Advanced Logic

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2023/AL/

Martin Avanzini (martin.avanzini@inria.fr)
Etienne Lozes (etienne.lozes@univ-cotedazur.fr)

2nd Semester M1, 2023

Last Lecture

* an alternating finite automata (AFA) is a tuple $\mathcal{A} = (Q, \Sigma, q_l, \delta, F)$ where all components are identical to an NFA except that

$$\delta: Q \times \Sigma \to \mathbb{B}^+(Q)$$

★ AFAs are more concise but otherwise equi-expressive to NFAs

Theorem

For every AFA \mathcal{A} there exist a DFA \mathcal{B} with $O(2^{2^{|\mathcal{A}|}})$ states such that $L(\mathcal{A}) = L(\mathcal{B})$.

Corollary

AFAs recognize REG.

Today's Lecture _____

- ★ infinite words
- ★ regular languages over infinite words
- * Büchi automata
- ★ Monadic Second-Order Logic on Infinite Words

- \star an infinite word over alphabet Σ is an infinite sequence of letters $a_0a_1a_2\dots$
- $\star \Sigma^{\omega}$ denotes the set of infinite words over Σ

- \star an infinite word over alphabet Σ is an infinite sequence of letters $a_0a_1a_2\dots$
- $\star \Sigma^{\omega}$ denotes the set of infinite words over Σ

Notations

- \star |w|_a denotes the number of occurrences of $a \in \Sigma$ within $w \in \Sigma^{\omega}$
 - note $|w|_a$ may be infinite
 - in fact, $|w|_a$ = ∞ holds for at least one a ∈ Σ

- \star an infinite word over alphabet Σ is an infinite sequence of letters $a_0a_1a_2\dots$
- $\star \Sigma^{\omega}$ denotes the set of infinite words over Σ

Notations

- \star $|w|_a$ denotes the number of occurrences of $a \in \Sigma$ within $w \in \Sigma^{\omega}$
 - note $|w|_a$ may be infinite
 - in fact, $|w|_a = \infty$ holds for at least one $a \in \Sigma$
- * the left-concatenation of $u \in \Sigma^*$ and $v \in \Sigma^{\omega}$, is denoted by $u \cdot v \in \Sigma^{\omega}$

 \star a language over infinite words is a set $L \subseteq \Sigma^{\omega}$

* a language over infinite words is a set $L \subseteq \Sigma^{\omega}$

Operations on Infinite Languages

 \star for $U \subseteq \Sigma^*$ and $V \subseteq \Sigma^\omega$, the left-concatenation of U and V is given by

$$U \cdot V \triangleq \{u \cdot v \mid u \in U \text{ and } v \in V\}$$

 \star a language over infinite words is a set $L \subseteq \Sigma^{\omega}$

Operations on Infinite Languages

* for $U \subseteq \Sigma^*$ and $V \subseteq \Sigma^\omega$, the left-concatenation of U and V is given by

$$U \cdot V \triangleq \{u \cdot v \mid u \in U \text{ and } v \in V\}$$

★ The complement of $V \subseteq \Sigma^{\omega}$ is given by $\overline{V} \triangleq \Sigma^{\omega} \setminus V$

 \star a language over infinite words is a set $L \subseteq \Sigma^{\omega}$

Operations on Infinite Languages

 \star for $U \subseteq \Sigma^*$ and $V \subseteq \Sigma^\omega$, the left-concatenation of U and V is given by

$$U \cdot V \triangleq \{u \cdot v \mid u \in U \text{ and } v \in V\}$$

- ★ The complement of $V \subseteq \Sigma^{\omega}$ is given by $\overline{V} \triangleq \Sigma^{\omega} \setminus V$
- ★ the ω -iteration of $U \subseteq \Sigma^*$ is given by

$$U^{\omega} \triangleq \{w_0 \cdot w_1 \cdot w_2 \cdot \cdots \mid w_i \in U \text{ and } w_i \neq \epsilon \text{ for all } i \in \mathbb{N}\}$$

Generalising the Theory of Regular Languages to Infinite Words

Recall...

For a language $L \in \Sigma^*$, the following are equivalent:

- 1. L is regular
- 2. L is recognized by an NFA
- 3. L is defined through a wMSO formula

Generalising the Theory of Regular Languages to Infinite Words

Recall...

For a language $L \in \Sigma^*$, the following are equivalent:

- 1. L is regular
- 2. L is recognized by an NFA
- 3. L is defined through a wMSO formula

Outlook...

