Advanced Logic

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2023/AL/

Martin Avanzini (martin.avanzini@inria.fr)
Etienne Lozes (etienne.lozes@univ-cotedazur.fr)

UNIVERSITÉ CÔTE D'AZUR

Last Lecture

\star an alternating finite automata (AFA) is a tuple $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$ where all components are identical to an NFA except that

$$
\delta: Q \times \Sigma \rightarrow \mathbb{B}^{+}(Q)
$$

\star AFAs are more concise but otherwise equi-expressive to NFAs
Theorem
For every $A F A \mathcal{A}$ there exist a DFA \mathcal{B} with $\mathrm{O}\left(2^{2^{|\mathcal{A}|}}\right)$ states such that $\mathrm{L}(\mathcal{A})=\mathrm{L}(\mathcal{B})$.

Corollary

AFAs recognize REG.

Today's Lecture

* infinite words
* regular languages over infinite words
* Büchi automata
^ Monadic Second-Order Logic on Infinite Words

Infinite Words

Infinite Words

\star an infinite word over alphabet Σ is an infinite sequence of letters $\mathrm{a}_{0} \mathrm{a}_{1} \mathrm{a}_{2} \ldots$
$\star \Sigma^{\omega}$ denotes the set of infinite words over Σ

Infinite Words

\star an infinite word over alphabet Σ is an infinite sequence of letters $\mathrm{a}_{0} \mathrm{a}_{1} \mathrm{a}_{2} \ldots$
$\star \Sigma^{\omega}$ denotes the set of infinite words over Σ

Notations
$\star|w|_{\text {a }}$ denotes the number of occurrences of a $\in \Sigma$ within $w \in \Sigma^{\omega}$

- note $|w|_{\text {a }}$ may be infinite
- in fact, $|w|_{\mathrm{a}}=\infty$ holds for at least one a $\in \Sigma$

Infinite Words

\star an infinite word over alphabet Σ is an infinite sequence of letters $\mathrm{a}_{0} \mathrm{a}_{1} \mathrm{a}_{2} \ldots$
$\star \Sigma^{\omega}$ denotes the set of infinite words over Σ

Notations
$\star|w|_{a}$ denotes the number of occurrences of a $\in \Sigma$ within $w \in \Sigma^{\omega}$

- note $|w|_{\text {a }}$ may be infinite
- in fact, $|w|_{\mathrm{a}}=\infty$ holds for at least one a $\in \Sigma$
\star the left-concatenation of $u \in \Sigma^{*}$ and $v \in \Sigma^{\omega}$, is denoted by $u \cdot v \in \Sigma^{\omega}$

Languages over Infinite Words

* a language over infinite words is a set $L \subseteq \Sigma^{\omega}$

Languages over Infinite Words

* a language over infinite words is a set $L \subseteq \Sigma^{\omega}$

Operations on Infinite Languages

* for $U \subseteq \Sigma^{*}$ and $V \subseteq \Sigma^{\omega}$, the left-concatenation of U and V is given by

$$
U \cdot V \triangleq\{u \cdot v \mid u \in U \text { and } v \in V\}
$$

Languages over Infinite Words

* a language over infinite words is a set $L \subseteq \Sigma^{\omega}$

Operations on Infinite Languages

* for $U \subseteq \Sigma^{*}$ and $V \subseteq \Sigma^{\omega}$, the left-concatenation of U and V is given by

$$
U \cdot V \triangleq\{u \cdot v \mid u \in U \text { and } v \in V\}
$$

* The complement of $V \subseteq \Sigma^{\omega}$ is given by $\bar{V} \triangleq \Sigma^{\omega} \backslash V$

Languages over Infinite Words

* a language over infinite words is a set $L \subseteq \Sigma^{\omega}$

Operations on Infinite Languages

* for $U \subseteq \Sigma^{*}$ and $V \subseteq \Sigma^{\omega}$, the left-concatenation of U and V is given by

$$
U \cdot V \triangleq\{u \cdot v \mid u \in U \text { and } v \in V\}
$$

* The complement of $V \subseteq \Sigma^{\omega}$ is given by $\bar{V} \triangleq \Sigma^{\omega} \backslash V$
* the ω-iteration of $U \subseteq \Sigma^{*}$ is given by

$$
U^{\omega} \triangleq\left\{w_{0} \cdot w_{1} \cdot w_{2} \cdots \mid w_{i} \in U \text { and } w_{i} \neq \epsilon \text { for all } i \in \mathbb{N}\right\}
$$

Generalising the Theory of Regular Languages to Infinite Words

Recall...

