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Abstract: This paper deals with the identification of linear constant dy-
namical systems when formalized as a rational approximation problem. The
criterion is the l2 norm of the transfer function, which is of interest in a
stochastic context. The problem can be expressed as nonlinear optimization
in a Hilbert space, but standard algorithms are usually not well adapted.
Here, we present a generic recursive procedure to find a local optimum of
the criterion in the case of scalar systems. Our methods are borrowed from
differential theory mixed with a bit of classical complex analysis. To our
knowledge, the algorithm described in this paper is the first that ensures
convergence to a local minimum. Finally, we discuss a number of unsettled
issues.

1 Introduction.

In this paper, we approach the problem of identification within the framework
of Hardy spaces by considering this as a rational approximation problem. We
restrict ourselves to linear constant strictly causal single-input single-output
dynamical systems (in short systems). We first consider the case of a dis-
crete time system. Let f1, f2, ..., fm, ... be its impulse response. Identifying
the system usually means recognizing the sequence (fm) as the Taylor coeffi-
cients at infinity of a proper rational function whose denominator degree (in
irreducible form) is then the order of the system. But since such a sequence
might not exist, in practice one has to be content with finding a rational
sequence (rm) that resembles (fm). This, of course, has no definite meaning,
and some criteria has to be chosen. Such criteria can occur in connection
with stability. Assume, for instance, that the system is lk-stable for some
k ≥ 1, that is

∞∑
m=1

|fm|k <∞.

1Institut National de Recherche en Informatique et Automatique, route des Lucioles,
Sophia-Antipolis 06565 Valbonne Cedex (France)

1



One can then look for some (rm) which is close to (fm) in the lk sense. Since
increasing the order of (rm) arbitrarily is unacceptable, it is also reasonable
to bound it from above by some number n. Note that the identified model
(rm) will then automatically be stable.

Our assumptions have as an effect that the transfer function

f(z) =
∞∑
m=1

fmz
−m, as well as the rational function r(z) =

∞∑
m=1

rmz
−m

are holomorphic for |z| > 1, and one can ask in which sense they are close
to each other from an analytic viewpoint. In general, there is no completely
satisfactory answer. A partial result in this direction involves the so-called
real Hardy spaces H−µ , where 1 ≤ µ ≤ ∞, that we now define. If h is analytic
for |z| > 1 and ρ > 1 is a real number, define a function hρ on the unit circle
T by putting hρ(e

iθ) = h(ρeiθ). By definition, H−µ will consist of those h
vanishing at infinity, assuming real values for real arguments and such that

sup
ρ>1
‖hρ‖µ <∞,

where ‖ ‖µ is the norm in Lµ(T ). It is then standard to show (FUHRMANN,
81, th. 12.11) that h has a radial limit h∗ almost everywhere on T which
lies in Lµ(T ), whose Fourier coefficients are real and those of non-negative
rank do vanish. Moreover, we have ‖h∗‖µ = supρ>1 ‖hρ‖µ. Conversely, any
member of Lµ(T ) with Fourier coefficients as above is the radial limit of some
unique element of H−µ . One can then identify h and h∗ and consider ‖ ‖µ as
a norm on H−µ , that defines it as a Banach space.

Now, if k′ is the conjugate of k (1/k+1/k′ = 1), the Hausdorff-Young theorem
(DUREN 70, th. 6.1) gives

• when 1 ≤ k ≤ 2, ‖f‖k′ ≤
( ∞∑
m=1

|fm|k
)1/k

, (1)

so that f belongs to H−k′ whenever (fm) belongs to lk, and that to be close
in the lk sense for impulse responses implies to be close in the H−k′ sense for
transfer functions;

• when 2 ≤ k ≤ ∞,
( ∞∑
m=1

|fm|k
)1/k

≤ ‖f‖k′ , (2)

so that to be close in the H−k′ sense for transfer functions implies to be close
in the lk sense for impulse responses.
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Of course, there may be other reasons for being interested in rational ap-
proximation, even if 2 < k′. The H−∞ norm, for instance, is the operator
norm l2 → l2. Nevertheless, rational approximation in H−k′ is demonstrably
relevant to identification of impulse responses only if 1 ≤ k′ ≤ 2.

