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Last Lecture

⋆ an alternating finite automata (AFA) is a tuple A = (Q, Σ, qI, 𝛿, F) where all components
are identical to an NFA except that

𝛿 ∶ Q × Σ → B+(Q)
⋆ AFAs are more concise but otherwise equi-expressive to NFAs

Theorem

For every AFA A there exist a DFA B with O(22∣A∣) states such that L(A) = L(B).
Corollary

AFAs recognize REG.



Today’s Lecture

⋆ infinite words

⋆ regular languages over infinite words

⋆ Büchi automata

⋆ Monadic Second-Order Logic on Infinite Words



Infinite Words



Infinite Words

⋆ an infinite word over alphabet Σ is an infinite sequence of letters a0a1a2 . . .

⋆ Σ𝜔 denotes the set of infinite words over Σ

Notations
⋆ ∣w∣a denotes the number of occurrences of a ∈ Σ within w ∈ Σ𝜔

– note ∣w∣a may be infinite
– in fact, ∣w∣a =∞ holds for at least one a ∈ Σ

⋆ the left-concatenation of u ∈ Σ∗ and v ∈ Σ𝜔, is denoted by u ⋅ v ∈ Σ𝜔
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Languages over Infinite Words

⋆ a language over infinite words is a set L ⊆ Σ𝜔

Operations on Infinite Languages
⋆ for U ⊆ Σ∗ and V ⊆ Σ𝜔, the left-concatenation of U and V is given by

U ⋅ V ≜ {u ⋅ v ∣ u ∈ U and v ∈ V}
⋆ The complement of V ⊆ Σ𝜔 is given by V ≜ Σ𝜔 \ V

⋆ the 𝜔-iteration of U ⊆ Σ∗ is given by

U𝜔 ≜ {w0 ⋅ w1 ⋅ w2 ⋅ ⋅ ⋅ ⋅ ∣ wi ∈ U and wi /= 𝜖 for all i ∈ N}
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Generalising the Theory of Regular Languages to Infinite Words
Recall…
For a language L ∈ Σ∗, the following are equivalent:
1. L is regular
2. L is recognized by an NFA
3. L is defined through a wMSO formula

Outlook…
For a language L ∈ Σ𝜔, the following are equivalent:
1. L is 𝜔-regular

– defined next
2. L is recognized by a Büchi Automaton

– a finite automaton with a suitable acceptance condition for infinite words
3. L is defined through a MSO formula

– we drop the requirement on finite models present in wMSO
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Regular Languages over Infinite Words



𝜔-Regular Languages

⋆ a language L ⊆ Σ𝜔 is 𝜔-regular (or simply regular) if

L = ⋃
0≤i≤n

Ui ⋅ V𝜔
i

for regular languages Ui,Vi (0 ≤ i ≤ n)
⋆ with 𝜔REG(Σ) we denote the class of 𝜔-regular languages

Lemma
𝜔REG(Σ) is closed under union and left-concatenation with regular languages.

Proof Outline.

⋆ Union is obvious
⋆ concerning left-concatenation U ⋅ L where L is as above

U ⋅ L = U ⋅ ( ⋃
0≤i≤n

Ui ⋅ V𝜔
i ) = ⋃

0≤i≤n
U ⋅ (Ui ⋅ V𝜔

i ) = ⋃
0≤i≤n

(U ⋅ Ui) ⋅ V𝜔
i
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Examples
Let Σ = {a, b, c}
⋆ L1 ≜ {w ∣ ∣w∣a /=∞} is regular

L1 = Σ∗(b ∪ c)𝜔
⋆ L2 ≜ {w ∣ ∣w∣b =∞} is regular L2 = (Σ∗b)𝜔 = 𝜖(Σ∗b)𝜔
⋆ L3 ≜ {w ∣ ∣w∣a /=∞ or ∣w∣b =∞} is regular L2 = L1 ∪ L2

⋆ L4 ≜ {w ∣ ∣w∣a /=∞ and ∣w∣b =∞} is regular L4 = Σ∗(bc∗)𝜔
⋆ L5 ≜ {w𝜔 ∣ w ∈ Σn} is regular L5 = ⋃w∈Σn 𝜖w𝜔
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Büchi Automata
⋆ A non-deterministic (deterministic) Büchi Automaton A, short NBA (DBA), is a tuple(Q, Σ, qI, 𝛿, F) identical to an NFA (DFA)
⋆ a run on w = a1a2a3 . . . is an infinite sequence

