Advanced Logic

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2023/AL/

Martin Avanzini (martin.avanzini@inria.fr)
Etienne Lozes (etienne.lozes@univ-cotedazur.fr)

UNIVERSITÉ CÔTE D'AZUR

Last Lecture

1. the set of WMSO formulas over $\mathcal{V}_{1}, \mathcal{V}_{2}$ is given by the following grammar:

$$
\phi, \psi::=\top|\perp| x<y|X(x)| \phi \vee \psi|\neg \phi| \exists x \cdot \phi \mid \exists X \cdot \phi
$$

- first-order variables \mathcal{V}_{1} range over \mathbb{N} and second-order variables \mathcal{V}_{2} range over finite sets over \mathbb{N}

2. a WMSO formula ϕ over second-order variables $\left\{P_{\mathrm{a}} \mid \mathrm{a} \in \Sigma\right\}$ defines a language

$$
L(\phi) \triangleq\left\{w \in \Sigma^{*} \mid \underline{w} \vDash \phi\right\}
$$

3. WMSO definable languages are regular, and vice verse
4. Satisfiability and validity decidable in 2^{2}, the height of this tower essentially depends on quantifiers; this bound cannot be improved

- in practice, satisfiability/validity often feasible, even for bigger formulas

Today's Lecture

^ Presburger arithmetic
» alternating automata

Presburger Arithmetic

Presburger Arithmetic \qquad

* Presburger Arithmetic refers to the first-order theory over $(\mathbb{N},\{0,+,<\})$
* named in honor of Mojżesz Presburger, who introduced it in 1929
\star formulas in this logic are derivable from the following grammar:

$$
\begin{aligned}
& s, t::=0|x| s+t \\
& \phi, \psi::=\top|\perp| s=t|s<t| \phi \wedge \psi|\neg \psi| \exists x \cdot \phi
\end{aligned}
$$

where x is a first-order variable
\star valuations map first-order variables to \mathbb{N}

Presburger Arithmetic

\star Presburger Arithmetic refers to the first-order theory over $(\mathbb{N},\{0,+,<\})$

* named in honor of Mojżesz Presburger, who introduced it in 1929
* formulas in this logic are derivable from the following grammar:

$$
\begin{aligned}
& s, t::=0|x| s+t \\
& \phi, \psi::=\top|\perp| s=t|s<t| \phi \wedge \psi|\neg \psi| \exists x \cdot \phi
\end{aligned}
$$

where x is a first-order variable
\star valuations map first-order variables to \mathbb{N}

Applications

Presburger Arithmetic employed - due to the balance between expressiveness and algorithmic properties - e.g. in automated theorem proving and static program analysis

Examples

$$
\begin{aligned}
& s, t::=0|x| s+t \\
& \phi, \psi::=\top|\perp| s=t|s<t| \phi \wedge \psi|\neg \psi| \exists x \cdot \phi
\end{aligned}
$$

$\star m$ is even: ?

Examples

$$
\begin{aligned}
& s, t::=0|x| s+t \\
& \phi, \psi::=\top|\perp| s=t|s<t| \phi \wedge \psi|\neg \psi| \exists x \cdot \phi
\end{aligned}
$$

$\star m$ is even: $\exists n . m=n+n$, or shorthand $\exists n . m=2 \cdot n$

- generally, multiplication by constant $c \in \mathbb{N}$ permissible

Examples

$$
\begin{aligned}
& s, t::=0|x| s+t \\
& \phi, \psi::=\top|\perp| s=t|s<t| \phi \wedge \psi|\neg \psi| \exists x \cdot \phi
\end{aligned}
$$

$\star m$ is even: $\exists n . m=n+n$, or shorthand $\exists n . m=2 \cdot n$

- generally, multiplication by constant $c \in \mathbb{N}$ permissible
$\star \quad m$ equals 1 : ?

Examples

$$
\begin{aligned}
& s, t::=0|x| s+t \\
& \phi, \psi::=\top|\perp| s=t|s<t| \phi \wedge \psi|\neg \psi| \exists x \cdot \phi
\end{aligned}
$$

$\star m$ is even: $\exists n . m=n+n$, or shorthand $\exists n . m=2 \cdot n$

- generally, multiplication by constant $c \in \mathbb{N}$ permissible
$\star m$ equals 1: $\forall n . n<m \rightarrow n=0$

Examples

$$
\begin{aligned}
& s, t::=0|x| s+t \\
& \phi, \psi::=\top|\perp| s=t|s<t| \phi \wedge \psi|\neg \psi| \exists x \cdot \phi
\end{aligned}
$$

$\star m$ is even: $\exists n . m=n+n$, or shorthand $\exists n . m=2 \cdot n$

- generally, multiplication by constant $c \in \mathbb{N}$ permissible
$\star m$ equals 1: $\forall n . n<m \rightarrow n=0$
$\star \quad m=r \bmod 5: ?$

Examples

$$
\begin{aligned}
s, t::=0|x| s+t \\
\phi, \psi::=\top|\perp| s=t|s<t| \phi \wedge \psi|\neg \psi| \exists x . \phi
\end{aligned}
$$

$\star m$ is even: $\exists n . m=n+n$, or shorthand $\exists n . m=2 \cdot n$

- generally, multiplication by constant $c \in \mathbb{N}$ permissible
* m equals 1: $\forall n . n<m \rightarrow n=0$
$\star m=r \bmod 5: \exists n . r<5 \wedge m=5 \cdot n+r$

Examples

$$
\begin{aligned}
& s, t::=0|x| s+t \\
& \phi, \psi::=\top|\perp| s=t|s<t| \phi \wedge \psi|\neg \psi| \exists x \cdot \phi
\end{aligned}
$$

$\star m$ is even: $\exists n . m=n+n$, or shorthand $\exists n . m=2 \cdot n$

- generally, multiplication by constant $c \in \mathbb{N}$ permissible
$\star m$ equals 1: $\forall n . n<m \rightarrow n=0$
$\star \quad m=r \bmod 5: \exists n . r<5 \wedge m=5 \cdot n+r$
* the system of linear equations

$$
\begin{aligned}
& m+n=13 \\
& m-n=1
\end{aligned}
$$

has a solution: ?

