
Advanced Logic
http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2023/AL/

Martin Avanzini (martin.avanzini@inria.fr)
Etienne Lozes (etienne.lozes@univ-cotedazur.fr)

2nd Semester M1, 2023

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2023/AL/
martin.avanzini@inria.fr
etienne.lozes@univ-cotedazur.fr

Last Lecture

1. the set of WMSO formulas over V1,V2 is given by the following grammar:

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ x < y ∣ X(x) ∣ 𝜙 ∨ 𝜓 ∣ ¬𝜙 ∣ ∃x.𝜙 ∣ ∃X.𝜙

– first-order variables V1 range over N and second-order variables V2 range over finite sets over
N

2. a WMSO formula 𝜙 over second-order variables {Pa ∣ a ∈ Σ} defines a language

L(𝜙) ≜ {w ∈ Σ∗ ∣ w ⊧ 𝜙}
3. WMSO definable languages are regular, and vice verse

4. Satisfiability and validity decidable in 22. .
.2

c

, the height of this tower essentially depends
on quantifiers; this bound cannot be improved

– in practice, satisfiability/validity often feasible, even for bigger formulas

Today’s Lecture

⋆ Presburger arithmetic

⋆ alternating automata

Presburger Arithmetic

Presburger Arithmetic

⋆ Presburger Arithmetic refers to the first-order theory over (N, {0,+,<})
⋆ named in honor of Mojżesz Presburger, who introduced it in 1929

⋆ formulas in this logic are derivable from the following grammar:

s, t ∶∶= 0 ∣ x ∣ s + t

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ s = t ∣ s < t ∣ 𝜙 ∧ 𝜓 ∣ ¬𝜓 ∣ ∃x.𝜙

where x is a first-order variable
⋆ valuations map first-order variables to N

Applications
Presburger Arithmetic employed — due to the balance between expressiveness and
algorithmic properties — e.g. in automated theorem proving and static program analysis

Presburger Arithmetic

⋆ Presburger Arithmetic refers to the first-order theory over (N, {0,+,<})
⋆ named in honor of Mojżesz Presburger, who introduced it in 1929

⋆ formulas in this logic are derivable from the following grammar:

s, t ∶∶= 0 ∣ x ∣ s + t

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ s = t ∣ s < t ∣ 𝜙 ∧ 𝜓 ∣ ¬𝜓 ∣ ∃x.𝜙

where x is a first-order variable
⋆ valuations map first-order variables to N

Applications
Presburger Arithmetic employed — due to the balance between expressiveness and
algorithmic properties — e.g. in automated theorem proving and static program analysis

Examples

s, t ∶∶= 0 ∣ x ∣ s + t

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ s = t ∣ s < t ∣ 𝜙 ∧ 𝜓 ∣ ¬𝜓 ∣ ∃x.𝜙

⋆ m is even: ?

– generally, multiplication by constant c ∈ N permissible

⋆ m equals 1: ?

⋆ m = r mod 5: ?

⋆ the system of linear equations

m + n = 13
m − n = 1

has a solution: ?

Examples

s, t ∶∶= 0 ∣ x ∣ s + t

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ s = t ∣ s < t ∣ 𝜙 ∧ 𝜓 ∣ ¬𝜓 ∣ ∃x.𝜙

⋆ m is even: ∃n.m = n + n, or shorthand ∃n.m = 2 ⋅ n
– generally, multiplication by constant c ∈ N permissible

⋆ m equals 1: ?

⋆ m = r mod 5: ?

⋆ the system of linear equations

m + n = 13
m − n = 1

has a solution: ?

Examples

s, t ∶∶= 0 ∣ x ∣ s + t

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ s = t ∣ s < t ∣ 𝜙 ∧ 𝜓 ∣ ¬𝜓 ∣ ∃x.𝜙

⋆ m is even: ∃n.m = n + n, or shorthand ∃n.m = 2 ⋅ n
– generally, multiplication by constant c ∈ N permissible

⋆ m equals 1: ?

⋆ m = r mod 5: ?

⋆ the system of linear equations

m + n = 13
m − n = 1

has a solution: ?

Examples

s, t ∶∶= 0 ∣ x ∣ s + t

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ s = t ∣ s < t ∣ 𝜙 ∧ 𝜓 ∣ ¬𝜓 ∣ ∃x.𝜙

⋆ m is even: ∃n.m = n + n, or shorthand ∃n.m = 2 ⋅ n
– generally, multiplication by constant c ∈ N permissible

⋆ m equals 1: ∀n.n < m → n = 0

⋆ m = r mod 5: ?

⋆ the system of linear equations

m + n = 13
m − n = 1

has a solution: ?

Examples

s, t ∶∶= 0 ∣ x ∣ s + t

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ s = t ∣ s < t ∣ 𝜙 ∧ 𝜓 ∣ ¬𝜓 ∣ ∃x.𝜙

⋆ m is even: ∃n.m = n + n, or shorthand ∃n.m = 2 ⋅ n
– generally, multiplication by constant c ∈ N permissible

⋆ m equals 1: ∀n.n < m → n = 0

⋆ m = r mod 5: ?

⋆ the system of linear equations

m + n = 13
m − n = 1

has a solution: ?

Examples

s, t ∶∶= 0 ∣ x ∣ s + t

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ s = t ∣ s < t ∣ 𝜙 ∧ 𝜓 ∣ ¬𝜓 ∣ ∃x.𝜙

⋆ m is even: ∃n.m = n + n, or shorthand ∃n.m = 2 ⋅ n
– generally, multiplication by constant c ∈ N permissible

⋆ m equals 1: ∀n.n < m → n = 0

⋆ m = r mod 5: ∃n.r < 5 ∧m = 5 ⋅ n + r

⋆ the system of linear equations

m + n = 13
m − n = 1

has a solution: ?

Examples

s, t ∶∶= 0 ∣ x ∣ s + t

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ s = t ∣ s < t ∣ 𝜙 ∧ 𝜓 ∣ ¬𝜓 ∣ ∃x.𝜙

⋆ m is even: ∃n.m = n + n, or shorthand ∃n.m = 2 ⋅ n
– generally, multiplication by constant c ∈ N permissible

⋆ m equals 1: ∀n.n < m → n = 0

⋆ m = r mod 5: ∃n.r < 5 ∧m = 5 ⋅ n + r

⋆ the system of linear equations

m + n = 13
m − n = 1

has a solution: ?

Examples

s, t ∶∶= 0 ∣ x ∣ s + t

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ s = t ∣ s < t ∣ 𝜙 ∧ 𝜓 ∣ ¬𝜓 ∣ ∃x.𝜙

⋆ m is even: ∃n.m = n + n, or shorthand ∃n.m = 2 ⋅ n
– generally, multiplication by constant c ∈ N permissible

⋆ m equals 1: ∀n.n < m → n = 0

⋆ m = r mod 5: ∃n.r < 5 ∧m = 5 ⋅ n + r

⋆ the system of linear equations

m + n = 13
m − n = 1

has a solution: ∃m.∃n.m + n = 13 ∧m = 1 + n

A Decision Procedure for Presburger Arithmetic
General Idea
1. encode natural numbers as binary words (lsb-first order)

– assignments 𝛼 ∶ V → {0, . . . , 2m} over {x1, . . . , xn} become binary matrices 𝛼 ∈ {0, 1}(m,n)
𝛼(xi) 𝛼

x1
x2
x3

13
1
3

⎛⎜⎜⎝ 1
1
1

⎞⎟⎟⎠⎛⎜⎜⎝ 0
0
1

⎞⎟⎟⎠⎛⎜⎜⎝ 1
0
0

⎞⎟⎟⎠⎛⎜⎜⎝ 1
0
0

⎞⎟⎟⎠

2. for formula 𝜙, define a DFA A𝜙 recognizing precisely codings 𝛼 of valuations 𝛼 making 𝜙
become true

A Decision Procedure for Presburger Arithmetic
General Idea
1. encode natural numbers as binary words (lsb-first order)

– assignments 𝛼 ∶ V → {0, . . . , 2m} over {x1, . . . , xn} become binary matrices 𝛼 ∈ {0, 1}(m,n)
𝛼(xi) 𝛼

x1
x2
x3

13
1
3

⎛⎜⎜⎝ 1
1
1

⎞⎟⎟⎠⎛⎜⎜⎝ 0
0
1

⎞⎟⎟⎠⎛⎜⎜⎝ 1
0
0

⎞⎟⎟⎠⎛⎜⎜⎝ 1
0
0

⎞⎟⎟⎠
2. for formula 𝜙, define a DFA A𝜙 recognizing precisely codings 𝛼 of valuations 𝛼 making 𝜙

become true

Language of a Formula
let us denote by L̂(𝜙) the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}

Lemma
For any formula 𝜙 in Presburger Arithmetic, L̂(𝜙) is regular.

