Advanced Logic

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2023/AL/

Martin Avanzini (martin.avanzini@inria.fr)
Etienne Lozes (etienne.lozes@univ-cotedazur.fr)

UNIVERSITÉ CÔTE D'AZUR

Last Lecture

\star a language $L \subseteq \Sigma^{\omega}$ is ω-regular if $L=\bigcup_{0 \leq i \leq n} U_{i} \cdot V_{i}^{\omega}$ for regular languages U_{i}, V_{i} $(0 \leq i \leq n)$

* a Büchi Automaton is structurally similar to an NFA, but recognizes words $w \in \Sigma^{\infty}$ that visit final states infinitely often

Theorem

For recognisable $U \in \Sigma^{*}$ and $V, W \in \Sigma^{\omega}$ the following are recognisable:

1. union $V \cup W$
2. intersection $V \cap W$
3. left-concatenation $U \cdot V$
4. ω-iteration U^{ω}
5. complement \bar{V}

Theorem

$L \in \omega \operatorname{REG}(\Sigma)$ if and only if $L=L(\mathcal{A})$ for some NBA \mathcal{A}

Theorem

For every MSO formula ϕ there exists an NBA \mathcal{A}_{ϕ} s.t. $\hat{\mathrm{L}}(\phi)=\mathrm{L}\left(\mathcal{A}_{\phi}\right)$.

Today's Lecture

1. Linear temporal logic (LTL)
2. LTL model checking

Linear temporal logic

Motivation

» linear temporal logic is a logic for reasoning about events in time

- always not $(\phi \wedge \psi)$
- always (Request implies eventually Grant)
- always (Request implies (Request until Grant))
* LTL shares algorithmic solutions with MSO

Formal Definition

\star the set of LTL formulas over propositions $\mathcal{P}=\{p, q, \ldots\}$ is given by

$$
\begin{aligned}
\phi, \psi::=p|\phi \vee \psi| \neg \phi & \text { (Propositional Formulas) } \\
|\times \phi| \phi \cup \psi & \text { (Next and Until) }
\end{aligned}
$$

Formal Definition

\star the set of LTL formulas over propositions $\mathcal{P}=\{p, q, \ldots\}$ is given by

$$
\begin{array}{rll}
\phi, \psi::=p|\phi \vee \psi| \neg \phi & \text { (Propositional Formulas) } \\
|\times \phi| \phi \cup \psi & \text { (Next and Until) }
\end{array}
$$

\star LTL is a logic of temporal sequences, modeled as infinite words over $\Sigma \triangleq 2^{\mathcal{P}}$

Formal Definition

\star the set of LTL formulas over propositions $\mathcal{P}=\{p, q, \ldots\}$ is given by

$$
\begin{gathered}
\phi, \psi::=p|\phi \vee \psi| \neg \phi \\
|\times \phi| \phi \cup \psi
\end{gathered}
$$

(Propositional Formulas)
(Next and Until)
\star LTL is a logic of temporal sequences, modeled as infinite words over $\Sigma \triangleq 2^{\mathcal{P}}$
\star for a sentence ϕ and $w=P_{0} P_{1} P_{2} \ldots$, we define $w \vDash \phi$ as $w ; 0 \vDash \phi$ where

$$
\begin{array}{lll}
w ; i \vDash p & : \Leftrightarrow & p \in P_{i} \\
w ; i \vDash \phi \vee \psi & : \Leftrightarrow & w ; i \vDash \phi \text { or } w ; i \vDash \psi \\
w ; i \vDash \neg \phi & : \Leftrightarrow & w ; i \not \vDash \phi \\
w, i \vDash X \phi & : \Leftrightarrow & w ; i+1 \vDash \phi \\
w ; i \vDash \phi \cup \psi & : \Leftrightarrow & \text { exists } k \geq i \text { s.t. } w ; k \vDash \phi \\
& & \text { and } w ; j \vDash \psi \text { for all } i \leq j<k
\end{array}
$$

Formal Definition

\star the set of LTL formulas over propositions $\mathcal{P}=\{p, q, \ldots\}$ is given by

$$
\begin{gathered}
\phi, \psi::=p|\phi \vee \psi| \neg \phi \\
|\times \phi| \phi \cup \psi
\end{gathered}
$$

(Propositional Formulas)
(Next and Until)
\star LTL is a logic of temporal sequences, modeled as infinite words over $\Sigma \triangleq 2^{\mathcal{P}}$
\star for a sentence ϕ and $w=P_{0} P_{1} P_{2} \ldots$, we define $w \vDash \phi$ as $w ; 0 \vDash \phi$ where

$$
\begin{array}{lll}
w ; i \vDash p & : \Leftrightarrow & p \in P_{i} \\
w ; i \vDash \phi \vee \psi & : \Leftrightarrow & w ; i \vDash \phi \text { or } w ; i \vDash \psi \\
w ; i \vDash \neg \phi & : \Leftrightarrow & w ; i \neq \phi \\
w, i \vDash \times \phi & : \Leftrightarrow & w ; i+1 \vDash \phi \\
w ; i \vDash \phi \cup \psi & : \Leftrightarrow & \text { exists } k \geq i \text { s.t. } w ; k \vDash \phi \\
& & \text { and } w ; j \vDash \psi \text { for all } i \leq j<k
\end{array}
$$

* a LTL formula ϕ defines the language $\mathrm{L}(\phi) \triangleq\{w \mid w \vDash \phi\}$

Derived Operators and Positive Normal Forms

finally:	$\mathrm{F} \phi$	$: \Leftrightarrow 丁 \cup \phi$	
globally:	$\mathrm{G} \phi$	$: \Leftrightarrow$	$\neg(\mathrm{F} \neg \phi)$
release:	$\phi R \psi$	$: \Leftrightarrow$	$\neg(\neg \phi \cup \neg \psi)$

release: $\quad \phi \mathrm{R} \psi \quad: \Leftrightarrow \quad \neg(\neg \phi \mathrm{U} \neg \psi)$

Derived Operators and Positive Normal Forms

finally:	$\mathrm{F} \phi$	$: \Leftrightarrow 丁 \cup \phi$	
globally:	$\mathrm{G} \phi$	$: \Leftrightarrow$	$\neg(\mathrm{F} \neg \phi)$
release:	$\phi R \psi$	$: \Leftrightarrow$	$\neg(\neg \phi \cup \neg \psi)$

release: $\quad \phi \mathrm{R} \psi: \Leftrightarrow \quad \neg(\neg \phi \mathrm{U} \neg \psi)$

$\star \mathrm{F} \phi, \mathrm{G} \phi$ and $\mathrm{X} \phi$ are sometimes denoted by $\diamond \phi, \square \phi$ and $\circ \phi$, respectively

