Advanced Logic
http://www-sop.inria.fr/members/Martin.Avanzini/teaching /2023 /AL /

Martin Avanzini (martin.avanziniQ@inria.fr)
Etienne Lozes (etienne.lozes@univ-cotedazur.fr)

G20 MASTER
INFORMATIQUE

UNIVERSITE COTE DAZUR ::6%:

2nd Semester M1, 2023

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2023/AL/
martin.avanzini@inria.fr
etienne.lozes@univ-cotedazur.fr

Last Lecture

1. the set of WMSO formulas over V;,), is given by the following grammar:
o, =T | 1 | x<y | X(x) | dNVY | = | dx.¢ | IX.¢

— first-order variables V; range over N and second-order variables), range over finite sets over
N

2. a WMSO formula ¢ over second-order variables {P, | a € X} defines a language

L(¢) ={wez" | wF ¢}

3. WMSO definable languages are regular, and vice verse

2C

4. Satisfiability and validity decidable in 22 the height of this tower essentially depends
on quantifiers; this bound cannot be improved

— in practice, satisfiability/validity often feasible, even for bigger formulas

Today’s Lecture

* Presburger arithmetic

* alternating automata

Presburger Arithmetic

Presburger Arithmetic

* Presburger Arithmetic refers to the first-order theory over (N, {0, +, <})
* named in honor of Mojzesz Presburger, who introduced it in 1929
* formulas in this logic are derivable from the following grammar:
s, tii=0 | X | s+t
=T | L |s=t]|s<t|onw | -v | Ixg

where x is a first-order variable

* valuations map first-order variables to N

Presburger Arithmetic

* Presburger Arithmetic refers to the first-order theory over (N, {0, +, <})
* named in honor of Mojzesz Presburger, who introduced it in 1929
* formulas in this logic are derivable from the following grammar:
s, tii=0 | X | s+t
=T | L |s=t]|s<t|onw | -v | Ixg
where x is a first-order variable

* valuations map first-order variables to N

Applications

Presburger Arithmetic employed — due to the balance between expressiveness and
algorithmic properties — e.g. in automated theorem proving and static program analysis

Examples

s;t=0 | X | s+t

pp=T | L] s=t]|s<t| ony | -v | Ixg¢

* mis even: 7

Examples

s;t=0 | X | s+t

pp=T | L] s=t]|s<t| ony | -v | Ixg¢

* mis even: dn.m = n+ n, or shorthand dn.m=2-n

— generally, multiplication by constant ¢ € N permissible

Examples

s;t=0 | X | s+t

pp=T | L] s=t]|s<t| ony | -v | Ixg¢

* mis even: dn.m = n+ n, or shorthand dn.m=2-n

— generally, multiplication by constant ¢ € N permissible

* m equals 1: 7

Examples

s;t=0 | X | s+t

pp=T | L] s=t]|s<t| ony | -v | Ixg¢

* mis even: dn.m = n+ n, or shorthand dn.m=2-n

— generally, multiplication by constant ¢ € N permissible

* mequals 1: Ynn<m—=n=0

Examples

s;t=0 | X | s+t

pp=T | L] s=t]|s<t| ony | -v | Ixg¢

* mis even: dn.m = n+ n, or shorthand 3n.m=2-n

— generally, multiplication by constant ¢ € N permissible
* mequals 1: Ynnn<m—-n=20

* m=rmodb5: ?

Examples

s;t=0 | X | s+t

pp=T | L] s=t]|s<t| ony | -v | Ixg¢

* mis even: dn.m = n+ n, or shorthand 3n.m=2-n

— generally, multiplication by constant ¢ € N permissible
* mequals 1: Ynnn<m—-n=20

* m=rmodb5: Anr<b5Am=5-n+r

Examples

s;t=0 | X | s+t

pp=T | L] s=t]|s<t| ony | -v | Ixg¢

*

mis even: dn.m = n+ n, or shorthand dn.m=2-n

— generally, multiplication by constant ¢ € N permissible

* mequals 1: Ynn<m—=n=0

* m=rmod5: An.r<5Am=5-n+r

* the system of linear equations
m+n=13
m-n=1

has a solution: ?