Examples

$$
\begin{aligned}
& s, t::=0|x| s+t \\
& \phi, \psi::=\top|\perp| s=t|s<t| \phi \wedge \psi|\neg \psi| \exists x \cdot \phi
\end{aligned}
$$

$\star m$ is even: $\exists n . m=n+n$, or shorthand $\exists n . m=2 \cdot n$

- generally, multiplication by constant $c \in \mathbb{N}$ permissible
* m equals 1: $\forall n . n<m \rightarrow n=0$
* $m=r \bmod 5: \exists n \cdot r<5 \wedge m=5 \cdot n+r$
* the system of linear equations

$$
\begin{aligned}
& m+n=13 \\
& m-n=1
\end{aligned}
$$

has a solution: $\exists m \cdot \exists n \cdot m+n=13 \wedge m=1+n$

A Decision Procedure for Presburger Arithmetic

General Idea

1. encode natural numbers as binary words (lsb-first order)

- assignments $\alpha: \mathcal{V} \rightarrow\left\{0, \ldots, 2^{m}\right\}$ over $\left\{x_{1}, \ldots, x_{n}\right\}$ become binary matrices $\underline{\alpha} \in\{0,1\}^{(m, n)}$

	$\alpha\left(x_{i}\right)$
x_{1}	13
x_{2}	1
x_{3}	3

1

1\end{array}\right)\left($$
\begin{array}{l}0 \\
0 \\
1\end{array}
$$\right)\left($$
\begin{array}{l}1 \\
0 \\
0\end{array}
$$\right)\left($$
\begin{array}{l}1 \\
0 \\
0\end{array}
$$\right)\)

A Decision Procedure for Presburger Arithmetic

General Idea

1. encode natural numbers as binary words (Isb-first order)

- assignments $\alpha: \mathcal{V} \rightarrow\left\{0, \ldots, 2^{m}\right\}$ over $\left\{x_{1}, \ldots, x_{n}\right\}$ become binary matrices $\underline{\alpha} \in\{0,1\}^{(m, n)}$

	$\alpha\left(x_{i}\right)$	$\underline{\alpha}$
x_{1}	13	
x_{2}	1	
x_{3}	3	

1

1\end{array}\right)\left($$
\begin{array}{l}0 \\
0 \\
1\end{array}
$$\right)\left($$
\begin{array}{l}1 \\
0 \\
0\end{array}
$$\right)\left($$
\begin{array}{l}1 \\
0 \\
0\end{array}
$$\right)\)
2. for formula ϕ, define a DFA \mathcal{A}_{ϕ} recognizing precisely codings $\underline{\alpha}$ of valuations α making ϕ become true

Language of a Formula

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

$$
\hat{\mathrm{L}}(\phi) \triangleq\{\underline{\alpha} \mid \alpha \vDash \phi\}
$$

Language of a Formula

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

$$
\hat{\mathrm{L}}(\phi) \triangleq\{\underline{\alpha} \mid \alpha \vDash \phi\}
$$

Lemma
For any formula ϕ in Presburger Arithmetic, $\hat{\mathrm{L}}(\phi)$ is regular.

Language of a Formula

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

$$
\hat{\mathrm{L}}(\phi) \triangleq\{\underline{\alpha} \mid \alpha \vDash \phi\}
$$

Lemma
For any formula ϕ in Presburger Arithmetic, $\hat{\mathrm{L}}(\phi)$ is regular.
Proof Outline.
By induction on the structure of ϕ, we construct a DFA \mathcal{A}_{ϕ} recognizing $\hat{L}(\phi)$.

Language of a Formula

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

$$
\hat{\mathrm{L}}(\phi) \triangleq\{\underline{\alpha} \mid \alpha \vDash \phi\}
$$

Lemma

For any formula ϕ in Presburger Arithmetic, $\hat{\mathrm{L}}(\phi)$ is regular.

Proof Outline.

By induction on the structure of ϕ, we construct a DFA \mathcal{A}_{ϕ} recognizing $\hat{L}(\phi)$.
$\star \phi=\top, \phi=\perp$: In these cases $\hat{\mathrm{L}}(\phi)$ is easily seen to be regular.
$\star \phi=(s<t)$ or $\phi=(s=t)$: A corresponding automaton can be constructed (next slide).
$\star \phi=\neg \phi$ or $\phi=\psi_{1} \wedge \psi_{2}$ From the induction hypothesis, using DFA-complementation and DFA-intersection.
$\star \phi=\forall x . \psi$: Elimination similar to construction for WMSO formulas.

Recognizing $s<t$

\star an inequality $s<t$ can be represented as $\sum_{i} a_{i} \cdot x_{i}<b$ where $a_{i}, b \in \mathbb{Z}$

$$
2 \cdot x_{1}<x_{2}+2 \Longrightarrow 2 \cdot x_{1}-1 \cdot x_{2}<2
$$

Recognizing $s<t$

\star an inequality $s<t$ can be represented as $\sum_{i} a_{i} \cdot x_{i}<b$ where $a_{i}, b \in \mathbb{Z}$

$$
2 \cdot x_{1}<x_{2}+2 \quad \Longrightarrow \quad 2 \cdot x_{1}-1 \cdot x_{2}<2
$$

\star the automaton $\mathcal{A}_{s<t}$ recognizing $s<t$ is defined as follows

- states Q are inequalities of the form $\left\langle\sum_{i} a_{i} \cdot x_{i}\langle d\rangle\right.$ Intuition: $\mathrm{L}\left(\left\langle\sum_{i} a_{i} \cdot x_{i}<d\right\rangle\right)=\left\{\underline{\alpha} \mid \alpha \vDash \sum_{i} a_{i} \cdot x_{i}<d\right\}$

Recognizing $s<t$

\star an inequality $s<t$ can be represented as $\sum_{i} a_{i} \cdot x_{i}<b$ where $a_{i}, b \in \mathbb{Z}$

$$
2 \cdot x_{1}<x_{2}+2 \Longrightarrow 2 \cdot x_{1}-1 \cdot x_{2}<2
$$

\star the automaton $\mathcal{A}_{s<t}$ recognizing $s<t$ is defined as follows

- states Q are inequalities of the form $\left\langle\sum_{i} a_{i} \cdot x_{i}\langle d\rangle\right.$ Intuition: $\mathrm{L}\left(\left\langle\sum_{i} a_{i} \cdot x_{i}<d\right\rangle\right)=\left\{\underline{\alpha} \mid \alpha \vDash \sum_{i} a_{i} \cdot x_{i}<d\right\}$
- the initial state q_{l} is given by the representation of $s<t$

Recognizing $s<t$

\star an inequality $s<t$ can be represented as $\sum_{i} a_{i} \cdot x_{i}<b$ where $a_{i}, b \in \mathbb{Z}$

$$
2 \cdot x_{1}<x_{2}+2 \quad \Longrightarrow \quad 2 \cdot x_{1}-1 \cdot x_{2}<2
$$