Proof Outline.
By induction on the structure of 𝜙, we construct a DFA A𝜙 recognizing L̂(𝜙).
⋆ 𝜙 = ⊤, 𝜙 = ⊥: In these cases L̂(𝜙) is easily seen to be regular.
⋆ 𝜙 = (s < t) or 𝜙 = (s = t): A corresponding automaton can be constructed (next slide).
⋆ 𝜙 = ¬𝜙 or 𝜙 = 𝜓1 ∧ 𝜓2 From the induction hypothesis, using DFA-complementation and

DFA-intersection.
⋆ 𝜙 = ∀x.𝜓: Elimination similar to construction for WMSO formulas.

Language of a Formula
let us denote by L̂(𝜙) the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}
Lemma
For any formula 𝜙 in Presburger Arithmetic, L̂(𝜙) is regular.

Proof Outline.
By induction on the structure of 𝜙, we construct a DFA A𝜙 recognizing L̂(𝜙).
⋆ 𝜙 = ⊤, 𝜙 = ⊥: In these cases L̂(𝜙) is easily seen to be regular.
⋆ 𝜙 = (s < t) or 𝜙 = (s = t): A corresponding automaton can be constructed (next slide).
⋆ 𝜙 = ¬𝜙 or 𝜙 = 𝜓1 ∧ 𝜓2 From the induction hypothesis, using DFA-complementation and

DFA-intersection.
⋆ 𝜙 = ∀x.𝜓: Elimination similar to construction for WMSO formulas.

Language of a Formula
let us denote by L̂(𝜙) the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}
Lemma
For any formula 𝜙 in Presburger Arithmetic, L̂(𝜙) is regular.

Proof Outline.
By induction on the structure of 𝜙, we construct a DFA A𝜙 recognizing L̂(𝜙).

⋆ 𝜙 = ⊤, 𝜙 = ⊥: In these cases L̂(𝜙) is easily seen to be regular.
⋆ 𝜙 = (s < t) or 𝜙 = (s = t): A corresponding automaton can be constructed (next slide).
⋆ 𝜙 = ¬𝜙 or 𝜙 = 𝜓1 ∧ 𝜓2 From the induction hypothesis, using DFA-complementation and

DFA-intersection.
⋆ 𝜙 = ∀x.𝜓: Elimination similar to construction for WMSO formulas.

Language of a Formula
let us denote by L̂(𝜙) the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}
Lemma
For any formula 𝜙 in Presburger Arithmetic, L̂(𝜙) is regular.

Proof Outline.
By induction on the structure of 𝜙, we construct a DFA A𝜙 recognizing L̂(𝜙).
⋆ 𝜙 = ⊤, 𝜙 = ⊥: In these cases L̂(𝜙) is easily seen to be regular.
⋆ 𝜙 = (s < t) or 𝜙 = (s = t): A corresponding automaton can be constructed (next slide).
⋆ 𝜙 = ¬𝜙 or 𝜙 = 𝜓1 ∧ 𝜓2 From the induction hypothesis, using DFA-complementation and

DFA-intersection.
⋆ 𝜙 = ∀x.𝜓: Elimination similar to construction for WMSO formulas.

Recognizing s<t
⋆ an inequality s< t can be represented as ∑i ai ⋅ xi < b where ai, b ∈ Z

2 ⋅ x1 < x2 + 2 ⟹ 2 ⋅ x1 − 1 ⋅ x2 < 2

⋆ the automaton As < t recognizing s< t is defined as follows
– states Q are inequalities of the form ⟨∑i ai ⋅ xi < d⟩

plus trap-state qfail

Intuition: L(⟨∑i ai ⋅ xi < d⟩) = {𝛼 ∣ 𝛼 ⊧ ∑i ai ⋅ xi < d}
– the initial state qI is given by the representation of s < t
– the transition function 𝛿 is given by

𝛿 (⟨∑i ai ⋅ xi < d⟩, (b1
⋮

bn
)) ≜ ⟨∑i ai ⋅ xi < ⌈ 1

2 (d −∑i ai ⋅ bi)⌉⟩
,since ∑i ai ⋅ (bi + 2 ⋅ x′i) < d ⇔ ∑i ai ⋅ x′i < 1

2 ⋅ (d −∑i ai ⋅ bi)
– final states are all those states ∑i ai ⋅ xi < d with 0 < d

⋆ finiteness: from initial state ∑i ai ⋅ xi < d, only ∑i ai + d states reachable, hence the
overall construction is finite

Recognizing s<t
⋆ an inequality s< t can be represented as ∑i ai ⋅ xi < b where ai, b ∈ Z

2 ⋅ x1 < x2 + 2 ⟹ 2 ⋅ x1 − 1 ⋅ x2 < 2

⋆ the automaton As < t recognizing s< t is defined as follows
– states Q are inequalities of the form ⟨∑i ai ⋅ xi < d⟩

plus trap-state qfail

Intuition: L(⟨∑i ai ⋅ xi < d⟩) = {𝛼 ∣ 𝛼 ⊧ ∑i ai ⋅ xi < d}

– the initial state qI is given by the representation of s < t
– the transition function 𝛿 is given by

𝛿 (⟨∑i ai ⋅ xi < d⟩, (b1
⋮

bn
)) ≜ ⟨∑i ai ⋅ xi < ⌈ 1

2 (d −∑i ai ⋅ bi)⌉⟩
,since ∑i ai ⋅ (bi + 2 ⋅ x′i) < d ⇔ ∑i ai ⋅ x′i < 1

2 ⋅ (d −∑i ai ⋅ bi)
– final states are all those states ∑i ai ⋅ xi < d with 0 < d

⋆ finiteness: from initial state ∑i ai ⋅ xi < d, only ∑i ai + d states reachable, hence the
overall construction is finite

Recognizing s<t
⋆ an inequality s< t can be represented as ∑i ai ⋅ xi < b where ai, b ∈ Z

2 ⋅ x1 < x2 + 2 ⟹ 2 ⋅ x1 − 1 ⋅ x2 < 2

⋆ the automaton As < t recognizing s< t is defined as follows
– states Q are inequalities of the form ⟨∑i ai ⋅ xi < d⟩

plus trap-state qfail

Intuition: L(⟨∑i ai ⋅ xi < d⟩) = {𝛼 ∣ 𝛼 ⊧ ∑i ai ⋅ xi < d}
– the initial state qI is given by the representation of s < t

– the transition function 𝛿 is given by

𝛿 (⟨∑i ai ⋅ xi < d⟩, (b1
⋮

bn
)) ≜ ⟨∑i ai ⋅ xi < ⌈ 1

2 (d −∑i ai ⋅ bi)⌉⟩
,since ∑i ai ⋅ (bi + 2 ⋅ x′i) < d ⇔ ∑i ai ⋅ x′i < 1

2 ⋅ (d −∑i ai ⋅ bi)
– final states are all those states ∑i ai ⋅ xi < d with 0 < d

⋆ finiteness: from initial state ∑i ai ⋅ xi < d, only ∑i ai + d states reachable, hence the
overall construction is finite