𝜌 ∶ qI = q0
a1−→ q1

a2−→ q2
an−→⋯

⋆ run is accepting if Inf(𝜌) ∩ F /= ∅, where
Inf(𝜌) ≜ {q ∈ Q ∣ ∣𝜌∣q =∞}

– a run is accepting if it visits a final state infinitely often
⋆ the language recognised by A is L(A) ≜ {w ∈ Σ𝜔 ∣ w has an accepting run}

Example
a

b

b a

L(A1) =?
b

a,b b

L(A2) =?
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⋆ A non-deterministic (deterministic) Büchi Automaton A, short NBA (DBA), is a tuple(Q, Σ, qI, 𝛿, F) identical to an NFA (DFA)
⋆ a run on w = a1a2a3 . . . is an infinite sequence

𝜌 ∶ qI = q0
a1−→ q1

a2−→ q2
an−→⋯

⋆ run is accepting if Inf(𝜌) ∩ F /= ∅, where
Inf(𝜌) ≜ {q ∈ Q ∣ ∣𝜌∣q =∞}

– a run is accepting if it visits a final state infinitely often
⋆ the language recognised by A is L(A) ≜ {w ∈ Σ𝜔 ∣ w has an accepting run}
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a

b

b a

L(A1) = {w ∈ Σ𝜔 ∣ ∣w∣a =∞}
b

a,b b

L(A2) = {w ∈ Σ𝜔 ∣ ∣w∣a ≠∞}



Non-Determinisation

Theorem
There are NBAs without equivalent DBA.

Proof Outline.

⋆ the NBA A2 with L(A2) = {w ∈ Σ𝜔 ∣ ∣w∣a ≠∞}
⋆ it can be shown that L(A2) is not recognized by a DBA (exercise)
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Closure Properties on NBAs

Theorem
For recognisable U ∈ Σ∗ and V,W ∈ Σ𝜔 the following are recognisable:
1. union V ∪W
2. intersection V ∩W
3. left-concatenation U ⋅ V

4. 𝜔-iteration U𝜔

5. complement V

Proof Outline.

⋆ (1) and (3). Identical to NFA construction

⋆ (2) Similar to NFA case. For Büchi condition, keep additional counter mod 2

𝜌 ∶ (
0
) a1−→⋯(

1
) ai1−→⋯

⎛⎜⎜⎝ 2

⎞⎟⎟⎠ÍÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒ Ï
≜final

ai2−→ (
0
)ai2+1
−→⋯

⋆ (4) exercise
⋆ (5) non-trivial, see next



Closure Properties on NBAs

Theorem
For recognisable U ∈ Σ∗ and V,W ∈ Σ𝜔 the following are recognisable:
1. union V ∪W
2. intersection V ∩W
3. left-concatenation U ⋅ V

4. 𝜔-iteration U𝜔

5. complement V

Proof Outline.

⋆ (1) and (3). Identical to NFA construction
⋆ (2) Similar to NFA case. For Büchi condition, keep additional counter mod 2

𝜌 ∶ (
0
) a1−→⋯(

1
) ai1−→⋯

⎛⎜⎜⎝ 2

⎞⎟⎟⎠ÍÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒ Ï
≜final

ai2−→ (
0
)ai2+1
−→⋯

⋆ (4) exercise
⋆ (5) non-trivial, see next



Closure Properties on NBAs

Theorem
For recognisable U ∈ Σ∗ and V,W ∈ Σ𝜔 the following are recognisable:
1. union V ∪W
2. intersection V ∩W
3. left-concatenation U ⋅ V

4. 𝜔-iteration U𝜔

5. complement V

Proof Outline.

⋆ (1) and (3). Identical to NFA construction
⋆ (2) Similar to NFA case. For Büchi condition, keep additional counter mod 2

𝜌 ∶ (
0
) a1−→⋯(

1
) ai1−→⋯

⎛⎜⎜⎝ 2

⎞⎟⎟⎠ÍÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒ Ï
≜final

ai2−→ (
0
)ai2+1
−→⋯

⋆ (4) exercise
⋆ (5) non-trivial, see next



NBAs Characterise 𝜔REG(Σ)
Theorem
L ∈ 𝜔REG(Σ) if and only if L = L(A) for some NBA A

Proof Outline.

