{bmatrix}. \quad (6)$$

Suppose that we reverse the transducer, so that from the left to the right the successive cells are numbered $N, N-1, \ldots, 2, 1$. We shall denote with a superscript R all the objects which refer to the reverse transducer. We have that

$$C_{n+1,N} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \left[C_{1,n}^R \right]^{-1} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$

where

$$C_{1,n}^R = \frac{P_n z^n}{P_N z^N} \begin{bmatrix} \phi_{N-n}^R(z^2) & -j \tilde{\psi}_{N-n}^R(z^2) \\ j \tilde{\psi}_{N-n}^R(z^2) & \phi_{N-n}^R(z^2) \end{bmatrix}.$$

Since $C_{1,n} = C_{n+1,N} C_{1,n}$, we obtain the following relation between the two kind of polynomials:

$$\begin{bmatrix} \phi_n(z^2) & -j \tilde{\psi}_n(z^2) \\ j \tilde{\psi}_n(z^2) & \phi_n(z^2) \end{bmatrix} = \begin{bmatrix} \phi_n(z^2) & -j \tilde{\psi}_n(z^2) \\ j \tilde{\psi}_n(z^2) & \phi_n(z^2) \end{bmatrix},$$

3 The structure of β

In the sequel, we assume that

$$\delta = e^{i2\pi / \Delta \tau} \approx e^{i2\pi f_0 \Delta \tau}$$

is constant in the bandwidth, which is actually the case in most examples. For any matrix-valued function $A(z)$ we define

$$A^\delta(z) = A(1/z)^\delta.$$

Recall that β is given by

$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \beta \begin{bmatrix} E_g = D_0 \\ E_d = G_N \end{bmatrix}.$$

We put for $n = 1, \ldots, N,$

$$V_n = C_{1,n} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} M. \quad (7)$$

Now $I_n = \sum_{n=1}^{N-1} I_n$, where the current I_n in the nth cell of the transducer Σ_1 can be computed as follows:

$$I_n = j g_n \left(\delta D_n + \delta G_n \right),$$

$$= j g_n \begin{bmatrix} \delta & \delta \end{bmatrix} C_{1,n} \begin{bmatrix} D_0 \\ G_0 \end{bmatrix},$$

$$= j g_n \begin{bmatrix} \delta & \delta \end{bmatrix} V_n \begin{bmatrix} D_0 \\ G_N \end{bmatrix}.$$
In the same way, \(I_n = \sum_{n=N_1+T+1}^{N_1} I_n \), where the current \(I_n \) in the \(n \)th cell of the transducer \(\Sigma_2 \) can be computed as follows:

\[
I_n = j g_n (\delta D_{n-1} + \delta G_{n-1}),
\]

\[
= j g_n \left[\begin{array}{cc} \delta & \delta \end{array} \right] C_{1,n-1} \left[\begin{array}{c} D_0 \\ G_0 \end{array} \right],
\]

\[
= j g_n \left[\begin{array}{cc} \delta & \delta \end{array} \right] V_{n-1} \left[\begin{array}{c} D_0 \\ G_N \end{array} \right].
\]

Theorem 1 The function \(\beta \) has representation

\[
\beta = j \sum_{n=1}^{N_1} g_n \left[\begin{array}{cc} \delta & \delta \end{array} \right] V_n.
\]

Also put

\[
V_0 = \left[\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array} \right] + \left[\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array} \right] M.
\]

Proposition 1 The columns of \(\alpha = M \beta \) belong to the orthogonal complement \(H(M) \) of \(MH^2 \). For \(n = 0, \ldots, N \), let \(v_n \) and \(w_n \) be the column vectors of

\[
V_n^T = [v_n \ w_n].
\]

Then \(\nu = (v_1, \ldots, v_N, w_0, \ldots, w_{N-1}) \) is an orthogonal basis of \(H(M) \).

Proof. It is easily verified that for \(n = 0, \ldots, N \),

\[
v_n = \left[\begin{array}{c} P_n z^n \\ 0 \\ \frac{P_n z^n}{P_n z^n} \end{array} \right] \left[\begin{array}{c} \tilde{\phi}_n(z^2) \\ \phi_n(z^2) \\ -j z \phi_n(z^2) \end{array} \right],
\]

\[
w_n = \left[\begin{array}{c} P_n z^n \\ 0 \\ \frac{P_n z^n}{P_n z^n} \end{array} \right] \left[\begin{array}{c} -j z \tilde{\phi}_n(z^2) \\ \phi_n(z^2) \\ \phi_n(z^2) \end{array} \right],
\]

and that

\[
v_n = M \bar{w}_n(1/z),
\]

\[
w_n = M \sigma_n(1/z).
\]

Except for \(v_0 = \left[\begin{array}{c} 1 \\ 0 \end{array} \right] \) and \(w_N = \left[\begin{array}{c} 0 \\ 1 \end{array} \right] \), the vectors \(v_n \) and \(w_n \) clearly belongs to \(H(M) \).