Recognizing s<t
⋆ an inequality s< t can be represented as ∑i ai ⋅ xi < b where ai, b ∈ Z

2 ⋅ x1 < x2 + 2 ⟹ 2 ⋅ x1 − 1 ⋅ x2 < 2

⋆ the automaton As < t recognizing s< t is defined as follows
– states Q are inequalities of the form ⟨∑i ai ⋅ xi < d⟩

plus trap-state qfail

Intuition: L(⟨∑i ai ⋅ xi < d⟩) = {𝛼 ∣ 𝛼 ⊧ ∑i ai ⋅ xi < d}
– the initial state qI is given by the representation of s < t
– the transition function 𝛿 is given by

𝛿 (⟨∑i ai ⋅ xi < d⟩, (b1
⋮

bn
)) ≜ ⟨∑i ai ⋅ xi < ⌈ 1

2 (d −∑i ai ⋅ bi)⌉⟩
,since ∑i ai ⋅ (bi + 2 ⋅ x′i) < d ⇔ ∑i ai ⋅ x′i < 1

2 ⋅ (d −∑i ai ⋅ bi)

– final states are all those states ∑i ai ⋅ xi < d with 0 < d

⋆ finiteness: from initial state ∑i ai ⋅ xi < d, only ∑i ai + d states reachable, hence the
overall construction is finite

Recognizing s<t
⋆ an inequality s< t can be represented as ∑i ai ⋅ xi < b where ai, b ∈ Z

2 ⋅ x1 < x2 + 2 ⟹ 2 ⋅ x1 − 1 ⋅ x2 < 2

⋆ the automaton As < t recognizing s< t is defined as follows
– states Q are inequalities of the form ⟨∑i ai ⋅ xi < d⟩

plus trap-state qfail

Intuition: L(⟨∑i ai ⋅ xi < d⟩) = {𝛼 ∣ 𝛼 ⊧ ∑i ai ⋅ xi < d}
– the initial state qI is given by the representation of s < t
– the transition function 𝛿 is given by

𝛿 (⟨∑i ai ⋅ xi < d⟩, (b1
⋮

bn
)) ≜ ⟨∑i ai ⋅ xi < ⌈ 1

2 (d −∑i ai ⋅ bi)⌉⟩
,since ∑i ai ⋅ (bi + 2 ⋅ x′i) < d ⇔ ∑i ai ⋅ x′i < 1

2 ⋅ (d −∑i ai ⋅ bi)
– final states are all those states ∑i ai ⋅ xi < d with 0 < d

⋆ finiteness: from initial state ∑i ai ⋅ xi < d, only ∑i ai + d states reachable, hence the
overall construction is finite

Recognizing s<t
⋆ an inequality s< t can be represented as ∑i ai ⋅ xi < b where ai, b ∈ Z

2 ⋅ x1 < x2 + 2 ⟹ 2 ⋅ x1 − 1 ⋅ x2 < 2

⋆ the automaton As < t recognizing s< t is defined as follows
– states Q are inequalities of the form ⟨∑i ai ⋅ xi < d⟩

plus trap-state qfail

Intuition: L(⟨∑i ai ⋅ xi < d⟩) = {𝛼 ∣ 𝛼 ⊧ ∑i ai ⋅ xi < d}
– the initial state qI is given by the representation of s < t
– the transition function 𝛿 is given by

𝛿 (⟨∑i ai ⋅ xi < d⟩, (b1
⋮

bn
)) ≜ ⟨∑i ai ⋅ xi < ⌈ 1

2 (d −∑i ai ⋅ bi)⌉⟩
,since ∑i ai ⋅ (bi + 2 ⋅ x′i) < d ⇔ ∑i ai ⋅ x′i < 1

2 ⋅ (d −∑i ai ⋅ bi)
– final states are all those states ∑i ai ⋅ xi < d with 0 < d

⋆ finiteness: from initial state ∑i ai ⋅ xi < d, only ∑i ai + d states reachable, hence the
overall construction is finite

Recognizing s=t
⋆ an inequality s= t can be represented as ∑i ai ⋅ xi = b where ai, b ∈ Z

2 ⋅ x1 = x2 + 2 ⟹ 2 ⋅ x1 − 1 ⋅ x2 = 2

⋆ the automaton As = t recognizing s= t is defined as follows
– states Q are inequalities of the form ⟨∑i ai ⋅ xi = d⟩

plus trap-state qfail

Intuition: L(⟨∑i ai ⋅ xi = d⟩) = {𝛼 ∣ 𝛼 ⊧ ∑i ai ⋅ xi = d}
– the initial state qI is given by the representation of s = t
– the transition function 𝛿 is given by

𝛿 (⟨∑i ai ⋅ xi = d⟩, (b1
⋮

bn
)) ≜ {⟨∑i ai ⋅ xi = 1

2 (d −∑i ai ⋅ bi)⟩ if d −∑i ai ⋅ bi even,
qfail otherwise.

,since ∑i ai ⋅ (bi + 2 ⋅ x′i) = d ⇔ ∑i ai ⋅ x′i = 1
2 ⋅ (d −∑i ai ⋅ bi)

– final states are all those states ∑i ai ⋅ xi = d with 0 = d

⋆ finiteness: from initial state ∑i ai ⋅ xi = d, only ∑i ai + d states reachable, hence the
overall construction is finite

Decision Problems for Presburger Arithmetic
The Satisfiability Problem
⋆ Given: formula 𝜙

⋆ Question: is there 𝛼 s.t 𝛼 ⊧ 𝜙?

The Validity Problem
⋆ Given: formula 𝜙

⋆ Question: 𝛼 ⊧ 𝜙 for all assignments 𝛼?

Theorem
Satisfiability and Validity are decidable for Presburger Arithmetic.

Theorem
For any formula 𝜙, the constructed DFA recognizing L̂(𝜙) has size O(22n).

Decision Problems for Presburger Arithmetic
The Satisfiability Problem
⋆ Given: formula 𝜙

⋆ Question: is there 𝛼 s.t 𝛼 ⊧ 𝜙?

The Validity Problem
⋆ Given: formula 𝜙

⋆ Question: 𝛼 ⊧ 𝜙 for all assignments 𝛼?

Theorem
Satisfiability and Validity are decidable for Presburger Arithmetic.

Theorem
For any formula 𝜙, the constructed DFA recognizing L̂(𝜙) has size O(22n).

Peano Arithmetic

⋆ Peano’s arithmetic is the first-order theory natural integers with vocabulary {+,×,<}

⋆ its existential fragment corresponds to the Diophantine equations, i.e., polynomial
equations on integers

⋆ Hilbert’s 10th problem was to solve Diophantine equations

⋆ Youri Matiassevitch, drawing on the work of Julia Robinson, demonstrated that this was
an undecidable problem

Peano Arithmetic

⋆ Peano’s arithmetic is the first-order theory natural integers with vocabulary {+,×,<}
⋆ its existential fragment corresponds to the Diophantine equations, i.e., polynomial

equations on integers

⋆ Hilbert’s 10th problem was to solve Diophantine equations

⋆ Youri Matiassevitch, drawing on the work of Julia Robinson, demonstrated that this was
an undecidable problem

Peano Arithmetic

⋆ Peano’s arithmetic is the first-order theory natural integers with vocabulary {+,×,<}
⋆ its existential fragment corresponds to the Diophantine equations, i.e., polynomial

equations on integers

⋆ Hilbert’s 10th problem was to solve Diophantine equations

⋆ Youri Matiassevitch, drawing on the work of Julia Robinson, demonstrated that this was
an undecidable problem

Skolem Arithmetic

⋆ Skolem’s arithmetic is the first order theory of natural integers with the vocabulary{×,=}

⋆ Skolem’s arithmetic is also decidable

⋆ proof goes via reduction to tree automata, closely resembling the proof we have just seen
for Presburger’s arithmetic

Skolem Arithmetic

⋆ Skolem’s arithmetic is the first order theory of natural integers with the vocabulary{×,=}
⋆ Skolem’s arithmetic is also decidable

⋆ proof goes via reduction to tree automata, closely resembling the proof we have just seen
for Presburger’s arithmetic

Alternating Automata

Angelican vs Demonic Non-Determinism
What is a non-deterministic machine (or automaton)?

