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Last Lecture

1. the set of WMSO formulas over V1,V2 is given by the following grammar:

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ x < y ∣ X(x) ∣ 𝜙 ∨ 𝜓 ∣ ¬𝜙 ∣ ∃x.𝜙 ∣ ∃X.𝜙

– first-order variables V1 range over N and second-order variables V2 range over finite sets over
N

2. a WMSO formula 𝜙 over second-order variables {Pa ∣ a ∈ Σ} defines a language

L(𝜙) ≜ {w ∈ Σ∗ ∣ w ⊧ 𝜙}
3. WMSO definable languages are regular, and vice verse

4. Satisfiability and validity decidable in 22. .
.2

c

, the height of this tower essentially depends
on quantifiers; this bound cannot be improved

– in practice, satisfiability/validity often feasible, even for bigger formulas



Today’s Lecture

⋆ Presburger arithmetic

⋆ alternating automata



Presburger Arithmetic



Presburger Arithmetic

⋆ Presburger Arithmetic refers to the first-order theory over (N, {0,+,<})
⋆ named in honor of Mojżesz Presburger, who introduced it in 1929

⋆ formulas in this logic are derivable from the following grammar:

s, t ∶∶= 0 ∣ x ∣ s + t

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ s = t ∣ s < t ∣ 𝜙 ∧ 𝜓 ∣ ¬𝜓 ∣ ∃x.𝜙

where x is a first-order variable
⋆ valuations map first-order variables to N

Applications
Presburger Arithmetic employed — due to the balance between expressiveness and
algorithmic properties — e.g. in automated theorem proving and static program analysis
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Examples

s, t ∶∶= 0 ∣ x ∣ s + t

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ s = t ∣ s < t ∣ 𝜙 ∧ 𝜓 ∣ ¬𝜓 ∣ ∃x.𝜙

⋆ m is even: ?

– generally, multiplication by constant c ∈ N permissible

⋆ m equals 1: ?

⋆ m = r mod 5: ?

⋆ the system of linear equations

m + n = 13
m − n = 1

has a solution: ?
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s, t ∶∶= 0 ∣ x ∣ s + t
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A Decision Procedure for Presburger Arithmetic
General Idea
1. encode natural numbers as binary words (lsb-first order)

– assignments 𝛼 ∶ V → {0, . . . , 2m} over {x1, . . . , xn} become binary matrices 𝛼 ∈ {0, 1}(m,n)
𝛼(xi) 𝛼

x1
x2
x3

13
1
3

⎛⎜⎜⎝ 1
1
1

⎞⎟⎟⎠⎛⎜⎜⎝ 0
0
1

⎞⎟⎟⎠⎛⎜⎜⎝ 1
0
0

⎞⎟⎟⎠⎛⎜⎜⎝ 1
0
0

⎞⎟⎟⎠

2. for formula 𝜙, define a DFA A𝜙 recognizing precisely codings 𝛼 of valuations 𝛼 making 𝜙
become true
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Language of a Formula
let us denote by L̂(𝜙) the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}

Lemma
For any formula 𝜙 in Presburger Arithmetic, L̂(𝜙) is regular.

Proof Outline.
By induction on the structure of 𝜙, we construct a DFA A𝜙 recognizing L̂(𝜙).
⋆ 𝜙 = ⊤, 𝜙 = ⊥: In these cases L̂(𝜙) is easily seen to be regular.
⋆ 𝜙 = (s < t) or 𝜙 = (s = t): A corresponding automaton can be constructed (next slide).
⋆ 𝜙 = ¬𝜙 or 𝜙 = 𝜓1 ∧ 𝜓2 From the induction hypothesis, using DFA-complementation and

DFA-intersection.
⋆ 𝜙 = ∀x.𝜓: Elimination similar to construction for WMSO formulas.
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Recognizing s<t
⋆ an inequality s< t can be represented as ∑i ai ⋅ xi < b where ai, b ∈ Z

2 ⋅ x1 < x2 + 2 ⟹ 2 ⋅ x1 − 1 ⋅ x2 < 2

⋆ the automaton As < t recognizing s< t is defined as follows
– states Q are inequalities of the form ⟨∑i ai ⋅ xi < d⟩

plus trap-state qfail

Intuition: L(⟨∑i ai ⋅ xi < d⟩) = {𝛼 ∣ 𝛼 ⊧ ∑i ai ⋅ xi < d}
– the initial state qI is given by the representation of s < t
– the transition function 𝛿 is given by