Derived Operators and Positive Normal Forms

finally:	$\mathrm{F} \phi$	$: \Leftrightarrow 丁 \cup \phi$	
globally:	$\mathrm{G} \phi$	$: \Leftrightarrow$	$\neg(\mathrm{F} \neg \phi)$
release:		$\phi \mathrm{R} \psi$	$: \Leftrightarrow$
		$\neg(\neg \phi \cup \neg \psi)$	

release: $\quad \phi \mathrm{R} \psi: \Leftrightarrow \quad \neg(\neg \phi \cup \neg \psi)$

$\star \mathrm{F} \phi, \mathrm{G} \phi$ and $\mathrm{X} \phi$ are sometimes denoted by $\diamond \phi$, $\square \phi$ and $\circ \phi$, respectively

* a formula ϕ is in positive normal form (PNF) if it is derived from the following grammar:

$$
\phi, \psi::=p|\neg p| \phi \wedge \psi|\phi \vee \psi| \times \phi|\phi \cup \psi| \phi \mathrm{R} \psi
$$

- negation only in front of literals

Derived Operators and Positive Normal Forms

finally:	$F \phi$	$: \Leftrightarrow \top \cup \phi$	
globally:	$G \phi$	$: \Leftrightarrow$	$\neg(F \neg \phi)$

release: $\quad \phi \mathrm{R} \psi: \Leftrightarrow \quad \neg(\neg \phi \mathrm{U} \neg \psi)$

$\star \mathrm{F} \phi, \mathrm{G} \phi$ and $\mathrm{X} \phi$ are sometimes denoted by $\diamond \phi$, $\square \phi$ and $\circ \phi$, respectively
\star a formula ϕ is in positive normal form (PNF) if it is derived from the following grammar:

$$
\phi, \psi::=p|\neg p| \phi \wedge \psi|\phi \vee \psi| \times \phi|\phi \cup \psi| \phi \mathrm{R} \psi
$$

- negation only in front of literals

Lemma

Every formula ϕ can be turned into an equivalent formula ψ in PNF with $|\psi| \leq 2|\phi|$

Safety Properties in LTL

Safety $=$ something bad never happens $=G \neg \phi_{\text {bad }}$

Safety Properties in LTL

Safety $=$ something bad never happens $=G \neg \phi_{\text {bad }}$
Example

* a ...A train is approaching
\star c ...A train is crossing
* | ...The light is blinking
* b ...The barrier is down

Safety Properties in LTL

Safety $=$ something bad never happens $=G \neg \phi_{\text {bad }}$

Example

* a ...A train is approaching
\star c ...A train is crossing
* | ...The light is blinking
\star b ...The barrier is down
* when a train is crossing, the barrier is down:

Safety Properties in LTL

Safety $=$ something bad never happens $=G \neg \phi_{\text {bad }}$

Example

* a ...A train is approaching
\star c ...A train is crossing
* I ...The light is blinking
\star b ...The barrier is down
* when a train is crossing, the barrier is down:

$$
G(c \rightarrow b) \equiv G \neg(c \wedge \neg b)
$$

Safety Properties in LTL

Safety $=$ something bad never happens $=G \neg \phi_{\text {bad }}$

Example

* a ...A train is approaching
\star c ...A train is crossing
* I ...The light is blinking
\star b ...The barrier is down
* when a train is crossing, the barrier is down:

$$
G(c \rightarrow b) \equiv G \neg(c \wedge \neg b)
$$

* if a train is approaching or crossing, the light must be blinking:

Safety Properties in LTL

Safety $=$ something bad never happens $=G \neg \phi_{\text {bad }}$

Example

* a ...A train is approaching
\star c ...A train is crossing
* I ...The light is blinking
\star b ...The barrier is down
* when a train is crossing, the barrier is down:

$$
G(c \rightarrow b) \equiv G \neg(c \wedge \neg b)
$$

* if a train is approaching or crossing, the light must be blinking:

$$
G(a \vee c \rightarrow I) \equiv G \neg((a \vee c) \wedge \neg I)
$$

Safety Properties in LTL

Safety $=$ something bad never happens $=G \neg \phi_{\text {bad }}$

Example

* a ...A train is approaching
\star c ...A train is crossing
* I ...The light is blinking
\star b ...The barrier is down
* when a train is crossing, the barrier is down:

$$
G(c \rightarrow b) \equiv G \neg(c \wedge \neg b)
$$

* if a train is approaching or crossing, the light must be blinking:

$$
G(a \vee c \rightarrow I) \equiv G \neg((a \vee c) \wedge \neg I)
$$

* if the barrier is up and the light is off, no train is approaching or crossing:

Safety Properties in LTL

Safety $=$ something bad never happens $=G \neg \phi_{\text {bad }}$

Example

* a ...A train is approaching
\star c ...A train is crossing
\star | ...The light is blinking
\star b ...The barrier is down
* when a train is crossing, the barrier is down:

$$
G(c \rightarrow b) \equiv G \neg(c \wedge \neg b)
$$

* if a train is approaching or crossing, the light must be blinking:

$$
G(a \vee c \rightarrow I) \equiv G \neg((a \vee c) \wedge \neg I)
$$

* if the barrier is up and the light is off, no train is approaching or crossing:

$$
\mathrm{G}(\neg \mathrm{~b} \wedge \neg \mathrm{l} \rightarrow \neg \mathrm{a} \wedge \neg \mathrm{c}) \equiv \mathrm{G} \neg(\neg \mathrm{~b} \wedge \neg \mathrm{l} \wedge(\mathrm{a} \vee \mathrm{c}))
$$

Liveness Properties in LTL

Liveness $=$ something intiated eventually terminates $=G\left(\phi_{\text {init }} \rightarrow F \phi_{\text {term }}\right)$

Liveness Properties in LTL

Liveness $=$ something intiated eventually terminates $=G\left(\phi_{\text {init }} \rightarrow F \phi_{\text {term }}\right)$

* approaching trains eventually cross:

Liveness Properties in LTL

Liveness $=$ something intiated eventually terminates $=G\left(\phi_{\text {init }} \rightarrow F \phi_{\text {term }}\right)$

* approaching trains eventually cross:

$$
\mathrm{G}(\mathrm{a} \rightarrow \mathrm{Fc})
$$

Liveness Properties in LTL

Liveness $=$ something intiated eventually terminates $=G\left(\phi_{\text {init }} \rightarrow F \phi_{\text {term }}\right)$

* approaching trains eventually cross:

$$
\mathrm{G}(\mathrm{a} \rightarrow \mathrm{Fc})
$$

* when a train is approaching, the barrier is down before it crosses:

Liveness Properties in LTL

Liveness $=$ something intiated eventually terminates $=G\left(\phi_{\text {init }} \rightarrow F \phi_{\text {term }}\right)$

* approaching trains eventually cross:

$$
\mathrm{G}(\mathrm{a} \rightarrow \mathrm{Fc})
$$

* when a train is approaching, the barrier is down before it crosses:

$$
\mathrm{G}(\mathrm{a} \rightarrow \neg \mathrm{c} \cup \mathrm{~b})
$$

Liveness Properties in LTL

Liveness $=$ something intiated eventually terminates $=\mathrm{G}\left(\phi_{\text {init }} \rightarrow \mathrm{F} \phi_{\text {term }}\right)$

* approaching trains eventually cross:

$$
\mathrm{G}(\mathrm{a} \rightarrow \mathrm{Fc})
$$

* when a train is approaching, the barrier is down before it crosses:

$$
\mathrm{G}(\mathrm{a} \rightarrow \neg \mathrm{c} \cup \mathrm{~b})
$$

* if a train finished crossing, the barrier will be eventually risen

Liveness Properties in LTL

Liveness $=$ something intiated eventually terminates $=\mathrm{G}\left(\phi_{\text {init }} \rightarrow \mathrm{F} \phi_{\text {term }}\right)$

* approaching trains eventually cross:

$$
\mathrm{G}(\mathrm{a} \rightarrow \mathrm{Fc})
$$

* when a train is approaching, the barrier is down before it crosses:

$$
G(a \rightarrow \neg c \cup b)
$$

* if a train finished crossing, the barrier will be eventually risen

$$
G(c \wedge X \neg c \rightarrow X F \neg b)
$$

Characterising LTL

\star LTL can be "expressed" within MSO \equiv Büchi Automata
\star MSO and Büchi Automata are strictly more expressive
LTL recognisability < ω-regular

* LTL most naturally translated to alternating Büchi Automata (ABA)
* loop-free (very weak) ABA characterise precisely the class of LTL recognisable languages

Characterising LTL

« LTL can be "expressed" within MSO 三 Büchi Automata
\star MSO and Büchi Automata are strictly more expressive
LTL recognisability < ω-regular

* LTL most naturally translated to alternating Büchi Automata (ABA)
* loop-free (very weak) ABA characterise precisely the class of LTL recognisable languages

Example

the Büchi Automaton \mathcal{A} over $\mathcal{P}=\{p, q\}$ given by

is not loop-free (and cannot be turned into equivalent loop-free one)
$\Rightarrow \mathrm{L}(\mathcal{A})$ not expressible in LTL

(Very Weak) Alternating Büchi Automata

* an alternating Büchi Automaton (ABA) is a tuple $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$ identical to an AFA
\star execution on words $w \in \Sigma^{\omega}$ are now infinite tree T_{w}
\star an execution is accepting in the sense of Büchi: every path visits F infinitely often
$\star \mathrm{L}(\mathcal{A}) \triangleq\left\{w \in \Sigma^{\omega} \mid\right.$ there exist an accepting execution T_{w} for $\left.w\right\}$

(Very Weak) Alternating Büchi Automata

* an alternating Büchi Automaton (ABA) is a tuple $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$ identical to an AFA
\star execution on words $w \in \Sigma^{\omega}$ are now infinite tree T_{w}
* an execution is accepting in the sense of Büchi: every path visits F infinitely often
$\star L(\mathcal{A}) \triangleq\left\{w \in \Sigma^{\omega} \mid\right.$ there exist an accepting execution T_{w} for $\left.w\right\}$
\star very weak $A B A(V W A B A)$ is an ABA if for every $a \in \Sigma, \xrightarrow{a} \subseteq \leq$ for some linear order $\leq \subseteq Q \times Q$

(Very Weak) Alternating Büchi Automata

* an alternating Büchi Automaton (ABA) is a tuple $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$ identical to an AFA
\star execution on words $w \in \Sigma^{\omega}$ are now infinite tree T_{w}
\star an execution is accepting in the sense of Büchi: every path visits F infinitely often
$\star \mathrm{L}(\mathcal{A}) \triangleq\left\{w \in \Sigma^{\omega} \mid\right.$ there exist an accepting execution T_{w} for $\left.w\right\}$
\star very weak $A B A($ VWABA $)$ is an ABA if for every a $\in \Sigma, \xrightarrow{a} \subseteq \leq$ for some linear order $\leq \subseteq Q \times Q$
Example

$G p \wedge F q$

LTL and Automata

Theorem

Let L be a language over $\Sigma=2^{\mathcal{P}}$. The following are equivalent:
$\star L$ is $L T L$ definable.
$\star L$ is recognizable by VWABA.

From Automata to LTL

fix a VWABA $\mathcal{A}=\left(\left\{q_{0}, \ldots, q_{n}\right\}, 2^{\mathcal{P}}, q_{0}, \delta, F\right)$ where wlog. $q_{0}>q_{1}>\cdots>q_{n}$

From Automata to LTL

fix a VWABA $\mathcal{A}=\left(\left\{q_{0}, \ldots, q_{n}\right\}, 2^{\mathcal{P}}, q_{0}, \delta, F\right)$ where wlog. $q_{0}>q_{1}>\cdots>q_{n}$
\star since \mathcal{A} is very weak, there are transitions from q_{i} to q_{j} only if $i \geq j$

From Automata to LTL \qquad
fix a VWABA $\mathcal{A}=\left(\left\{q_{0}, \ldots, q_{n}\right\}, 2^{\mathcal{P}}, q_{0}, \delta, F\right)$ where wlog. $q_{0}>q_{1}>\cdots>q_{n}$
\star since \mathcal{A} is very weak, there are transitions from q_{i} to q_{j} only if $i \geq j$
\star we now associate each state q_{i} with a formula ϕ_{i} s.t.

$$
\mathrm{L}\left(\phi_{i}\right)=\mathrm{L}_{\mathcal{A}}\left(q_{i}\right)
$$

From Automata to LTL

fix a VWABA $\mathcal{A}=\left(\left\{q_{0}, \ldots, q_{n}\right\}, 2^{\mathcal{P}}, q_{0}, \delta, F\right)$ where wlog. $q_{0}>q_{1}>\cdots>q_{n}$

* since \mathcal{A} is very weak, there are transitions from q_{i} to q_{j} only if $i \geq j$

औ we now associate each state q_{i} with a formula ϕ_{i} s.t.