For a language $L \in \Sigma^{*}$, the following are equivalent:

1. L is regular
2. L is recognized by an NFA
3. L is defined through a wMSO formula

Generalising the Theory of Regular Languages to Infinite Words

Recall...
For a language $L \in \Sigma^{*}$, the following are equivalent:

1. L is regular
2. L is recognized by an NFA
3. L is defined through a wMSO formula

Outlook...
For a language $L \in \Sigma^{\omega}$, the following are equivalent:

1. L is ω-regular

- defined next

2. L is recognized by a Büchi Automaton

- a finite automaton with a suitable acceptance condition for infinite words

3. L is defined through a MSO formula

- we drop the requirement on finite models present in wMSO

Regular Languages over Infinite Words

ω-Regular Languages

* a language $L \subseteq \Sigma^{\omega}$ is ω-regular (or simply regular) if

$$
L=\bigcup_{0 \leq i \leq n} U_{i} \cdot V_{i}^{\omega}
$$

for regular languages $U_{i}, V_{i}(0 \leq i \leq n)$

* with $\omega \operatorname{REG}(\Sigma)$ we denote the class of ω-regular languages

ω-Regular Languages

* a language $L \subseteq \Sigma^{\omega}$ is ω-regular (or simply regular) if

$$
L=\bigcup_{0 \leq i \leq n} U_{i} \cdot V_{i}^{\omega}
$$

for regular languages $U_{i}, V_{i}(0 \leq i \leq n)$

* with $\omega R E G(\Sigma)$ we denote the class of ω-regular languages

Lemma

$\omega R E G(\Sigma)$ is closed under union and left-concatenation with regular languages.

ω-Regular Languages

* a language $L \subseteq \Sigma^{\omega}$ is ω-regular (or simply regular) if

$$
L=\bigcup_{0 \leq i \leq n} U_{i} \cdot V_{i}^{\omega}
$$

for regular languages $U_{i}, V_{i}(0 \leq i \leq n)$

* with $\omega R E G(\Sigma)$ we denote the class of ω-regular languages

Lemma

$\omega R E G(\Sigma)$ is closed under union and left-concatenation with regular languages.

Proof Outline.

« Union is obvious

* concerning left-concatenation $U \cdot L$ where L is as above

$$
U \cdot L=U \cdot\left(\bigcup_{0 \leq i \leq n} U_{i} \cdot V_{i}^{\omega}\right)=\bigcup_{0 \leq i \leq n} U \cdot\left(U_{i} \cdot V_{i}^{\omega}\right)=\bigcup_{0 \leq i \leq n}\left(U \cdot U_{i}\right) \cdot V_{i}^{\omega}
$$

Examples
Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\star L_{1} \triangleq\left\{\left.w| | w\right|_{a} \neq \infty\right\}$ is regular

Examples

Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\star L_{1} \triangleq\left\{\left.w| | w\right|_{\mathrm{a}} \neq \infty\right\}$ is regular

$$
L_{1}=\Sigma^{*}(\mathrm{~b} \cup \mathrm{c})^{\omega}
$$

Examples

Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\star L_{1} \triangleq\left\{\left.w| | w\right|_{\mathrm{a}} \neq \infty\right\}$ is regular

$$
L_{1}=\Sigma^{*}(b \cup c)^{\omega}
$$

$\star L_{2} \triangleq\left\{\left.w| | w\right|_{\mathrm{b}}=\infty\right\}$ is regular

Examples
Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\star L_{1} \triangleq\left\{\left.w| | w\right|_{a} \neq \infty\right\}$ is regular

$$
\star L_{2} \triangleq\left\{\left.w| | w\right|_{\mathrm{b}}=\infty\right\} \text { is regular }
$$

$$
\begin{array}{r}
L_{1}=\Sigma^{*}(\mathrm{~b} \cup \mathrm{c})^{\omega} \\
L_{2}=\left(\Sigma^{*} \mathrm{~b}\right)^{\omega}=\epsilon\left(\Sigma^{*} \mathrm{~b}\right)^{\omega}
\end{array}
$$

Examples
Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\star L_{1} \triangleq\left\{\left.w| | w\right|_{a} \neq \infty\right\}$ is regular

$$
\begin{array}{r}
L_{1}=\Sigma^{*}(b \cup c)^{\omega} \\
L_{2}=\left(\Sigma^{*} b\right)^{\omega}=\epsilon\left(\Sigma^{*} b\right)^{\omega}
\end{array}
$$

$\star L_{2} \triangleq\left\{\left.w| | w\right|_{b}=\infty\right\}$ is regular
$\star L_{3} \triangleq\left\{\left.w| | w\right|_{\mathrm{a}} \neq \infty\right.$ or $\left.|w|_{\mathrm{b}}=\infty\right\}$ is regular

Examples
Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

* $L_{1} \triangleq\left\{\left.w| | w\right|_{a} \neq \infty\right\}$ is regular

$$
\star L_{2} \triangleq\left\{\left.w| | w\right|_{\mathrm{b}}=\infty\right\} \text { is regular }
$$

$$
\star L_{3} \triangleq\left\{\left.w| | w\right|_{\mathrm{a}} \neq \infty \text { or }|w|_{\mathrm{b}}=\infty\right\} \text { is regular }
$$

$$
\begin{array}{r}
L_{1}=\Sigma^{*}(\mathrm{~b} \cup \mathrm{c})^{\omega} \\
L_{2}=\left(\Sigma^{*} \mathrm{~b}\right)^{\omega}=\epsilon\left(\Sigma^{*} \mathrm{~b}\right)^{\omega} \\
L_{2}=L_{1} \cup L_{2}
\end{array}
$$

Examples
Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\star L_{1} \triangleq\left\{\left.w| | w\right|_{a} \neq \infty\right\}$ is regular

$$
\star L_{2} \triangleq\left\{\left.w| | w\right|_{\mathrm{b}}=\infty\right\} \text { is regular }
$$

$$
\begin{array}{r}
L_{1}=\Sigma^{*}(\mathrm{~b} \cup \mathrm{c})^{\omega} \\
L_{2}=\left(\Sigma^{*} \mathrm{~b}\right)^{\omega}=\epsilon\left(\Sigma^{*} \mathrm{~b}\right)^{\omega} \\
L_{2}=L_{1} \cup L_{2}
\end{array}
$$