For a language $L \in \Sigma^{\omega}$, the following are equivalent:

- 1. L is ω -regular
 - defined next
- 2. L is recognized by a Büchi Automaton
 - a finite automaton with a suitable acceptance condition for infinite words
- 3. L is defined through a MSO formula
 - we drop the requirement on finite models present in wMSO

Regular Languages over Infinite Words

ω -Regular Languages

★ a language $L \subseteq \Sigma^{\omega}$ is ω -regular (or simply regular) if

$$L = \bigcup_{0 \le i \le n} U_i \cdot V_i^{\omega}$$

for regular languages U_i , V_i $(0 \le i \le n)$

* with $\omega REG(\Sigma)$ we denote the class of ω -regular languages

ω -Regular Languages

★ a language $L \subseteq \Sigma^{\omega}$ is ω -regular (or simply regular) if

$$L = \bigcup_{0 \le i \le n} U_i \cdot V_i^{\omega}$$

for regular languages U_i , V_i $(0 \le i \le n)$

* with $\omega REG(\Sigma)$ we denote the class of ω -regular languages

Lemma

 $\omega REG(\Sigma)$ is closed under union and left-concatenation with regular languages.

ω -Regular Languages

 \star a language $L \subseteq \Sigma^{\omega}$ is ω -regular (or simply regular) if

$$L = \bigcup_{0 \le i \le n} U_i \cdot V_i^{\omega}$$

for regular languages U_i , V_i $(0 \le i \le n)$

* with $\omega REG(\Sigma)$ we denote the class of ω -regular languages

Lemma

 $\omega \textit{REG}(\Sigma)$ is closed under union and left-concatenation with regular languages.

Proof Outline.

- ★ Union is obvious
- ★ concerning left-concatenation $U \cdot L$ where L is as above

$$U \cdot L = U \cdot \left(\bigcup_{0 \le i \le n} U_i \cdot V_i^{\omega}\right) = \bigcup_{0 \le i \le n} U \cdot \left(U_i \cdot V_i^{\omega}\right) = \bigcup_{0 \le i \le n} \left(U \cdot U_i\right) \cdot V_i^{\omega}$$

Let
$$\Sigma = \{a, b, c\}$$

★
$$L_1 \triangleq \{w \mid |w|_a \neq \infty\}$$
 is regular

Let
$$\Sigma = \{a, b, c\}$$

★
$$L_1 \triangleq \{w \mid |w|_a \neq \infty\}$$
 is regular

$$L_1 = \Sigma^* (b \cup c)^{\omega}$$

Let
$$\Sigma = \{a, b, c\}$$

- ★ $L_1 \triangleq \{w \mid |w|_a \neq \infty\}$ is regular
- ★ $L_2 \triangleq \{w \mid |w|_b = \infty\}$ is regular

$$L_1 = \Sigma^* (b \cup c)^{\omega}$$

Let
$$\Sigma = \{a, b, c\}$$

- ★ $L_1 \triangleq \{w \mid |w|_a \neq \infty\}$ is regular
- ★ $L_2 \triangleq \{w \mid |w|_b = \infty\}$ is regular

$$L_1 = \Sigma^* (b \cup c)^{\omega}$$
$$L_2 = (\Sigma^* b)^{\omega} = \epsilon (\Sigma^* b)^{\omega}$$

Let
$$\Sigma = \{a, b, c\}$$

★
$$L_1 \triangleq \{w \mid |w|_a \neq \infty\}$$
 is regular

★
$$L_2 \triangleq \{w \mid |w|_b = \infty\}$$
 is regular

★
$$L_3 \triangleq \{w \mid |w|_a \neq \infty \text{ or } |w|_b = \infty\}$$
 is regular

$$L_1 = \Sigma^* (b \cup c)^{\omega}$$

$$L_2 = (\Sigma^* b)^{\omega} = \epsilon (\Sigma^* b)^{\omega}$$

Let
$$\Sigma = \{a, b, c\}$$

★
$$L_1 \triangleq \{w \mid |w|_a \neq \infty\}$$
 is regular

★
$$L_2 \triangleq \{w \mid |w|_b = \infty\}$$
 is regular

★
$$L_3 \triangleq \{w \mid |w|_a \neq \infty \text{ or } |w|_b = \infty\}$$
 is regular