$$
\mathrm{L}\left(\phi_{i}\right)=\mathrm{L}_{\mathcal{A}}\left(q_{i}\right)
$$

\star this can be done inductively: while construction ϕ_{i}, we already have suitable formulas ϕ_{j} for $i>j$

From Automata to LTL

fix a VWABA $\mathcal{A}=\left(\left\{q_{0}, \ldots, q_{n}\right\}, 2^{\mathcal{P}}, q_{0}, \delta, F\right)$ where wlog. $q_{0}>q_{1}>\cdots>q_{n}$

* since \mathcal{A} is very weak, there are transitions from q_{i} to q_{j} only if $i \geq j$

औ we now associate each state q_{i} with a formula ϕ_{i} s.t.

$$
\mathrm{L}\left(\phi_{i}\right)=\mathrm{L}_{\mathcal{A}}\left(q_{i}\right)
$$

\star this can be done inductively: while construction ϕ_{i}, we already have suitable formulas ϕ_{j} for $i>j$

* for propositions $P \subseteq \mathcal{P}$, the construction uses the characteristic function

$$
\chi_{P} \triangleq\left(\bigwedge_{p \in P} p\right) \wedge\left(\bigwedge_{p \notin P} \neg p\right)
$$

From Automata to LTL

fix a VWABA $\mathcal{A}=\left(\left\{q_{0}, \ldots, q_{n}\right\}, 2^{\mathcal{P}}, q_{0}, \delta, F\right)$ where wlog. $q_{0}>q_{1}>\cdots>q_{n}$

* since \mathcal{A} is very weak, there are transitions from q_{i} to q_{j} only if $i \geq j$
\star we now associate each state q_{i} with a formula ϕ_{i} s.t.

$$
\mathrm{L}\left(\phi_{i}\right)=\mathrm{L}_{\mathcal{A}}\left(q_{i}\right)
$$

\star this can be done inductively: while construction ϕ_{i}, we already have suitable formulas ϕ_{j} for $i>j$

* for propositions $P \subseteq \mathcal{P}$, the construction uses the characteristic function

$$
\chi_{P} \triangleq\left(\bigwedge_{p \in P} p\right) \wedge\left(\bigwedge_{p \notin P} \neg p\right)
$$

* the construction differs whether the state is final, we thus consider two cases

From Automata to LTL (II)

fix a VWABA $\mathcal{A}=\left(\left\{q_{0}, \ldots, q_{n}\right\}, 2^{\mathcal{P}}, q_{0}, \delta, F\right)$ where wlog. $q_{0}>q_{1}>\cdots>q_{n}$

* informally, ϕ_{i} should satisfy

$$
\phi_{i} \equiv \bigvee_{P \subseteq \mathcal{P}} \chi_{P} \wedge X\left(\delta\left(q_{i}, P\right)\left[q_{i} / \phi_{i}, q_{i+1} / \phi_{i+1} \ldots, q_{n} / \phi_{n}\right]\right)
$$

* to get rid of the "recursive definition", we distinguish two cases:
- if $q_{i} \notin F$ then we rewrite the right-hand side as $\psi \vee\left(\rho \wedge \mathrm{X} \phi_{i}\right)$ and set

$$
\phi_{i} \triangleq \rho \cup \psi
$$

- if $q_{i} \in F$ then we rewrite the right-hand side as $\psi \wedge\left(\rho \vee \mathrm{X} \phi_{i}\right)$ and set

$$
\phi_{i} \triangleq \mathrm{G} \psi \vee(\psi \cup(\rho \wedge \psi))
$$

From LTL to Automata

the $\mathrm{ABA} \mathcal{A}_{\phi}$ for a PNF formula ϕ is given by $\left(Q, 2^{\mathcal{P}}, \phi, \delta, F\right)$ where
$\star Q \triangleq\{T, \perp\} \cup\left\{q_{\psi} \mid \psi\right.$ occurs as sub-formula in $\left.\phi\right\}$

From LTL to Automata

the $\mathrm{ABA} \mathcal{A}_{\phi}$ for a PNF formula ϕ is given by $\left(Q, 2^{\mathcal{P}}, \phi, \delta, F\right)$ where
$\star Q \triangleq\{T, \perp\} \cup\left\{q_{\psi} \mid \psi\right.$ occurs as sub-formula in $\left.\phi\right\}$
\star the transition function $\delta: Q \times 2^{\mathcal{P}} \rightarrow \mathbb{B}^{+}(Q)$ is given by

$$
\begin{aligned}
& \delta(\top, P) \triangleq \top \quad \delta(\perp, P) \triangleq \perp \quad \delta\left(q_{p}, P\right) \triangleq\left\{\begin{array} { l l }
{ \top } & { \text { if } p \in P } \\
{ \perp } & { \text { if } p \notin P }
\end{array} \quad \delta (q _ { \neg p } , P) \triangleq \left\{\begin{array}{ll}
\perp & \text { if } p \in P \\
\top & \text { if } p \notin P
\end{array}\right.\right. \\
& \delta\left(q_{\psi_{1} \wedge \psi_{2}}, P\right) \triangleq \delta\left(q_{\psi_{1}}, P\right) \wedge \delta\left(q_{\psi_{2}}, P\right) \\
& \quad \delta\left(q_{\psi_{1} \vee \psi_{2}}, P\right) \triangleq \delta\left(q_{\psi_{1}}, P\right) \vee \delta\left(q_{\psi_{2}}, P\right)
\end{aligned}
$$

$$
\delta\left(q_{\times \psi}, P\right) \triangleq q_{\psi}
$$

$$
\delta\left(q_{\psi_{1} \cup \psi_{2}}, P\right) \triangleq \delta\left(q_{\psi_{2}}, P\right) \vee\left(\delta\left(q_{\psi_{1}}, P\right) \wedge q_{\psi_{1} \cup \psi_{2}}\right)
$$

$$
\delta\left(q_{\psi_{1} \mathrm{R} \psi_{2}}, P\right) \triangleq \delta\left(q_{\psi_{2}}, P\right) \wedge\left(\delta\left(q_{\psi_{1}}, P\right) \vee q_{\psi_{1} \mathrm{R} \psi_{2}}\right)
$$