Clearly from the above, the case where k = k′ = 2 is particularly nice. The
conjunction of (1) and (2) is just Parseval’s equality:

‖f‖2 =

( ∞∑
k=1

|fk|2
)1/2

,

and H−2 is a Hilbert space with scalar product

< f, h >=
1

2π

∫ 2π

0
f(eiθ)h(eiθ) dθ

which in turn can be converted into a line integral

< f, h >=
1

2iπ

∫
T
f(z)h(

1

z
)
dz

z
.

In the rest of this paper, we shall restrict ourselves to rational approximation
in H−2 which we phrase as follows:

For f ∈ H−2 , minimize ‖f − r‖2 where r ranges over all rational functions in
H−2 of order at most n.

Note that a rational fraction r = p/q belongs to H−2 if and only if deg(p) <
deg(q) and the roots of q lie inside the unit disk U .

There is a probabilistic interpretation of this criterion in identification: if
f is the transfer function of a l2 stable system driven by a white noise δ,
the output y = fδ is a stationary process. If the latter is to be modelled
by a rational function p/q of order at most n, and if we put ŷ = p/q δ, the
minimization of the covariance of y − ŷ is achieved when ‖f − p/q‖2 is itself
minimal.

In this paper, we present an algorithm to find local best approximants of a
given order n, which proceeds recursively by numerically solving differential
equations over a compact subset of Rn. This procedure is the first one, to
our knowledge, for which convergence is guaranteed, at least generically. We
then present a convincing experiment, and we finally list some open questions.
Most proofs are just sketched, since our main concern here is not technical
but rather to describe the procedure.
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Let us first list a few known results concerning this question. It can be proved
(see e.g., (BARATCHART, 1986), (RUCKEBUSCH, 1978) or (WALSH,
1962)) that the problem stated above has a solution. This solution is not
always unique, but generically it is (BARATCHART, 1987), though there
might be lots of local minima. One can show that if f is not a rational func-
tion of order less than n, a case which will be implicitly ruled out in what
follows, no local minimum can be of order less than n (RUCKEBUSCH,
1978). In other words, one should always take advantage of all parameters
at hand.

This observation leads to the conclusion that it is enough to minimize the
norm over the set of irreducible fractions of H−2 of order exactly n. Since this
set is a manifold, it is possible to use classical tools from optimization, like
steepest descent algorithms. However, due to the shape of the gradient vector
field and to the non-compactness of the domain over which we optimize,
these methods may fail to converge. In the remaining, we develop a different
approach, which is based on the elimination of some parameters, and gives
rise to a much nicer geometric picture.

2 The function Ψn.

Let Pn be the set of real polynomials of degree at most n, and Prn the subset
of monic polynomials of degree n whose roots are in the disk Ur of radius r.

We look for min
p,q
‖p
q
− f‖2

2, (3)

where p ∈ Pn−1 and q ∈ P1
n. Consider the n-dimensional linear subspace of

H−2 defined by Vq = Pn−1/q. For fixed q, the minimum in (3) is obtained
when p/q is the orthogonal projection πq(f) of f onto Vq. If we define a
polynomial Ln(q) ∈ Pn−1 by the formula Ln(q) = qπq(f), we are thus led to
minimize the function

Ψn : P1
n → R defined by Ψn(q) =

∥∥∥∥f − Ln(q)

q

∥∥∥∥2

2
.

The polynomial Ln(q) must satisfy by definition

∀j = 0, .., n− 1, < f − Ln(q)

q
,
zj

q
>= 0,

that is to say
1

2iπ

∫
T

(f(
1

z
)− Ln(q)

q
(
1

z
))
u

q
(z)

dz

z
= 0,
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for any complex polynomial u of degree at most n− 1.

Let us define the function g holomorphic in U by putting

g(z) = f(1/z)/z. (4)

Define further q̃ ∈ Pn as znq(1/z). The roots, possibly at infinity, of q̃ are the

inverses of those of q. Similarly, we shall also denote by ˜Ln(q) the polynomial
zn−1Ln(q)(1/z).