⋆ a “machine” which admits several executions on the same input

⋆ put otherwise, during processing, several choices are possible

⋆ such choices can be resolved in favor (anglican non-determinism) or against (demonic
non-determinism) a positive outcome (e.g. acceptance, termination, etc)

– Anglican: an angel resolves choices
⇒ it is sufficient to have one “good” execution path, to have a positive outcome

– Demonic: a demon resolves choices
⇒ all execution paths must be “good”, to have a positive outcome

Example
⋆ NFAs are based on anglican non-determinism
⋆ worst-case complexity analysis assumes demonic non-determinism

Angelican vs Demonic Non-Determinism
What is a non-deterministic machine (or automaton)?

⋆ a “machine” which admits several executions on the same input

⋆ put otherwise, during processing, several choices are possible

⋆ such choices can be resolved in favor (anglican non-determinism) or against (demonic
non-determinism) a positive outcome (e.g. acceptance, termination, etc)

– Anglican: an angel resolves choices
⇒ it is sufficient to have one “good” execution path, to have a positive outcome

– Demonic: a demon resolves choices
⇒ all execution paths must be “good”, to have a positive outcome

Example
⋆ NFAs are based on anglican non-determinism
⋆ worst-case complexity analysis assumes demonic non-determinism

Angelican vs Demonic Non-Determinism
What is a non-deterministic machine (or automaton)?

⋆ a “machine” which admits several executions on the same input

⋆ put otherwise, during processing, several choices are possible

⋆ such choices can be resolved in favor (anglican non-determinism) or against (demonic
non-determinism) a positive outcome (e.g. acceptance, termination, etc)

– Anglican: an angel resolves choices
⇒ it is sufficient to have one “good” execution path, to have a positive outcome

– Demonic: a demon resolves choices
⇒ all execution paths must be “good”, to have a positive outcome

Example
⋆ NFAs are based on anglican non-determinism
⋆ worst-case complexity analysis assumes demonic non-determinism

Angelican vs Demonic Non-Determinism
What is a non-deterministic machine (or automaton)?

⋆ a “machine” which admits several executions on the same input

⋆ put otherwise, during processing, several choices are possible

⋆ such choices can be resolved in favor (anglican non-determinism) or against (demonic
non-determinism) a positive outcome (e.g. acceptance, termination, etc)

– Anglican: an angel resolves choices
⇒ it is sufficient to have one “good” execution path, to have a positive outcome

– Demonic: a demon resolves choices
⇒ all execution paths must be “good”, to have a positive outcome

Example
⋆ NFAs are based on anglican non-determinism
⋆ worst-case complexity analysis assumes demonic non-determinism

NFAs with Demonic Choice

⋆ NFAs incorporate angelic non-determinism because, in order for w ∈ L(A), only one
accepting run of w has to exists

⋆ demonic non-determinism introduced by re-formulating the acceptance condition

L−(A) ≜ {w ∣ all runs on w are accepting}
Example
Consider automaton A over Σ = {a, b}

a

b

a
a

b

⋆ L(A) = Σ∗

⋆ L−(A) = 𝜖 ∪ Σ∗ ⋅ b (why?)

NFAs with Demonic Choice

⋆ NFAs incorporate angelic non-determinism because, in order for w ∈ L(A), only one
accepting run of w has to exists

⋆ demonic non-determinism introduced by re-formulating the acceptance condition

L−(A) ≜ {w ∣ all runs on w are accepting}

Example
Consider automaton A over Σ = {a, b}

a

b

a
a

b

⋆ L(A) = Σ∗

⋆ L−(A) = 𝜖 ∪ Σ∗ ⋅ b (why?)

NFAs with Demonic Choice

⋆ NFAs incorporate angelic non-determinism because, in order for w ∈ L(A), only one
accepting run of w has to exists

⋆ demonic non-determinism introduced by re-formulating the acceptance condition

L−(A) ≜ {w ∣ all runs on w are accepting}
Example
Consider automaton A over Σ = {a, b}

a

b

a
a

b

⋆ L(A) = Σ∗

⋆ L−(A) = 𝜖 ∪ Σ∗ ⋅ b (why?)

Duality of Non-Determinism

⋆ recall that for each NFA A, its dual A is given by complementing final states

⋆ in general, only when A is deterministic, then L(A) = L(A)

Proposition
w ∈ L(A) ⇔ w /∈ L−(A)

⋆ regime to resolve non-determinism has no effect on expressiveness of NFAs

⋆ although potentially on the conciseness of the language description through NFAs

what happens if we leave regime internal to the automata?

Duality of Non-Determinism

⋆ recall that for each NFA A, its dual A is given by complementing final states

⋆ in general, only when A is deterministic, then L(A) = L(A)
Proposition

w ∈ L(A) ⇔ w /∈ L−(A)

⋆ regime to resolve non-determinism has no effect on expressiveness of NFAs

⋆ although potentially on the conciseness of the language description through NFAs

what happens if we leave regime internal to the automata?

Duality of Non-Determinism

⋆ recall that for each NFA A, its dual A is given by complementing final states

⋆ in general, only when A is deterministic, then L(A) = L(A)
Proposition

w ∈ L(A) ⇔ w /∈ L−(A)
⋆ regime to resolve non-determinism has no effect on expressiveness of NFAs

⋆ although potentially on the conciseness of the language description through NFAs

what happens if we leave regime internal to the automata?

Duality of Non-Determinism

⋆ recall that for each NFA A, its dual A is given by complementing final states

⋆ in general, only when A is deterministic, then L(A) = L(A)
Proposition

w ∈ L(A) ⇔ w /∈ L−(A)
⋆ regime to resolve non-determinism has no effect on expressiveness of NFAs

⋆ although potentially on the conciseness of the language description through NFAs

what happens if we leave regime internal to the automata?

Alternating Finite Automata

Alternating Finite Automata

⋆ General Idea: mix Anglican an Demonic choice on the level of individual transitions

0

1

2

3

4

5

6

a, b

b, c

a, b

c

a

a

b

b

b

b

𝛿(0, a)= 1 ∨ 2
𝛿(1, b)= 3 ∧ 4
𝛿(2, b)= 5 ∧ 6

⋮

L(A)= a

L(1)Ì ÒÒÐ ÒÒ Î(b(L(3)Ì ÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÎa ∪ b) ∩ b(L(4)Ì ÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÎb ∪ c))
∪ a(b(a ∪ bÍ ÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÏ

L(5)) ∩ b cÍÑÏ
L(6))ÍÒÒÒÑ ÒÒÏ

L(2)
= abb ∪ ∅
= abb

Alternating Finite Automata

⋆ General Idea: mix Anglican an Demonic choice on the level of individual transitions

0

1

2

3

4

5

6

a, b

b, c

a, b

c

a

a

b

b

b

b

𝛿(0, a)= 1 ∨ 2
𝛿(1, b)= 3 ∧ 4
𝛿(2, b)= 5 ∧ 6

⋮

L(A)= a

L(1)Ì ÒÒÐ ÒÒ Î(b(L(3)Ì ÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÎa ∪ b) ∩ b(L(4)Ì ÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÎb ∪ c))
∪ a(b(a ∪ bÍ ÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÏ

L(5)) ∩ b cÍÑÏ
L(6))ÍÒÒÒÑ ÒÒÏ

L(2)
= abb ∪ ∅
= abb

Alternating Finite Automata, Formally
Positive Boolean Formulas
⋆ let A = {a, b, . . . } be a set of atoms

⋆ the positive Boolean formulas B+(A) over atoms A are given by the following grammar:

𝜙, 𝜓 ∶∶= a ∣ 𝜙 ∧ 𝜓 ∣ 𝜙 ∨ 𝜓

– such formulas are called positive because negation is missing

⋆ a set M ⊆ A is a model of 𝜙 if M ⊧ 𝜙 where

M ⊧ a ∶⇔ a ∈ M M ⊧ 𝜙 ∧ 𝜓 ∶⇔M ⊧ 𝜙 and M ⊧ 𝜓 M ⊧ 𝜙 ∨ 𝜓 ∶⇔M ⊧ 𝜙 or M ⊧ 𝜓

Example
consider 𝜙 = a ∧ (b ∨ c), then{a, b} ⊧ 𝜙 {a, c} ⊧ 𝜙 {a}/⊧ 𝜙 {b, c}/⊧ 𝜙

Alternating Finite Automata, Formally
Positive Boolean Formulas
⋆ let A = {a, b, . . . } be a set of atoms

⋆ the positive Boolean formulas B+(A) over atoms A are given by the following grammar:

𝜙, 𝜓 ∶∶= a ∣ 𝜙 ∧ 𝜓 ∣ 𝜙 ∨ 𝜓

– such formulas are called positive because negation is missing

⋆ a set M ⊆ A is a model of 𝜙 if M ⊧ 𝜙 where

M ⊧ a ∶⇔ a ∈ M M ⊧ 𝜙 ∧ 𝜓 ∶⇔M ⊧ 𝜙 and M ⊧ 𝜓 M ⊧ 𝜙 ∨ 𝜓 ∶⇔M ⊧ 𝜙 or M ⊧ 𝜓

Example
consider 𝜙 = a ∧ (b ∨ c), then{a, b} ⊧ 𝜙 {a, c} ⊧ 𝜙 {a}/⊧ 𝜙 {b, c}/⊧ 𝜙

Alternating Finite Automata, Formally
Positive Boolean Formulas
⋆ let A = {a, b, . . . } be a set of atoms

⋆ the positive Boolean formulas B+(A) over atoms A are given by the following grammar:

𝜙, 𝜓 ∶∶= a ∣ 𝜙 ∧ 𝜓 ∣ 𝜙 ∨ 𝜓

– such formulas are called positive because negation is missing

⋆ a set M ⊆ A is a model of 𝜙 if M ⊧ 𝜙 where

M ⊧ a ∶⇔ a ∈ M M ⊧ 𝜙 ∧ 𝜓 ∶⇔M ⊧ 𝜙 and M ⊧ 𝜓 M ⊧ 𝜙 ∨ 𝜓 ∶⇔M ⊧ 𝜙 or M ⊧ 𝜓

Example
consider 𝜙 = a ∧ (b ∨ c), then{a, b} ⊧ 𝜙 {a, c} ⊧ 𝜙 {a}/⊧ 𝜙 {b, c}/⊧ 𝜙

Alternating Finite Automata, Formally (II)
an alternating finite automata (AFA) is a tuple A = (Q, Σ, qI, 𝛿, F) where all components are
identical to an NFA except that

𝛿 ∶ Q × Σ → B+(Q)

Example

q0 q1 q2

a

a

b

b

c

b

c

𝛿 a b c

q0 q0 ∨ q1 q⊥ q⊥
q1 q⊥ q1 ∧ q2 q1
q2 q⊥ q2 q1
q⊥ q⊥ q⊥ q⊥

Alternating Finite Automata, Formally (II)
an alternating finite automata (AFA) is a tuple A = (Q, Σ, qI, 𝛿, F) where all components are
identical to an NFA except that

𝛿 ∶ Q × Σ → B+(Q)
Example

q0 q1 q2

a

a

b

b

c

b

c

𝛿 a b c

q0 q0 ∨ q1 q⊥ q⊥
q1 q⊥ q1 ∧ q2 q1
q2 q⊥ q2 q1
q⊥ q⊥ q⊥ q⊥

Runs in an AFA
let A = (Q, Σ, qI, 𝛿, F) be an AFA

⋆ an execution for a word w = a1 . . . an ∈ Σ∗ is a tree Tw whose nodes are labeled by states
Q s.t.:
1. the root node of Tw is labeled by the initial state qI

2. for all nodes v labeled by q on the ith layer (i = 0, . . . , n − 1) and successors v1, . . . , vk on
layer i + 1, labeled by q1, . . . , qk, respectively:{q1, . . . , qk} ⊧ 𝛿(q, ai+1)

⋆ an execution is accepting if all leafs are labeled by final states

⋆ the language recognized by A is given by

L(A) ≜ {w ∣ there exists an accepting execution Tw for w}

Runs in an AFA
let A = (Q, Σ, qI, 𝛿, F) be an AFA

⋆ an execution for a word w = a1 . . . an ∈ Σ∗ is a tree Tw whose nodes are labeled by states
Q s.t.:
1. the root node of Tw is labeled by the initial state qI

2. for all nodes v labeled by q on the ith layer (i = 0, . . . , n − 1) and successors v1, . . . , vk on
layer i + 1, labeled by q1, . . . , qk, respectively:{q1, . . . , qk} ⊧ 𝛿(q, ai+1)

⋆ an execution is accepting if all leafs are labeled by final states

⋆ the language recognized by A is given by

L(A) ≜ {w ∣ there exists an accepting execution Tw for w}

Runs in an AFA
let A = (Q, Σ, qI, 𝛿, F) be an AFA

⋆ an execution for a word w = a1 . . . an ∈ Σ∗ is a tree Tw whose nodes are labeled by states
Q s.t.:
1. the root node of Tw is labeled by the initial state qI

2. for all nodes v labeled by q on the ith layer (i = 0, . . . , n − 1) and successors v1, . . . , vk on
layer i + 1, labeled by q1, . . . , qk, respectively:{q1, . . . , qk} ⊧ 𝛿(q, ai+1)

⋆ an execution is accepting if all leafs are labeled by final states

⋆ the language recognized by A is given by

L(A) ≜ {w ∣ there exists an accepting execution Tw for w}

Example of Accepting Execution for w = abbc

q0 q1 q2

a

a

b

b

c

b

c

𝛿 a b c
q0 q0 ∨ q1 q⊥ q⊥
q1 q⊥ q1 ∧ q2 q1
q2 q⊥ q2 q1
q⊥ q⊥ q⊥ q⊥

q0

q1

q1

q1

q1

q2

q1

q2

q2

q1

a

b

b

c

Example of Accepting Execution for w = abbc

q0 q1 q2

a

a

b

b

c

b

c

𝛿 a b c
q0 q0 ∨ q1 q⊥ q⊥
q1 q⊥ q1 ∧ q2 q1
q2 q⊥ q2 q1
q⊥ q⊥ q⊥ q⊥

q0

q1

q1

q1

q1

q2

q1

q2

q2

q1

a

b

b

c

{q1} ⊧ q0 ∨ q1

Example of Accepting Execution for w = abbc

q0 q1 q2

a

a

b

b

c

b

c

𝛿 a b c
q0 q0 ∨ q1 q⊥ q⊥
q1 q⊥ q1 ∧ q2 q1
q2 q⊥ q2 q1
q⊥ q⊥ q⊥ q⊥

q0

q1

q1

q1

q1

q2

q1

q2

q2

q1

a

b

b

c

{q1, q2} ⊧ q1 ∧ q2

Example of Accepting Execution for w = abbc

q0 q1 q2

a

a

b

b

c

b

c

𝛿 a b c
q0 q0 ∨ q1 q⊥ q⊥
q1 q⊥ q1 ∧ q2 q1
q2 q⊥ q2 q1
q⊥ q⊥ q⊥ q⊥

q0

q1

q1

q1

q1

q2

q1

q2

q2

q1

a

b

b

c

{q1, q2} ⊧ q1 ∧ q2

Example of Accepting Execution for w = abbc

q0 q1 q2

a

a

b

b

c

b

c

𝛿 a b c
q0 q0 ∨ q1 q⊥ q⊥
q1 q⊥ q1 ∧ q2 q1
q2 q⊥ q2 q1
q⊥ q⊥ q⊥ q⊥

q0

q1

q1

q1

q1

q2

q1

q2

q2

q1

a

b

b

c

{q2} ⊧ q2

Example of Accepting Execution for w = abbc

q0 q1 q2

a

a

b

b

c

b

c

𝛿 a b c
q0 q0 ∨ q1 q⊥ q⊥
q1 q⊥ q1 ∧ q2 q1
q2 q⊥ q2 q1
q⊥ q⊥ q⊥ q⊥

q0

q1

q1

q1

q1

q2

q1

q2

q2

q1

a

b

b

c

{q1} ⊧ q1

Example of Accepting Execution for w = abbc

q0 q1 q2

a

a

b

b

c

b

c

𝛿 a b c
q0 q0 ∨ q1 q⊥ q⊥
q1 q⊥ q1 ∧ q2 q1
q2 q⊥ q2 q1
q⊥ q⊥ q⊥ q⊥

q0

q1

q1

q1

q1

q2

q1

q2

q2

q1

a

b

b

c

{q1, q1, q1} ⊆ F

Extended Transition Function
the extended transition function

𝛿 ∶ B+(Q) × Σ∗ → B+(Q)
is recursively defined by:

𝛿(q, 𝜖) ≜ q 𝛿(𝜙 ∨ 𝜓,w) = 𝛿(𝜙,w) ∨ 𝛿(𝜓,w)
𝛿(q, a ⋅ w) ≜ 𝛿(𝛿(q, a),w) 𝛿(𝜙 ∧ 𝜓,w) = 𝛿(𝜙,w) ∧ 𝛿(𝜓,w)

Lemma
L(A) = {w ∣ F ⊧ 𝛿(qI,w)}

Extended Transition Function
the extended transition function

𝛿 ∶ B+(Q) × Σ∗ → B+(Q)
is recursively defined by:

𝛿(q, 𝜖) ≜ q 𝛿(𝜙 ∨ 𝜓,w) = 𝛿(𝜙,w) ∨ 𝛿(𝜓,w)
𝛿(q, a ⋅ w) ≜ 𝛿(𝛿(q, a),w) 𝛿(𝜙 ∧ 𝜓,w) = 𝛿(𝜙,w) ∧ 𝛿(𝜓,w)

Lemma
L(A) = {w ∣ F ⊧ 𝛿(qI,w)}

Example of Accepting Execution for w = abbc (II)

q0 q1 q2

a

a

b

b

c

b

c

𝛿 a b c
q0 q0 ∨ q1 q⊥ q⊥
q1 q⊥ q1 ∧ q2 q1
q2 q⊥ q2 q1
q⊥ q⊥ q⊥ q⊥

q0

q1

q1

q1

q1

q2

q1

q2

q2

q1

a

b

b

c

𝛿(q0, abbc)= 𝛿(q0 ∨ q1, bbc)
= 𝛿(q0, bbc) ∨ 𝛿(q1, bbc)
= 𝛿(q⊥, bc) ∨ (𝛿(q1, bc) ∧ 𝛿(q2, bc))
= 𝛿(q⊥, c) ∨ (𝛿(q1, c) ∧ 𝛿(q2, c))
= 𝛿(q⊥, 𝜖) ∨ 𝛿(q1, 𝜖)
= q⊥ ∨ q1{q1}⊧ q⊥ ∨ q1

Comparison to NFAs and DFAs
⋆ AFAs generalise NFAs

– every DFA is a NFA is an AFA

⋆ AFAs allow often more succinct encoding / automata constructions

Example
⋆ let A(m) = (Q(m)

, {a}, 𝛿(m)
, q(m)

I , F(m)) be an NFA with L(A(m)) = {w ∣ ∣w∣ = 0 mod m}
– this NFA has at least m states

⋆ consider the AFA A defined from A(m) for primes m = 7, 13, 17, 19 by

A(7) A(13) A(17) A(19)
qI

∧
a a a a

– L(A) = {w ∣ ∣w∣ = 1 mod 29393} since 29393 = 7 ⋅ 13 ⋅ 17 ⋅ 19
– AFA A has 57 = 1 + 7 + 13 + 17 + 19, whereas a corresponding NFA needs 29393 states

Comparison to NFAs and DFAs
⋆ AFAs generalise NFAs

– every DFA is a NFA is an AFA

⋆ AFAs allow often more succinct encoding / automata constructions

Example
⋆ let A(m) = (Q(m)

, {a}, 𝛿(m)
, q(m)

I , F(m)) be an NFA with L(A(m)) = {w ∣ ∣w∣ = 0 mod m}
– this NFA has at least m states

⋆ consider the AFA A defined from A(m) for primes m = 7, 13, 17, 19 by

A(7) A(13) A(17) A(19)
qI

∧
a a a a

– L(A) = {w ∣ ∣w∣ = 1 mod 29393} since 29393 = 7 ⋅ 13 ⋅ 17 ⋅ 19
– AFA A has 57 = 1 + 7 + 13 + 17 + 19, whereas a corresponding NFA needs 29393 states

Comparison to NFAs and DFAs
⋆ AFAs generalise NFAs

– every DFA is a NFA is an AFA

⋆ AFAs allow often more succinct encoding / automata constructions

Example
⋆ let A(m) = (Q(m)

, {a}, 𝛿(m)
, q(m)

I , F(m)) be an NFA with L(A(m)) = {w ∣ ∣w∣ = 0 mod m}
– this NFA has at least m states

⋆ consider the AFA A defined from A(m) for primes m = 7, 13, 17, 19 by

A(7) A(13) A(17) A(19)
qI

∧
a a a a

– L(A) = {w ∣ ∣w∣ = 1 mod 29393} since 29393 = 7 ⋅ 13 ⋅ 17 ⋅ 19
– AFA A has 57 = 1 + 7 + 13 + 17 + 19, whereas a corresponding NFA needs 29393 states

Comparison to NFAs and DFAs
⋆ AFAs generalise NFAs

– every DFA is a NFA is an AFA

⋆ AFAs allow often more succinct encoding / automata constructions

Example
⋆ let A(m) = (Q(m)

, {a}, 𝛿(m)
, q(m)

I , F(m)) be an NFA with L(A(m)) = {w ∣ ∣w∣ = 0 mod m}
– this NFA has at least m states

⋆ consider the AFA A defined from A(m) for primes m = 7, 13, 17, 19 by

A(7) A(13) A(17) A(19)
qI

∧
a a a a

– L(A) = {w ∣ ∣w∣ = 1 mod 29393} since 29393 = 7 ⋅ 13 ⋅ 17 ⋅ 19
– AFA A has 57 = 1 + 7 + 13 + 17 + 19, whereas a corresponding NFA needs 29393 states

Comparison to NFAs and DFAs
⋆ AFAs generalise NFAs

– every DFA is a NFA is an AFA

⋆ AFAs allow often more succinct encoding / automata constructions

Example
⋆ let A(m) = (Q(m)

, {a}, 𝛿(m)
, q(m)

I , F(m)) be an NFA with L(A(m)) = {w ∣ ∣w∣ = 0 mod m}
– this NFA has at least m states

⋆ consider the AFA A defined from A(m) for primes m = 7, 13, 17, 19 by

A(7) A(13) A(17) A(19)
qI

∧
a a a a

– L(A) = {w ∣ ∣w∣ = 1 mod 29393} since 29393 = 7 ⋅ 13 ⋅ 17 ⋅ 19

– AFA A has 57 = 1 + 7 + 13 + 17 + 19, whereas a corresponding NFA needs 29393 states

Comparison to NFAs and DFAs
⋆ AFAs generalise NFAs

– every DFA is a NFA is an AFA

⋆ AFAs allow often more succinct encoding / automata constructions

Example
⋆ let A(m) = (Q(m)

, {a}, 𝛿(m)
, q(m)

I , F(m)) be an NFA with L(A(m)) = {w ∣ ∣w∣ = 0 mod m}
– this NFA has at least m states

⋆ consider the AFA A defined from A(m) for primes m = 7, 13, 17, 19 by

A(7) A(13) A(17) A(19)
qI

∧
a a a a

– L(A) = {w ∣ ∣w∣ = 1 mod 29393} since 29393 = 7 ⋅ 13 ⋅ 17 ⋅ 19
– AFA A has 57 = 1 + 7 + 13 + 17 + 19, whereas a corresponding NFA needs 29393 states

Complementation
⋆ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma
For every AFA A there exists an AFA A of equal size such that L(A) = L(A)

Proof Outline.