$\star L_{4} \triangleq\left\{\left.w| | w\right|_{\mathrm{a}} \neq \infty\right.$ and $\left.|w|_{\mathrm{b}}=\infty\right\}$ is regular

Examples
Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\star L_{1} \triangleq\left\{\left.w| | w\right|_{\mathrm{a}} \neq \infty\right\}$ is regular

$$
\star L_{2} \triangleq\left\{\left.w| | w\right|_{\mathrm{b}}=\infty\right\} \text { is regular }
$$

$$
\star L_{3} \triangleq\left\{\left.w| | w\right|_{\mathrm{a}} \neq \infty \text { or }|w|_{\mathrm{b}}=\infty\right\} \text { is regular }
$$

$$
\star L_{4} \triangleq\left\{\left.w| | w\right|_{\mathrm{a}} \neq \infty \text { and }|w|_{\mathrm{b}}=\infty\right\} \text { is regular }
$$

$$
\begin{array}{r}
L_{1}=\Sigma^{*}(\mathrm{~b} \cup \mathrm{c})^{\omega} \\
L_{2}=\left(\Sigma^{*} \mathrm{~b}\right)^{\omega}=\epsilon\left(\Sigma^{*} \mathrm{~b}\right)^{\omega} \\
L_{2}=L_{1} \cup L_{2} \\
L_{4}=\Sigma^{*}(\mathrm{bc})^{*}
\end{array}
$$

Examples
Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

* $L_{1} \triangleq\left\{\left.w| | w\right|_{\mathrm{a}} \neq \infty\right\}$ is regular

$$
\star L_{2} \triangleq\left\{\left.w| | w\right|_{\mathrm{b}}=\infty\right\} \text { is regular }
$$

$$
\begin{array}{r}
L_{1}=\Sigma^{*}(\mathrm{~b} \cup \mathrm{c})^{\omega} \\
L_{2}=\left(\Sigma^{*} \mathrm{~b}\right)^{\omega}=\epsilon\left(\Sigma^{*} \mathrm{~b}\right)^{\omega} \\
L_{2}=L_{1} \cup L_{2} \\
L_{4}=\Sigma^{*}(\mathrm{bc})^{*}
\end{array}
$$

* $L_{5} \triangleq\left\{w^{\omega} \mid w \in \Sigma^{n}\right\}$ is regular

Examples
Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

* $L_{1} \triangleq\left\{\left.w| | w\right|_{\mathrm{a}} \neq \infty\right\}$ is regular

$$
\star L_{2} \triangleq\left\{\left.w| | w\right|_{\mathrm{b}}=\infty\right\} \text { is regular }
$$

$$
\star L_{3} \triangleq\left\{\left.w| | w\right|_{\mathrm{a}} \neq \infty \text { or }|w|_{\mathrm{b}}=\infty\right\} \text { is regular }
$$

$$
\star L_{4} \triangleq\left\{\left.w| | w\right|_{\mathrm{a}} \neq \infty \text { and }|w|_{\mathrm{b}}=\infty\right\} \text { is regular }
$$

$$
\star L_{5} \triangleq\left\{w^{\omega} \mid w \in \Sigma^{n}\right\} \text { is regular }
$$

$$
\begin{array}{r}
L_{1}=\Sigma^{*}(\mathrm{~b} \cup \mathrm{c})^{\omega} \\
L_{2}=\left(\Sigma^{*} \mathrm{~b}\right)^{\omega}=\epsilon\left(\Sigma^{*} \mathrm{~b}\right)^{\omega} \\
L_{2}=L_{1} \cup L_{2} \\
L_{4}=\Sigma^{*}(\mathrm{bc})^{*} \\
L_{5}=\bigcup_{w \in \Sigma^{n}} \epsilon w^{\omega}
\end{array}
$$

Büchi Automata

Büchi Automata

* A non-deterministic (deterministic) Büchi Automaton \mathcal{A}, short NBA (DBA), is a tuple ($\left.Q, \Sigma, q_{l}, \delta, F\right)$ identical to an NFA (DFA)
\star a run on $w=a_{1} a_{2} a_{3} \ldots$ is an infinite sequence

$$
\rho: \quad q_{1}=q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} q_{2} \xrightarrow{a_{n}} \cdots
$$

Büchi Automata

* A non-deterministic (deterministic) Büchi Automaton \mathcal{A}, short NBA (DBA), is a tuple ($\left.Q, \Sigma, q_{l}, \delta, F\right)$ identical to an NFA (DFA)
\star a run on $w=a_{1} a_{2} a_{3} \ldots$ is an infinite sequence

$$
\rho: \quad q_{1}=q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} q_{2} \xrightarrow{a_{n}} \cdots
$$

* run is accepting if $\operatorname{lnf}(\rho) \cap F \neq \varnothing$, where

$$
\operatorname{lnf}(\rho) \triangleq\left\{q \in Q\left||\rho|_{q}=\infty\right\}\right.
$$