$$L_1 = \Sigma^* (b \cup c)^{\omega}$$

$$L_2 = (\Sigma^* b)^{\omega} = \epsilon (\Sigma^* b)^{\omega}$$

$$L_2 = L_1 \cup L_2$$

Let
$$\Sigma = \{a, b, c\}$$

★
$$L_1 \triangleq \{w \mid |w|_a \neq \infty\}$$
 is regular

★
$$L_2 \triangleq \{w \mid |w|_b = \infty\}$$
 is regular

★
$$L_3 \triangleq \{w \mid |w|_a \neq \infty \text{ or } |w|_b = \infty\}$$
 is regular

$$\star$$
 $L_4 \triangleq \{w \mid |w|_a \neq \infty \text{ and } |w|_b = \infty\}$ is regular

$$L_1 = \Sigma^* (b \cup c)^{\omega}$$

$$L_2 = (\Sigma^* b)^{\omega} = \epsilon (\Sigma^* b)^{\omega}$$

$$L_2 = L_1 \cup L_2$$

Let
$$\Sigma = \{a, b, c\}$$

★
$$L_1 \triangleq \{w \mid |w|_a \neq \infty\}$$
 is regular

★
$$L_2 \triangleq \{w \mid |w|_b = \infty\}$$
 is regular

★
$$L_3 \triangleq \{w \mid |w|_a \neq \infty \text{ or } |w|_b = \infty\}$$
 is regular

★
$$L_4 \triangleq \{w \mid |w|_a \neq \infty \text{ and } |w|_b = \infty\}$$
 is regular

$$L_{1} = \Sigma^{*}(b \cup c)^{\omega}$$

$$L_{2} = (\Sigma^{*}b)^{\omega} = \epsilon(\Sigma^{*}b)^{\omega}$$

$$L_{2} = L_{1} \cup L_{2}$$

$$L_{4} = \Sigma^{*}(bc^{*})^{\omega}$$

Let
$$\Sigma = \{a, b, c\}$$

★
$$L_1 \triangleq \{w \mid |w|_a \neq \infty\}$$
 is regular

★
$$L_2 \triangleq \{w \mid |w|_b = \infty\}$$
 is regular

★
$$L_3 \triangleq \{w \mid |w|_a \neq \infty \text{ or } |w|_b = \infty\}$$
 is regular

★
$$L_4 \triangleq \{w \mid |w|_a \neq \infty \text{ and } |w|_b = \infty\}$$
 is regular

$$\star L_5 \triangleq \{w^{\omega} \mid w \in \Sigma^n\}$$
 is regular

$$L_{1} = \Sigma^{*}(b \cup c)^{\omega}$$

$$L_{2} = (\Sigma^{*}b)^{\omega} = \epsilon(\Sigma^{*}b)^{\omega}$$

$$L_{2} = L_{1} \cup L_{2}$$

$$L_{4} = \Sigma^{*}(bc^{*})^{\omega}$$

Let
$$\Sigma = \{a, b, c\}$$

★
$$L_1 \triangleq \{w \mid |w|_a \neq \infty\}$$
 is regular

★
$$L_2 \triangleq \{w \mid |w|_b = \infty\}$$
 is regular

★
$$L_3 \triangleq \{w \mid |w|_a \neq \infty \text{ or } |w|_b = \infty\}$$
 is regular

★
$$L_4 \triangleq \{w \mid |w|_a \neq \infty \text{ and } |w|_b = \infty\}$$
 is regular

$$\star L_5 \triangleq \{w^{\omega} \mid w \in \Sigma^n\}$$
 is regular

$$L_{1} = \Sigma^{*}(b \cup c)^{\omega}$$

$$L_{2} = (\Sigma^{*}b)^{\omega} = \epsilon(\Sigma^{*}b)^{\omega}$$

$$L_{2} = L_{1} \cup L_{2}$$

$$L_{4} = \Sigma^{*}(bc^{*})^{\omega}$$

$$L_{5} = \bigcup_{w \in \Sigma^{n}} \epsilon w^{\omega}$$

- * A non-deterministic (deterministic) Büchi Automaton \mathcal{A} , short NBA (DBA), is a tuple $(Q, \Sigma, q_l, \delta, F)$ identical to an NFA (DFA)
- * a run on $w = a_1 a_2 a_3 ...$ is an infinite sequence

$$\rho: q_I = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{a_n} \cdots$$

- * A non-deterministic (deterministic) Büchi Automaton \mathcal{A} , short NBA (DBA), is a tuple $(Q, \Sigma, q_l, \delta, F)$ identical to an NFA (DFA)
- * a run on $w = a_1 a_2 a_3 \dots$ is an infinite sequence

