Exercice 1 (5 points)

Montrer que la suite $u_n = \int_0^n \left(1 - \frac{x}{n}\right)^n \cos x \, dx$ est convergente et calculer sa limite.

Exercice 2 (5 points)

1. Soit f une fonction de $L^1(\mathbb{R}^2)$ telle que $\iint_{\mathbb{R}^2} f(x,y) \, dx dy = 1$. Calculer

$$I = \iint_{\mathbb{R}^2} f(2x + y, x - y) \ dxdy.$$

2. On désigne par $D = \{(x, y) \in \mathbb{R}^2; x^2 + y^2 \le 1\}$ le disque unité de \mathbb{R}^2 . Donner une condition nécessaire et suffisante sur le réel α pour que

$$I(\alpha) = \iint_D (x^2 + y^2)^{-\frac{\alpha}{2}} dx dy < \infty.$$

Lorsque cette condition est vérifiée, calculer $I(\alpha)$.

Exercice 3 (7 points)

Etant donné deux fonctions f et g de \mathbb{R} dans \mathbb{C} , on appelle convolution de f et g la fonction f * g, si elle existe, définie par

$$f * g(x) = \int_{\mathbb{R}} f(x - t)g(t) dt.$$

- 1. On suppose que f et g sont dans $L^1(\mathbb{R})$. Montrer que la fonction $(y,z) \to f(y)g(z)$ appartient à $L^1(\mathbb{R}^2)$ (utiliser le théorème de Fubini). En déduire que f*g est définie presque partout et appartient à $L^1(\mathbb{R})$.
- 2. Calculer et tracer f * g pour $f = g = \chi_{[0,1]}$. $\chi_E(x)$ désigne la fonction caractéristique d'un ensemble E: $\chi_E(x)$ est égal à 1 si x appartient à E et 0 sinon.
- 3. Soit f dans $L^1(\mathbb{R})$ et $g = \frac{1}{2h}\chi_{[-h,h]}$, où h > 0. Montrer que f * g est continue.

Exercice 4 (3 points)

Soit $f: \mathbb{R}^p \to \overline{\mathbb{R}}$ une fonction Lebesgue intégrable.

- 1. Soit a un réel positif et $E_a = \{x; |f(x)| \ge a\}$. Montrer que $m(E_a) < \infty$.
- 2. Soit $E = \{x \in \mathbb{R}^p, |f(x)| = +\infty\}$. Montrer que E est de mesure nulle.

Exercice 1

On pose $f_n(x) = \chi_{[0,n]}(x) \left(1 - \frac{x}{n}\right)^n \cos x$. La fonction f_n est mesurable comme produit d'une fonction mesurable $\chi_{[0,n]}$ et d'une fonction continue.

Pour 0 < x < n, $\ln(f_n(x)) = n \ln\left(1 - \frac{x}{n}\right)$ tend vers -x lorsque $n \to \infty$, et donc

$$\lim_{n \to \infty} f_n(x) = \chi_{[0,\infty[}e^{-x}\cos x$$

De plus, comme $\ln(1+t) \le t$, pour t > -1, on a (avec $t = \frac{x}{n}$)

$$|f_n(x)| \le \chi_{[0,n]}(x) \left(1 - \frac{x}{n}\right)^n \le \chi_{[0,n]}(x)e^{-x} \le \chi_{[0,\infty[}e^{-x} = g(x),$$

et q(x) est une fonction intégrable. Le théorème de convergence dominée donne

$$\lim u_n = \int_0^\infty e^{-x} \cos x \, dx = \text{Re} \int_0^\infty e^{-x(1+i)} \, dx = \text{Re} \frac{1}{1+i} = \frac{1}{2}.$$

Exercice 2

1. On considère l'application de \mathbb{R}^2 dans \mathbb{R}^2 : $(x,y) \to (X=2x+y,Y=x-y)$. C'est un difféomorphisme d'inverse $\Phi:(X,Y)\to (x=\frac{X+Y}{3},y=\frac{X-2Y}{3})$. Prenons Φ comme changement de variable. La matrice Jacobienne est

$$\operatorname{Jac} \Phi = \frac{1}{3} \left[\begin{array}{cc} 1 & 1 \\ 1 & -2 \end{array} \right].$$

et la valeur absolue du déterminant $|J_{\Phi}| = \frac{1}{3}$. On a donc

$$I = \iint_{\mathbb{R}^2} f(2x + y, x - y) \ dxdy = \iint_{\mathbb{R}^2} f(X, Y) |J_{\Phi}| \ dXdY = \frac{1}{3}.$$