𝛿 (⟨∑i ai ⋅ xi < d⟩, ( b1
⋮

bn
)) ≜ ⟨∑i ai ⋅ xi < ⌈ 1

2 (d −∑i ai ⋅ bi)⌉⟩
,since ∑i ai ⋅ (bi + 2 ⋅ x′i) < d ⇔ ∑i ai ⋅ x′i < 1

2 ⋅ (d −∑i ai ⋅ bi)
– final states are all those states ∑i ai ⋅ xi < d with 0 < d

⋆ finiteness: from initial state ∑i ai ⋅ xi < d, only ∑i ai + d states reachable, hence the
overall construction is finite
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Recognizing s=t
⋆ an inequality s= t can be represented as ∑i ai ⋅ xi = b where ai, b ∈ Z

2 ⋅ x1 = x2 + 2 ⟹ 2 ⋅ x1 − 1 ⋅ x2 = 2
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⋆ finiteness: from initial state ∑i ai ⋅ xi = d, only ∑i ai + d states reachable, hence the
overall construction is finite



Decision Problems for Presburger Arithmetic
The Satisfiability Problem
⋆ Given: formula 𝜙

⋆ Question: is there 𝛼 s.t 𝛼 ⊧ 𝜙?

The Validity Problem
⋆ Given: formula 𝜙

⋆ Question: 𝛼 ⊧ 𝜙 for all assignments 𝛼?

Theorem
Satisfiability and Validity are decidable for Presburger Arithmetic.

Theorem
For any formula 𝜙, the constructed DFA recognizing L̂(𝜙) has size O(22n).
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Peano Arithmetic

⋆ Peano’s arithmetic is the first-order theory natural integers with vocabulary {+,×,<}

⋆ its existential fragment corresponds to the Diophantine equations, i.e., polynomial
equations on integers

⋆ Hilbert’s 10th problem was to solve Diophantine equations

⋆ Youri Matiassevitch, drawing on the work of Julia Robinson, demonstrated that this was
an undecidable problem
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Skolem Arithmetic

⋆ Skolem’s arithmetic is the first order theory of natural integers with the vocabulary{×,=}

⋆ Skolem’s arithmetic is also decidable

⋆ proof goes via reduction to tree automata, closely resembling the proof we have just seen
for Presburger’s arithmetic
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Alternating Automata



Angelican vs Demonic Non-Determinism
What is a non-deterministic machine (or automaton)?

⋆ a “machine” which admits several executions on the same input

⋆ put otherwise, during processing, several choices are possible

⋆ such choices can be resolved in favor (anglican non-determinism) or against (demonic
non-determinism) a positive outcome (e.g. acceptance, termination, etc)

– Anglican: an angel resolves choices
⇒ it is sufficient to have one “good” execution path, to have a positive outcome

– Demonic: a demon resolves choices
⇒ all execution paths must be “good”, to have a positive outcome

Example
⋆ NFAs are based on anglican non-determinism
⋆ worst-case complexity analysis assumes demonic non-determinism



Angelican vs Demonic Non-Determinism
What is a non-deterministic machine (or automaton)?

⋆ a “machine” which admits several executions on the same input

⋆ put otherwise, during processing, several choices are possible

⋆ such choices can be resolved in favor (anglican non-determinism) or against (demonic
non-determinism) a positive outcome (e.g. acceptance, termination, etc)

– Anglican: an angel resolves choices
⇒ it is sufficient to have one “good” execution path, to have a positive outcome

– Demonic: a demon resolves choices
⇒ all execution paths must be “good”, to have a positive outcome

Example
⋆ NFAs are based on anglican non-determinism
⋆ worst-case complexity analysis assumes demonic non-determinism
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NFAs with Demonic Choice

⋆ NFAs incorporate angelic non-determinism because, in order for w ∈ L(A), only one
accepting run of w has to exists

⋆ demonic non-determinism introduced by re-formulating the acceptance condition

L−(A) ≜ {w ∣ all runs on w are accepting}
Example
Consider automaton A over Σ = {a, b}

a

b

a
a

b

⋆ L(A) = Σ∗

⋆ L−(A) = 𝜖 ∪ Σ∗ ⋅ b (why?)
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Duality of Non-Determinism

⋆ recall that for each NFA A, its dual A is given by complementing final states

⋆ in general, only when A is deterministic, then L(A) = L(A)

Proposition
w ∈ L(A) ⇔ w /∈ L−(A)

⋆ regime to resolve non-determinism has no effect on expressiveness of NFAs

⋆ although potentially on the conciseness of the language description through NFAs

what happens if we leave regime internal to the automata?
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Alternating Finite Automata

⋆ General Idea: mix Anglican an Demonic choice on the level of individual transitions