$$\rho: q_I = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{a_n} \cdots$$

* run is accepting if $Inf(\rho) \cap F \neq \emptyset$, where

$$\mathsf{Inf}(\rho) \triangleq \{ q \in Q \mid |\rho|_q = \infty \}$$

- a run is accepting if it visits a final state infinitely often

- * A non-deterministic (deterministic) Büchi Automaton \mathcal{A} , short NBA (DBA), is a tuple $(Q, \Sigma, q_l, \delta, F)$ identical to an NFA (DFA)
- * a run on $w = a_1 a_2 a_3 \dots$ is an infinite sequence

$$\rho: q_I = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{a_n} \cdots$$

* run is accepting if $Inf(\rho) \cap F \neq \emptyset$, where

$$\mathsf{Inf}(\rho) \triangleq \{ q \in Q \mid |\rho|_q = \infty \}$$

- a run is accepting if it visits a final state infinitely often
- ★ the language recognised by \mathcal{A} is $L(\mathcal{A}) \triangleq \{w \in \Sigma^{\omega} \mid w \text{ has an accepting run}\}$

- * A non-deterministic (deterministic) Büchi Automaton \mathcal{A} , short NBA (DBA), is a tuple $(Q, \Sigma, q_l, \delta, F)$ identical to an NFA (DFA)
- * a run on $w = a_1 a_2 a_3 \dots$ is an infinite sequence

$$\rho: q_I = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{a_n} \cdots$$

* run is accepting if $Inf(\rho) \cap F \neq \emptyset$, where

$$\mathsf{Inf}(\rho) \triangleq \{ q \in Q \mid |\rho|_q = \infty \}$$

- a run is accepting if it visits a final state infinitely often
- ★ the language recognised by \mathcal{A} is $L(\mathcal{A}) \triangleq \{w \in \Sigma^{\omega} \mid w \text{ has an accepting run}\}$

$$L(A_2) = ?$$

- * A non-deterministic (deterministic) Büchi Automaton \mathcal{A} , short NBA (DBA), is a tuple $(Q, \Sigma, q_l, \delta, F)$ identical to an NFA (DFA)
- * a run on $w = a_1 a_2 a_3 \dots$ is an infinite sequence

$$\rho: q_I = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{a_n} \cdots$$

* run is accepting if $Inf(\rho) \cap F \neq \emptyset$, where

$$Inf(\rho) \triangleq \{q \in Q \mid |\rho|_q = \infty\}$$

- a run is accepting if it visits a final state infinitely often
- ★ the language recognised by \mathcal{A} is $L(\mathcal{A}) \triangleq \{w \in \Sigma^{\omega} \mid w \text{ has an accepting run}\}$

$$L(\mathcal{A}_2) = \{ w \in \Sigma^{\omega} \mid |w|_a \neq \infty \}$$

Non-Determinisation

Theorem

There are NBAs without equivalent DBA.

Non-Determinisation

Theorem

There are NBAs without equivalent DBA.

Proof Outline.

- * the NBA \mathcal{A}_2 with $L(\mathcal{A}_2) = \{ w \in \Sigma^{\omega} \mid |w|_a \neq \infty \}$
- \star it can be shown that L(\mathcal{A}_2) is not recognized by a DBA

(exercise)

Closure Properties on NBAs

Theorem

For recognisable $U \in \Sigma^*$ and $V, W \in \Sigma^{\omega}$ the following are recognisable:

- union V ∪ W
 intersection V ∩ W
- 5. complement \overline{V}

4. ω -iteration U^{ω}

3. left-concatenation $U \cdot V$

Proof Outline.

★ (1) and (3). Identical to NFA construction

Closure Properties on NBAs

Theorem

For recognisable $U \in \Sigma^*$ and $V, W \in \Sigma^{\omega}$ the following are recognisable:

- 1. union $V \cup W$
- 4. ω -iteration U^{ω}
- 2. intersection $V \cap W$
- 3. left-concatenation $U \cdot V$

Proof Outline.