Examples

s;t=0 | X | s+t

pp=T | L] s=t]|s<t| ony | -v | Ixg¢

*

mis even: dn.m = n+ n, or shorthand dn.m=2-n

— generally, multiplication by constant ¢ € N permissible

* mequals 1: Ynn<m—=n=0

* m=rmod5: An.r<5Am=5-n+r

* the system of linear equations
m+n=13
m-n=1

has a solution: Am.dAn.m+n=13Am=1+n

A Decision Procedure for Presburger Arithmetic

General Idea
1. encode natural numbers as binary words (Isb-first order)

— assignments @ : V — {0,...,2™} over {xi, ..., x,} become binary matrices a € {0, 1}(™"
a(x;) @
X 13 1\/0\/1\/1
X2 1 1 0
X 3 1)1 /\o)\o

A Decision Procedure for Presburger Arithmetic

General Idea
1. encode natural numbers as binary words (Isb-first order)

— assignments @ : V — {0,...,2™} over {xi, ..., x,} become binary matrices a € {0, 1}(™"
a(x;) @
X 13 1\/0\/1\/1
o 1 1llollollo
X 3 1)1 /\o)\o

2. for formula ¢, define a DFA A recognizing precisely codings a of valuations @ making ¢
become true

Language of a Formula

let us denote by I:(cf)) the language of coded valuations making ¢ true:

L(p) 2 {a|aF ¢}

Language of a Formula

let us denote by L(¢) the language of coded valuations making ¢ true:
L(¢) 2 {a | aF ¢}

Lemma

For any formula ¢ in Presburger Arithmetic, IA_(¢) is regular.

Language of a Formula

let us denote by L(¢) the language of coded valuations making ¢ true:
L(¢) 2 {a | aF ¢}

Lemma

For any formula ¢ in Presburger Arithmetic, IA_(¢) is regular.

Proof Outline.
By induction on the structure of ¢, we construct a DFA A, recognizing E(qﬁ).

Language of a Formula

let us denote by L(¢) the language of coded valuations making ¢ true:
L(¢) 2 {a|aF ¢}

Lemma

For any formula ¢ in Presburger Arithmetic, IA_(¢) is regular.

Proof Outline.
By induction on the structure of ¢, we construct a DFA A, recognizing E(qﬁ).
* ¢ =T, ¢ = L:In these cases IA_(gb) is easily seen to be regular.

* ¢ =(s<t)or¢=(s=1t) A corresponding automaton can be constructed (next slide).

* ¢ = ¢ or ¢ =¥y Ay From the induction hypothesis, using DFA-complementation and
DFA-intersection.

* ¢ = Vxu: Elimination similar to construction for WMSO formulas.

Recognizing s<t

* an inequality s< t can be represented as) ;a;- x; < b where a, b € Z

2:x1<x0+2 = 2-x3—1:-x<2

Recognizing s<t

* an inequality s< t can be represented as) ;a;- x; < b where a, b € Z
2:-x1<x+2 = 2:-xq—1-x<2

* the automaton A; . ; recognizing s< t is defined as follows

— states Q are inequalities of the form () ;a; - x; < d)
Intuition: L((} ;a;-x;<d)) ={a| e E) a-x<d}

Recognizing s<t
* an inequality s< t can be represented as) ;a;- x; < b where a, b € Z
2:x1<x0+2 = 2-x3—1:-x<2

* the automaton A; . ; recognizing s< t is defined as follows

— states Q are inequalities of the form () ;a; - x; < d)
Intuition: L((} ;a;-x;<d)) ={a| e E) a-x<d}

— the initial state g is given by the representation of s< t

Recognizing s<t
* an inequality s< t can be represented as) ;a;- x; < b where a, b € Z