0

1

2

3

4

5

6

a, b

b, c

a, b

c

a

a

b

b

b

b

𝛿(0, a)= 1 ∨ 2
𝛿(1, b)= 3 ∧ 4
𝛿(2, b)= 5 ∧ 6

⋮

L(A)= a
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∪ a(b(a ∪ bÍ ÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÏ

L(5) ) ∩ b cÍÑÏ
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Alternating Finite Automata, Formally
Positive Boolean Formulas
⋆ let A = {a, b, . . . } be a set of atoms

⋆ the positive Boolean formulas B+(A) over atoms A are given by the following grammar:

𝜙, 𝜓 ∶∶= a ∣ 𝜙 ∧ 𝜓 ∣ 𝜙 ∨ 𝜓

– such formulas are called positive because negation is missing

⋆ a set M ⊆ A is a model of 𝜙 if M ⊧ 𝜙 where

M ⊧ a ∶⇔ a ∈ M M ⊧ 𝜙 ∧ 𝜓 ∶⇔M ⊧ 𝜙 and M ⊧ 𝜓 M ⊧ 𝜙 ∨ 𝜓 ∶⇔M ⊧ 𝜙 or M ⊧ 𝜓

Example
consider 𝜙 = a ∧ (b ∨ c), then{a, b} ⊧ 𝜙 {a, c} ⊧ 𝜙 {a}/⊧ 𝜙 {b, c}/⊧ 𝜙
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Alternating Finite Automata, Formally (II)
an alternating finite automata (AFA) is a tuple A = (Q, Σ, qI, 𝛿, F) where all components are
identical to an NFA except that

𝛿 ∶ Q × Σ → B+(Q)

Example

q0 q1 q2

a

a

b

b

c

b

c

𝛿 a b c

q0 q0 ∨ q1 q⊥ q⊥
q1 q⊥ q1 ∧ q2 q1
q2 q⊥ q2 q1
q⊥ q⊥ q⊥ q⊥
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Runs in an AFA
let A = (Q, Σ, qI, 𝛿, F) be an AFA

⋆ an execution for a word w = a1 . . . an ∈ Σ∗ is a tree Tw whose nodes are labeled by states
Q s.t.:
1. the root node of Tw is labeled by the initial state qI

2. for all nodes v labeled by q on the ith layer (i = 0, . . . , n − 1) and successors v1, . . . , vk on
layer i + 1, labeled by q1, . . . , qk, respectively:{q1, . . . , qk} ⊧ 𝛿(q, ai+1)

⋆ an execution is accepting if all leafs are labeled by final states

⋆ the language recognized by A is given by

L(A) ≜ {w ∣ there exists an accepting execution Tw for w}
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Example of Accepting Execution for w = abbc
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Extended Transition Function
the extended transition function

𝛿 ∶ B+(Q) × Σ∗ → B+(Q)
is recursively defined by:

𝛿(q, 𝜖) ≜ q 𝛿(𝜙 ∨ 𝜓,w) = 𝛿(𝜙,w) ∨ 𝛿(𝜓,w)
𝛿(q, a ⋅ w) ≜ 𝛿(𝛿(q, a),w) 𝛿(𝜙 ∧ 𝜓,w) = 𝛿(𝜙,w) ∧ 𝛿(𝜓,w)

Lemma
L(A) = {w ∣ F ⊧ 𝛿(qI,w)}
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Example of Accepting Execution for w = abbc (II)
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𝛿(q0, abbc)= 𝛿(q0 ∨ q1, bbc)
= 𝛿(q0, bbc) ∨ 𝛿(q1, bbc)
= 𝛿(q⊥, bc) ∨ (𝛿(q1, bc) ∧ 𝛿(q2, bc))
= 𝛿(q⊥, c) ∨ (𝛿(q1, c) ∧ 𝛿(q2, c))
= 𝛿(q⊥, 𝜖) ∨ 𝛿(q1, 𝜖)
= q⊥ ∨ q1{q1}⊧ q⊥ ∨ q1



Comparison to NFAs and DFAs
⋆ AFAs generalise NFAs

– every DFA is a NFA is an AFA

⋆ AFAs allow often more succinct encoding / automata constructions

Example
⋆ let A(m) = (Q(m)

, {a}, 𝛿(m)
, q(m)

I , F(m)) be an NFA with L(A(m)) = {w ∣ ∣w∣ = 0 mod m}
– this NFA has at least m states

⋆ consider the AFA A defined from A(m) for primes m = 7, 13, 17, 19 by

A(7) A(13) A(17) A(19)
qI

∧
a a a a

– L(A) = {w ∣ ∣w∣ = 1 mod 29393} since 29393 = 7 ⋅ 13 ⋅ 17 ⋅ 19
– AFA A has 57 = 1 + 7 + 13 + 17 + 19, whereas a corresponding NFA needs 29393 states
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⋆ AFAs allow often more succinct encoding / automata constructions
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Complementation
⋆ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma
For every AFA A there exists an AFA A of equal size such that L(A) = L(A)

Proof Outline.