2. On effectue un changement de variable

$$\begin{array}{cccc} \Phi: &]0, +\infty[\times] - \pi, \pi[& \to & \mathbb{R}^2 \setminus \mathbb{R}_- \\ & (r, \theta) & \to & (x = r\cos\theta, y = r\sin\theta) \end{array}$$

$$\iint_D (x^2 + y^2)^{-\frac{\alpha}{2}} \ dx \ dy = \iint_D r^{-\alpha} \ r dr \ d\theta = 2\pi \int_0^1 r^{1-\alpha} \ dr.$$

(Fubini s'applique car la fonction est positive). La fonction $r^{1-\alpha}$ est intégrable sur [0,1] si et seulement si $\alpha-1<1$, i.e. $\alpha<2$. Dans ce cas,

$$I(\alpha) = 2\pi \left[\frac{r^{2-\alpha}}{2-\alpha} \right]_0^1 = \frac{2\pi}{2-\alpha}.$$

1. les fonctions f et g étant dans $L^1(\mathbb{R})$, on a

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(y)| \ dy \right) |g(z)| \ dz = \left(\int_{\mathbb{R}} |f(y)| \ dy \right) \left(\int_{\mathbb{R}} |g(z)| \ dz \right) < \infty.$$

D'après le théorème de Fubini (iii), la fonction $(y, z) \to f(y)g(z)$ est intégrable sur \mathbb{R}^2 . En faisant le changement de variable y = x - t et z = t, on obtient

$$\iint_{\mathbb{R}^2} f(y)g(z) \ dy \ dz = \iint_{\mathbb{R}^2} f(x-t)g(t) \ dx \ dt < \infty,$$

ce qui montre que la fonction $(x,t) \to f(x-t)g(t)$ est intégrable. Toujours d'après le théorème de Fubini (ii), pour presque tout x, la fonction $t \to f(x-t)g(t)$ est donc intégrable, i.e. f * g est définie p.p. et intégrable $(\int_{\mathbb{R}} f * g(x) dx = \iint_{\mathbb{R}^2} f(x-t)g(t) dx dt)$.

2. pour $f = g = \chi_{[0,1]}$,

$$f * g(x) = \int_{\mathbb{R}} \chi_{[0,1]}(x-t)\chi_{[0,1]}(t) \ dt = \int_{[0,1]} \chi_{[0,1]}(x-t) \ dt,$$

soit en faisant le changement de variable s = x - t

$$f * g(x) = \int_{[x-1,x]} \chi_{[0,1]}(s) \ ds = m([0,1] \cap [x-1,x]).$$

On a donc

$$f * g(x) = \begin{cases} 0 & \text{si } x \le 0 \\ x & \text{si } 0 \le x \le 1 \\ 2 - x & \text{si } 1 \le x \le 2 \\ 0 & \text{si } x \ge 2 \end{cases}$$

Les fonctions f et g sont discontinues, mais la convolution est continue.

3. pour $f \in L^1(\mathbb{R})$ et $g = \frac{1}{2h}\chi_{[-h,h]}$, on a

$$f * g(x) = \frac{1}{2h} \int_{-h}^{h} f(x-t) dt = \frac{1}{2h} \int_{x-h}^{x+h} f(s) ds.$$

Comme pour $a \in \mathbb{R}$ fixé, la fonction $y \to \int_a^y f(s) ds$ est continue, la fonction f * g(x) est continue.

Exercice 4

1. On a $E_a = f^{-1}([-\infty, -a]) \bigcup f^{-1}([a, \infty])$. La fonction f étant intégrable, elle est mesurable et E_a est la réunion de deux ensembles mesurables et donc mesurable. De plus f est intégrable $\Leftrightarrow |f|$ est intégrable et on a

$$\infty > \int |f(x)| \ dx \ge \int_{E_a} |f(x)| \ dx \ge a \times m(E_a).$$

donc E_a est de mesure finie (a > 0).

2. Par l'absurde: supposons que ${\cal E}$ ne soit pas de mesure nulle. Alors,

$$\int |f(x)| \ dx \ge \int_E |f(x)| \ dx = \infty \times m(E) = \infty,$$

et f n'est pas intégrable. Donc E est de mesure nulle.