⋆ let A = (Q, Σ, qI, 𝛿, F)
⋆ define the dual formula 𝜙 of 𝜙 ∈ B+(Q) following De Morgans rules

q ≜ q 𝜙 ∨ 𝜓 ≜ 𝜙 ∧ 𝜓 𝜙 ∧ 𝜓 ≜ 𝜙 ∨ 𝜓

– morally, q ∈ Q re-used for their “negation”; we have (i) M ⊧ 𝜙 iff Q\M /⊧ 𝜙

⋆ we now define A ≜ (Q, Σ, 𝛿, qI,Q\F) where 𝛿(q, a) ≜ 𝛿(q, a) for all q ∈ Q, a ∈ Σ

– by induction on ∣w∣ it can now be shown that (ii) �̂�(q,w) = 𝛿(q,w)
– overall, we have

w /∈ L(A) def.
⟺ F /⊧ 𝛿(qI,w) (i)

⟺ Q\F ⊧ 𝛿(qI,w) (ii)
⟺ Q\F ⊧ �̂�(qI,w) def.

⟺ w ∈ L(A)

Complementation
⋆ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma
For every AFA A there exists an AFA A of equal size such that L(A) = L(A)
Proof Outline.

⋆ let A = (Q, Σ, qI, 𝛿, F)
⋆ define the dual formula 𝜙 of 𝜙 ∈ B+(Q) following De Morgans rules

q ≜ q 𝜙 ∨ 𝜓 ≜ 𝜙 ∧ 𝜓 𝜙 ∧ 𝜓 ≜ 𝜙 ∨ 𝜓

– morally, q ∈ Q re-used for their “negation”; we have (i) M ⊧ 𝜙 iff Q\M /⊧ 𝜙

⋆ we now define A ≜ (Q, Σ, 𝛿, qI,Q\F) where 𝛿(q, a) ≜ 𝛿(q, a) for all q ∈ Q, a ∈ Σ

– by induction on ∣w∣ it can now be shown that (ii) �̂�(q,w) = 𝛿(q,w)
– overall, we have

w /∈ L(A) def.
⟺ F /⊧ 𝛿(qI,w) (i)

⟺ Q\F ⊧ 𝛿(qI,w) (ii)
⟺ Q\F ⊧ �̂�(qI,w) def.

⟺ w ∈ L(A)

Complementation
⋆ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma
For every AFA A there exists an AFA A of equal size such that L(A) = L(A)
Proof Outline.

⋆ let A = (Q, Σ, qI, 𝛿, F)
⋆ define the dual formula 𝜙 of 𝜙 ∈ B+(Q) following De Morgans rules

q ≜ q 𝜙 ∨ 𝜓 ≜ 𝜙 ∧ 𝜓 𝜙 ∧ 𝜓 ≜ 𝜙 ∨ 𝜓

– morally, q ∈ Q re-used for their “negation”; we have (i) M ⊧ 𝜙 iff Q\M /⊧ 𝜙

⋆ we now define A ≜ (Q, Σ, 𝛿, qI,Q\F) where 𝛿(q, a) ≜ 𝛿(q, a) for all q ∈ Q, a ∈ Σ

– by induction on ∣w∣ it can now be shown that (ii) �̂�(q,w) = 𝛿(q,w)
– overall, we have

w /∈ L(A) def.
⟺ F /⊧ 𝛿(qI,w) (i)

⟺ Q\F ⊧ 𝛿(qI,w) (ii)
⟺ Q\F ⊧ �̂�(qI,w) def.

⟺ w ∈ L(A)

Complementation
⋆ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma
For every AFA A there exists an AFA A of equal size such that L(A) = L(A)
Proof Outline.

⋆ let A = (Q, Σ, qI, 𝛿, F)
⋆ define the dual formula 𝜙 of 𝜙 ∈ B+(Q) following De Morgans rules

q ≜ q 𝜙 ∨ 𝜓 ≜ 𝜙 ∧ 𝜓 𝜙 ∧ 𝜓 ≜ 𝜙 ∨ 𝜓

– morally, q ∈ Q re-used for their “negation”; we have (i) M ⊧ 𝜙 iff Q\M /⊧ 𝜙

⋆ we now define A ≜ (Q, Σ, 𝛿, qI,Q\F) where 𝛿(q, a) ≜ 𝛿(q, a) for all q ∈ Q, a ∈ Σ

– by induction on ∣w∣ it can now be shown that (ii) �̂�(q,w) = 𝛿(q,w)

– overall, we have
w /∈ L(A) def.

⟺ F /⊧ 𝛿(qI,w) (i)
⟺ Q\F ⊧ 𝛿(qI,w) (ii)

⟺ Q\F ⊧ �̂�(qI,w) def.
⟺ w ∈ L(A)

Complementation
⋆ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma
For every AFA A there exists an AFA A of equal size such that L(A) = L(A)
Proof Outline.

⋆ let A = (Q, Σ, qI, 𝛿, F)
⋆ define the dual formula 𝜙 of 𝜙 ∈ B+(Q) following De Morgans rules

q ≜ q 𝜙 ∨ 𝜓 ≜ 𝜙 ∧ 𝜓 𝜙 ∧ 𝜓 ≜ 𝜙 ∨ 𝜓

– morally, q ∈ Q re-used for their “negation”; we have (i) M ⊧ 𝜙 iff Q\M /⊧ 𝜙

⋆ we now define A ≜ (Q, Σ, 𝛿, qI,Q\F) where 𝛿(q, a) ≜ 𝛿(q, a) for all q ∈ Q, a ∈ Σ

– by induction on ∣w∣ it can now be shown that (ii) �̂�(q,w) = 𝛿(q,w)
– overall, we have

w /∈ L(A) def.
⟺ F /⊧ 𝛿(qI,w) (i)

⟺ Q\F ⊧ 𝛿(qI,w) (ii)
⟺ Q\F ⊧ �̂�(qI,w) def.

⟺ w ∈ L(A)

Example

q0 q1 q2

a

a

b

b

c

b

c

⇕ complement

q0 q1 q2

a

a

b
b

c

b

c

Relationship with Regular Languages

AFAs Recognize REG
Theorem

For every AFA A there exist a DFA B with O(22∣A∣) states such that L(A) = L(B).

Proof Outline.
let A = (Q, Σ, qI, 𝛿, F)
Formally:

⋆ the equivalence ∼ on B+(Q) is given by 𝜙 ∼ 𝜓 if {M ∣ M ⊧ 𝜙} = {M ∣ M ⊧ 𝜓}
– q ∼ q ∨ q ∼ q ∧ q but q /∼ p ∨ q /∼ p ∧ q

⋆ the equivalence class [𝜙]∼ can be simply conceived as the formula 𝜙, with equivalent
formulas 𝜙 ∼ 𝜓 identified

– [q ∨ q]∼ = {q, q ∨ q, q ∧ q, . . . }
⋆ the set of all such equivalence classes B+(Q)/∼ contains O(22∣Q∣) elements
⋆ B ≜ (B+(Q)/∼, Σ, qI, 𝛿∼, {[𝜙]∼ ∣ F ⊧ 𝜙}) where 𝛿∼([𝜙]∼, a) ≜ [𝛿(𝜙, a)]∼ recognises

L(A)

AFAs Recognize REG
Theorem

For every AFA A there exist a DFA B with O(22∣A∣) states such that L(A) = L(B).
Proof Outline.
let A = (Q, Σ, qI, 𝛿, F)
Idea:
⋆ the states of B are formulas

