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Last Lecture

* an alternating finite automata (AFA) is a tuple A = (Q, X, ), 6, F) where all components
are identical to an NFA except that

§:Qx=->B(Q)

* AFAs are more concise but otherwise equi-expressive to NFAs
Theorem

[Al
For every AFA A there exist a DFA BB with O(2” ) states such that L(A) = L(B).

Corollary

AFAs recognize REG.



Today’s Lecture

* infinite words
* regular languages over infinite words
* Biichi automata

* Monadic Second-Order Logic on Infinite Words



Infinite Words



Infinite Words

* an infinite word over alphabet X is an infinite sequence of letters aga a,. ..

* X denotes the set of infinite words over X



Infinite Words

* an infinite word over alphabet X is an infinite sequence of letters aga a,. ..

* X denotes the set of infinite words over X

Notations
* |w|, denotes the number of occurrences of a € ¥ within w € =%
— note |w|, may be infinite

— in fact, |w|, = o0 holds for at least one a €



Infinite Words

* an infinite word over alphabet X is an infinite sequence of letters aga a,. ..

* X denotes the set of infinite words over X

Notations
* |w|, denotes the number of occurrences of a € ¥ within w € =%

— note |w|, may be infinite

— in fact, |w|, = o0 holds for at least one a €

* the left-concatenation of u € " and v e 2, is denoted by u-ve >«
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Languages over Infinite Words

* a language over infinite words is a set L € X

Operations on Infinite Languages
*x for US 2" and V€ 2%, the left-concatenation of U and Vis given by

U-VE{u-v|ue Uand ve V}

* The complement of VV € »“ is given by V2 3¢ \ V
* the w-iteration of U S X" is given by

U 2 {wp-wy-wy-+-+| wj€Uand w, # e for all i € N}
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Generalising the Theory of Regular Languages to Infinite Words

Recall...
For a language L € 27, the following are equivalent:

1. Lis regular
2. L is recognized by an NFA

3. L is defined through a wMSO formula
Outlook..
For a language L € %, the following are equivalent:
1. Lis w-regular
— defined next
2. L is recognized by a Biichi Automaton

— a finite automaton with a suitable acceptance condition for infinite words

3. L is defined through a MSO formula
— we drop the requirement on finite models present in wMSO
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w-Regular Languages

* alanguage L € X% is w-regular (or simply regular) if
L = U U,‘ * Vfu
O<izn
for regular languages U, V; (0 < i < n)

* with w REG(X) we denote the class of w-regular languages

Lemma

wREG(X) is closed under union and left-concatenation with regular languages.

Proof Outline.
* Union is obvious
* concerning left-concatenation U - L where L is as above

v-b=u-(Ju-v)=Juw-vy=Jw-uy v

O<isn O<isn O<isn
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Examples

Let ¥ = {a,b,c}

* Ly 2 {w| |w|, # oo} is regular L =% (buc)”
* Lo 2 {w| |w|, = oo} is regular Ly = (Z"b)” = (="p)*
* L3 ={w| |w|, # o0 or |w|, = 00} is regular Ly=Lvl,
* Ly 2 {w| |w|,# o0 and |w|, = 00} is regular Ly = 2% (bc™)*
* Ls = {w” | we x"} is regular Ls = Upesn ew”
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Biichi Automata

* A non-deterministic (deterministic) Bichi Automaton A, short NBA (DBA), is a tuple
(Q.Z,q, 06, F) identical to an NFA (DFA)

* arun on w = ajasas... is an infinite sequence

. ay as an
pioqI=q0 — qu— G

* run is accepting if Inf(p) N F # @, where

Inf(p) = {q€ Q| |plg = o0}
— a run is accepting if it visits a final state infinitely often

* the language recognised by A is L(A) = {w € X | w has an accepting run}

Example b a a,b b
a
O—=0
H

L(Ay) =7 L(Ap) =7



Biichi Automata

* A non-deterministic (deterministic) Bichi Automaton A, short NBA (DBA), is a tuple
(Q.Z,q, 6, F) identical to an NFA (DFA)

* arun on w = ajasas... is an infinite sequence

aj ag an
P+ 4q=4qo—q1—qy— "

* run is accepting if Inf(p) N F# @, where

Inf(p) = {q € Q[ |plq = o0}
— a run is accepting if it visits a final state infinitely often

* the language recognised by A is L(A) = {w € X | w has an accepting run}

Youls c JUIRCE,

L(A1) —{WEZ | [wla = oo} L(A2) = {w € 2| |w], # o0}

Example
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Non-Determinisation

Theorem

There are NBAs without equivalent DBA.

Proof Outline.
* the NBA A, with L(A,) = {we >« | |w|, £ oo}

* it can be shown that L(.A;) is not recognized by a DBA (exercise)
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Closure Properties on NBAs

Theorem
For recognisable U € * and V. W € 2 the following are recognisable:
1. union VU W 4. w-iteration U”

2. intersection VN W/ 5. complement \/

3. left-concatenation U - V/

Proof Outline.
* (1) and (3). Identical to NFA construction

* (2) Similar to NFA case. For Biichi condition, keep additional counter mod 2

O aj o Aig o Aig O Qig+1
P 1 O — ¢l O — e O| > | O | — -
0 1 2 0
—

* (4) exercise il

* (5) non-trivial, see next
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NBAs Characterise wREG(X)

Theorem

L € wREG(X) if and only if L = L(A) for some NBA A

Proof Outline.