4 State-space realizations

From (8) we deduce an expression of \(\alpha \) in the basis \(\nu \):

\[
\alpha = -j \left[\sum_{n=1}^{N_1} g_n (\delta v_n + \delta w_n) \sum_{n=1}^{N_1} g_{n+1} (\delta v_n + \delta w_n) \right].
\]

With the help of the recurrence relation

\[
V_n = C_{nn} V_{n-1},
\]

we obtain

Theorem 2 The strictly proper function \(\alpha(z) \) has McMillan degree \(2(N-1) \) and realization

\[
\alpha(z) = C(z I_{2(N-1)} - A)^{-1} B
\]

where

\[
A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}
\]

\[
A_{11} = \begin{bmatrix} 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ \vdots & \cdots & 0 \\ 0 & \cdots & 0 & t_{N-1} \end{bmatrix}
\]

\[
A_{12} = \begin{bmatrix} j r_1 & 0 & \cdots & 0 \\ 0 & j r_2 & 0 & \vdots \\ \vdots & \cdots & 0 \\ 0 & \cdots & 0 & j r_{N-1} \end{bmatrix}
\]

\[
A_{21} = \begin{bmatrix} j r_2 & 0 & \cdots & 0 \\ 0 & j r_3 & 0 & \vdots \\ \vdots & \cdots & 0 & j r_N \end{bmatrix}
\]

\[
A_{22} = \begin{bmatrix} 0 & t_2 & 0 & \cdots & 0 \\ \vdots & \cdots & 0 & 0 & t_{N-1} \\ 0 & \cdots & 0 & \cdots & 0 \end{bmatrix}
\]

\[
C = j \begin{bmatrix} C_1 & 0 \\ 0 & C_2 \end{bmatrix} \left[\begin{array}{cc} \delta I_{N-1} & \delta I_{N-1} \\ \delta I_{N-1} & \delta I_{N-1} \end{array} \right]
\]

(10)
where C_1 and C_2 are given by:

$$C_1 = \begin{bmatrix} g_1 & g_2 & \ldots & g_{N_1} & 0 & \ldots & 0 \end{bmatrix}$$
$$C_2 = \begin{bmatrix} 0 & \ldots & 0 & g_{N_1+T+1} & \ldots & g_N \end{bmatrix}$$

and

$$B^T = \begin{bmatrix} t_1 & 0 & \ldots & 0 & 0 \\ 0 & 0 & \ldots & 0 & t_N \end{bmatrix} \quad (11)$$

The controllability gramian of (B, A) is the identity.

Corollary 1 Let α^\sharp have realization

$$\alpha^\sharp = \begin{pmatrix} A \\ C \end{pmatrix} \begin{pmatrix} B \\ 0 \end{pmatrix}$$

as in Theorem 2, and suppose $Y + Y^\sharp = \alpha^\sharp \alpha$ and $S = (Y + I)^{-1}(Y - I)$. Then Y^\sharp has realization:

$$Y^\sharp = \begin{pmatrix} A \\ C \end{pmatrix} \begin{pmatrix} A C^* \\ \frac{1}{2} C C^* \end{pmatrix} \quad (12)$$

and S^\sharp has realization:

$$S^\sharp = \begin{pmatrix} A_S & B_S \\ C_S & D_S \end{pmatrix},$$

where

$$\begin{cases} A_S & = A(I - C^*(\frac{1}{2} C C^* + I)^{-1} C) \\ B_S & = \sqrt{2} A C^*(\frac{1}{2} C C^* + I)^{-1} \\ C_S & = \sqrt{2}(\frac{1}{2} C C^* + I)^{-1} C \\ D_S & = (\frac{1}{2} C C^* - I)(\frac{1}{2} C C^* + I)^{-1} \end{cases} \quad (13)$$

5 Optimization

We tackle our parameters determination problem has an approximation problem in L^2 norm: given a reference filter satisfying the specifications, we minimize the distance from it to the set of transfer functions of the form S_{12}. The criterion is expressed in terms of state space realizations. We present some results on figure 7. The reference filter is a Chebyshev filter of degree 3 (dotted line) and the model we obtain contains $N_1 = 6$ cells in the left transducer and $N_2 = 6$ cells in the right transducer. Thought this model matches quite well the specifications, the values of the parameters are not realistic from a physical point of view and at this time we are not able to improve this result. Being confident in this approach, we think that we lack for a good reference filter taking into account the particular form of the functions S_{12}. Observe that S_{12} is a rational function of degree $2(N - 1)$ described by only $2(N_1 + N_2)$ parameters r and g, so that it cannot be any rational function. The characterization of these functions or at least their asymptotic behavior is under study and would enable us to obtain a good reference filter.
References