- a run is accepting if it visits a final state infinitely often

Büchi Automata

* A non-deterministic (deterministic) Büchi Automaton \mathcal{A}, short NBA (DBA), is a tuple ($\left.Q, \Sigma, q_{l}, \delta, F\right)$ identical to an NFA (DFA)
\star a run on $w=a_{1} a_{2} a_{3} \ldots$ is an infinite sequence

$$
\rho: \quad q_{1}=q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} q_{2} \xrightarrow{a_{n}} \cdots
$$

* run is accepting if $\operatorname{Inf}(\rho) \cap F \neq \varnothing$, where

$$
\operatorname{lnf}(\rho) \triangleq\left\{q \in Q\left||\rho|_{q}=\infty\right\}\right.
$$

- a run is accepting if it visits a final state infinitely often
\star the language recognised by \mathcal{A} is $\mathrm{L}(\mathcal{A}) \triangleq\left\{w \in \Sigma^{\omega} \mid w\right.$ has an accepting run $\}$

Büchi Automata

* A non-deterministic (deterministic) Büchi Automaton \mathcal{A}, short NBA (DBA), is a tuple ($\left.Q, \Sigma, q_{l}, \delta, F\right)$ identical to an NFA (DFA)
\star a run on $w=a_{1} a_{2} a_{3} \ldots$ is an infinite sequence

$$
\rho: \quad q_{1}=q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} q_{2} \xrightarrow{a_{n}} \cdots
$$

* run is accepting if $\operatorname{Inf}(\rho) \cap F \neq \varnothing$, where

$$
\operatorname{lnf}(\rho) \triangleq\left\{q \in Q\left||\rho|_{q}=\infty\right\}\right.
$$

- a run is accepting if it visits a final state infinitely often
* the language recognised by \mathcal{A} is $L(\mathcal{A}) \triangleq\left\{w \in \Sigma^{\omega} \mid w\right.$ has an accepting run $\}$

Example

$$
\mathrm{L}\left(\mathcal{A}_{1}\right)=\text { ? }
$$

$$
\mathrm{L}\left(\mathcal{A}_{2}\right)=\text { ? }
$$

Büchi Automata

* A non-deterministic (deterministic) Büchi Automaton \mathcal{A}, short NBA (DBA), is a tuple ($\left.Q, \Sigma, q_{l}, \delta, F\right)$ identical to an NFA (DFA)
\star a run on $w=a_{1} a_{2} a_{3} \ldots$ is an infinite sequence

$$
\rho: \quad q_{1}=q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} q_{2} \xrightarrow{a_{n}} \cdots
$$

\star run is accepting if $\operatorname{Inf}(\rho) \cap F \neq \varnothing$, where

$$
\operatorname{lnf}(\rho) \triangleq\left\{q \in Q\left||\rho|_{q}=\infty\right\}\right.
$$

- a run is accepting if it visits a final state infinitely often
\star the language recognised by \mathcal{A} is $L(\mathcal{A}) \triangleq\left\{w \in \Sigma^{\omega} \mid w\right.$ has an accepting run $\}$

Example

$$
\mathrm{L}\left(\mathcal{A}_{1}\right)=\left\{\left.w \in \Sigma^{\omega}| | w\right|_{\mathrm{a}}=\infty\right\}
$$

$$
\mathrm{L}\left(\mathcal{A}_{2}\right)=\left\{\left.w \in \Sigma^{\omega}| | w\right|_{a} \neq \infty\right\}
$$

Non-Determinisation

Theorem

There are $N B A$ s without equivalent $D B A$.

Non-Determinisation

Theorem

There are NBAs without equivalent DBA.

Proof Outline.
\star the NBA \mathcal{A}_{2} with $\mathrm{L}\left(\mathcal{A}_{2}\right)=\left\{\left.w \in \Sigma^{\omega}| | w\right|_{\mathrm{a}} \neq \infty\right\}$

* it can be shown that $\mathrm{L}\left(\mathcal{A}_{2}\right)$ is not recognized by a DBA

Closure Properties on NBAs

Theorem
For recognisable $U \in \Sigma^{*}$ and $V, W \in \Sigma^{\omega}$ the following are recognisable:

1. union $V \cup W$
2. intersection $V \cap W$
3. left-concatenation $U \cdot V$

Proof Outline.

* (1) and (3). Identical to NFA construction

Closure Properties on NBAs

Theorem

For recognisable $U \in \Sigma^{*}$ and $V, W \in \Sigma^{\omega}$ the following are recognisable:

1. union $V \cup W$
2. intersection $V \cap W$
3. left-concatenation $U \cdot V$

Proof Outline.

* (1) and (3). Identical to NFA construction
\star (2) Similar to NFA case. For Büchi condition, keep additional counter mod 2

$$
\rho:\left(\begin{array}{l}
O \\
0 \\
0
\end{array}\right) \xrightarrow{a_{1}} \cdots\left(\begin{array}{l}
\bigcirc \\
0 \\
1
\end{array}\right) \xrightarrow{a_{i_{1}}} \cdots \underbrace{\left(\begin{array}{l}
O \\
0 \\
2
\end{array}\right)}_{\triangleq \text { final }} \xrightarrow{a_{i_{2}}}\left(\begin{array}{l}
O \\
O \\
0
\end{array}\right) \xrightarrow{a_{i_{2}+1}} \cdots
$$

Closure Properties on NBAs

Theorem

For recognisable $U \in \Sigma^{*}$ and $V, W \in \Sigma^{\omega}$ the following are recognisable:

1. union $V \cup W$
2. intersection $V \cap W$
3. left-concatenation $U \cdot V$

Proof Outline.