From LTL to Automata

the $\mathrm{ABA} \mathcal{A}_{\phi}$ for a PNF formula ϕ is given by $\left(Q, 2^{\mathcal{P}}, \phi, \delta, F\right)$ where
$\star Q \triangleq\{T, \perp\} \cup\left\{q_{\psi} \mid \psi\right.$ occurs as sub-formula in $\left.\phi\right\}$
\star the transition function $\delta: Q \times 2^{\mathcal{P}} \rightarrow \mathbb{B}^{+}(Q)$ is given by

$$
\left.\begin{array}{l}
\delta(\top, P) \triangleq \top \quad \delta(\perp, P) \triangleq \perp \quad \delta\left(q_{p}, P\right) \triangleq\left\{\begin{array} { l l l }
{ \top } & { \text { if } p \in P } \\
{ \perp } & { \text { if } p \notin P }
\end{array} \quad \delta (q _ { \neg p } , P) \triangleq \left\{\begin{array}{ll}
\perp & \text { if } p \in P \\
\top & \text { if } p \notin P
\end{array}\right.\right. \\
\delta\left(q_{\psi_{1} \wedge \psi_{2}}, P\right) \triangleq \delta\left(q_{\psi_{1}}, P\right) \wedge \delta\left(q_{\psi_{2}}, P\right) \\
\quad \delta\left(q_{\psi_{1} \vee \psi_{2}}, P\right) \triangleq \delta\left(q_{\psi_{1}}, P\right) \vee \delta\left(q_{\psi_{2}}, P\right)
\end{array}\right\} \begin{aligned}
& \delta\left(q_{\times}, P\right) \triangleq q_{\psi} \\
& \delta\left(q_{\psi_{1} \cup \psi_{2}}, P\right) \triangleq \delta\left(q_{\psi_{2}}, P\right) \vee\left(\delta\left(q_{\psi_{1}}, P\right) \wedge q_{\psi_{1} \cup \psi_{2}}\right) \\
& \delta\left(q_{\psi_{1} \mathrm{R} \psi_{2}}, P\right) \triangleq \delta\left(q_{\psi_{2}}, P\right) \wedge\left(\delta\left(q_{\psi_{1}}, P\right) \vee q_{\psi_{1} \mathrm{R} \psi_{2}}\right)
\end{aligned}
$$

\star the only final states are T and $q_{\psi_{1} R \psi_{2}} \in Q$

From LTL to Automata

the $\operatorname{ABA} \mathcal{A}_{\phi}$ for a PNF formula ϕ is given by $\left(Q, 2^{\mathcal{P}}, \phi, \delta, F\right)$ where
$\star Q \triangleq\{T, \perp\} \cup\left\{q_{\psi} \mid \psi\right.$ occurs as sub-formula in $\left.\phi\right\}$
\star the transition function $\delta: Q \times 2^{\mathcal{P}} \rightarrow \mathbb{B}^{+}(Q)$ is given by

$$
\left.\begin{array}{l}
\delta(\top, P) \triangleq T \quad \delta(\perp, P) \triangleq \perp \quad \delta\left(q_{p}, P\right) \triangleq\left\{\begin{array} { l l l }
{ T } & { \text { if } p \in P } \\
{ \perp } & { \text { if } p \notin P }
\end{array} \quad \delta (q _ { \neg p } , P) \triangleq \left\{\begin{array}{ll}
\perp & \text { if } p \in P \\
\top & \text { if } p \notin P
\end{array}\right.\right. \\
\delta\left(q_{\psi_{1} \wedge \psi_{2}}, P\right) \triangleq \delta\left(q_{\psi_{1}}, P\right) \wedge \delta\left(q_{\psi_{2}}, P\right) \\
\quad \delta\left(q_{\psi_{1} \vee \psi_{2}}, P\right) \triangleq \delta\left(q_{\psi_{1}}, P\right) \vee \delta\left(q_{\psi_{2}}, P\right)
\end{array}\right\} \begin{aligned}
& \delta\left(q_{\times}, P\right) \triangleq q_{\psi} \\
& \delta\left(q_{\psi_{1} \cup \psi_{2}}, P\right) \triangleq \delta\left(q_{\psi_{2}}, P\right) \vee\left(\delta\left(q_{\psi_{1}}, P\right) \wedge q_{\psi_{1} \cup \psi_{2}}\right) \\
& \delta\left(q_{\psi_{1} \mathrm{R} \psi_{2}}, P\right) \triangleq \delta\left(q_{\psi_{2}}, P\right) \wedge\left(\delta\left(q_{\psi_{1}}, P\right) \vee q_{\psi_{1} \mathrm{R} \psi_{2}}\right)
\end{aligned}
$$

\star the only final states are T and $q_{\psi_{1} R \psi_{2}} \in Q$

Notes

$\star \mathcal{A}_{\phi}$ is linear in size in $|\phi|$
\star using the construction for AFAs, this ABA can be transformed to an NBA of size $\mathrm{O}\left(2^{|\phi|}\right)$

Example
consider $\phi=G p \wedge F q \equiv((p \wedge \neg p) R p) \wedge((p \vee \neg p) \cup q)$

Example

$$
\begin{aligned}
\text { consider } \phi & =\mathrm{G} p \wedge \mathrm{~F} q \equiv((p \wedge \neg p) \mathrm{R} p) \wedge((p \vee \neg p) \cup q) \\
\delta\left(q_{p}, P\right) & = \begin{cases}\top & \text { if } p \in P \\
\perp & \text { if } p \notin P\end{cases} \\
\delta\left(q_{\neg p}, P\right) & = \begin{cases}\perp & \text { if } p \in P \\
\top & \text { if } p \notin P\end{cases}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { consider } \phi=\mathrm{G} p \wedge \mathrm{~F} q \equiv((p \wedge \neg p) \mathrm{R} p) \wedge((p \vee \neg p) \cup q) \\
& \delta\left(q_{p}, P\right)= \begin{cases}\top & \text { if } p \in P \\
\perp & \text { if } p \notin P\end{cases} \\
& \delta\left(q_{\neg p}, P\right)= \begin{cases}\perp & \text { if } p \in P \\
\top & \text { if } p \notin P\end{cases} \\
& \begin{aligned}
\delta\left(q_{p \wedge \neg p}, P\right) & =\delta\left(q_{p}, P\right) \wedge \delta\left(q_{\neg p}, P\right)=\top \wedge \perp \approx \perp
\end{aligned} \\
& \delta\left(q_{p \vee \neg p}, P\right)=\delta\left(q_{p}, P\right) \vee \delta\left(q_{\neg p}, P\right)=\perp \vee \top \approx \top
\end{aligned}
$$