⋆ let A = (Q, Σ, qI, 𝛿, F)
⋆ define the dual formula 𝜙 of 𝜙 ∈ B+(Q) following De Morgans rules

q ≜ q 𝜙 ∨ 𝜓 ≜ 𝜙 ∧ 𝜓 𝜙 ∧ 𝜓 ≜ 𝜙 ∨ 𝜓

– morally, q ∈ Q re-used for their “negation”; we have (i) M ⊧ 𝜙 iff Q\M /⊧ 𝜙

⋆ we now define A ≜ (Q, Σ, 𝛿, qI,Q\F) where 𝛿(q, a) ≜ 𝛿(q, a) for all q ∈ Q, a ∈ Σ

– by induction on ∣w∣ it can now be shown that (ii) �̂�(q,w) = 𝛿(q,w)
– overall, we have

w /∈ L(A) def.
⟺ F /⊧ 𝛿(qI,w) (i)

⟺ Q\F ⊧ 𝛿(qI,w) (ii)
⟺ Q\F ⊧ �̂�(qI,w) def.

⟺ w ∈ L(A)



Complementation
⋆ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma
For every AFA A there exists an AFA A of equal size such that L(A) = L(A)
Proof Outline.

⋆ let A = (Q, Σ, qI, 𝛿, F)
⋆ define the dual formula 𝜙 of 𝜙 ∈ B+(Q) following De Morgans rules

q ≜ q 𝜙 ∨ 𝜓 ≜ 𝜙 ∧ 𝜓 𝜙 ∧ 𝜓 ≜ 𝜙 ∨ 𝜓

– morally, q ∈ Q re-used for their “negation”; we have (i) M ⊧ 𝜙 iff Q\M /⊧ 𝜙

⋆ we now define A ≜ (Q, Σ, 𝛿, qI,Q\F) where 𝛿(q, a) ≜ 𝛿(q, a) for all q ∈ Q, a ∈ Σ

– by induction on ∣w∣ it can now be shown that (ii) �̂�(q,w) = 𝛿(q,w)
– overall, we have

w /∈ L(A) def.
⟺ F /⊧ 𝛿(qI,w) (i)

⟺ Q\F ⊧ 𝛿(qI,w) (ii)
⟺ Q\F ⊧ �̂�(qI,w) def.

⟺ w ∈ L(A)



Complementation
⋆ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma
For every AFA A there exists an AFA A of equal size such that L(A) = L(A)
Proof Outline.

⋆ let A = (Q, Σ, qI, 𝛿, F)
⋆ define the dual formula 𝜙 of 𝜙 ∈ B+(Q) following De Morgans rules

q ≜ q 𝜙 ∨ 𝜓 ≜ 𝜙 ∧ 𝜓 𝜙 ∧ 𝜓 ≜ 𝜙 ∨ 𝜓

– morally, q ∈ Q re-used for their “negation”; we have (i) M ⊧ 𝜙 iff Q\M /⊧ 𝜙

⋆ we now define A ≜ (Q, Σ, 𝛿, qI,Q\F) where 𝛿(q, a) ≜ 𝛿(q, a) for all q ∈ Q, a ∈ Σ

– by induction on ∣w∣ it can now be shown that (ii) �̂�(q,w) = 𝛿(q,w)
– overall, we have

w /∈ L(A) def.
⟺ F /⊧ 𝛿(qI,w) (i)

⟺ Q\F ⊧ 𝛿(qI,w) (ii)
⟺ Q\F ⊧ �̂�(qI,w) def.

⟺ w ∈ L(A)



Complementation
⋆ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma
For every AFA A there exists an AFA A of equal size such that L(A) = L(A)
Proof Outline.

⋆ let A = (Q, Σ, qI, 𝛿, F)
⋆ define the dual formula 𝜙 of 𝜙 ∈ B+(Q) following De Morgans rules

q ≜ q 𝜙 ∨ 𝜓 ≜ 𝜙 ∧ 𝜓 𝜙 ∧ 𝜓 ≜ 𝜙 ∨ 𝜓

– morally, q ∈ Q re-used for their “negation”; we have (i) M ⊧ 𝜙 iff Q\M /⊧ 𝜙

⋆ we now define A ≜ (Q, Σ, 𝛿, qI,Q\F) where 𝛿(q, a) ≜ 𝛿(q, a) for all q ∈ Q, a ∈ Σ

– by induction on ∣w∣ it can now be shown that (ii) �̂�(q,w) = 𝛿(q,w)

– overall, we have
w /∈ L(A) def.