* (1) and (3). Identical to NFA construction
\star (2) Similar to NFA case. For Büchi condition, keep additional counter mod 2

$$
\rho:\left(\begin{array}{l}
O \\
0 \\
0
\end{array}\right) \xrightarrow{a_{1}} \cdots\left(\begin{array}{l}
\bigcirc \\
0 \\
1
\end{array}\right) \xrightarrow{a_{i_{1}}} \cdots \underbrace{\left(\begin{array}{l}
O \\
0 \\
2
\end{array}\right)}_{\triangleq \text { final }} \xrightarrow{a_{i_{2}}}\left(\begin{array}{l}
O \\
O \\
0
\end{array}\right) \xrightarrow{a_{i_{2}+1}} \cdots
$$

\star (4) exercise

* (5) non-trivial, see next

NBAs Characterise $\omega R E G(\Sigma)$

Theorem
$L \in \omega \operatorname{REG}(\Sigma)$ if and only if $L=L(\mathcal{A})$ for some NBA \mathcal{A}

Proof Outline.
$\star \Rightarrow$: consequence of closure properties

NBAs Characterise $\omega R E G(\Sigma)$

Theorem
$L \in \omega R E G(\Sigma)$ if and only if $L=L(\mathcal{A})$ for some NBA \mathcal{A}

Proof Outline.
$\star \Rightarrow$: consequence of closure properties
$\star \Leftarrow$:

- for finite word $w=a_{1}, \ldots, a_{n}$ define

$$
p \xrightarrow{w} q: \Leftrightarrow p \xrightarrow{\mathrm{a}_{1}} \cdots \xrightarrow{\mathrm{a}_{\mathrm{n}}} q \text { and } L_{p, q} \triangleq\{w \mid p \xrightarrow{w} q\}
$$

NBAs Characterise $\omega R E G(\Sigma)$

Theorem

$L \in \omega \operatorname{REG}(\Sigma)$ if and only if $L=L(\mathcal{A})$ for some NBA \mathcal{A}

Proof Outline.
$\star \Rightarrow$: consequence of closure properties
$\star \Leftarrow$:

- for finite word $w=a_{1}, \ldots, a_{n}$ define

$$
p \xrightarrow{w} q: \Leftrightarrow p \xrightarrow{a_{1}} \cdots \xrightarrow{a_{n}} q \text { and } L_{p, q} \triangleq\{w \mid p \xrightarrow{w} q\}
$$

- $L_{p, q}$ is regular: the sub-automaton of \mathcal{A} with initial state p and final state q recognises it

NBAs Characterise $\omega R E G(\Sigma)$

Theorem

$L \in \omega \operatorname{REG}(\Sigma)$ if and only if $L=L(\mathcal{A})$ for some NBA \mathcal{A}

Proof Outline.

$\star \Rightarrow$: consequence of closure properties
$\star \Leftarrow$:

- for finite word $w=a_{1}, \ldots, a_{n}$ define

$$
p \xrightarrow{w} q: \Leftrightarrow p \xrightarrow{a_{1}} \cdots \xrightarrow{a_{n}} q \text { and } L_{p, q} \triangleq\{w \mid p \xrightarrow{w} q\}
$$

- $L_{p, q}$ is regular: the sub-automaton of \mathcal{A} with initial state p and final state q recognises it
- $w \in L(\mathcal{A})$ if and only if a run on w traverses some $q \in F$ infinitely often

$$
w \in \mathrm{~L}(\mathcal{A}) \Leftrightarrow \exists q \in F . w=u \cdot v^{\omega} \text { for some } u \in L_{q, q} \text { and } v \in L_{q, q}^{\omega}
$$

NBAs Characterise $\omega R E G(\Sigma)$

Theorem

$L \in \omega \operatorname{REG}(\Sigma)$ if and only if $L=L(\mathcal{A})$ for some NBA \mathcal{A}

Proof Outline.

$\star \Rightarrow$: consequence of closure properties
$\star \Leftarrow$:

- for finite word $w=a_{1}, \ldots, a_{n}$ define

$$
p \xrightarrow{w} q: \Leftrightarrow p \xrightarrow{a_{1}} \cdots \xrightarrow{a_{n}} q \text { and } L_{p, q} \triangleq\{w \mid p \xrightarrow{w} q\}
$$

- $L_{p, q}$ is regular: the sub-automaton of \mathcal{A} with initial state p and final state q recognises it
- $w \in L(\mathcal{A})$ if and only if a run on w traverses some $q \in F$ infinitely often

$$
w \in \mathrm{~L}(\mathcal{A}) \Leftrightarrow \exists q \in F . w=u \cdot v^{\omega} \text { for some } u \in L_{q l, q} \text { and } v \in L_{q, q}^{\omega}
$$

- hence

$$
\mathrm{L}(\mathcal{A})=\bigcup_{q \in F} L_{q, q} \cdot L_{q, q}^{\omega} \in \omega R E G(\Sigma)
$$

Complementation of NBA (1)

even for DBAs, unlike for DFAs, complementation is non-trivial

$$
\begin{gathered}
\left(\mathrm{a}^{*} \mathrm{~b}\right)^{\omega} \\
\ni \text { ababa... }
\end{gathered}
$$

$$
\begin{gathered}
\left(b^{*} \mathrm{a}\right)^{\omega} \\
\ni \text { ababa} \cdots
\end{gathered}
$$