\star the automaton $\mathcal{A}_{s<t}$ recognizing $s<t$ is defined as follows

- states Q are inequalities of the form $\left\langle\sum_{i} a_{i} \cdot x_{i}\langle d\rangle\right.$

Intuition: $\mathrm{L}\left(\left\langle\sum_{i} a_{i} \cdot x_{i}<d\right\rangle\right)=\left\{\underline{\alpha} \mid \alpha \vDash \sum_{i} a_{i} \cdot x_{i}<d\right\}$

- the initial state q_{l} is given by the representation of $s<t$
- the transition function δ is given by

$$
\delta\left(\left\langle\sum_{i} a_{i} \cdot x_{i}<d\right\rangle,\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)\right) \triangleq\left\langle\sum_{i} a_{i} \cdot x_{i}<\left\lceil\frac{1}{2}\left(d-\sum_{i} a_{i} \cdot b_{i}\right)\right\rceil\right\rangle
$$

since $\sum_{i} a_{i} \cdot\left(b_{i}+2 \cdot x_{i}^{\prime}\right)<d \Leftrightarrow \sum_{i} a_{i} \cdot x_{i}^{\prime}<\frac{1}{2} \cdot\left(d-\sum_{i} a_{i} \cdot b_{i}\right)$

Recognizing $s<t$

\star an inequality $s<t$ can be represented as $\sum_{i} a_{i} \cdot x_{i}<b$ where $a_{i}, b \in \mathbb{Z}$

$$
2 \cdot x_{1}<x_{2}+2 \quad \Longrightarrow \quad 2 \cdot x_{1}-1 \cdot x_{2}<2
$$

\star the automaton $\mathcal{A}_{s<t}$ recognizing $s<t$ is defined as follows

- states Q are inequalities of the form $\left\langle\sum_{i} a_{i} \cdot x_{i}\langle d\rangle\right.$

Intuition: $\mathrm{L}\left(\left\langle\sum_{i} a_{i} \cdot x_{i}<d\right\rangle\right)=\left\{\underline{\alpha} \mid \alpha \vDash \sum_{i} a_{i} \cdot x_{i}<d\right\}$

- the initial state q_{l} is given by the representation of $s<t$
- the transition function δ is given by

$$
\delta\left(\left\langle\sum_{i} a_{i} \cdot x_{i}\langle d\rangle,\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)\right) \triangleq\left\langle\sum_{i} a_{i} \cdot x_{i}<\left\lceil\frac{1}{2}\left(d-\sum_{i} a_{i} \cdot b_{i}\right)\right\rceil\right\rangle\right.
$$

$$
\text { since } \sum_{i} a_{i} \cdot\left(b_{i}+2 \cdot x_{i}^{\prime}\right)<d \Leftrightarrow \sum_{i} a_{i} \cdot x_{i}^{\prime}<\frac{1}{2} \cdot\left(d-\sum_{i} a_{i} \cdot b_{i}\right)
$$

- final states are all those states $\sum_{i} a_{i} \cdot x_{i}<d$ with $0<d$

Recognizing $s<t$

\star an inequality $s<t$ can be represented as $\sum_{i} a_{i} \cdot x_{i}<b$ where $a_{i}, b \in \mathbb{Z}$

$$
2 \cdot x_{1}<x_{2}+2 \quad \Longrightarrow \quad 2 \cdot x_{1}-1 \cdot x_{2}<2
$$

\star the automaton $\mathcal{A}_{s<t}$ recognizing $s<t$ is defined as follows

- states Q are inequalities of the form $\left\langle\sum_{i} a_{i} \cdot x_{i}\langle d\rangle\right.$

Intuition: $\mathrm{L}\left(\left\langle\sum_{i} a_{i} \cdot x_{i}<d\right\rangle\right)=\left\{\underline{\alpha} \mid \alpha \vDash \sum_{i} a_{i} \cdot x_{i}<d\right\}$

- the initial state q_{l} is given by the representation of $s<t$
- the transition function δ is given by

$$
\delta\left(\left\langle\sum_{i} a_{i} \cdot x_{i}\langle d\rangle,\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)\right) \triangleq\left\langle\sum_{i} a_{i} \cdot x_{i}<\left\lceil\frac{1}{2}\left(d-\sum_{i} a_{i} \cdot b_{i}\right)\right\rceil\right\rangle\right.
$$

$$
\text { since } \sum_{i} a_{i} \cdot\left(b_{i}+2 \cdot x_{i}^{\prime}\right)<d \Leftrightarrow \sum_{i} a_{i} \cdot x_{i}^{\prime}<\frac{1}{2} \cdot\left(d-\sum_{i} a_{i} \cdot b_{i}\right)
$$

- final states are all those states $\sum_{i} a_{i} \cdot x_{i}<d$ with $0<d$
\star finiteness: from initial state $\sum_{i} a_{i} \cdot x_{i}<d$, only $\sum_{i} a_{i}+d$ states reachable, hence the overall construction is finite

Recognizing $s=t$

\star an inequality $s=t$ can be represented as $\sum_{i} a_{i} \cdot x_{i}=b$ where $a_{i}, b \in \mathbb{Z}$

$$
2 \cdot x_{1}=x_{2}+2 \quad \Longrightarrow \quad 2 \cdot x_{1}-1 \cdot x_{2}=2
$$

\star the automaton $\mathcal{A}_{s=t}$ recognizing $s=t$ is defined as follows

- states Q are inequalities of the form $\left\langle\sum_{i} a_{i} \cdot x_{i}=d\right\rangle$

Intuition: $\mathrm{L}\left(\left\langle\sum_{i} a_{i} \cdot x_{i}=d\right\rangle\right)=\left\{\underline{\alpha} \mid \alpha \vDash \sum_{i} a_{i} \cdot x_{i}=d\right\}$

- the initial state q_{l} is given by the representation of $s=t$
- the transition function δ is given by

$$
\delta\left(\left\langle\sum_{i} a_{i} \cdot x_{i}=d\right\rangle,\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)\right) \triangleq \begin{cases}\left\langle\sum_{i} a_{i} \cdot x_{i}=\frac{1}{2}\left(d-\sum_{i} a_{i} \cdot b_{i}\right)\right\rangle & \text { if } d-\sum_{i} a_{i} \cdot b_{i} \text { even, } \\
q_{\text {fail }} & \text { otherwise. }\end{cases}
$$

$$
\text { since } \sum_{i} a_{i} \cdot\left(b_{i}+2 \cdot x_{i}^{\prime}\right)=d \Leftrightarrow \sum_{i} a_{i} \cdot x_{i}^{\prime}=\frac{1}{2} \cdot\left(d-\sum_{i} a_{i} \cdot b_{i}\right)
$$

- final states are all those states $\sum_{i} a_{i} \cdot x_{i}=d$ with $0=d$
\star finiteness: from initial state $\sum_{i} a_{i} \cdot x_{i}=d$, only $\sum_{i} a_{i}+d$ states reachable, hence the overall construction is finite

Decision Problems for Presburger Arithmetic

The Satisfiability Problem
\star Given: formula ϕ
\star Question: is there α s.t $\alpha \vDash \phi$?