⋆ ⇒: consequence of closure properties

⋆ ⇐:
– for finite word w = a1, . . . , an define

p w
−−→ q ∶⇔ p a1−−→⋯

an−−→ q and Lp,q ≜ {w ∣ p w
−−→ q}

– Lp,q is regular: the sub-automaton of A with initial state p and final state q recognises it
– w ∈ L(A) if and only if a run on w traverses some q ∈ F infinitely often

w ∈ L(A) ⇔ ∃q ∈ F. w = u ⋅ v𝜔 for some u ∈ LqI ,q and v ∈ L𝜔
q,q

– hence
L(A) = ⋃

q∈F
LqI ,q ⋅ L𝜔

q,q ∈ 𝜔REG(Σ)
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Complementation of NBA (I)
even for DBAs, unlike for DFAs, complementation is non-trivial

a b

b

a(a∗b)𝜔
∋ ababa⋯

a b
b

a(b∗a)𝜔
∋ ababa⋯

Idea
⋆ find a finite partition P of Σ∗ of regular languages such that

(i) either U ⋅ V𝜔 ⊆ L(A) or U ⋅ V𝜔 ⊆ L(A) for U,V ∈ P (ii) Σ𝜔 = ⋃
U,V∈P

U ⋅ V𝜔

⋆ hence
L(A) (ii)= ( ⋃

U,V∈P
U ⋅ V𝜔) \ L(A) (i)= ⋃

U, V ∈ P
U ⋅ V𝜔 ∩ L(A) = ∅

U ⋅ V𝜔
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Complementation of NBAs (II)
⋆ define p w

−→fin q ∶⇔ p u
−→ qf

v
−→ q for some qf ∈ F and u ⋅ v = w

⋆ u ∼ v ∶⇔ ∀p.q ∈ Q. (p u
−→ q ⟺ p v

−→ q) and (p u
−→fin q ⟺ p v

−→fin q) defines an
equivalence on Σ∗

⋆ if u ∼ v then u and v are “indistinguishable” by the considered NBA

Lemma
For every w ∈ Σ∗, [w]∼ is regular.

Proof Outline.
Reformulating the definition, [w]∼ = (⋂p

w
−→q{u ∣ p u

−→ q}) ∩ (⋂p
w
−→finq{u ∣ p u

−→fin q})
Lemma
The set of equivalence classes Σ∗/∼ = {[w]∼ ∣ w ∈ Σ∗} is finite.

Proof Outline.
Every class [w]∼ is described through two sets of state-pairs (at most O(22n2) many)
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Complementation of NBAs (III)

Lemma

1. For any two U,V ∈ Σ∗/∼, either (i) U ⋅ V𝜔 ⊆ L(A) or (ii) U ⋅ V𝜔 ⊆ L(A).
2. Σ𝜔 = ⋃U,V∈Σ∗/∼ U ⋅ V𝜔.

Theorem
For any NBA A, there is an NBA B such that L(B) = L(A).
Proof Outline.

⋆ the auxiliary lemmas yield that
L(A) = ⋃{U ⋅ V𝜔 ∣ U,V ∈ Σ∗/∼,U ⋅ V𝜔 ∩ L(A) = ∅}

⋆ as U,V ∈ Σ∗/∼ is regular, L(A) language is regular, and thus described by an NBA

Notes
⋆ the above equation directly yield a recipe for building B

⋆ the size of the constructed NBA is proportional to the cardinality of Σ∗/∼ (O(22n2))
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Monadic Second-Order Logic on Infinite
Words



MSO on Infinite Words

⋆ the set of MSO formulas over V1,V2 coincides with that of weak MSO formulas:

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ x < y ∣ X(x) ∣ 𝜙 ∨ 𝜓 ∣ ¬𝜙 ∣ ∃x.𝜙 ∣ ∃X.𝜙

⋆ the satisfiability relation 𝛼 ⊧ 𝜙 is defined equivalently, but allows infinite valuations of
second order variables

𝛼 ⊧ ∃X.𝜙 ∶⇔ 𝛼[x ↦ M] ⊧ 𝜙 for some M ⊆ N

Example
∃X.∀y.X(y) ↔ X(y + 2)

⋆ not satisfiable in WMSO
⋆ valid in MSO
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MSO Decidability

⋆ consider MSO formula 𝜙 over V2 = {X1, . . . ,Xm} and V1 = {ym+1, . . . , ym+n}
⋆ as in the case of WMSO, the alphabet Σ𝜙 is given by m + n bit-vectors, i.e.,

Σ𝜙 ≜ {0, 1}n+m

⋆ MSO assignment 𝛼 can be coded as infinite words 𝛼 ∈ Σ𝜔
𝜙

– n ∈ 𝛼(Xi) iff the i-th entry in n-th letter of 𝛼 is 1
– 𝛼(yj) = n iff the i-th entry in n-th letter of 𝛼 is 1

the language L̂(𝜙) ⊆ Σ𝜔
𝜙 of coded valuations making 𝜙 true is given by:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}
Theorem
For every MSO formula 𝜙 there exists an NBA A𝜙 s.t. L̂(𝜙) = L(A𝜙).
Proof Outline.
construction analoguous to the case of WMSO
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