Complementation of NBA (1)

even for DBAs, unlike for DFAs, complementation is non-trivial

$$
\begin{gathered}
\left(\mathrm{a}^{*} \mathrm{~b}\right)^{\omega} \\
\ni \text { ababa... }
\end{gathered}
$$

$$
\begin{gathered}
\left(b^{*} a\right)^{\omega} \\
\ni \text { ababa... }
\end{gathered}
$$

« find a finite partition P of Σ^{*} of regular languages such that
(i) either $U \cdot V^{\omega} \subseteq \mathrm{L}(\mathcal{A})$ or $U \cdot V^{\omega} \subseteq \overline{\mathrm{L}(\mathcal{A})}$ for $U, V \in P$

$$
\text { (ii) } \Sigma^{\omega}=\bigcup_{U, V \in P} U \cdot V^{\omega}
$$

Complementation of NBA (1)

even for DBAs, unlike for DFAs, complementation is non-trivial

$$
\begin{gathered}
\left(\mathrm{a}^{*} \mathrm{~b}\right)^{\omega} \\
\ni \text { ababa... }
\end{gathered}
$$

$$
\begin{gathered}
\left(b^{*} a\right)^{\omega} \\
\ni \text { ababa... }
\end{gathered}
$$

« find a finite partition P of Σ^{*} of regular languages such that

$$
\text { (i) either } U \cdot V^{\omega} \subseteq \mathrm{L}(\mathcal{A}) \text { or } U \cdot V^{\omega} \subseteq \overline{\mathrm{L}(\mathcal{A})} \text { for } U, V \in P \quad \text { (ii) } \Sigma^{\omega}=\bigcup_{U, V \in P} U \cdot V^{\omega}
$$

* hence

$$
\begin{aligned}
& \overline{\mathrm{L}(\mathcal{A})} \stackrel{(i i)}{=}\left(\bigcup_{U, V \in P} U \cdot V^{\omega}\right) \backslash \mathrm{L}(\mathcal{A}) \stackrel{(i)}{=} \bigcup_{U, V \in P} U \cdot V^{\omega} \\
& U \cdot V^{\omega} \cap \mathrm{L}(\mathcal{A})=\varnothing
\end{aligned}
$$

Complementation of NBAs (II)

\star define $p \xrightarrow{w}$ fin $q: \Leftrightarrow p \xrightarrow{u} q_{f} \stackrel{v}{\longrightarrow} q$ for some $q_{f} \in F$ and $u \cdot v=w$

Complementation of NBAs (II)

夫 define $p \xrightarrow{w}{ }_{\text {fin }} q: \Leftrightarrow p \xrightarrow{u} q_{f} \xrightarrow{v} q$ for some $q_{f} \in F$ and $u \cdot v=w$
$\star u \sim v: \Leftrightarrow \forall p . q \in Q .(p \xrightarrow{u} q \Longleftrightarrow p \xrightarrow{v} q)$ and $\left(p \xrightarrow{u}_{\text {fin }} q \Longleftrightarrow p \stackrel{v}{\longrightarrow}_{\text {fin }} q\right)$ defines an equivalence on Σ^{*}
\star if $u \sim v$ then u and v are "indistinguishable" by the considered NBA

Lemma

For every $w \in \Sigma^{*},[w]_{\sim}$ is regular.

Complementation of NBAs (II)

\star define $p \xrightarrow{w}$ fin $q: \Leftrightarrow p \xrightarrow{u} q_{f} \xrightarrow{v} q$ for some $q_{f} \in F$ and $u \cdot v=w$
$\star u \sim v: \Leftrightarrow \forall p . q \in Q .(p \xrightarrow{u} q \Longleftrightarrow p \xrightarrow{v} q)$ and $\left(p \stackrel{u}{\longrightarrow}_{\text {fin }} q \Longleftrightarrow p \stackrel{v}{\longrightarrow}_{\text {fin }} q\right)$ defines an equivalence on Σ^{*}

* if $u \sim v$ then u and v are "indistinguishable" by the considered NBA

Lemma

For every $w \in \Sigma^{*},[w]_{\sim}$ is regular.
Proof Outline.
Reformulating the definition, $[w]_{\sim}=\left(\bigcap_{p \xrightarrow{w} q}\{u \mid p \xrightarrow{u} q\}\right) \cap\left(\bigcap_{p}{ }^{w}\right.$ fin $q u \mid p \xrightarrow{u}\{u$ fin $\left.q\}\right)$

Complementation of NBAs (II)

\star define $p \xrightarrow{w}$ fin $q: \Leftrightarrow p \xrightarrow{u} q_{f} \xrightarrow{v} q$ for some $q_{f} \in F$ and $u \cdot v=w$
$\star u \sim v: \Leftrightarrow \forall p . q \in Q .(p \xrightarrow{u} q \Longleftrightarrow p \xrightarrow{v} q)$ and $\left(p \xrightarrow{u}_{\text {fin }} q \Longleftrightarrow p \stackrel{v}{\longrightarrow}_{\text {fin }} q\right)$ defines an equivalence on Σ^{*}
\star if $u \sim v$ then u and v are "indistinguishable" by the considered NBA

Lemma

For every $w \in \Sigma^{*},[w]_{\sim}$ is regular.
Proof Outline.
Reformulating the definition, $[w]_{\sim}=\left(\bigcap_{p \xrightarrow{w} q}\{u \mid p \xrightarrow{u} q\}\right) \cap\left(\bigcap_{p}{ }^{w}{ }_{\text {fin }}\{u \mid p \xrightarrow{u}\right.$ fin $\left.q\}\right)$

Lemma

The set of equivalence classes $\Sigma^{*} / \sim=\left\{[w]_{\sim} \mid w \in \Sigma^{*}\right\}$ is finite.