With these notations, our integral equation becomes

1

2iπ

∫
T

(g −
˜Ln(q)

q̃
)
u

q
dz = 0,

whenever u is a complex polynomial of degree at most n−1. Since g− ˜Ln(q)/q̃
belongs to the Hardy space H2(U) of the unit disk U (DUREN,1970), the
residue theorem applies giving that the above is satisfied if and only if g −˜Ln(q)/q̃ matches zero at each root of q, counting multiplicities. Namely q

should divide gq̃− ˜Ln(q). Thus, ˜Ln(q) is the unique polynomial of degree at
most n− 1 interpolating gq̃ at the zeroes of q, that is to say:

Proposition 2.1 The polynomial ˜Ln(q) is the remainder of the division of
gq̃ by q.

A well-known integral representation for our remainder (WALSH, 1962, §3.1)
is ˜Ln(q) =

1

2iπ

∫
Γ

q̃g(ξ)

q(ξ)

[
q(ξ)− q(z)

ξ − z

]
dξ, (5)

where Γ is any contour contained in the domain of holomorphy of g that
encompasses the zeroes of q. As usual, the independence of the integral from
the contour follows from Cauchy theorem.

3 Extension of the domain of Ψn. Smooth-

ness.

A monic polynomial of degree n, q(z) = zn + an−1z
n−1 + · · · + a0 can be

identified with the vector (an−1, an−2, .., a0) of Rn, and this allows for P1
n to

be considered as an open subset of Rn.
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So far, Ψn has been defined only on P1
n. Now, if we assume that f is holo-

morphic not only for |z| > 1 but also in a neighborhood of the unit circle T ,
we shall be able to extend Ψn to a smooth function defined on a neighbor-
hood of the closure, in Rn, of P1

n. This closure will be denoted by ∆n, and
clearly consists of all real monic polynomials of degree n whose roots are in
the closed unit disk Ū . Our hypothesis on f , which will be assumed hereafter,
is equivalent to requiring that g be analytic in the disk Ur of radius r for
some r > 1 that will remain fixed in the sequel.

Proposition 3.1 The map Ψn extends to a smooth function Ψn : Prn → R.

Proof: If q ∈ P1
n, the properties of the orthogonal projection show that

Ψn(q) =
∥∥∥f − Ln(q)

q

∥∥∥2

2
=< f, f > − < f,

Ln(q)

q
> . (6)

Since the contour Γ may be deformed within the domain of holomorphy of g
so as to surround any n-tuple of points in Ur, the integral representation (5)
obviously yields a smooth extension of Ln to a map Prn → Pn−1. Note that˜Ln(q) is still the remainder of the division

gq̃ = vq + ˜Ln(q). (7)

Having this at our disposal, it is now sufficient by (6) to extend smoothly for
every k, q →< f, zk/q > to Prn. This can be done similarly by putting

< f,
zk

q
>=

1

2iπ

∫
Γ
g(ξ)

zk

q(ξ)
dξ,

which again allows for q to lie in Prn. Q.E.D.

We now turn to ∆n. It is plain to see that ∆0 consists solely of the point
0, and ∆1 of the segment [−1, 1]. It is easy to check that ∆2 is the triangle
with vertices (−2, 1),(2, 1) and (0,−1) (see fig.1). It is more difficult to see
what ∆3 looks like (see fig. 2). In general, ∆n is topologically a ball, as
is proved in (BARATCHART, OLIVI, 1988), and we shall concentrate here
on its boundary ∂∆n, which is homeomorphic to a sphere. This set consists
of polynomials in ∆n having at least one root of modulus 1. Among such
polynomials, one can distinguish between those having±1 as a root and those
having no real root of modulus 1, but which are divisible by some polynomial
of the form z2 + 2xz+ 1 with x ∈ (−1, 1). This means that ∂∆n is the union
of (z−1)∆n−1, (z+1)∆n−1, and (z2 +2xz+1)∆n−2 for x ∈ (−1, 1). In other
words, ∂∆n is made from two copies of ∆n−1 and infinitely many copies of
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∆n−2. As is already apparent when n equals 2 or 3, the boundary ∂∆n is
not smooth, namely there are corners. The smooth part of ∂∆n may be
characterized as the set of polynomials in ∆n having exactly one irreducible
factor over R with roots of modulus one. Alternatively, they are interior
points of the copies of ∆n−1 and ∆n−2 introduced above. The crux of the
matter is the following lemma describing the behaviour of Ψn on ∂∆n.