- ★ (1) and (3). Identical to NFA construction
- ★ (2) Similar to NFA case. For Büchi condition, keep additional counter mod 2

$$\rho: \begin{pmatrix} \bigcirc \\ \bigcirc \\ 0 \end{pmatrix} \xrightarrow{a_1} \cdots \begin{pmatrix} \bigcirc \\ \bigcirc \\ 1 \end{pmatrix} \xrightarrow{a_{i_1}} \cdots \begin{pmatrix} \bigcirc \\ \bigcirc \\ 2 \end{pmatrix} \xrightarrow{a_{i_2}} \begin{pmatrix} \bigcirc \\ \bigcirc \\ 0 \end{pmatrix} \xrightarrow{a_{i_2+1}} \cdots$$

5. complement \overline{V}

Closure Properties on NBAs

Theorem

For recognisable $U \in \Sigma^*$ and $V, W \in \Sigma^{\omega}$ the following are recognisable:

2. intersection $V \cap W$

1. union $V \cup W$

5. complement \overline{V}

4. ω -iteration U^{ω}

3. left-concatenation $U \cdot V$

Proof Outline.

- ★ (1) and (3). Identical to NFA construction
- ★ (2) Similar to NFA case. For Büchi condition, keep additional counter mod 2

★ (5) non-trivial, see next

$$\rho: \begin{pmatrix} \bigcirc \\ \bigcirc \\ 0 \end{pmatrix} \xrightarrow{a_1} \cdots \begin{pmatrix} \bigcirc \\ \bigcirc \\ 1 \end{pmatrix} \xrightarrow{a_{i_1}} \cdots \begin{pmatrix} \bigcirc \\ \bigcirc \\ 2 \end{pmatrix} \xrightarrow{a_{i_2}} \begin{pmatrix} \bigcirc \\ \bigcirc \\ 0 \end{pmatrix} \xrightarrow{a_{i_2+1}} \cdots$$

Theorem

 $L \in \omega REG(\Sigma)$ if and only if L = L(A) for some NBA A

Proof Outline.

★ ⇒: consequence of closure properties

Theorem

 $L \in \omega REG(\Sigma)$ if and only if L = L(A) for some NBA A

Proof Outline.

- **★** ⇒: consequence of closure properties
- ★ <=:
 - for finite word $w = a_1, \ldots, a_n$ define

$$p \xrightarrow{w} q : \iff p \xrightarrow{a_1} \cdots \xrightarrow{a_n} q \text{ and } L_{p,q} \triangleq \{w \mid p \xrightarrow{w} q\}$$

Theorem

 $L \in \omega REG(\Sigma)$ if and only if L = L(A) for some NBA A

Proof Outline.

- **★** ⇒: consequence of closure properties
- ★ <=:
 - for finite word $w = a_1, \ldots, a_n$ define

$$p \xrightarrow{w} q : \iff p \xrightarrow{a_1} \cdots \xrightarrow{a_n} q \text{ and } L_{p,q} \triangleq \{w \mid p \xrightarrow{w} q\}$$

- $L_{p,q}$ is regular: the sub-automaton of A with initial state p and final state q recognises it

Theorem

 $L \in \omega REG(\Sigma)$ if and only if L = L(A) for some NBA A

Proof Outline.

- ★ ⇒: consequence of closure properties
- ★ ←:
 - for finite word $w = a_1, \ldots, a_n$ define

$$p \xrightarrow{w} q : \iff p \xrightarrow{a_1} \cdots \xrightarrow{a_n} q \text{ and } L_{p,q} \triangleq \{w \mid p \xrightarrow{w} q\}$$

- $L_{p,q}$ is regular: the sub-automaton of A with initial state p and final state q recognises it
- $w \in L(A)$ if and only if a run on w traverses some $q \in F$ infinitely often

$$w \in L(\mathcal{A}) \iff \exists q \in F. \ w = u \cdot v^{\omega} \text{ for some } u \in L_{q_i,q} \text{ and } v \in L_{q,q}^{\omega}$$

Theorem

 $L \in \omega REG(\Sigma)$ if and only if L = L(A) for some NBA A

Proof Outline.

- ★ ⇒: consequence of closure properties
- ★ ⇐:
 - for finite word $w = a_1, \ldots, a_n$ define

$$p \xrightarrow{w} q : \iff p \xrightarrow{a_1} \cdots \xrightarrow{a_n} q \text{ and } L_{p,q} \triangleq \{w \mid p \xrightarrow{w} q\}$$