Complementation of NBAs (II)

夫 define $p \xrightarrow{w}{ }_{\text {fin }} q: \Leftrightarrow p \xrightarrow{u} q_{f} \xrightarrow{v} q$ for some $q_{f} \in F$ and $u \cdot v=w$
$\star u \sim v: \Leftrightarrow \forall p . q \in Q .(p \xrightarrow{u} q \Longleftrightarrow p \xrightarrow{v} q)$ and $\left(p \xrightarrow{u}_{\text {fin }} q \Longleftrightarrow p \stackrel{v}{\longrightarrow}_{\text {fin }} q\right)$ defines an equivalence on Σ^{*}
\star if $u \sim v$ then u and v are "indistinguishable" by the considered NBA

Lemma

For every $w \in \Sigma^{*},[w]_{\sim}$ is regular.
Proof Outline.
Reformulating the definition, $[w]_{\sim}=\left(\bigcap_{p \xrightarrow{w} q}\{u \mid p \xrightarrow{u} q\}\right) \cap\left(\bigcap_{p}{ }^{w}{ }_{\text {fin }}\{u \mid p \xrightarrow{u}\right.$ fin $\left.q\}\right)$

Lemma

The set of equivalence classes $\Sigma^{*} / \sim=\left\{[w]_{\sim} \mid w \in \Sigma^{*}\right\}$ is finite.

Proof Outline.

Every class $[w]_{\sim}$ is described through two sets of state-pairs (at most $\mathrm{O}\left(2^{2 n^{2}}\right)$ many)

Complementation of NBAs (III)

Lemma

1. For any two $U, V \in \Sigma^{*} / \sim$, either (i) $U \cdot V^{\omega} \subseteq \mathrm{L}(\mathcal{A})$ or (ii) $U \cdot V^{\omega} \subseteq \overline{\mathrm{L}(\mathcal{A})}$.
2. $\Sigma^{\omega}=\bigcup_{U, V \in \Sigma^{*} / \sim} U \cdot V^{\omega}$.

Complementation of NBAs (III)

Lemma

1. For any two $U, V \in \Sigma^{*} / \sim$, either (i) $U \cdot V^{\omega} \subseteq \mathrm{L}(\mathcal{A})$ or (ii) $U \cdot V^{\omega} \subseteq \overline{\mathrm{L}(\mathcal{A})}$.
2. $\Sigma^{\omega}=\bigcup_{U, V \in \Sigma^{*} / \sim} U \cdot V^{\omega}$.

Theorem
For any NBA \mathcal{A}, there is an NBA \mathcal{B} such that $\mathrm{L}(\mathcal{B})=\overline{\mathrm{L}(\mathcal{A})}$.

Complementation of NBAs (III)

Lemma

1. For any two $U, V \in \Sigma^{*} / \sim$, either (i) $U \cdot V^{\omega} \subseteq \mathrm{L}(\mathcal{A})$ or (ii) $U \cdot V^{\omega} \subseteq \overline{\mathrm{L}(\mathcal{A})}$.
2. $\Sigma^{\omega}=\bigcup_{U, V \in \Sigma^{*} / \sim} U \cdot V^{\omega}$.

Theorem

For any NBA \mathcal{A}, there is an NBA \mathcal{B} such that $\mathrm{L}(\mathcal{B})=\overline{\mathrm{L}(\mathcal{A})}$.
Proof Outline.

* the auxiliary lemmas yield that

$$
\overline{\mathrm{L}(\mathcal{A})}=\bigcup\left\{U \cdot V^{\omega} \mid U, V \in \Sigma^{*} / \sim, U \cdot V^{\omega} \cap \mathrm{L}(\mathcal{A})=\varnothing\right\}
$$

\star as $U, V \in \Sigma^{*} / \sim$ is regular, $\overline{\mathrm{L}(\mathcal{A})}$ language is regular, and thus described by an NBA

Complementation of NBAs (III)

Lemma

1. For any two $U, V \in \Sigma^{*} / \sim$, either (i) $U \cdot V^{\omega} \subseteq \mathrm{L}(\mathcal{A})$ or (ii) $U \cdot V^{\omega} \subseteq \overline{\mathrm{L}(\mathcal{A})}$.
2. $\Sigma^{\omega}=\bigcup_{U, V \in \Sigma^{*} / \sim} U \cdot V^{\omega}$.

Theorem

For any $N B A \mathcal{A}$, there is an $N B A \mathcal{B}$ such that $\mathrm{L}(\mathcal{B})=\overline{\mathrm{L}(\mathcal{A})}$.

Proof Outline.