2:x1<x0+2 = 2-x3—1:-x<2

* the automaton A; . ; recognizing s< t is defined as follows
— states Q are inequalities of the form () ;a; - x; < d)
Intuition: L((} ;a;-x;<d)) ={a| e E) a-x<d}
— the initial state g is given by the representation of s< t

— the transition function ¢ is given by

((Z a;- x; < d), (bn))_(z ai-xi< [2(d= Y2 b))

since Y i (bi+2-x)<de= Y, 4 x<— (d=3;ai- b;)

Recognizing s<t
* an inequality s< t can be represented as) ;a;- x; < b where a, b € Z
2:x1<x0+2 = 2-x3—1:-x<2

* the automaton A; . ; recognizing s< t is defined as follows
— states Q are inequalities of the form () ;a; - x; < d)
Intuition: L((} ;a;-x;<d)) ={a| e E) a-x<d}
— the initial state g is given by the representation of s< t

— the transition function ¢ is given by

((Z a;- x; < d), (bn))_(z ai-xi< [2(d= Y2 b))

since Y i (bi+2-x)<de= Y, 4 x<— (d=3;ai- b;)

— final states are all those states) ;a; - x; < d with 0 < d

Recognizing s<t
* an inequality s< t can be represented as) ;a;- x; < b where a, b € Z
2:x1<x0+2 = 2-x3—1:-x<2

* the automaton A; . ; recognizing s< t is defined as follows

states Q are inequalities of the form () ; a; - x; < d)
Intuition: L((} ;a;-x;<d)) ={a| e E) a-x<d}

the initial state g, is given by the representation of s< t

the transition function & is given by

by

5(<z,a,..x,.<d>,())é<z,ai-x,-<[%(d-z,a,~b,->]>

by
since Y, (bi+2-x)<de Y, a+x < %-(d—ziapb,-)

final states are all those states) ;a; - x; < d with 0 < d

* finiteness: from initial state) .a;- x;< d, only) ;a; + d states reachable, hence the
overall construction is finite

Recognizing s=t
* an inequality s=t can be represented as) ;a;- x;= b where a, b € Z
2:x1=x%+2 = 2:-xq—1-x=2

* the automaton A _ ; recognizing s=t is defined as follows

states Q are inequalities of the form () ;a; - x; = d)
Intuition: L((} ;a;-x;=d)) ={a | ¢ E) ;a;-x =d}

the initial state g, is given by the representation of s=t

the transition function & is given by

bl)) & {(Z;a;-x,: %(d_ Yai- b)) ifd—73a;-b;even,

9 (Z,’ai'xi:d>’ : ' .
by, Gtail otherwise.

since Y i (bi+2-x)=d = Z,a,-‘x::%-(d—ziapb,-)

final states are all those states) ;a; - x; = d with 0 = d

* finiteness: from initial state) . a;- x; = d, only) ;a; + d states reachable, hence the
overall construction is finite

Decision Problems for Presburger Arithmetic

The Satisfiability Problem The Validity Problem
* Given: formula ¢ * Given: formula ¢

* Question: is there @ s.t a F ¢? * Question: a F ¢ for all assignments a?

Decision Problems for Presburger Arithmetic

The Satisfiability Problem The Validity Problem

* Given: formula ¢ * Given: formula ¢

* Question: is there @ s.t a F ¢7? * Question: a F ¢ for all assignments a?
Theorem

Satisfiability and Validity are decidable for Presburger Arithmetic.

Theorem

For any formula ¢, the constructed DFA recognizing L(¢) has size O(22n).