Example

$$
\begin{aligned}
\text { consider } \phi & =\mathrm{G} p \wedge \mathrm{~F} q \equiv((p \wedge \neg p) \mathrm{R} p) \wedge((p \vee \neg p) \cup q) \\
\delta\left(q_{p}, P\right) & = \begin{cases}\top & \text { if } p \in P \\
\perp & \text { if } p \notin P\end{cases} \\
\delta\left(q_{\neg p}, P\right) & = \begin{cases}\perp & \text { if } p \in P \\
\top & \text { if } p \notin P\end{cases} \\
\delta\left(q_{p \wedge \neg p}, P\right) & =\delta\left(q_{p}, P\right) \wedge \delta\left(q_{\neg p}, P\right)=\top \wedge \perp \approx \perp \\
\delta\left(q_{p \vee \neg p}, P\right) & =\delta\left(q_{p}, P\right) \vee \delta\left(q_{\neg p}, P\right)=\perp \vee \top \approx \top \\
\delta\left(q_{(p \wedge \neg p) \mathrm{R} p}, P\right) & =\delta(p, P) \wedge\left(\delta\left(q_{p \wedge \neg p}, P\right) \vee q_{(p \wedge \neg p) \mathrm{R} p}\right) \approx \begin{cases}q_{(p \wedge \neg p) \mathrm{Rp}} & \text { if } p \in P \\
\perp & \text { if } p \notin P\end{cases}
\end{aligned}
$$

Example

$$
\text { consider } \phi=\mathrm{G} p \wedge \mathrm{~F} q \equiv((p \wedge \neg p) \mathrm{R} p) \wedge((p \vee \neg p) \cup q)
$$

$\delta\left(q_{p}, P\right)= \begin{cases}\top & \text { if } p \in P \\ \perp & \text { if } p \notin P\end{cases}$

$$
\delta\left(q_{\neg p}, P\right)= \begin{cases}\perp & \text { if } p \in P \\ \top & \text { if } p \notin P\end{cases}
$$

$$
\delta\left(q_{p \wedge \neg p}, P\right)=\delta\left(q_{p}, P\right) \wedge \delta\left(q_{\neg p}, P\right)=\top \wedge \perp \approx \perp
$$

$$
\delta\left(q_{p \vee \neg p}, P\right)=\delta\left(q_{p}, P\right) \vee \delta\left(q_{\neg p}, P\right)=\perp \vee \top \approx \top
$$

$$
\begin{aligned}
& \delta\left(q_{(p \wedge \neg p) R p}, P\right)=\delta(p, P) \wedge\left(\delta\left(q_{p \wedge \neg p}, P\right) \vee q_{(p \wedge \neg p) R p}\right) \approx \begin{cases}q_{(p \wedge \neg p) R p} & \text { if } p \in P \\
\perp & \text { if } p \notin P\end{cases} \\
& \delta\left(q_{(p \vee \neg p) \cup q}, P\right)=\delta(q, P) \vee\left(\delta\left(q_{p \vee \neg p}, P\right) \wedge q_{(p \vee \neg p) R q}\right) \approx \begin{cases}T & \text { if } q \in P \\
q_{(p \vee \neg p) \cup q} & \text { if } q \notin P\end{cases}
\end{aligned}
$$

Example

$$
\begin{aligned}
\text { consider } \phi & =\mathrm{G} p \wedge \mathrm{~F} q \equiv((p \wedge \neg p) \mathrm{R} p) \wedge((p \vee \neg p) \cup q) \\
\delta\left(q_{p}, P\right) & = \begin{cases}\top & \text { if } p \in P \\
\perp & \text { if } p \notin P\end{cases} \\
\delta\left(q_{\neg p}, P\right) & = \begin{cases}\perp & \text { if } p \in P \\
\top & \text { if } p \notin P\end{cases} \\
\delta\left(q_{p \wedge \neg p}, P\right) & =\delta\left(q_{p}, P\right) \wedge \delta\left(q_{\neg p}, P\right)=\top \wedge \perp \approx \perp \\
\delta\left(q_{p \vee \neg p}, P\right) & =\delta\left(q_{p}, P\right) \vee \delta\left(q_{\neg p}, P\right)=\perp \vee \top \approx \top
\end{aligned}
$$

$$
\delta\left(q_{(p \wedge \neg p) \mathrm{R} p}, P\right)=\delta(p, P) \wedge\left(\delta\left(q_{p \wedge \neg p}, P\right) \vee q_{(p \wedge \neg p) \mathrm{Rp}}\right) \approx \begin{cases}q_{(p \wedge \neg p) \mathrm{R} p} & \text { if } p \in P \\ \perp & \text { if } p \notin P\end{cases}
$$

$$
\delta\left(q_{(p \vee \neg p) \cup q}, P\right)=\delta(q, P) \vee\left(\delta\left(q_{p \vee \neg p}, P\right) \wedge q_{(p \vee \neg p) \mathrm{Rq}}\right) \approx \begin{cases}\top & \text { if } q \in P \\ q_{(p \vee \neg p) \cup q} & \text { if } q \notin P\end{cases}
$$

$$
\delta(\phi, P)=\delta\left(q_{(p \wedge \neg p) \mathrm{Rp}}, P\right) \wedge \delta\left(q_{(p \vee \neg p) \cup q}, P\right) \approx \begin{cases}\perp & \text { if } P=\varnothing \\ q_{(p \wedge \neg p) \mathrm{R} p} \wedge q_{(p \vee \neg p) \cup q} & \text { if } P=\{p\} \\ \perp & \text { if } P=\{q\} \\ q_{(p \wedge \neg p) \mathrm{Rp}} & \text { if } P=\{p, q\}\end{cases}
$$

Example

$$
\begin{aligned}
& \text { consider } \phi=G p \wedge F q \equiv((p \wedge \neg p) R p) \wedge((p \vee \neg p) \cup q) \\
& \delta\left(q_{p}, P\right)= \begin{cases}\top & \text { if } p \in P \\
\perp & \text { if } p \notin P\end{cases} \\
& \delta\left(q_{\neg p}, P\right)= \begin{cases}\perp & \text { if } p \in P \\
\top & \text { if } p \notin P\end{cases} \\
& \delta\left(q_{p \wedge \neg p}, P\right)=\delta\left(q_{p}, P\right) \wedge \delta\left(q_{\neg p}, P\right)=\top \wedge \perp \approx \perp \\
& \delta\left(q_{p \vee \neg p}, P\right)=\delta\left(q_{p}, P\right) \vee \delta\left(q_{\neg p}, P\right)=\perp \vee \top \approx \top \\
& \delta\left(q_{(p \wedge \neg p) \mathrm{R} p}, P\right)=\delta(p, P) \wedge\left(\delta\left(q_{p \wedge \neg p}, P\right) \vee q_{(p \wedge \neg p) R p}\right) \approx \begin{cases}q_{(p \wedge \neg p) \mathrm{R} p} & \text { if } p \in P \\
\perp & \text { if } p \notin P\end{cases} \\
& \delta\left(q_{(p \vee \neg p) \cup q}, P\right)=\delta(q, P) \vee\left(\delta\left(q_{p \vee \neg p}, P\right) \wedge q_{(p \vee \neg p) \mathrm{Rq}}\right) \approx \begin{cases}\top & \text { if } q \in P \\
q_{(p \vee \neg p) \cup q} & \text { if } q \notin P\end{cases} \\
& \delta(\phi, P)=\delta\left(q_{(p \wedge \neg p) \mathrm{Rp}}, P\right) \wedge \delta\left(q_{(p \vee \neg p) \cup q}, P\right) \approx \begin{cases}\perp & \text { if } P=\varnothing \\
q_{(p \wedge \neg p) \mathrm{R} p} \wedge q_{(p \vee \neg p) \cup q} & \text { if } P=\{p\} \\
\perp & \text { if } P=\{q\} \\
q_{(p \wedge \neg p) \mathrm{Rp}} & \text { if } P=\{p, q\}\end{cases}
\end{aligned}
$$