* the auxiliary lemmas yield that

$$
\overline{\mathrm{L}(\mathcal{A})}=\bigcup\left\{U \cdot V^{\omega} \mid U, V \in \Sigma^{*} / \sim, U \cdot V^{\omega} \cap \mathrm{L}(\mathcal{A})=\varnothing\right\}
$$

\star as $U, V \in \Sigma^{*} / \sim$ is regular, $\overline{\mathrm{L}(\mathcal{A})}$ language is regular, and thus described by an NBA
Notes
\star the above equation directly yield a recipe for building \mathcal{B}
\star the size of the constructed NBA is proportional to the cardinality of $\Sigma^{*} / \sim\left(O\left(2^{2 n^{2}}\right)\right)$

Monadic Second-Order Logic on Infinite Words

MSO on Infinite Words

* the set of MSO formulas over $\mathcal{V}_{1}, \mathcal{V}_{2}$ coincides with that of weak MSO formulas:

$$
\phi, \psi::=\top|\perp| x<y|X(x)| \phi \vee \psi|\neg \phi| \exists x \cdot \phi \mid \exists X \cdot \phi
$$

\star the satisfiability relation $\alpha \vDash \phi$ is defined equivalently, but allows infinite valuations of second order variables

$$
\alpha \vDash \exists X . \phi \quad: \Leftrightarrow \quad \alpha[x \mapsto M] \vDash \phi \text { for some } M \subseteq \mathbb{N}
$$

MSO on Infinite Words

\star the set of MSO formulas over $\mathcal{V}_{1}, \mathcal{V}_{2}$ coincides with that of weak MSO formulas:

$$
\phi, \psi::=\top|\perp| x<y|X(x)| \phi \vee \psi|\neg \phi| \exists x . \phi \mid \exists X . \phi
$$

\star the satisfiability relation $\alpha \vDash \phi$ is defined equivalently, but allows infinite valuations of second order variables

$$
\alpha \vDash \exists X \cdot \phi \quad: \Leftrightarrow \quad \alpha[x \mapsto M] \vDash \phi \text { for some } M \subseteq \mathbb{N}
$$

Example

$$
\exists X . \forall y \cdot X(y) \leftrightarrow X(y+2)
$$

« not satisfiable in WMSO

* valid in MSO

MSO Decidability

\star consider MSO formula ϕ over $\mathcal{V}_{2}=\left\{X_{1}, \ldots, X_{m}\right\}$ and $\mathcal{V}_{1}=\left\{y_{m+1}, \ldots, y_{m+n}\right\}$
\star as in the case of WMSO, the alphabet Σ_{ϕ} is given by $m+n$ bit-vectors, i.e., $\Sigma_{\phi} \triangleq\{0,1\}^{n+m}$
\star MSO assignment α can be coded as infinite words $\underline{\alpha} \in \Sigma_{\phi}^{\omega}$

- $n \in \alpha\left(X_{i}\right)$ iff the i-th entry in n-th letter of $\underline{\alpha}$ is 1
$-\alpha\left(y_{j}\right)=n$ iff the i-th entry in n-th letter of $\underline{\alpha}$ is 1

MSO Decidability

\star consider MSO formula ϕ over $\mathcal{V}_{2}=\left\{X_{1}, \ldots, X_{m}\right\}$ and $\mathcal{V}_{1}=\left\{y_{m+1}, \ldots, y_{m+n}\right\}$
\star as in the case of WMSO, the alphabet Σ_{ϕ} is given by $m+n$ bit-vectors, i.e., $\Sigma_{\phi} \triangleq\{0,1\}^{n+m}$
\star MSO assignment α can be coded as infinite words $\underline{\alpha} \in \Sigma_{\phi}^{\omega}$

- $n \in \alpha\left(X_{i}\right)$ iff the i-th entry in n-th letter of $\underline{\alpha}$ is 1
- $\alpha\left(y_{j}\right)=n$ iff the i-th entry in n-th letter of $\underline{\alpha}$ is 1
the language $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{\omega}$ of coded valuations making ϕ true is given by:

$$
\hat{\mathrm{L}}(\phi) \triangleq\{\underline{\alpha} \mid \alpha \vDash \phi\}
$$

MSO Decidability

\star consider MSO formula ϕ over $\mathcal{V}_{2}=\left\{X_{1}, \ldots, X_{m}\right\}$ and $\mathcal{V}_{1}=\left\{y_{m+1}, \ldots, y_{m+n}\right\}$
\star as in the case of WMSO, the alphabet Σ_{ϕ} is given by $m+n$ bit-vectors, i.e., $\Sigma_{\phi} \triangleq\{0,1\}^{n+m}$
\star MSO assignment α can be coded as infinite words $\underline{\alpha} \in \Sigma_{\phi}^{\omega}$

- $n \in \alpha\left(X_{i}\right)$ iff the i-th entry in n-th letter of $\underline{\alpha}$ is 1
- $\alpha\left(y_{j}\right)=n$ iff the i-th entry in n-th letter of $\underline{\alpha}$ is 1
the language $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{\omega}$ of coded valuations making ϕ true is given by:

$$
\hat{\mathrm{L}}(\phi) \triangleq\{\underline{\alpha} \mid \alpha \vDash \phi\}
$$

Theorem

For every MSO formula ϕ there exists an NBA \mathcal{A}_{ϕ} s.t. $\hat{\mathrm{L}}(\phi)=\mathrm{L}\left(\mathcal{A}_{\phi}\right)$.

Proof Outline.
construction analoguous to the case of WMSO