Peano Arithmetic

* Peano’s arithmetic is the first-order theory natural integers with vocabulary {+, X, <}

Peano Arithmetic

* Peano’s arithmetic is the first-order theory natural integers with vocabulary {+, X, <}

* its existential fragment corresponds to the Diophantine equations, i.e., polynomial
equations on integers

* Hilbert's 10th problem was to solve Diophantine equations

Peano Arithmetic

* Peano’s arithmetic is the first-order theory natural integers with vocabulary {+, X, <}

* its existential fragment corresponds to the Diophantine equations, i.e., polynomial
equations on integers

* Hilbert's 10th problem was to solve Diophantine equations

* Youri Matiassevitch, drawing on the work of Julia Robinson, demonstrated that this was
an undecidable problem

Skolem Arithmetic

* Skolem's arithmetic is the first order theory of natural integers with the vocabulary

{x.=}

Skolem Arithmetic

* Skolem's arithmetic is the first order theory of natural integers with the vocabulary

{x,=}
* Skolem's arithmetic is also decidable

* proof goes via reduction to tree automata, closely resembling the proof we have just seen
for Presburger’s arithmetic

Alternating Automata

Angelican vs Demonic Non-Determinism

What is a non-deterministic machine (or automaton)?
* a “machine” which admits several executions on the same input

* put otherwise, during processing, several choices are possible

Angelican vs Demonic Non-Determinism

What is a non-deterministic machine (or automaton)?
* a “machine” which admits several executions on the same input

* put otherwise, during processing, several choices are possible

* such choices can be resolved in favor (anglican non-determinism) or against (demonic
non-determinism) a positive outcome (e.g. acceptance, termination, etc)

Angelican vs Demonic Non-Determinism

What is a non-deterministic machine (or automaton)?
* a “machine” which admits several executions on the same input

* put otherwise, during processing, several choices are possible

* such choices can be resolved in favor (anglican non-determinism) or against (demonic
non-determinism) a positive outcome (e.g. acceptance, termination, etc)

— Anglican: an angel resolves choices
= it is sufficient to have one “good” execution path, to have a positive outcome
— Demonic: a demon resolves choices

= all execution paths must be “good"”, to have a positive outcome

Angelican vs Demonic Non-Determinism

What is a non-deterministic machine (or automaton)?
* a “machine” which admits several executions on the same input

* put otherwise, during processing, several choices are possible

* such choices can be resolved in favor (anglican non-determinism) or against (demonic
non-determinism) a positive outcome (e.g. acceptance, termination, etc)

— Anglican: an angel resolves choices

= it is sufficient to have one “good” execution path, to have a positive outcome
— Demonic: a demon resolves choices

= all execution paths must be “good"”, to have a positive outcome

Example

* NFAs are based on anglican non-determinism

* worst-case complexity analysis assumes demonic non-determinism

NFAs with Demonic Choice

* NFAs incorporate angelic non-determinism because, in order for w € L(.A), only one
accepting run of w has to exists

NFAs with Demonic Choice

* NFAs incorporate angelic non-determinism because, in order for w € L(.A), only one
accepting run of w has to exists

* demonic non-determinism introduced by re-formulating the acceptance condition

L (A) £ {w] all runs on w are accepting}

NFAs with Demonic Choice

* NFAs incorporate angelic non-determinism because, in order for w € L(.A), only one
accepting run of w has to exists

* demonic non-determinism introduced by re-formulating the acceptance condition

L (A) £ {w] all runs on w are accepting}

Example
Consider automaton A over ¥ = {a, b}

a a

*x L(A)=2x"

x L (A)=€eux™ b (why?)

Duality of Non-Determinism

* recall that for each NFA A, its dual A is given by complementing final states

* in general, only when A is deterministic, then L(A) = L(.A)

Duality of Non-Determinism

* recall that for each NFA A, its dual A is given by complementing final states

* in general, only when A is deterministic, then L(A) = L(.A)

Proposition

wel(Ad) e wé¢l (A)

Duality of Non-Determinism

* recall that for each NFA A, its dual A is given by complementing final states

* in general, only when A is deterministic, then L(A) = L(.A)

Proposition

wel(Ad) e wé¢l (A)

* regime to resolve non-determinism has no effect on expressiveness of NFAs

* although potentially on the conciseness of the language description through NFAs

Duality of Non-Determinism

* recall that for each NFA A, its dual A is given by complementing final states

* in general, only when A is deterministic, then L(A) = L(.A)

Proposition

wel(Ad) e wé¢l (A)

* regime to resolve non-determinism has no effect on expressiveness of NFAs

* although potentially on the conciseness of the language description through NFAs

what happens if we leave regime internal to the automata?