- $-L_{p,q}$ is regular: the sub-automaton of A with initial state p and final state q recognises it
- $-w \in L(A)$ if and only if a run on w traverses some $g \in F$ infinitely often

$$w \in L(A) \Leftrightarrow \exists q \in F. \ w = u \cdot v^{\omega} \text{ for some } u \in L_{q_l,q} \text{ and } v \in L_{q,q}^{\omega}$$

hence

$$\mathsf{L}(\mathcal{A}) = \bigcup_{q \in F} L_{q_l,q} \cdot L_{q,q}^{\omega} \in \omega REG(\Sigma)$$

even for DBAs, unlike for DFAs, complementation is non-trivial

even for DBAs, unlike for DFAs, complementation is non-trivial

Idea

* find a finite partition P of Σ^* of regular languages such that

(i) either
$$U \cdot V^{\omega} \subseteq L(\mathcal{A})$$
 or $U \cdot V^{\omega} \subseteq \overline{L(\mathcal{A})}$ for $U, V \in P$ (ii) $\Sigma^{\omega} = \bigcup_{U, V \in P} U \cdot V^{\omega}$

$$(ii) \Sigma^{\omega} = \bigcup_{U \in P} U \cdot V^{\omega}$$

even for DBAs, unlike for DFAs, complementation is non-trivial

ldea

 \star find a finite partition P of Σ^* of regular languages such that

(i) either
$$U \cdot V^{\omega} \subseteq L(A)$$
 or $U \cdot V^{\omega} \subseteq \overline{L(A)}$ for $U, V \in P$ (ii) $\Sigma^{\omega} = \bigcup_{U, V \in P} U \cdot V^{\omega}$

★ hence

$$\overline{\mathsf{L}(\mathcal{A})} \stackrel{(ii)}{=} \Big(\bigcup_{U,V \in P} U \cdot V^{\omega} \Big) \setminus \mathsf{L}(\mathcal{A}) \stackrel{(i)}{=} \bigcup_{U,V \in P} U \cdot V^{\omega}$$

$$U \cdot V^{\omega} \cap \mathsf{L}(\mathcal{A}) = \emptyset \qquad \text{MASTER}$$
INFORMATIQUE

* define $p \xrightarrow{w}_{fin} q : \Leftrightarrow p \xrightarrow{u} q_f \xrightarrow{v} q$ for some $q_f \in F$ and $u \cdot v = w$

- \star define $p \xrightarrow{w}_{fin} q : \Leftrightarrow p \xrightarrow{u} q_f \xrightarrow{v} q$ for some $q_f \in F$ and $u \cdot v = w$
- * $u \sim v : \iff \forall p, q \in Q. \ (p \xrightarrow{u} q \iff p \xrightarrow{v} q) \ \text{and} \ (p \xrightarrow{u}_{\text{fin}} q \iff p \xrightarrow{v}_{\text{fin}} q) \ \text{defines an}$ equivalence on Σ^*
- \star if $u \sim v$ then u and v are "indistinguishable" by the considered NBA

Lemma

For every $w \in \Sigma^*$, $[w]_{\sim}$ is regular.

- \star define $p \xrightarrow{w}_{fin} q : \Leftrightarrow p \xrightarrow{u} q_f \xrightarrow{v} q$ for some $q_f \in F$ and $u \cdot v = w$
- * $u \sim v : \iff \forall p, q \in Q. \ (p \xrightarrow{u} q \iff p \xrightarrow{v} q) \ \text{and} \ (p \xrightarrow{u}_{\text{fin}} q \iff p \xrightarrow{v}_{\text{fin}} q) \ \text{defines an equivalence on } \Sigma^*$
- \star if $u \sim v$ then u and v are "indistinguishable" by the considered NBA

Lemma

For every $w \in \Sigma^*$, $[w]_{\sim}$ is regular.

Proof Outline.

Reformulating the definition, $[w]_{\sim} = \left(\bigcap_{p \xrightarrow{w} q} \{u \mid p \xrightarrow{u} q\}\right) \cap \left(\bigcap_{p \xrightarrow{w}_{fin} q} \{u \mid p \xrightarrow{u}_{fin} q\}\right)$

- \star define $p \xrightarrow{w}_{fin} q : \Leftrightarrow p \xrightarrow{u} q_f \xrightarrow{v} q$ for some $q_f \in F$ and $u \cdot v = w$
- * $u \sim v : \iff \forall p, q \in Q$. $(p \xrightarrow{u} q \iff p \xrightarrow{v} q)$ and $(p \xrightarrow{u}_{fin} q \iff p \xrightarrow{v}_{fin} q)$ defines an equivalence on Σ^*
- \star if $u \sim v$ then u and v are "indistinguishable" by the considered NBA

Lemma

For every $w \in \Sigma^*$, $[w]_{\sim}$ is regular.

Proof Outline.