The Validity Problem
\star Given: formula ϕ
\star Question: $\alpha \vDash \phi$ for all assignments α ?

Decision Problems for Presburger Arithmetic

The Satisfiability Problem
\star Given: formula ϕ
\star Question: is there α s.t $\alpha \vDash \phi$?

The Validity Problem
\star Given: formula ϕ
\star Question: $\alpha \vDash \phi$ for all assignments α ?

Theorem
Satisfiability and Validity are decidable for Presburger Arithmetic.

Theorem
For any formula ϕ, the constructed DFA recognizing $\hat{L}(\phi)$ has size $\mathrm{O}\left(2^{2^{n}}\right)$.

Peano Arithmetic

\star Peano's arithmetic is the first-order theory natural integers with vocabulary $\{+, \times,<\}$

Peano Arithmetic

\star Peano's arithmetic is the first-order theory natural integers with vocabulary $\{+, \times,<\}$
» its existential fragment corresponds to the Diophantine equations, i.e., polynomial equations on integers

* Hilbert's 10th problem was to solve Diophantine equations

Peano Arithmetic

\star Peano's arithmetic is the first-order theory natural integers with vocabulary $\{+, \times,<\}$

* its existential fragment corresponds to the Diophantine equations, i.e., polynomial equations on integers
* Hilbert's 10th problem was to solve Diophantine equations
» Youri Matiassevitch, drawing on the work of Julia Robinson, demonstrated that this was an undecidable problem

Skolem Arithmetic

« Skolem's arithmetic is the first order theory of natural integers with the vocabulary $\{\times,=\}$

Skolem Arithmetic

« Skolem's arithmetic is the first order theory of natural integers with the vocabulary $\{\times,=\}$

* Skolem's arithmetic is also decidable
« proof goes via reduction to tree automata, closely resembling the proof we have just seen for Presburger's arithmetic

Alternating Automata

Angelican vs Demonic Non-Determinism

What is a non-deterministic machine (or automaton)?

* a "machine" which admits several executions on the same input
* put otherwise, during processing, several choices are possible

Angelican vs Demonic Non-Determinism

What is a non-deterministic machine (or automaton)?

* a "machine" which admits several executions on the same input
* put otherwise, during processing, several choices are possible
\star such choices can be resolved in favor (anglican non-determinism) or against (demonic non-determinism) a positive outcome (e.g. acceptance, termination, etc)

Angelican vs Demonic Non-Determinism

What is a non-deterministic machine (or automaton)?

* a "machine" which admits several executions on the same input
* put otherwise, during processing, several choices are possible
* such choices can be resolved in favor (anglican non-determinism) or against (demonic non-determinism) a positive outcome (e.g. acceptance, termination, etc)
- Anglican: an angel resolves choices
\Rightarrow it is sufficient to have one "good" execution path, to have a positive outcome
- Demonic: a demon resolves choices
\Rightarrow all execution paths must be "good", to have a positive outcome

Angelican vs Demonic Non-Determinism

What is a non-deterministic machine (or automaton)?

* a "machine" which admits several executions on the same input
* put otherwise, during processing, several choices are possible
* such choices can be resolved in favor (anglican non-determinism) or against (demonic non-determinism) a positive outcome (e.g. acceptance, termination, etc)
- Anglican: an angel resolves choices
\Rightarrow it is sufficient to have one "good" execution path, to have a positive outcome
- Demonic: a demon resolves choices
\Rightarrow all execution paths must be "good", to have a positive outcome

Example

\star NFAs are based on anglican non-determinism
ฝ worst-case complexity analysis assumes demonic non-determinism

NFAs with Demonic Choice

* NFAs incorporate angelic non-determinism because, in order for $w \in L(\mathcal{A})$, only one accepting run of w has to exists

NFAs with Demonic Choice

* NFAs incorporate angelic non-determinism because, in order for $w \in L(\mathcal{A})$, only one accepting run of w has to exists
\star demonic non-determinism introduced by re-formulating the acceptance condition

$$
\mathrm{L}^{-}(\mathcal{A}) \triangleq\{w \mid \text { all runs on } w \text { are accepting }\}
$$

NFAs with Demonic Choice

\star NFAs incorporate angelic non-determinism because, in order for $w \in L(\mathcal{A})$, only one accepting run of w has to exists

* demonic non-determinism introduced by re-formulating the acceptance condition

$$
\mathrm{L}^{-}(\mathcal{A}) \triangleq\{w \mid \text { all runs on } w \text { are accepting }\}
$$

Example

Consider automaton \mathcal{A} over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$

$\star \mathrm{L}(\mathcal{A})=\Sigma^{*}$
$\star \mathrm{L}^{-}(\mathcal{A})=\epsilon \cup \Sigma^{*} \cdot \mathrm{~b} \quad$ (why?)

Duality of Non-Determinism

\star recall that for each NFA \mathcal{A}, its dual $\overline{\mathcal{A}}$ is given by complementing final states
\star in general, only when \mathcal{A} is deterministic, then $\mathrm{L}(\overline{\mathcal{A}})=\overline{\mathrm{L}(\mathcal{A})}$

Duality of Non-Determinism

* recall that for each NFA \mathcal{A}, its dual $\overline{\mathcal{A}}$ is given by complementing final states
\star in general, only when \mathcal{A} is deterministic, then $\mathrm{L}(\overline{\mathcal{A}})=\overline{\mathrm{L}(\mathcal{A})}$

Proposition

$$
w \in \mathrm{~L}(\mathcal{A}) \quad \Leftrightarrow \quad w \notin \mathrm{~L}^{-}(\overline{\mathcal{A}})
$$

Duality of Non-Determinism

\star recall that for each NFA \mathcal{A}, its dual $\overline{\mathcal{A}}$ is given by complementing final states
\star in general, only when \mathcal{A} is deterministic, then $\mathrm{L}(\overline{\mathcal{A}})=\overline{\mathrm{L}(\mathcal{A})}$

Proposition

$$
w \in \mathrm{~L}(\mathcal{A}) \quad \Leftrightarrow \quad w \notin \mathrm{~L}^{-}(\overline{\mathcal{A}})
$$

« regime to resolve non-determinism has no effect on expressiveness of NFAs

* although potentially on the conciseness of the language description through NFAs

Duality of Non-Determinism

\star recall that for each NFA \mathcal{A}, its dual $\overline{\mathcal{A}}$ is given by complementing final states
\star in general, only when \mathcal{A} is deterministic, then $\mathrm{L}(\overline{\mathcal{A}})=\overline{\mathrm{L}(\mathcal{A})}$

Proposition

$$
w \in \mathrm{~L}(\mathcal{A}) \quad \Leftrightarrow \quad w \notin \mathrm{~L}^{-}(\overline{\mathcal{A}})
$$

\star regime to resolve non-determinism has no effect on expressiveness of NFAs

* although potentially on the conciseness of the language description through NFAs
what happens if we leave regime internal to the automata?