Alternating Finite Automata

Alternating Finite Automata

* General lIdea: mix Anglican an Demonic choice on the level of individual transitions

§(0,a)=1v?2
5(1,b)=3 A4
5(2,b)=5A6

Alternating Finite Automata

* General lIdea: mix Anglican an Demonic choice on the level of individual transitions

5(0,a)=1v?2
5(1,b)=3 A4
5(2,b)=5A6
L(1)
L(3) L(4)
L(A)=a(b(aub) nb(buc))
Ua(b(aub)nb c)
e -
L(5) L(6)
L(2)
=abb U @

Alternating Finite Automata, Formally

Positive Boolean Formulas

* let A={a,b,...} be a set of atoms

* the positive Boolean formulas B” (A) over atoms A are given by the following grammar:

pvu=al| pnay | ovy

— such formulas are called positive because negation is missing

Alternating Finite Automata, Formally

Positive Boolean Formulas

* let A={a,b,...} be a set of atoms

* the positive Boolean formulas B” (A) over atoms A are given by the following grammar:
pu=al gny [ovy
— such formulas are called positive because negation is missing
* aset M C Ais a model of ¢ if ME ¢ where

MEai=aeM MEpArYy:=MEpand MEYy MEpVYy:=ME@por ME Y

Alternating Finite Automata, Formally

Positive Boolean Formulas

* let A={a,b,...} be a set of atoms

* the positive Boolean formulas IB%+(A) over atoms A are given by the following grammar:
pwu=al oay | vy
— such formulas are called positive because negation is missing
* aset M C Ais a model of ¢ if ME ¢ where
MEa:=aeM ME¢pAy:=MEFEpand MFy MEPVYy:=MEPor ME Y

Example
consider ¢ = a A (bV c), then

{a.b} F ¢ {a.ctF o {a}# ¢ {b.c}i ¢

Alternating Finite Automata, Formally (I1)

an alternating finite automata (AFA) is a tuple A = (Q, X, q;, 6, F) where all components are
identical to an NFA except that
§:Qx2 - B (Q)

Alternating Finite Automata, Formally (I1)

an alternating finite automata (AFA) is a tuple A = (Q, X, q;, 6, F) where all components are

identical to an NFA except that
§:Qx2 - B (Q)

Example

do GV q1 q1 q1
a1 qL G ANG q1
a2 q1 g2 aq1
qL qL qL qL

Runs in an AFA

let A=(Q.,%,q.0d,F) be an AFA

. * .
* an execution foraword w=a;...a, € X" is a tree T,, whose nodes are labeled by states

Q s.t.:

1. the root node of T, is labeled by the initial state g,

2. for all nodes v labeled by g on the ith layer (i=0,...,n— 1) and successors vi, ..., v on
layer i+ 1, labeled by q1, ..., gk, respectively:

{g1....,qk} F6(g.ai41)

Runs in an AFA

let A=(Q.,%,q.0d,F) be an AFA

. * .
* an execution foraword w=a;...a, € X" is a tree T,, whose nodes are labeled by states

Q s.t.:

1. the root node of T, is labeled by the initial state g,

2. for all nodes v labeled by g on the ith layer (i=0,...,n— 1) and successors vi, ..., v on
layer i+ 1, labeled by q1, ..., gk, respectively:

{g1....,qk} F6(g.ai41)

* an execution is accepting if all leafs are labeled by final states

Runs in an AFA

let A=(Q.,%,q.0d,F) be an AFA

* an execution for aword w=a; ...a, € X" is a tree T,, whose nodes are labeled by states
Q s.t.:

1. the root node of T, is labeled by the initial state g,

2. for all nodes v labeled by g on the ith layer (i=0,...,n— 1) and successors vi, ..., v on
layer i+ 1, labeled by q1, ..., gk, respectively:

{a1.....a} Fo(g.ai41)
* an execution is accepting if all leafs are labeled by final states
* the language recognized by A is given by

L(A) 2 {w | there exists an accepting execution T, for w}

Example of Accepting Execution for w = abbc

) a b c
do qoVq qL qL
a1 qL aANgG a1
aqz aL 92 a1
aL air aL aiL

d0

a1

/\

q1 92

/\

a1 az gz

a1 a qi1

Example of Accepting Execution for w = abbc

a1 g2
o a b c / \
do - n qL a @
o i nAG G G GG
a2 qL 92 ef
gL q1 q1 gL

Example of Accepting Execution for w = abbc

1) a b c
d qoV qr qL qL
a2 qL Q2 g1
qL qL qL qL

a1

a1

do

a Q2

a a1

Example of Accepting Execution for w = abbc

1) a b c
d qoV qr qL qL
a2 qL Q2 g1
qL qL qL qL

a1

do

a1

a2

a2

a1 q1

Example of Accepting Execution for w =

) a b c
do qoV g1 g1 g1
a1 qaL aANgG a1
o} qL - a1
aql ql aL aqL

abbc

a1

a1

a1

do

a1

a2

a a1

Example of Accepting Execution for w =

1) a b c

d qoV qr qL qL
di aL q1 N\ go -
a2 qL o -
qL qL qL qL

abbc

qo0

Example of Accepting Execution for w =

0 a b c
do qoV g g1 g1
a1 qaL aANgG a1
aqz aL go a1
ql ql aL aL

abbc

do

a1

/ A\

a1 a2

/ A\

a1 a Q2

w an

o’

o’

[¢]

Extended Transition Function

the extended transition function
§:BY(Q)x=F - BT (Q)
is recursively defined by:

5(q.€) = q S(p v, w)=5(¢,w) vy, w)
5(q.a-w) 25(6(q,a), w) S(p Ay, w) =8(d,w) AS(y, w)

Extended Transition Function

the extended transition function
§:BY(Q)x=F - BT (Q)
is recursively defined by:

5(q.€) = q S(p v, w)=5(¢,w) vy, w)
5(q.a-w) 25(6(q,a), w) S(p Ay, w) =8(d,w) AS(y, w)

Lemma

L(A) = {w| FE 5(q, w)}

Example of Accepting Execution for w = abbc (Il)

1) a b c
9 gV g qL qL
q qL GNgG q1
g2 q1 (o)) g1
qaL ql qL qL

do

|
/ \

q1

/\I

a1 a Q2

a1 a1 qi1

Comparison to NFAs and DFAs

* AFAs generalise NFAs
— every DFA is a NFA is an AFA

Comparison to NFAs and DFAs

* AFAs generalise NFAs
— every DFA is a NFA is an AFA

* AFAs allow often more succinct encoding / automata constructions

Comparison to NFAs and DFAs

* AFAs generalise NFAs
— every DFA is a NFA is an AFA

* AFAs allow often more succinct encoding / automata constructions

Example

* let A = (Q(m), {a},é(m),qsm), F(m)) be an NFA with L(A(m)) ={w| |w| = 0 mod m}
— this NFA has at least m states

Comparison to NFAs and DFAs

* AFAs generalise NFAs
— every DFA is a NFA is an AFA

* AFAs allow often more succinct encoding / automata constructions

Example

* let A = (Q(m), {a},é(m),qsm), F(m)) be an NFA with L(A(m)) ={w| |w| = 0 mod m}
— this NFA has at least m states

* consider the AFA A defined from A(m) for primes m =7,13,17,19 by

Comparison to NFAs and DFAs

* AFAs generalise NFAs
— every DFA is a NFA is an AFA

* AFAs allow often more succinct encoding / automata constructions

Example

* let A = (Q(m), {a},é(m),qsm), F(m)) be an NFA with L(A(m)) ={w| |w| = 0 mod m}
— this NFA has at least m states