⋆ 𝜙
a
−→𝜓 in B if 𝛿(𝜙, a) = 𝜓

– Example: 𝛿(p, a) = q ∧ r and 𝛿(q, a) = r ⇒ p ∨ q a
−−→ (q ∧ r) ∨ r

– a run qI
a1−−→⋯

an−−→ 𝜙 thus models 𝛿(qI, a1 . . . an) = 𝜙

⋆ the formula qI is the initial state

⋆ the formulas modeled by F are final

⋆ to keep the construction finite, we’ll identify equivalent formulas

Example

0 ∨

1 ∧

2 ∧

3

4

5

6

a

a

b

b

b

b

the initial AFA

0 1 ∨ 2 (3 ∧ 4)
∨(5 ∧ 6)a b

the translated DFA

{0}

{1}

{1, 2}

{2}

{3, 4}

{5, 6}

{3, 4, 5, 6}
a

a

a

a

b

b

a

the translated NFA

AFAs Recognize REG
Theorem

For every AFA A there exist a DFA B with O(22∣A∣) states such that L(A) = L(B).
Proof Outline.
let A = (Q, Σ, qI, 𝛿, F)
Idea:
⋆ the states of B are formulas

⋆ 𝜙
a
−→𝜓 in B if 𝛿(𝜙, a) = 𝜓

– Example: 𝛿(p, a) = q ∧ r and 𝛿(q, a) = r ⇒ p ∨ q a
−−→ (q ∧ r) ∨ r

– a run qI
a1−−→⋯

an−−→ 𝜙 thus models 𝛿(qI, a1 . . . an) = 𝜙

⋆ the formula qI is the initial state

⋆ the formulas modeled by F are final

⋆ to keep the construction finite, we’ll identify equivalent formulas

AFAs Recognize REG
Theorem

For every AFA A there exist a DFA B with O(22∣A∣) states such that L(A) = L(B).
Proof Outline.
let A = (Q, Σ, qI, 𝛿, F)
Formally:
⋆ the equivalence ∼ on B+(Q) is given by 𝜙 ∼ 𝜓 if {M ∣ M ⊧ 𝜙} = {M ∣ M ⊧ 𝜓}

– q ∼ q ∨ q ∼ q ∧ q but q /∼ p ∨ q /∼ p ∧ q

⋆ the equivalence class [𝜙]∼ can be simply conceived as the formula 𝜙, with equivalent
formulas 𝜙 ∼ 𝜓 identified

– [q ∨ q]∼ = {q, q ∨ q, q ∧ q, . . . }
⋆ the set of all such equivalence classes B+(Q)/∼ contains O(22∣Q∣) elements
⋆ B ≜ (B+(Q)/∼, Σ, qI, 𝛿∼, {[𝜙]∼ ∣ F ⊧ 𝜙}) where 𝛿∼([𝜙]∼, a) ≜ [𝛿(𝜙, a)]∼ recognises

L(A)

AFAs Recognize REG
Theorem

For every AFA A there exist a DFA B with O(22∣A∣) states such that L(A) = L(B).
Proof Outline.
let A = (Q, Σ, qI, 𝛿, F)
Formally:
⋆ the equivalence ∼ on B+(Q) is given by 𝜙 ∼ 𝜓 if {M ∣ M ⊧ 𝜙} = {M ∣ M ⊧ 𝜓}

– q ∼ q ∨ q ∼ q ∧ q but q /∼ p ∨ q /∼ p ∧ q

⋆ the equivalence class [𝜙]∼ can be simply conceived as the formula 𝜙, with equivalent
formulas 𝜙 ∼ 𝜓 identified

– [q ∨ q]∼ = {q, q ∨ q, q ∧ q, . . . }

⋆ the set of all such equivalence classes B+(Q)/∼ contains O(22∣Q∣) elements
⋆ B ≜ (B+(Q)/∼, Σ, qI, 𝛿∼, {[𝜙]∼ ∣ F ⊧ 𝜙}) where 𝛿∼([𝜙]∼, a) ≜ [𝛿(𝜙, a)]∼ recognises

L(A)

AFAs Recognize REG
Theorem

For every AFA A there exist a DFA B with O(22∣A∣) states such that L(A) = L(B).
Proof Outline.
let A = (Q, Σ, qI, 𝛿, F)
Formally:
⋆ the equivalence ∼ on B+(Q) is given by 𝜙 ∼ 𝜓 if {M ∣ M ⊧ 𝜙} = {M ∣ M ⊧ 𝜓}

– q ∼ q ∨ q ∼ q ∧ q but q /∼ p ∨ q /∼ p ∧ q

⋆ the equivalence class [𝜙]∼ can be simply conceived as the formula 𝜙, with equivalent
formulas 𝜙 ∼ 𝜓 identified

– [q ∨ q]∼ = {q, q ∨ q, q ∧ q, . . . }
⋆ the set of all such equivalence classes B+(Q)/∼ contains O(22∣Q∣) elements

⋆ B ≜ (B+(Q)/∼, Σ, qI, 𝛿∼, {[𝜙]∼ ∣ F ⊧ 𝜙}) where 𝛿∼([𝜙]∼, a) ≜ [𝛿(𝜙, a)]∼ recognises
L(A)

AFAs Recognize REG
Theorem

For every AFA A there exist a DFA B with O(22∣A∣) states such that L(A) = L(B).
Proof Outline.
let A = (Q, Σ, qI, 𝛿, F)
Formally:
⋆ the equivalence ∼ on B+(Q) is given by 𝜙 ∼ 𝜓 if {M ∣ M ⊧ 𝜙} = {M ∣ M ⊧ 𝜓}

– q ∼ q ∨ q ∼ q ∧ q but q /∼ p ∨ q /∼ p ∧ q

⋆ the equivalence class [𝜙]∼ can be simply conceived as the formula 𝜙, with equivalent
formulas 𝜙 ∼ 𝜓 identified

– [q ∨ q]∼ = {q, q ∨ q, q ∧ q, . . . }
⋆ the set of all such equivalence classes B+(Q)/∼ contains O(22∣Q∣) elements
⋆ B ≜ (B+(Q)/∼, Σ, qI, 𝛿∼, {[𝜙]∼ ∣ F ⊧ 𝜙}) where 𝛿∼([𝜙]∼, a) ≜ [𝛿(𝜙, a)]∼ recognises

L(A)

From AFAs to NFA

Theorem
For every AFA A there exist a NFA B with O(2∣A∣) states such that L(A) = L(B).
Proof Outline.

⋆ let A = (Q, Σ, qI, 𝛿, F)
⋆ idea: models executions, states of the NFA are the levels of the execution tree

– the construction is simpler, at the expense of non-determinism

⋆ the NFA is given by B ≜ (2Q
, Σ, {qI}, 𝛿′, {M ∣ M ⊆ F}) where

N ∈ 𝛿
′(M, a) ∶⇔ N ⊧ ⋀

q∈M
𝛿(q, a)

From AFAs to NFA

Theorem
For every AFA A there exist a NFA B with O(2∣A∣) states such that L(A) = L(B).
Proof Outline.

⋆ let A = (Q, Σ, qI, 𝛿, F)
⋆ idea: models executions, states of the NFA are the levels of the execution tree

– the construction is simpler, at the expense of non-determinism

⋆ the NFA is given by B ≜ (2Q
, Σ, {qI}, 𝛿′, {M ∣ M ⊆ F}) where

N ∈ 𝛿
′(M, a) ∶⇔ N ⊧ ⋀

q∈M
𝛿(q, a)

Example (II)

0 ∨

1 ∧

2 ∧

3

4

5

6

a

a

b

b

b

b

the initial AFA

0 1 ∨ 2 (3 ∧ 4)
∨(5 ∧ 6)a b

the translated DFA

{0}

{1}

{1, 2}

{2}

{3, 4}

{5, 6}

{3, 4, 5, 6}
a

a

a

a

b

b

a

the translated NFA