Alternating Finite Automata

Alternating Finite Automata

« General Idea: mix Anglican an Demonic choice on the level of individual transitions

Alternating Finite Automata

* General Idea: mix Anglican an Demonic choice on the level of individual transitions

$$
\begin{aligned}
& \delta(0, \mathrm{a})=1 \vee 2 \\
& \delta(1, \mathrm{~b})=3 \wedge 4 \\
& \delta(2, \mathrm{~b})=5 \wedge 6
\end{aligned}
$$

$$
=a b b \cup \varnothing
$$

$$
=\mathrm{abb}
$$

Alternating Finite Automata, Formally

Positive Boolean Formulas
\star let $A=\{a, b, \ldots\}$ be a set of atoms
\star the positive Boolean formulas $\mathbb{B}^{+}(A)$ over atoms A are given by the following grammar:

$$
\phi, \psi::=a|\phi \wedge \psi| \phi \vee \psi
$$

- such formulas are called positive because negation is missing

Alternating Finite Automata, Formally

Positive Boolean Formulas

\star let $A=\{a, b, \ldots\}$ be a set of atoms
\star the positive Boolean formulas $\mathbb{B}^{+}(A)$ over atoms A are given by the following grammar:

$$
\phi, \psi::=a|\phi \wedge \psi| \phi \vee \psi
$$

- such formulas are called positive because negation is missing
* a set $M \subseteq A$ is a model of ϕ if $M \vDash \phi$ where

$$
M \vDash a: \Leftrightarrow a \in M \quad M \vDash \phi \wedge \psi: \Leftrightarrow M \vDash \phi \text { and } M \vDash \psi \quad M \vDash \phi \vee \psi: \Leftrightarrow M \vDash \phi \text { or } M \vDash \psi
$$

Alternating Finite Automata, Formally

Positive Boolean Formulas

\star let $A=\{a, b, \ldots\}$ be a set of atoms
\star the positive Boolean formulas $\mathbb{B}^{+}(A)$ over atoms A are given by the following grammar:

$$
\phi, \psi::=a|\phi \wedge \psi| \phi \vee \psi
$$

- such formulas are called positive because negation is missing
* a set $M \subseteq A$ is a model of ϕ if $M \vDash \phi$ where

$$
M \vDash a: \Leftrightarrow a \in M \quad M \vDash \phi \wedge \psi: \Leftrightarrow M \vDash \phi \text { and } M \vDash \psi \quad M \vDash \phi \vee \psi: \Leftrightarrow M \vDash \phi \text { or } M \vDash \psi
$$

Example

consider $\phi=a \wedge(b \vee c)$, then

$$
\{a, b\} \vDash \phi \quad\{a, c\} \vDash \phi \quad\{a\} \neq \phi \quad\{b, c\} \neq \phi
$$

Alternating Finite Automata, Formally (II)

an alternating finite automata (AFA) is a tuple $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$ where all components are identical to an NFA except that

$$
\delta: Q \times \Sigma \rightarrow \mathbb{B}^{+}(Q)
$$

Alternating Finite Automata, Formally (II)

an alternating finite automata (AFA) is a tuple $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$ where all components are identical to an NFA except that

$$
\delta: Q \times \Sigma \rightarrow \mathbb{B}^{+}(Q)
$$

Example

δ	a	b	c
q_{0}	$q_{0} \vee q_{1}$	q_{\perp}	q_{\perp}
q_{1}	q_{\perp}	$q_{1} \wedge q_{2}$	q_{1}
q_{2}	q_{\perp}	q_{2}	q_{1}
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

Runs in an AFA

let $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$ be an AFA
\star an execution for a word $w=a_{1} \ldots a_{n} \in \Sigma^{*}$ is a tree T_{w} whose nodes are labeled by states Q s.t.:

1. the root node of T_{w} is labeled by the initial state q_{l}
2. for all nodes v labeled by q on the th layer ($i=0, \ldots, n-1$) and successors v_{1}, \ldots, v_{k} on layer $i+1$, labeled by q_{1}, \ldots, q_{k}, respectively:

$$
\left\{q_{1}, \ldots, q_{k}\right\} \vDash \delta\left(q, a_{i+1}\right)
$$

Runs in an AFA

let $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$ be an AFA
\star an execution for a word $w=\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{n}} \in \Sigma^{*}$ is a tree T_{w} whose nodes are labeled by states Q s.t.:

1. the root node of T_{w} is labeled by the initial state q_{l}
2. for all nodes v labeled by q on the th layer ($i=0, \ldots, n-1$) and successors v_{1}, \ldots, v_{k} on layer $i+1$, labeled by q_{1}, \ldots, q_{k}, respectively:

$$
\left\{q_{1}, \ldots, q_{k}\right\} \vDash \delta\left(q, \mathrm{a}_{i+1}\right)
$$

* an execution is accepting if all leafs are labeled by final states

Runs in an AFA

let $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$ be an AFA
\star an execution for a word $w=\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{n}} \in \Sigma^{*}$ is a tree T_{w} whose nodes are labeled by states Q s.t.:

1. the root node of T_{w} is labeled by the initial state q_{l}
2. for all nodes v labeled by q on the th layer ($i=0, \ldots, n-1$) and successors v_{1}, \ldots, v_{k} on layer $i+1$, labeled by q_{1}, \ldots, q_{k}, respectively:

$$
\left\{q_{1}, \ldots, q_{k}\right\} \vDash \delta\left(q, \mathrm{a}_{\mathrm{i}+1}\right)
$$

* an execution is accepting if all leafs are labeled by final states
\star the language recognized by \mathcal{A} is given by

$$
L(\mathcal{A}) \triangleq\left\{w \mid \text { there exists an accepting execution } T_{w} \text { for } w\right\}
$$