* consider the AFA A defined from A(m) for primes m =7,13,17,19 by

— L(A) = {w| |w| = 1 mod 29393} since 29393 = 7 - 13- 17 - 19

Comparison to NFAs and DFAs

* AFAs generalise NFAs
— every DFA is a NFA is an AFA

* AFAs allow often more succinct encoding / automata constructions

Example

* let A = (Q(m), {a},é(m),qsm), F(m)) be an NFA with L(.A(m)) ={w| |w| = 0 mod m}
— this NFA has at least m states

* consider the AFA A defined from A(m) for primes m =7,13,17,19 by

- L(A) = {w] |w| = 1 mod 29393} since 29393 =7-13-17-19
— AFA A has 57 =1+ 7 4+ 13 4+ 17 + 19, whereas a corresponding NFA needs 29393 states

Complementation

* recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFA A there exists an AFA A of equal size such that L(A) = L(A)

Complementation

* recall: NFA-complementation may blow-up automata sizes by an exponential
Lemma

For every AFA A there exists an AFA A of equal size such that L(A) = L(A)

Proof Outline.

* let A=(Q.%,q)0,F)

* define the dual formula ¢ of ¢ € B"(Q) following De Morgans rules

q VU EIAY PAYZVY

— morally, g € Q re-used for their “negation”; we have (i) ME ¢ iff QUM ¥ ¢

A

q

Complementation

* recall: NFA-complementation may blow-up automata sizes by an exponential
Lemma

For every AFA A there exists an AFA A of equal size such that L(A) = L(A)

Proof Outline.

* let A=(Q.%,q)0,F)

* define the dual formula ¢ of ¢ € B"(Q) following De Morgans rules

=q VU EIAY PAYZVY

— morally, g € Q re-used for their “negation”; we have (i) ME ¢ iff QUM ¥ ¢

q

* we now define A 2 (Q,2,6,q;, Q\F) where 6(g,a) 2 6(g,a) forallge Q, a€ =

Complementation

* recall: NFA-complementation may blow-up automata sizes by an exponential
Lemma

For every AFA A there exists an AFA A of equal size such that L(A) = L(A)

Proof Outline.

* let A=(Q.%,q)0,F)

* define the dual formula ¢ of ¢ € B"(Q) following De Morgans rules

2q VU EIAY PAYZVY

— morally, g € Q re-used for their “negation”; we have (i) ME ¢ iff QUM ¥ ¢

q

* we now define 4 2 (Q, 2,0, q,, Q\F) where 6(q,a) 2 6(g,a) forall ge Q, a € X

— by induction on |w]| it can now be shown that (i) 6(q, w) = 6(q, w)

Complementation

* recall: NFA-complementation may blow-up automata sizes by an exponential
Lemma

For every AFA A there exists an AFA A of equal size such that L(A) = L(A)

Proof Outline.

* let A=(Q.%,q)0,F)

* define the dual formula ¢ of ¢ € B"(Q) following De Morgans rules

=q VU EIAY PAYZVY

— morally, g € Q re-used for their “negation”; we have (i) ME ¢ iff QUM ¥ ¢

q

* we now define A 2 (Q,2,6,q;, Q\F) where 6(g,a) 2 6(g,a) forallge Q, a€ =

— by induction on |w]| it can now be shown that (i) 6(q, w) = 6(q, w)
— overall, we have

wEL(A) & FiSgrw) <2 Q\FE (g w) < Q\FE5(qnw) <5 we L(A)

Example

Relationship with Regular Languages

AFAs Recognize REG

Theorem

[Al
For every AFA A there exist a DFA BB with O(2”) states such that L(A) = L(B).

AFAs Recognize REG

Theorem

[Al
For every AFA A there exist a DFA BB with O(2”) states such that L(A) = L(B).