Lemme 3.1 Let q ∈ ∂∆n, and suppose q = quqi where qu is monic of degree
k and has all its roots of modulus 1 while qi is interior to ∆n−k. Then
Ψn(q) = Ψn−k(qi).

Proof: From (6), it is sufficient to prove that Ln(q) = quLn−k(qi). But, since
inverse and conjugate agree on T , we have q̃u = ±qu and the result follows
from (7). Q.E.D.

Let us denote by ∇n(q) the gradient vector of Ψn at the point q. Later we
will use the following consequence of lemma 1.

Corollaire 3.1 Let q, as in the previous lemma, belong to the smooth part
of ∂∆n, and be such that qi is a critical point of ∆n−k (note that k = 1 or
2). Then ∇n(q) is orthogonal to ∂∆n and points outwards.

Proof: From Lemma 1, we see that the projection of ∇n(q) on ∂∆n is just
∇n−k(qi), so that ∇n(q) is orthogonal to ∂∆n. Moreover, it cannot point
inwards because this would imply that Ln−k(qn−k)/qn−k, which is rational of
order n − k, is locally a best approximant to f among rational functions of
order n, hence that f itself is rational of order < n. Q.E.D.

4 A generic algorithm to find a local mini-

mum.

As we said before, the minimum value of Ψn on ∆n can only be taken at some
interior point of ∆n since f is not rational of order less than n by hypothesis.
As a consequence, such a point q must be a critical point of Ψn, namely has
to satisfy

∇n(q) = 0.
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We shall make two extra assumptions in what follows. First, we shall assume
that ∇k does not vanish on ∂∆k, for 1 ≤ k ≤ n. Second, k given as above,
we shall ask all critical points of Ψk in ∆k to be nondegenerate, i.e., to
have a second derivative that is a nondegenerate quadratic form. These two
properties hold generically, that is for almost every f in some sense, and we
refer the reader to (BARATCHART, OLIVI, 1988) for a precise statement.
They ensure in particular that critical points in ∆k are finite in number.

Taking this for granted, we are now able to describe a procedure to determine
a local minimum of Ψn. We first define one more bit of notation: if q ∈ ∆k for
some k ≤ n, we define Ψ(q) to be simply Ψk(q). This new notation enables
us to compare q ∈ ∆k and q′ ∈ ∆k′ , but we shall still use Ψk when referring
to the behaviour on ∆k only.

The algorithm proceeds as follows.

Choose some interior point q0 of ∆n as an initial condition, and integrate the
vector field −∇n. There are two possibilities: either we reach a critical point
or we reach ∂∆n. In the former case, if the critical point is a local minimum,
we are done. Otherwise, since it is nondegenerate, the critical point will
be unstable under small perturbations, thereby allowing us to continue the
procedure. Since Ψn decreases, we cannot meet the same critical point twice,
and because such points are finite in number, we eventually success or we
reach ∂∆n.

If we meet qb ∈ ∂∆n (see fig. 3), we decompose it as quqi where qu has all its
roots of modulus 1 and qi has none. From lemma 1, we see that Ψ(q) = Ψ(qi).
Moreover, the degree k of qi is nonzero, for Ψ0 is a constant function whose
value ‖f‖2

2 is the maximum of Ψn on ∆n.

Now, qi lies in the interior of ∆k, so we can begin all over again with n replaced
by k and q0 by qi. Since k decreases but remains strictly positive, we are
bound to reach a local minimum of Ψm for some m satisfying 1 ≤ m < n, at
some interior point qm of ∆m.