Example of Accepting Execution for $w=\mathrm{abbc}$

δ	a	b	c
q_{0}	$q_{0} \vee q_{1}$	q_{\perp}	q_{\perp}
q_{1}	q_{\perp}	$q_{1} \wedge q_{2}$	q_{1}
q_{2}	q_{\perp}	q_{2}	q_{1}
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

Example of Accepting Execution for $w=$ abbc

δ	a	b	c
q_{0}	$q_{0} \vee q_{1}$	q_{\perp}	q_{\perp}
q_{1}	q_{\perp}	$q_{1} \wedge q_{2}$	q_{1}
q_{2}	q_{\perp}	q_{2}	q_{1}
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

Example of Accepting Execution for $w=$ abbc

Example of Accepting Execution for $w=a b b c$

Example of Accepting Execution for $w=$ abbc

Example of Accepting Execution for $w=$ abbc

Example of Accepting Execution for $w=\mathrm{abbc}$

δ	a	b	c
q_{0}	$q_{0} \vee q_{1}$	q_{\perp}	q_{\perp}
q_{1}	q_{\perp}	$q_{1} \wedge q_{2}$	q_{1}
q_{2}	q_{\perp}	q_{2}	q_{1}
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

Extended Transition Function

the extended transition function

$$
\hat{\delta}: \mathbb{B}^{+}(Q) \times \Sigma^{*} \rightarrow \mathbb{B}^{+}(Q)
$$

is recursively defined by:

$$
\begin{array}{rll}
\hat{\delta}(q, \epsilon) & \triangleq q & \hat{\delta}(\phi \vee \psi, w)=\hat{\delta}(\phi, w) \vee \hat{\delta}(\psi, w) \\
\hat{\delta}(q, a \cdot w) \triangleq \hat{\delta}(\delta(q, a), w) & \hat{\delta}(\phi \wedge \psi, w)=\hat{\delta}(\phi, w) \wedge \hat{\delta}(\psi, w)
\end{array}
$$

Extended Transition Function

the extended transition function

$$
\hat{\delta}: \mathbb{B}^{+}(Q) \times \Sigma^{*} \rightarrow \mathbb{B}^{+}(Q)
$$

is recursively defined by:

$$
\begin{aligned}
\hat{\delta}(q, \epsilon) \triangleq q & \hat{\delta}(\phi \vee \psi, w)=\hat{\delta}(\phi, w) \vee \hat{\delta}(\psi, w) \\
\hat{\delta}(q, \mathrm{a} \cdot w) \triangleq \hat{\delta}(\delta(q, \mathrm{a}), w) & \hat{\delta}(\phi \wedge \psi, w)=\hat{\delta}(\phi, w) \wedge \hat{\delta}(\psi, w)
\end{aligned}
$$

Lemma

$$
\mathrm{L}(\mathcal{A})=\left\{w \mid F \vDash \hat{\delta}\left(q_{1}, w\right)\right\}
$$

Example of Accepting Execution for $w=$ abbc (II)

Comparison to NFAs and DFAs

^ AFAs generalise NFAs

- every DFA is a NFA is an AFA

Comparison to NFAs and DFAs

^ AFAs generalise NFAs

- every DFA is a NFA is an AFA
^ AFAs allow often more succinct encoding / automata constructions

Comparison to NFAs and DFAs

* AFAs generalise NFAs
- every DFA is a NFA is an AFA
\star AFAs allow often more succinct encoding / automata constructions

Example

\star let $\mathcal{A}^{(m)}=\left(Q^{(m)},\{\mathrm{a}\}, \delta^{(m)}, q_{l}^{(m)}, F^{(m)}\right)$ be an NFA with $L\left(\mathcal{A}^{(m)}\right)=\{w| | w \mid=0 \bmod m\}$

- this NFA has at least m states

Comparison to NFAs and DFAs

* AFAs generalise NFAs
- every DFA is a NFA is an AFA
\star AFAs allow often more succinct encoding / automata constructions

Example

\star let $\mathcal{A}^{(m)}=\left(Q^{(m)},\{\mathrm{a}\}, \delta^{(m)}, q_{l}^{(m)}, F^{(m)}\right)$ be an NFA with $L\left(\mathcal{A}^{(m)}\right)=\{w| | w \mid=0 \bmod m\}$

- this NFA has at least m states
\star consider the AFA \mathcal{A} defined from $\mathcal{A}^{(m)}$ for primes $m=7,13,17,19$ by

Comparison to NFAs and DFAs

* AFAs generalise NFAs
- every DFA is a NFA is an AFA
^ AFAs allow often more succinct encoding / automata constructions

Example

* let $\mathcal{A}^{(m)}=\left(Q^{(m)},\{\mathrm{a}\}, \delta^{(m)}, q_{l}^{(m)}, F^{(m)}\right)$ be an NFA with $L\left(\mathcal{A}^{(m)}\right)=\{w| | w \mid=0 \bmod m\}$
- this NFA has at least m states
\star consider the AFA \mathcal{A} defined from $\mathcal{A}^{(m)}$ for primes $m=7,13,17,19$ by

$-\mathrm{L}(\mathcal{A})=\{w| | w \mid=1 \bmod 29393\}$ since $29393=7 \cdot 13 \cdot 17 \cdot 19$

Comparison to NFAs and DFAs

* AFAs generalise NFAs
- every DFA is a NFA is an AFA
\star AFAs allow often more succinct encoding / automata constructions

Example

\star let $\mathcal{A}^{(m)}=\left(Q^{(m)},\{a\}, \delta^{(m)}, q_{l}^{(m)}, F^{(m)}\right)$ be an NFA with $L\left(\mathcal{A}^{(m)}\right)=\{w| | w \mid=0 \bmod m\}$

- this NFA has at least m states
* consider the AFA \mathcal{A} defined from $\mathcal{A}^{(m)}$ for primes $m=7,13,17,19$ by

$-\mathrm{L}(\mathcal{A})=\{w| | w \mid=1 \bmod 29393\}$ since $29393=7 \cdot 13 \cdot 17 \cdot 19$
- AFA \mathcal{A} has $57=1+7+13+17+19$, whereas a corresponding NFA needs 29393 states

Complementation

* recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every $A F A \mathcal{A}$ there exists an $A F A \overline{\mathcal{A}}$ of equal size such that $\mathrm{L}(\overline{\mathcal{A}})=\overline{\mathrm{L}(\mathcal{A})}$