Proof Outline.
let A= (Q, X qi, 0, F)

Idea:
* the states of BB are formulas

* ¢—y in Bif 6(¢,2) =y
— Example: 6(p,a) =gAr and 6(ga)=r = qui»(q/\r)Vr

— arun g =5 -+ = ¢ thus models 6(qpay ...a,) = ¢
* the formula g, is the initial state

* the formulas modeled by F are final

Example

()

the translated DFA

the initial AFA

AFAs Recognize REG

Theorem

[Al
For every AFA A there exist a DFA BB with O(2”) states such that L(A) = L(B).

Proof Outline.
let A= (Q, X qi, 0, F)

Idea:
* the states of BB are formulas

* ¢—y in Bif 6(¢,2) =y
— Example: 6(p,a) =gAr and 6(ga)=r = qui»(q/\r)Vr

— arun g =5 -+ = ¢ thus models 6(qpay ...a,) = ¢

*

the formula g, is the initial state

*

the formulas modeled by F are final

»*

to keep the construction finite, we'll identify equivalent formulas

AFAs Recognize REG

Theorem

[Al
For every AFA A there exist a DFA BB with O(2”) states such that L(A) = L(B).

Proof Outline.

let A=(Q.%,q)0,F)

Formally:

* the equivalence ~ on B (Q) is given by ¢ ~ ¢ if (M| ME ¢} = {M| ME y}
- qg~qvqg~qAgbutgtpvagtpag

AFAs Recognize REG

Theorem

[Al
For every AFA A there exist a DFA BB with O(2”) states such that L(A) = L(B).

Proof Outline.

let A=(Q.%,q)0,F)

Formally:

* the equivalence ~ on B (Q) is given by ¢ ~ ¢ if (M| ME ¢} = {M| ME y}
- g~qVvqg~qgAqgbutqgipvgtpag

* the equivalence class [¢]. can be simply conceived as the formula ¢, with equivalent
formulas ¢ ~ ¢ identified

-[gvql-={9.9vagqnrg...}

AFAs Recognize REG

Theorem

[Al
For every AFA A there exist a DFA BB with O(2”) states such that L(A) = L(B).

Proof Outline.

let A=(Q.%,q)0,F)

Formally:

* the equivalence ~ on B (Q) is given by ¢ ~ ¢ if (M| ME ¢} = {M| ME y}
- qg~qvqg~qAgbutgtpvagtpag

* the equivalence class [¢]. can be simply conceived as the formula ¢, with equivalent
formulas ¢ ~ ¢ identified

-[gvagl-={q.qVvaqnrg...}

L]
* the set of all such equivalence classes B (Q)/~ contains 0(22) elements

AFAs Recognize REG

Theorem

[Al
For every AFA A there exist a DFA BB with O(2”) states such that L(A) = L(B).

Proof Outline.

let A=(Q.%,q)0,F)

Formally:

* the equivalence ~ on B (Q) is given by ¢ ~ ¢ if (M| ME ¢} = {M| ME y}
- qg~qvqg~qAgbutgtpvagtpag

* the equivalence class [¢]. can be simply conceived as the formula ¢, with equivalent
formulas ¢ ~ ¢ identified

-[gvagl-={q.qVvaqnrg...}

L]
* the set of all such equivalence classes B (Q)/~ contains 0(22) elements

. B(é)<B+<o>/~,z, q1.5-. {[6]- | FE ¢}) where 5_([¢]-.a) 2 [6(¢.a)]- recognises
L(A

From AFAs to NFA

Theorem

For every AFA A there exist a NFA B with O(2|A|) states such that L(A) = L(B).

Proof Outline.
*x let A = (Q»quhé’ F)

* idea: models executions, states of the NFA are the levels of the execution tree

— the construction is simpler, at the expense of non-determinism

From AFAs to NFA

Theorem

For every AFA A there exist a NFA B with O(2|A|) states such that L(A) = L(B).

Proof Outline.
*x let A = (Q»quhé’ F)

* idea: models executions, states of the NFA are the levels of the execution tree

— the construction is simpler, at the expense of non-determinism

* the NFA is given by B £ (2%, %, {q;},6',{M | M € F}) where

Nes'(Ma) = NE A d(qa)
qeM

Example (1)

the initial AFA
the translated NFA