Consider now the point q1 = qm(z + 1) of ∂∆m+1. It lies in a smooth region
of the boundary, so that −∇m+1(q1) is orthogonal to ∂∆m+1, and points
inwards by the corollary to lemma 1. Therefore, integrating −∇m+1 starting
from q1 (see fig. 3) leads us to penetrate into the interior of ∆m+1, so that the
whole process can be carried over again, with n replaced by m+ 1. Since Ψ
decreases continuously, we never meet twice the same critical point of Ψk for
1 ≤ k ≤ n, and this ensures that the procedure eventually comes to an end.
An end means precisely that we have reached the desired local minimum of
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Ψn.

5 The continuous time case.

So far, we have only dealt with rational approximation in the Hardy space
of the disk, as related to the identification of discrete-time l2-stable transfer
functions. In practice however, continuous-time systems mainly occur. A
treatment similar to that in section 1 could be given, but we just indicate
briefly how the above technique applies. Let us call a continuous-time system
L2-stable if its impulse response is in L2[0,∞]. The Paley-Wiener theorem
(see e.g., DUREN,70) asserts that the Laplace transform is an isometry be-
tween L2[0,∞] and the real Hardy space H2 of right-half plane consisting
of functions F holomorphic for <(z) > 0, satisfying the realness condition
F (z̄) = F̄ (z), and such that

sup
x>0

∫ +∞

−∞
|F (x+ iy)|2 dy < ∞. (8)

Here, the squared norm ‖F‖2
H2

is the supremum in (8) by definition. In other
words, the set of transfer functions of L2-stable systems is precisely H2. The
rational approximation problem in this context consists in looking for

min
p,q
‖F − p

q
‖H2 ,

where p/q ranges over all rational functions of order ≤ n in H2. Note that
such fractions are exactly transfer functions of stable systems of order at
most n.

A possible interpretation of the L2 criterion is as follows. Assume an L2

system is driven by a white noise, so that the output is a stationary stochastic
process

ξ(t) =
∫ +∞

−∞
h(t− τ) dW (τ)

where W is a Wiener process. The variance of ξ, which is independent of t,
is equal to ‖h‖2

2 (DOOB, 1953). If hn is the impulse response of a system of
order at most n, and p/q its transfer function, and if we put

ξn(t) =
∫ +∞

−∞
hn(t− τ) dW (τ),

the variance of ξ−ξn is ‖h−hn‖2
2, which is also equal to ‖F−p/q‖2

H2
, where F

and p/q are respectively the Laplace transforms of h and hn. Therefore, if we
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want a model of order at most n for the process, we minimize the covariance
of the error by solving the above rational approximation problem.

Now, the question comes back to the one investigated above. Indeed, if we
put

ϕ : z → z + 1

z − 1
and Φ(F )(z) = 2

√
π
F ◦ ϕ(z)

z − 1
,

it turns out that Φ is an isometry between H2 and H−2 , and it is plain to
see that Φ preserves rational functions and their order. Therefore, putting
f = Φ(F ) brings us back to the discrete-time case.

6 Numerical examples.

Until now, we have assumed that the transfer function of the system under
consideration exists and is perfectly known to us. But in practice, of course,
this is never so. The system certainly exists, but the transfer function may
not be defined. And even if it does, it is only known to us through a finite
number of experiments, whereas the function f to be approximated in H−2
has to be completely defined if we actually want to run the algorithm. In
fact, the definition of f from a set of experimental data is an arduous problem
that was entirely bypassed in the above development.

For instance, if the transfer function F of a continuous-time system is com-
puted through frequency response experiments, we are given its value at a
certain number of points of the imaginary axis, so that f is only known at
a finite number of points on the unit circle. To estimate its Fourier coeffi-
cients, the best we can hope for, in general, is to have a convergent procedure
to estimate Φ(F ) when the number of experiments increases. This is in the
style of (BARATCHART, 1989), however, we shall not go into further details
here.