* = consequence of closure properties

*x &

for finite word w = a4, ..., a, define
p-5qies p— - gand Lyg 2 {w]p-— g}

— L, 4 is regular: the sub-automaton of A with initial state p and final state g recognises it

w € L(A) if and only if a run on w traverses some g € F infinitely often
weL(A) = Ige F. w=u-v" forsome u€ Ly ,and ve Ly,
— hence

L(A) = [ Lguq - Liq € 0REG(Z)
qeF



Complementation of NBA (1)

even for DBAs, unlike for DFAs, complementation is non-trivial

@3@@:@

(a"b)” (b*a)
El ababa S ababa--



Complementation of NBA (1)

even for DBAs, unlike for DFAs, complementation is non-trivial

@ﬁ@:@

(a"b)” (b*a)
ldea e} ababa 3 ababa--

» find a finite partition P of " of regular languages such that

(i) either U+ V* < L(A) or U- V¥ S L(A) for U,VeP  (i)x“= | ] U-V*
U,veP



Complementation of NBA (1)

even for DBAs, unlike for DFAs, complementation is non-trivial

@ﬁ@:@

(a"b)” (b*a)
Idea E] ababa S ababa--

» find a finite partition P of " of regular languages such that

(i) either U- V¥ € L(A) or U- V¥ € L(A) for U,Ve P (i) % = U u- v
U,veP
* hence

L v-vnww 2 Ju- v
U,veP U ver
U-V’nL(A) =0
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Complementation of NBAs (1)

* define piﬁn q:= pi> qu q for some gr€ Fand u-v=w
* u~vie VpgeQ (p—q = p—q)and (p—fn g &= p—qn, q) defines an
equivalence on 2*

* if u~ vthen uand v are “indistinguishable” by the considered NBA

Lemma

For every w € 3%, [w]. is regular.

Proof Outline.

Reformulating the definition, [w]. = () l,q{“ | p— qt)n (N N q{u | p—fin q})

p p

Lemma

The set of equivalence classes ¥ [~ = {[w]. | w € *} is finite.



Complementation of NBAs (1)

* define piﬁn q:= pi> qu q for some gr€ Fand u-v=w
* u~vie VpgeQ (p—q & p—q)and (p—fn g &= p—qn, q) defines an
equivalence on 2*

* if u~ vthen uand v are “indistinguishable” by the considered NBA

Lemma

For every w € 3%, [w]. is regular.

Proof Outline.

Reformulating the definition, [w]. = () l,q{“ | p— qt)n (N N q{u | p—>6in q})

p p

Lemma

The set of equivalence classes ¥ [~ = {[w]. | w € *} is finite.

Proof Outline.

2
Every class [w]. is described through two sets of state-pairs (at most O(22" ) many)



Complementation of NBAs (ll1)
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1. For any two U,V € =%/ ~, either (i) U- V* c L(A) or (i) U- V* c L(A).
2. Zw = UU,VEZ*/~ U‘ \/a)
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Complementation of NBAs (ll1)

Lemma
1. For any two U,V € =%/ ~, either (i) U- V* c L(A) or (i) U- V* c L(A).
2. 20.) = UU,VEZ*/~ U‘ \/D

Theorem

For any NBA A, there is an NBA B such that L(B) = L(A).

Proof Outline.

* the auxiliary lemmas yield that

L(A) = | {u-V* | U.Ves [~ U -V’ nL(A) = o}

x as U,V e X"/~ is regular, L(A) language is regular, and thus described by an NBA



Complementation of NBAs (111)

Lemma
1. For any two U,V € =%/ ~, either (i) U- V* c L(A) or (i) U- V* c L(A).
2. 20.) = UU,VEZ*/~ U‘ \/‘)

Theorem

For any NBA A, there is an NBA B such that L(B) = L(A).

Proof Outline.

* the auxiliary lemmas yield that
L(A) = | J{u- v’ | u.vex"/~ U - V' nL(A) = o}

* as U,V e X"/~ is regular, L(A) language is regular, and thus described by an NBA

Notes
* the above equation directly yield a recipe for building B

2
* the size of the constructed NBA is proportional to the cardinality of ™/~ (0(22” )



Monadic Second-Order Logic on Infinite

Words



MSO on Infinite Words
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p=T | L | x<y | X | vy |-¢ | 3x¢ | IX6

* the satisfiability relation a F ¢ is defined equivalently, but allows infinite valuations of
second order variables

aF3IX¢ &= a[x— M]E ¢ forsome MS N



MSO on Infinite Words

* the set of MSO formulas over V;, V> coincides with that of weak MSO formulas:
p=T | L | x<y | X | vy |-¢ | 3x¢ | IX6

* the satisfiability relation a F ¢ is defined equivalently, but allows infinite valuations of
second order variables

aF3IX¢ &= a[x— M]E ¢ forsome MS N

Example
AXVy.X(y) & X(y+2)

* not satisfiable in WMSO
* valid in MSO
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MSO Decidability

* consider MSO formula ¢ over Vo = {X1,..., X} and Vi = {yi1, .oy Viment

* as in the case of WMSO, the alphabet 24 is given by m + n bit-vectors, i.e.,
Z¢ A {O, 1}n+m

* MSO assignment « can be coded as infinite words o € 2(‘7‘;

— n € a(X;) iff the i-th entry in n-th letter of a is 1
— a(y;) = n iff the ith entry in n-th letter of @ is 1

the language IA_(¢) c ZZ of coded valuations making ¢ true is given by:

L(¢) 2 {a|aF ¢}

Theorem

For every MSO formula ¢ there exists an NBA A s.t. L(¢) = L(Ag).

Proof Outline.

construction analoguous to the case of WMSO