Reformulating the definition, $[w]_{\sim} = \left(\bigcap_{p \xrightarrow{w} q} \{u \mid p \xrightarrow{u} q\}\right) \cap \left(\bigcap_{p \xrightarrow{w}_{fin} q} \{u \mid p \xrightarrow{u}_{fin} q\}\right)$

Lemma

The set of equivalence classes $\Sigma^*/\sim = \{[w]_{\sim} \mid w \in \Sigma^*\}$ is finite.

- * define $p \xrightarrow{w}_{fin} q : \Leftrightarrow p \xrightarrow{u} q_f \xrightarrow{v} q$ for some $q_f \in F$ and $u \cdot v = w$
- $\star u \sim v : \iff \forall p, q \in Q. \ (p \xrightarrow{u} q \iff p \xrightarrow{v} q) \ \text{and} \ (p \xrightarrow{u}_{\text{fin}} q \iff p \xrightarrow{v}_{\text{fin}} q) \ \text{defines an}$ equivalence on Σ^*
- \star if $u \sim v$ then u and v are "indistinguishable" by the considered NBA

Lemma

For every $w \in \Sigma^*$, $[w]_{\sim}$ is regular.

Proof Outline.

Reformulating the definition, $[w]_{\sim} = \left(\bigcap_{p \xrightarrow{w} q} \{u \mid p \xrightarrow{u} q\}\right) \cap \left(\bigcap_{p \xrightarrow{w}_{\text{fin}} q} \{u \mid p \xrightarrow{u}_{\text{fin}} q\}\right)$

Lemma

The set of equivalence classes $\Sigma^*/\sim = \{[w]_{\sim} \mid w \in \Sigma^*\}$ is finite.

Proof Outline.

Every class $[w]_{\sim}$ is described through two sets of state-pairs (at most $O(2^{2n^2})$ many)

Lemma

- 1. For any two $U, V \in \Sigma^*/\sim$, either (i) $U \cdot V^{\omega} \subseteq L(A)$ or (ii) $U \cdot V^{\omega} \subseteq \overline{L(A)}$.
- 2. $\Sigma^{\omega} = \bigcup_{U,V \in \Sigma^*/\sim} U \cdot V^{\omega}$.

Lemma

- 1. For any two $U, V \in \Sigma^*/\sim$, either (i) $U \cdot V^{\omega} \subseteq L(A)$ or (ii) $U \cdot V^{\omega} \subseteq \overline{L(A)}$.
- 2. $\Sigma^{\omega} = \bigcup_{U,V \in \Sigma^*/\sim} U \cdot V^{\omega}$.

Theorem

For any NBA A, there is an NBA B such that L(B) = L(A).

Lemma

- 1. For any two $U, V \in \Sigma^*/\sim$, either (i) $U \cdot V^{\omega} \subseteq L(A)$ or (ii) $U \cdot V^{\omega} \subseteq \overline{L(A)}$.
- 2. $\Sigma^{\omega} = \bigcup_{U, V \in \Sigma^*/\sim} U \cdot V^{\omega}$.

Theorem

For any NBA A, there is an NBA B such that L(B) = L(A).

Proof Outline.

★ the auxiliary lemmas yield that

$$\overline{\mathsf{L}(\mathcal{A})} = \left\{ \int \{U \cdot V^{\omega} \mid U, V \in \Sigma^* / \sim, U \cdot V^{\omega} \cap \mathsf{L}(\mathcal{A}) = \emptyset \right\}$$

 \star as $U, V \in \Sigma^*/\sim$ is regular, $\overline{L(A)}$ language is regular, and thus described by an NBA

Lemma

- 1. For any two $U, V \in \Sigma^*/\sim$, either (i) $U \cdot V^{\omega} \subseteq L(A)$ or (ii) $U \cdot V^{\omega} \subseteq \overline{L(A)}$.
- 2. $\Sigma^{\omega} = \bigcup_{U,V \in \Sigma^*/\sim} U \cdot V^{\omega}$.

Theorem

For any NBA A, there is an NBA B such that $L(B) = \overline{L(A)}$.

Proof Outline.