⟺ F /⊧ 𝛿(qI,w) (i)
⟺ Q\F ⊧ 𝛿(qI,w) (ii)

⟺ Q\F ⊧ �̂�(qI,w) def.
⟺ w ∈ L(A)



Complementation
⋆ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma
For every AFA A there exists an AFA A of equal size such that L(A) = L(A)
Proof Outline.

⋆ let A = (Q, Σ, qI, 𝛿, F)
⋆ define the dual formula 𝜙 of 𝜙 ∈ B+(Q) following De Morgans rules

q ≜ q 𝜙 ∨ 𝜓 ≜ 𝜙 ∧ 𝜓 𝜙 ∧ 𝜓 ≜ 𝜙 ∨ 𝜓

– morally, q ∈ Q re-used for their “negation”; we have (i) M ⊧ 𝜙 iff Q\M /⊧ 𝜙

⋆ we now define A ≜ (Q, Σ, 𝛿, qI,Q\F) where 𝛿(q, a) ≜ 𝛿(q, a) for all q ∈ Q, a ∈ Σ

– by induction on ∣w∣ it can now be shown that (ii) �̂�(q,w) = 𝛿(q,w)
– overall, we have

w /∈ L(A) def.
⟺ F /⊧ 𝛿(qI,w) (i)

⟺ Q\F ⊧ 𝛿(qI,w) (ii)
⟺ Q\F ⊧ �̂�(qI,w) def.

⟺ w ∈ L(A)



Example

q0 q1 q2

a

a

b

b

c

b

c

⇕ complement

q0 q1 q2

a

a

b
b

c

b

c



Relationship with Regular Languages



AFAs Recognize REG
Theorem

For every AFA A there exist a DFA B with O(22∣A∣) states such that L(A) = L(B).

Proof Outline.
let A = (Q, Σ, qI, 𝛿, F)
Formally:

⋆ the equivalence ∼ on B+(Q) is given by 𝜙 ∼ 𝜓 if {M ∣ M ⊧ 𝜙} = {M ∣ M ⊧ 𝜓}
– q ∼ q ∨ q ∼ q ∧ q but q /∼ p ∨ q /∼ p ∧ q

⋆ the equivalence class [𝜙]∼ can be simply conceived as the formula 𝜙, with equivalent
formulas 𝜙 ∼ 𝜓 identified

– [q ∨ q]∼ = {q, q ∨ q, q ∧ q, . . . }
⋆ the set of all such equivalence classes B+(Q)/∼ contains O(22∣Q∣) elements
⋆ B ≜ (B+(Q)/∼, Σ, qI, 𝛿∼, {[𝜙]∼ ∣ F ⊧ 𝜙}) where 𝛿∼([𝜙]∼, a) ≜ [𝛿(𝜙, a)]∼ recognises

L(A)
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Theorem

For every AFA A there exist a DFA B with O(22∣A∣) states such that L(A) = L(B).
Proof Outline.
let A = (Q, Σ, qI, 𝛿, F)
Idea:
⋆ the states of B are formulas

⋆ 𝜙
a
−→𝜓 in B if 𝛿(𝜙, a) = 𝜓

– Example: 𝛿(p, a) = q ∧ r and 𝛿(q, a) = r ⇒ p ∨ q a
−−→ (q ∧ r) ∨ r

– a run qI
a1−−→⋯

an−−→ 𝜙 thus models 𝛿(qI, a1 . . . an) = 𝜙

⋆ the formula qI is the initial state

⋆ the formulas modeled by F are final

⋆ to keep the construction finite, we’ll identify equivalent formulas
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From AFAs to NFA

Theorem
For every AFA A there exist a NFA B with O(2∣A∣) states such that L(A) = L(B).
Proof Outline.

⋆ let A = (Q, Σ, qI, 𝛿, F)
⋆ idea: models executions, states of the NFA are the levels of the execution tree

– the construction is simpler, at the expense of non-determinism

⋆ the NFA is given by B ≜ (2Q
, Σ, {qI}, 𝛿′, {M ∣ M ⊆ F}) where

N ∈ 𝛿
′(M, a) ∶⇔ N ⊧ ⋀

q∈M
𝛿(q, a)
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