Model Checking

Transition Systems (TSs)

« transition systems capture evolution of state based programs etc.
\star they can be seen as finite representations of potentially infinitely many program runs

Transition Systems (TSs)

* transition systems capture evolution of state based programs etc.
* they can be seen as finite representations of potentially infinitely many program runs
\star a transition system (TR) is a tuple $\mathcal{S}=\left(S, \rightarrow, s_{l}, \lambda\right)$ where

1. S is a set of states
2. $\rightarrow \subseteq S \times S$ is a transition relation
3. $s_{l} \in S$ is an initial state
4. $\lambda: S \rightarrow 2^{\mathcal{P}}$ a labeling of states by propositions \mathcal{P}

Transition Systems (TSs)

* transition systems capture evolution of state based programs etc.
* they can be seen as finite representations of potentially infinitely many program runs
\star a transition system (TR) is a tuple $\mathcal{S}=\left(S, \rightarrow, s_{l}, \lambda\right)$ where

1. S is a set of states
2. $\rightarrow \subseteq S \times S$ is a transition relation
3. $s_{l} \in S$ is an initial state
4. $\lambda: S \rightarrow 2^{\mathcal{P}}$ a labeling of states by propositions \mathcal{P}
\star we assume \mathcal{S} is total, i.e. every node has a successor: $\forall s \in S . \exists t \in S . s \rightarrow t$

Transition Systems (TSs)

* transition systems capture evolution of state based programs etc.
* they can be seen as finite representations of potentially infinitely many program runs
\star a transition system (TR) is a tuple $\mathcal{S}=\left(S, \rightarrow, s_{l}, \lambda\right)$ where

1. S is a set of states
2. $\rightarrow \subseteq S \times S$ is a transition relation
3. $s_{l} \in S$ is an initial state
4. $\lambda: S \rightarrow 2^{\mathcal{P}}$ a labeling of states by propositions \mathcal{P}

* we assume \mathcal{S} is total, i.e. every node has a successor: $\forall s \in S . \exists t \in S . s \rightarrow t$
* a run in a total TS is an infinite word $w=P_{0} P_{1} P_{2} \ldots$ such that $\lambda\left(s_{i}\right)=P_{i}$ for an infinite path

$$
s_{I}=s_{0} \rightarrow s_{1} \rightarrow s_{2} \rightarrow \ldots
$$

Transition Systems (TSs)

« transition systems capture evolution of state based programs etc.

* they can be seen as finite representations of potentially infinitely many program runs
\star a transition system (TR) is a tuple $\mathcal{S}=\left(S, \rightarrow, s_{l}, \lambda\right)$ where

1. S is a set of states
2. $\rightarrow \subseteq S \times S$ is a transition relation
3. $s_{l} \in S$ is an initial state
4. $\lambda: S \rightarrow 2^{\mathcal{P}}$ a labeling of states by propositions \mathcal{P}

* we assume \mathcal{S} is total, i.e. every node has a successor: $\forall s \in S . \exists t \in S . s \rightarrow t$
\star a run in a total TS is an infinite word $w=P_{0} P_{1} P_{2} \ldots$ such that $\lambda\left(s_{i}\right)=P_{i}$ for an infinite path

$$
s_{I}=s_{0} \rightarrow s_{1} \rightarrow s_{2} \rightarrow \ldots
$$

$\star \mathrm{L}(\mathcal{S}) \triangleq\{w \mid w$ is a run in $\mathcal{S}\}$ is the set of all runs

LTL Model Checking

We are interested in the following decision problem:
\star Given: An TS $\mathcal{S}=\left(S, \rightarrow, s_{l}, \lambda\right)$ and specification as LTL formula ϕ
\star Question: $\mathrm{L}(\mathcal{S}) \subseteq \mathrm{L}(\phi)$?

LTL Model Checking

We are interested in the following decision problem:

* Given: An TS $\mathcal{S}=\left(S, \rightarrow, s_{l}, \lambda\right)$ and specification as LTL formula ϕ
* Question: $\mathrm{L}(\mathcal{S}) \subseteq \mathrm{L}(\phi)$?

Theorem

The above model checking problem is decidable in time $\mathrm{O}\left(|S|^{2}\right) \cdot 2^{\mathrm{O}(|\phi|)}$
Proof Outline.

LTL Model Checking

We are interested in the following decision problem:
\star Given: An TS $\mathcal{S}=\left(S, \rightarrow, s_{l}, \lambda\right)$ and specification as LTL formula ϕ

* Question: $\mathrm{L}(\mathcal{S}) \subseteq \mathrm{L}(\phi)$?

Theorem

The above model checking problem is decidable in time $\mathrm{O}\left(|S|^{2}\right) \cdot 2^{\mathrm{O}(|\phi|)}$

Proof Outline.

* let $\mathcal{A}_{\neg \phi}=\left(Q, 2^{\mathcal{P}}, q_{l}, \delta, F\right)$ be the NBA with $\mathrm{L}(\neg \phi)=\mathrm{L}\left(\mathcal{A}_{\neg \phi}\right)$ of size $2^{\mathrm{O}(|\phi|)}$

LTL Model Checking

We are interested in the following decision problem:
\star Given: An TS $\mathcal{S}=\left(S, \rightarrow, s_{l}, \lambda\right)$ and specification as LTL formula ϕ

* Question: $\mathrm{L}(\mathcal{S}) \subseteq \mathrm{L}(\phi)$?

Theorem

The above model checking problem is decidable in time $\mathrm{O}\left(|S|^{2}\right) \cdot 2^{\mathrm{O}(|\phi|)}$

Proof Outline.