Complementation

* recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every $A F A \mathcal{A}$ there exists an $A F A \overline{\mathcal{A}}$ of equal size such that $\mathrm{L}(\overline{\mathcal{A}})=\overline{\mathrm{L}(\mathcal{A})}$
Proof Outline.
\star let $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$
\star define the dual formula $\bar{\phi}$ of $\phi \in \mathbb{B}^{+}(Q)$ following De Morgans rules

$$
\bar{q} \triangleq q \quad \overline{\phi \vee \psi} \triangleq \bar{\phi} \wedge \bar{\psi} \quad \overline{\phi \wedge \psi} \triangleq \bar{\phi} \vee \bar{\psi}
$$

- morally, $q \in Q$ re-used for their "negation"; we have (i) $M \vDash \phi$ iff $Q \backslash M \nRightarrow \bar{\phi}$

Complementation

* recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every $A F A \mathcal{A}$ there exists an $A F A \overline{\mathcal{A}}$ of equal size such that $\mathrm{L}(\overline{\mathcal{A}})=\overline{\mathrm{L}(\mathcal{A})}$

Proof Outline.

\star let $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$
\star define the dual formula $\bar{\phi}$ of $\phi \in \mathbb{B}^{+}(Q)$ following De Morgans rules

$$
\bar{q} \triangleq q \quad \overline{\phi \vee \psi} \triangleq \bar{\phi} \wedge \bar{\psi} \quad \overline{\phi \wedge \psi} \triangleq \bar{\phi} \vee \bar{\psi}
$$

- morally, $q \in Q$ re-used for their "negation"; we have (i) $M \vDash \phi$ iff $Q \backslash M \nRightarrow \bar{\phi}$
\star we now define $\overline{\mathcal{A}} \triangleq\left(Q, \Sigma, \bar{\delta}, q_{l}, Q \backslash F\right)$ where $\bar{\delta}(q, a) \triangleq \overline{\delta(q, a)}$ for all $q \in Q, a \in \Sigma$

Complementation

* recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every $A F A \mathcal{A}$ there exists an $A F A \overline{\mathcal{A}}$ of equal size such that $\mathrm{L}(\overline{\mathcal{A}})=\overline{\mathrm{L}(\mathcal{A})}$

Proof Outline.

\star let $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$
\star define the dual formula $\bar{\phi}$ of $\phi \in \mathbb{B}^{+}(Q)$ following De Morgans rules

$$
\bar{q} \triangleq q \quad \overline{\phi \vee \psi} \triangleq \bar{\phi} \wedge \bar{\psi} \quad \overline{\phi \wedge \psi} \triangleq \bar{\phi} \vee \bar{\psi}
$$

- morally, $q \in Q$ re-used for their "negation"; we have (i) $M \vDash \phi$ iff $Q \backslash M \nRightarrow \bar{\phi}$
\star we now define $\overline{\mathcal{A}} \triangleq\left(Q, \Sigma, \bar{\delta}, q_{l}, Q \backslash F\right)$ where $\bar{\delta}(q, a) \triangleq \overline{\delta(q, a)}$ for all $q \in Q, a \in \Sigma$
- by induction on $|w|$ it can now be shown that (ii) $\hat{\bar{\delta}}(q, w)=\overline{\hat{\delta}(q, w)}$

Complementation

* recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every $A F A \mathcal{A}$ there exists an $A F A \overline{\mathcal{A}}$ of equal size such that $\mathrm{L}(\overline{\mathcal{A}})=\overline{\mathrm{L}(\mathcal{A})}$

Proof Outline.

\star let $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$
\star define the dual formula $\bar{\phi}$ of $\phi \in \mathbb{B}^{+}(Q)$ following De Morgans rules

$$
\bar{q} \triangleq q \quad \overline{\phi \vee \psi} \triangleq \bar{\phi} \wedge \bar{\psi} \quad \overline{\phi \wedge \psi} \triangleq \bar{\phi} \vee \bar{\psi}
$$

- morally, $q \in Q$ re-used for their "negation"; we have (i) $M \vDash \phi$ iff $Q \backslash M \nRightarrow \bar{\phi}$
\star we now define $\overline{\mathcal{A}} \triangleq\left(Q, \Sigma, \bar{\delta}, q_{l}, Q \backslash F\right)$ where $\bar{\delta}(q, a) \triangleq \overline{\delta(q, a)}$ for all $q \in Q, a \in \Sigma$
- by induction on $|w|$ it can now be shown that (ii) $\hat{\bar{\delta}}(q, w)=\overline{\hat{\delta}(q, w)}$
- overall, we have

$$
w \notin \mathrm{~L}(\mathcal{A}) \stackrel{\text { def. }}{\Longleftrightarrow} F \not \vDash \hat{\delta}\left(q_{l}, w\right) \stackrel{(i)}{\Longleftrightarrow} Q \backslash F \vDash \overline{\hat{\delta}\left(q_{l}, w\right)} \stackrel{(i i)}{\Longleftrightarrow} Q \backslash F \vDash \hat{\bar{\delta}}\left(q_{l}, w\right) \stackrel{\text { def. }}{\Longleftrightarrow} w \in \mathrm{~L}(\overline{\mathcal{A}})
$$

Example

\Uparrow complement

Relationship with Regular Languages

AFAs Recognize $R E G$

Theorem
For every $A F A \mathcal{A}$ there exist a DFA \mathcal{B} with $\mathrm{O}\left(2^{2^{|\mathcal{A}|}}\right)$ states such that $\mathrm{L}(\mathcal{A})=\mathrm{L}(\mathcal{B})$.

AFAs Recognize $R E G$

Theorem
For every $A F A \mathcal{A}$ there exist a DFA \mathcal{B} with $\mathrm{O}\left(2^{2^{|\mathcal{A}|}}\right)$ states such that $\mathrm{L}(\mathcal{A})=\mathrm{L}(\mathcal{B})$.
Proof Outline.
let $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$
Idea:

* the states of \mathcal{B} are formulas
$\star \phi \xrightarrow{\mathrm{a}} \psi$ in \mathcal{B} if $\hat{\delta}(\phi, \mathrm{a})=\psi$
- Example: $\delta(p, \mathrm{a})=q \wedge r$ and $\delta(q, \mathrm{a})=r \Rightarrow p \vee q \xrightarrow{\mathrm{a}}(q \wedge r) \vee r$
$-\operatorname{arun} q_{l} \xrightarrow{a_{1}} \ldots \xrightarrow{a_{n}} \phi$ thus models $\hat{\delta}\left(q_{l}, a_{1} \ldots a_{n}\right)=\phi$
* the formula q_{l} is the initial state
\star the formulas modeled by F are final