We shall instead present examples where this step has been carried out by ad
hoc methods. The procedure has been implemented on a computer, using a
standard package for the numerical integration of ordinary differential equa-
tions. Among several methods, we chose the b.d.f. one. The computation of
the gradient is done from explicit division formulas, which we do not derive
here due to limited space, and can be carried out using the Euclidean algo-
rithm since g is a polynomial in practice. This also implies that Ψn exists
and is smooth on Rn. All along the integration, a control is made on the
points of the path to verify that they lie in ∆n by computing the roots of
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each corresponding polynomial. If we go outside ∆n, we use dichotomy on
the stepsize, to determine accurately the crossing point on the boundary.
This gives the initial condition of a lower order integration as described in
section 4.

Several sets of data have been treated, most of them obtained from experi-
mental measurements of an aircraft’s high-frequency modes. Figures 4 and
5 show an example selected as being difficult to approximate, where f is de-
scribed through an estimation of its first 200 Fourier coefficients. Since the
maximum error occurs when |z| = 1, we choose to represent the functions by
the 2-dimensional plots of their values around the unit disk. The function
f (continuous line) and its best approximant (dotted line) of order 7 are
plotted on figure 4. The computation time on a SUN station 4/110 was 13
minutes. The result is not completely satisfactory and one has to go up to
order 10 to get a better approximation. This time the computation time was
17 minutes. Figure 5 shows the corresponding approximation.

7 Open questions and conclusion.

At this point, it is only fair to say that the procedure described above does
not quite answer the original question, since it only ensures that we meet a
local minimum, and not necessarily a global one. This deficiency is puzzling
for there may be lots of local minima. Figure 6 shows already 3 local minima,
when n is only equal to 2 and f is the simple rational function of order 3:
1/4 z−1 + z−3.

Further investigations on this problem may be envisaged from two different
viewpoints.

On one hand, it is possible to consider this difficulty as intrinsic and cope
with it, trying to find the global minimum at any cost. One may think of
initializing the algorithm at enough points of the compact set ∆n to reach
all local minima and compare between them. But the precise meaning of the
word “enough” depends, of course, on f and n, and we are not able to give
an a priori bound for it. Consequently, more efficient strategies should be
investigated. For instance, we can restrict ourselves to initial points lying on
∂∆n provided n is large enough (BARATCHART et al, 1990a). In examples
we have met so far, initiating the algorithm from local minima on ∂∆n is in
fact enough to exhaust the set of local minima in ∆n. Since local minima on
∂∆n are solutions of the corresponding problem in ∆n−1 and ∆n−2, thanks to
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lemma 1, this allows one to proceed recursively. We do not know, however,
whether this property holds in some generality.

On another hand, the fact that there are several local minima may cause
discrepancy in identification. For instance, there are situations (RUCKE-
BUSH, 78) when two distinct rational functions of order n, say r1 and r2,
are both best approximants to f . Though these situations are exceptional
(BARATCHART, 87), the L2 identification problem at order n is not well-
posed in the neighborhood of such an f , because jiggling it slightly yields a
best approximant which is close to r1 or r2 alternatively. Whether such a
phenomenon is due to f or rather a consequence of inappropriate a value for
n is not yet clear. This suggests that the physical meaning of the difficulties
explained above should be further analysed. In particular, it would be of in-
terest to derive conditions on f ensuring there are no local minima except the
global one, at least for n sufficiently large. A subclass of Stieljes functions,
for instance, has been shown recently to have this property (BARATCHART
et al,1990b), but a lot of work remains to be done in this direction.

A related problem is the behaviour of Ψn as n → ∞. For instance, it is
possible to prove (BARATCHART et al, 1990a) that all critical points of Ψn

converge to f in H−2 as n → ∞. But the rate of convergence is likely to
depend on the nature of the points (saddles or minima), and such questions
are wide open.

Finally, in order to apply in a meaningful way to system theory, this technique
has to be extended to the multi-input multi-output case, a question which
is not yet settled. The main difficulty is to find an analogue to Ψn. This
generalization is currently under investigation.

As a conclusion, let us express our point of view that rational approximation
has something to offer in system theory and that differential tools are useful in
smooth situations like the one arising here. The above algorithm is intended
to be a modest contribution to this range of ideas.
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