* let $\mathcal{A}_{\neg \phi}=\left(Q, 2^{\mathcal{P}}, q_{l}, \delta, F\right)$ be the NBA with $\mathrm{L}(\neg \phi)=\mathrm{L}\left(\mathcal{A}_{\neg \phi}\right)$ of size $2^{\mathrm{O}(|\phi|)}$
\star define the NBA $\mathcal{S} \otimes \mathcal{A}_{\neg \phi} \triangleq\left(S \times Q,\{\bullet\},\left(s_{l}, q_{l}\right), \Delta, S \times F\right)$ where

$$
\Delta((s, q), \bullet) \triangleq\left\{\left(s^{\prime}, q^{\prime}\right) \mid s \rightarrow s^{\prime} \text { and } q^{\prime} \in \delta(q, \lambda(s))\right\}
$$

LTL Model Checking

We are interested in the following decision problem:
\star Given: An TS $\mathcal{S}=\left(S, \rightarrow, s_{l}, \lambda\right)$ and specification as LTL formula ϕ

* Question: $\mathrm{L}(\mathcal{S}) \subseteq \mathrm{L}(\phi)$?

Theorem

The above model checking problem is decidable in time $\mathrm{O}\left(|S|^{2}\right) \cdot 2^{\mathrm{O}(|\phi|)}$

Proof Outline.

\star let $\mathcal{A}_{\neg \phi}=\left(Q, 2^{\mathcal{P}}, q_{l}, \delta, F\right)$ be the NBA with $\mathrm{L}(\neg \phi)=\mathrm{L}\left(\mathcal{A}_{\neg \phi}\right)$ of size $2^{\mathrm{O}(|\phi|)}$
\star define the NBA $\mathcal{S} \otimes \mathcal{A}_{\neg \phi} \triangleq\left(S \times Q,\{\bullet\},\left(s_{l}, q_{l}\right), \Delta, S \times F\right)$ where

$$
\Delta((s, q), \bullet) \triangleq\left\{\left(s^{\prime}, q^{\prime}\right) \mid s \rightarrow s^{\prime} \text { and } q^{\prime} \in \delta(q, \lambda(s))\right\}
$$

* then $\mathrm{L}(\mathcal{S}) \subseteq \mathrm{L}(\phi) \quad \Leftrightarrow \quad \mathrm{L}(\mathcal{S}) \cap \mathrm{L}(\neg \phi)=\varnothing \quad \Leftrightarrow \quad \mathrm{L}\left(\mathcal{S} \otimes \mathcal{A}_{\neg \phi}\right)=\varnothing$

LTL Model Checking

We are interested in the following decision problem:
\star Given: An TS $\mathcal{S}=\left(S, \rightarrow, s_{l}, \lambda\right)$ and specification as LTL formula ϕ
\star Question: $\mathrm{L}(\mathcal{S}) \subseteq \mathrm{L}(\phi)$?

Theorem

The above model checking problem is decidable in time $\mathrm{O}\left(|S|^{2}\right) \cdot 2^{\mathrm{O}(|\phi|)}$

Proof Outline.

\star let $\mathcal{A}_{\neg \phi}=\left(Q, 2^{\mathcal{P}}, q_{l}, \delta, F\right)$ be the NBA with $\mathrm{L}(\neg \phi)=\mathrm{L}\left(\mathcal{A}_{\neg \phi}\right)$ of size $2^{\mathrm{O}(|\phi|)}$
\star define the NBA $\mathcal{S} \otimes \mathcal{A}_{\neg \phi} \triangleq\left(S \times Q,\{\bullet\},\left(s_{l}, q_{l}\right), \Delta, S \times F\right)$ where

$$
\Delta((s, q), \bullet) \triangleq\left\{\left(s^{\prime}, q^{\prime}\right) \mid s \rightarrow s^{\prime} \text { and } q^{\prime} \in \delta(q, \lambda(s))\right\}
$$

* then $\mathrm{L}(\mathcal{S}) \subseteq \mathrm{L}(\phi) \quad \Leftrightarrow \quad \mathrm{L}(\mathcal{S}) \cap \mathrm{L}(\neg \phi)=\varnothing \quad \Leftrightarrow \quad \mathrm{L}\left(\mathcal{S} \otimes \mathcal{A}_{\neg \phi}\right)=\varnothing$
\star emptyness of $\mathcal{S} \otimes \mathcal{A}_{\neg \phi}$ is decidable in time linear in $\left|\mathcal{S} \otimes \mathcal{A}_{\neg \phi}\right| \in \mathrm{O}\left(|S|^{2}\right) \cdot 2^{\mathrm{O}(|\phi|)}$

LTL Model Checking In Practice

Explicit Model Checking: each automaton node is an individual state
« SPIN model checker: http://spinroot.com/
Symbolic Model Checking: each automaton node represents a set of state, symbolically

* SMV model checker: http://www.cs.cmu.edu/~modelcheck/smv.html

LTL Model Checking In Practice

Explicit Model Checking: each automaton node is an individual state
^ SPIN model checker: http://spinroot.com/
Symbolic Model Checking: each automaton node represents a set of state, symbolically

* SMV model checker: http://www.cs.cmu.edu/~modelcheck/smv.html
they have been successfully applied in industrial contexts (see e.g. http://spinroot.com/spin/success.html)

LTL Model Checking In Practice

Explicit Model Checking: each automaton node is an individual state
^ SPIN model checker: http://spinroot.com/
Symbolic Model Checking: each automaton node represents a set of state, symbolically

* SMV model checker: http://www.cs.cmu.edu/~modelcheck/smv.html
they have been successfully applied in industrial contexts (see e.g.
http://spinroot.com/spin/success.html)

Main Challenge

* while real problems have a finite number of states, we deal with an astronmoical number of cases

LTL Model Checking In Practice

Explicit Model Checking: each automaton node is an individual state

* SPIN model checker: http://spinroot.com/

Symbolic Model Checking: each automaton node represents a set of state, symbolically

* SMV model checker: http://www.cs.cmu.edu/~modelcheck/smv.html
they have been successfully applied in industrial contexts (see e.g.
http://spinroot.com/spin/success.html)

Main Challenge

* while real problems have a finite number of states, we deal with an astronmoical number of cases
\star industrial-strength tools such as the ones above generate $\mathcal{S} \otimes \mathcal{A}_{\neg \phi}$ on-the-fly and implement several techniques to combat state-space explosion
- partial order reduction: detects when an ordering of interleavings is irrelevant. E.g., the n ! transitions of n concurrently executing processes is reduced to 1 representative transition, when ordering irrelevant for property under investigation
- Bounded Model Checking: check that ϕ is violated in $\leq k$ steps

Thanks!

UNIVERSITÉ CÔTE D'AZUR