Example

the initial AFA

AFAs Recognize $R E G$

Theorem
For every $A F A \mathcal{A}$ there exist a DFA \mathcal{B} with $\mathrm{O}\left(2^{2^{|\mathcal{A}|}}\right)$ states such that $\mathrm{L}(\mathcal{A})=\mathrm{L}(\mathcal{B})$.
Proof Outline.
let $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$
Idea:

* the states of \mathcal{B} are formulas
$\star \phi \xrightarrow{\mathrm{a}} \psi$ in \mathcal{B} if $\hat{\delta}(\phi, \mathrm{a})=\psi$
- Example: $\delta(p, \mathrm{a})=q \wedge r$ and $\delta(q, \mathrm{a})=r \Rightarrow p \vee q \xrightarrow{\mathrm{a}}(q \wedge r) \vee r$
$-\operatorname{arun} q_{l} \xrightarrow{a_{1}} \ldots \xrightarrow{a_{n}} \phi$ thus models $\hat{\delta}\left(q_{l}, a_{1} \ldots a_{n}\right)=\phi$
* the formula q_{l} is the initial state
* the formulas modeled by F are final
* to keep the construction finite, we'll identify equivalent formulas

AFAs Recognize REG
Theorem
For every $A F A \mathcal{A}$ there exist a DFA \mathcal{B} with $\mathrm{O}\left(2^{2^{|\mathcal{A}|}}\right)$ states such that $\mathrm{L}(\mathcal{A})=\mathrm{L}(\mathcal{B})$.
Proof Outline.
let $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$
Formally:
\star the equivalence \sim on $\mathbb{B}^{+}(Q)$ is given by $\phi \sim \psi$ if $\{M \mid M \vDash \phi\}=\{M \mid M \vDash \psi\}$
$-q \sim q \vee q \sim q \wedge q$ but $q \nmid p \vee q \nmid p \wedge q$

AFAs Recognize $R E G$

Theorem
For every $A F A \mathcal{A}$ there exist a DFA \mathcal{B} with $\mathrm{O}\left(2^{2^{|\mathcal{A}|}}\right)$ states such that $\mathrm{L}(\mathcal{A})=\mathrm{L}(\mathcal{B})$.
Proof Outline.
let $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$
Formally:
\star the equivalence \sim on $\mathbb{B}^{+}(Q)$ is given by $\phi \sim \psi$ if $\{M \mid M \vDash \phi\}=\{M \mid M \vDash \psi\}$

$$
-q \sim q \vee q \sim q \wedge q \text { but } q \nmid p \vee q \nmid p \wedge q
$$

\star the equivalence class $[\phi]_{\sim}$ can be simply conceived as the formula ϕ, with equivalent formulas $\phi \sim \psi$ identified
$-[q \vee q]_{\sim}=\{q, q \vee q, q \wedge q, \ldots\}$

AFAs Recognize $R E G$

Theorem

For every $A F A \mathcal{A}$ there exist a DFA \mathcal{B} with $\mathrm{O}\left(2^{2^{|\mathcal{A}|}}\right)$ states such that $\mathrm{L}(\mathcal{A})=\mathrm{L}(\mathcal{B})$.
Proof Outline.
let $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$
Formally:
\star the equivalence \sim on $\mathbb{B}^{+}(Q)$ is given by $\phi \sim \psi$ if $\{M \mid M \vDash \phi\}=\{M \mid M \vDash \psi\}$

$$
-q \sim q \vee q \sim q \wedge q \text { but } q \nmid p \vee q \nmid p \wedge q
$$

\star the equivalence class $[\phi]_{\sim}$ can be simply conceived as the formula ϕ, with equivalent formulas $\phi \sim \psi$ identified

$$
-[q \vee q]_{\sim}=\{q, q \vee q, q \wedge q, \ldots\}
$$

\star the set of all such equivalence classes $\mathbb{B}^{+}(Q) / \sim$ contains $O\left(2^{2^{|Q|}}\right)$ elements

AFAs Recognize $R E G$

Theorem

Proof Outline.
let $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$
Formally:
\star the equivalence \sim on $\mathbb{B}^{+}(Q)$ is given by $\phi \sim \psi$ if $\{M \mid M \vDash \phi\}=\{M \mid M \vDash \psi\}$

$$
-q \sim q \vee q \sim q \wedge q \text { but } q \nmid p \vee q \nmid p \wedge q
$$

\star the equivalence class $[\phi]_{\sim}$ can be simply conceived as the formula ϕ, with equivalent formulas $\phi \sim \psi$ identified

$$
-[q \vee q]_{\sim}=\{q, q \vee q, q \wedge q, \ldots\}
$$

\star the set of all such equivalence classes $\mathbb{B}^{+}(Q) / \sim$ contains $\mathrm{O}\left(2^{2^{|Q|}}\right)$ elements
$\star \mathcal{B} \triangleq\left(\mathbb{B}^{+}(Q) / \sim, \Sigma, q_{I}, \delta_{\sim},\left\{[\phi]_{\sim} \mid F \vDash \phi\right\}\right)$ where $\delta_{\sim}\left([\phi]_{\sim}, a\right) \triangleq[\hat{\delta}(\phi, a)]_{\sim}$ recognises $\mathrm{L}(\mathcal{A})$

From AFAs to NFA

Theorem
For every $A F A \mathcal{A}$ there exist a NFA \mathcal{B} with $\mathrm{O}\left(2^{|\mathcal{A}|}\right)$ states such that $\mathrm{L}(\mathcal{A})=\mathrm{L}(\mathcal{B})$.

Proof Outline.
\star let $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$
« idea: models executions, states of the NFA are the levels of the execution tree

- the construction is simpler, at the expense of non-determinism

From AFAs to NFA

Theorem

For every $A F A \mathcal{A}$ there exist a NFA \mathcal{B} with $\mathrm{O}\left(2^{|\mathcal{A}|}\right)$ states such that $\mathrm{L}(\mathcal{A})=\mathrm{L}(\mathcal{B})$.
Proof Outline.
\star let $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$
« idea: models executions, states of the NFA are the levels of the execution tree

- the construction is simpler, at the expense of non-determinism
\star the NFA is given by $\mathcal{B} \triangleq\left(2^{Q}, \Sigma,\left\{q_{l}\right\}, \delta^{\prime},\{M \mid M \subseteq F\}\right)$ where

$$
N \in \delta^{\prime}(M, \mathrm{a}) \quad: \Leftrightarrow \quad N \vDash \bigwedge_{q \in M} \delta(q, \mathrm{a})
$$

Example (II)

the initial AFA

the translated NFA