★ the auxiliary lemmas yield that

$$\overline{\mathsf{L}(\mathcal{A})} = \left| \ \left| \{ U \cdot V^{\omega} \mid U, V \in \Sigma^* / \sim, U \cdot V^{\omega} \cap \mathsf{L}(\mathcal{A}) = \varnothing \right\} \right|$$

* as $U, V \in \Sigma^*/\sim$ is regular, $\overline{L(A)}$ language is regular, and thus described by an NBA

Notes

- \star the above equation directly yield a recipe for building ${\cal B}$
- * the size of the constructed NBA is proportional to the cardinality of $\Sigma^*/\sim (O(2^{2n^2}))$

Monadic Second-Order Logic on Infinite Words

MSO on Infinite Words

★ the set of MSO formulas over V_1, V_2 coincides with that of weak MSO formulas:

$$\phi, \psi ::= \top \quad | \quad \bot \quad | \quad x < y \quad | \quad X(x) \quad | \quad \phi \lor \psi \mid \neg \phi \quad | \quad \exists x. \phi \quad | \quad \exists X. \phi$$

* the satisfiability relation $\alpha \models \phi$ is defined equivalently, but allows infinite valuations of second order variables

$$\alpha \models \exists X. \phi : \Leftrightarrow \alpha[x \mapsto M] \models \phi \text{ for some } M \subseteq \mathbb{N}$$

MSO on Infinite Words

★ the set of MSO formulas over V_1, V_2 coincides with that of weak MSO formulas:

$$\phi, \psi ::= \top \quad | \quad \bot \quad | \quad x < y \quad | \quad X(x) \quad | \quad \phi \lor \psi \quad | \quad \neg \phi \quad | \quad \exists x. \phi \quad | \quad \exists X. \phi$$

* the satisfiability relation $\alpha \models \phi$ is defined equivalently, but allows infinite valuations of second order variables

$$\alpha \models \exists X. \phi : \Leftrightarrow \alpha[x \mapsto M] \models \phi \text{ for some } M \subseteq \mathbb{N}$$

Example

$$\exists X. \forall y. X(y) \leftrightarrow X(y+2)$$

- ⋆ not satisfiable in WMSO
- ★ valid in MSO

MSO Decidability

- ★ consider MSO formula ϕ over $V_2 = \{X_1, ..., X_m\}$ and $V_1 = \{y_{m+1}, ..., y_{m+n}\}$
- * as in the case of WMSO, the alphabet Σ_{ϕ} is given by m+n bit-vectors, i.e., $\Sigma_{\phi} \triangleq \{0,1\}^{n+m}$
- \star MSO assignment α can be coded as infinite words $\underline{\alpha} \in \Sigma_{\phi}^{\omega}$
 - $-n \in \alpha(X_i)$ iff the *i*-th entry in *n*-th letter of $\underline{\alpha}$ is 1
 - $-\alpha(y_i)=n$ iff the *i*-th entry in *n*-th letter of $\underline{\alpha}$ is 1

MSO Decidability

- ★ consider MSO formula ϕ over $V_2 = \{X_1, ..., X_m\}$ and $V_1 = \{y_{m+1}, ..., y_{m+n}\}$
- * as in the case of WMSO, the alphabet Σ_{ϕ} is given by m+n bit-vectors, i.e., $\Sigma_{\phi} \triangleq \{0,1\}^{n+m}$
- \star MSO assignment α can be coded as infinite words $\underline{\alpha} \in \Sigma_{\phi}^{\omega}$
 - $-n \in \alpha(X_i)$ iff the *i*-th entry in *n*-th letter of $\underline{\alpha}$ is 1
 - $-\alpha(y_j)=n$ iff the *i*-th entry in *n*-th letter of $\underline{\alpha}$ is 1

the language $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{\omega}$ of coded valuations making ϕ true is given by:

$$\hat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$$

MSO Decidability

- \star consider MSO formula ϕ over $\mathcal{V}_2 = \{X_1, \dots, X_m\}$ and $\mathcal{V}_1 = \{y_{m+1}, \dots, y_{m+n}\}$
- * as in the case of WMSO, the alphabet Σ_{ϕ} is given by m+n bit-vectors, i.e., $\Sigma_{\phi} \triangleq \{0,1\}^{n+m}$
- * MSO assignment α can be coded as infinite words $\underline{\alpha} \in \Sigma_{\phi}^{\omega}$
 - $-n \in \alpha(X_i)$ iff the *i*-th entry in *n*-th letter of α is 1
 - $-\alpha(y_i)=n$ iff the *i*-th entry in *n*-th letter of $\underline{\alpha}$ is 1

the language $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{\omega}$ of coded valuations making ϕ true is given by:

$$\hat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$$

Theorem

For every MSO formula ϕ there exists an NBA A_{ϕ} s.t. $\hat{L}(\phi) = L(A_{\phi})$.

Proof Outline.

construction analoguous to the case of WMSO

MINIASTER