Advanced Logic

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2023/AL/

Martin Avanzini (martin.avanzini@inria.fr) Etienne Lozes (etienne.lozes@univ-cotedazur.fr)

2nd Semester M1, 2023

Last Lecture

1. the set of WMSO formulas over V_1, V_2 is given by the following grammar:

 $\phi, \psi ::= \top \mid \perp \mid x < y \mid X(x) \mid \phi \lor \psi \mid \neg \phi \mid \exists x.\phi \mid \exists X.\phi$

- first-order variables \mathcal{V}_1 range over $\mathbb N$ and second-order variables \mathcal{V}_2 range over finite sets over $\mathbb N$
- 2. a WMSO formula ϕ over second-order variables $\{P_a \mid a \in \Sigma\}$ defines a language

 $L(\phi) \triangleq \{ w \in \Sigma^* \mid \underline{w} \vDash \phi \}$

- 3. WMSO definable languages are regular, and vice verse
- Satisfiability and validity decidable in 2^{2^{--2^c}}, the height of this tower essentially depends on quantifiers; this bound cannot be improved
 - in practice, satisfiability/validity often feasible, even for bigger formulas

Today's Lecture

- ★ Presburger arithmetic
- ★ alternating automata

Presburger Arithmetic

Presburger Arithmetic

- * Presburger Arithmetic refers to the first-order theory over $(\mathbb{N}, \{0, +, <\})$
- * named in honor of Mojżesz Presburger, who introduced it in 1929
- ★ formulas in this logic are derivable from the following grammar:

where x is a first-order variable

 \star valuations map first-order variables to $\mathbb N$

Presburger Arithmetic

- * Presburger Arithmetic refers to the first-order theory over $(\mathbb{N}, \{0, +, <\})$
- ★ named in honor of Mojżesz Presburger, who introduced it in 1929
- \star formulas in this logic are derivable from the following grammar:

where x is a first-order variable

 $\star\,$ valuations map first-order variables to $\mathbb N$

Applications

Presburger Arithmetic employed — due to the balance between expressiveness and algorithmic properties — e.g. in automated theorem proving and static program analysis

Examples

 \star *m* is even: ?

- ★ *m* is even: $\exists n.m = n + n$, or shorthand $\exists n.m = 2 \cdot n$
 - generally, multiplication by constant $c \in \mathbb{N}$ permissible

- ★ *m* is even: $\exists n.m = n + n$, or shorthand $\exists n.m = 2 \cdot n$
 - generally, multiplication by constant $c \in \mathbb{N}$ permissible
- \star *m* equals 1: ?

- ★ *m* is even: $\exists n.m = n + n$, or shorthand $\exists n.m = 2 \cdot n$
 - generally, multiplication by constant $c \in \mathbb{N}$ permissible
- * *m* equals 1: $\forall n.n < m \rightarrow n = 0$

- ★ *m* is even: $\exists n.m = n + n$, or shorthand $\exists n.m = 2 \cdot n$
 - generally, multiplication by constant $c \in \mathbb{N}$ permissible
- ★ *m* equals 1: $\forall n.n < m \rightarrow n = 0$
- \star m = r mod 5: ?

- ★ *m* is even: $\exists n.m = n + n$, or shorthand $\exists n.m = 2 \cdot n$
 - generally, multiplication by constant $c \in \mathbb{N}$ permissible
- ★ *m* equals 1: $\forall n.n < m \rightarrow n = 0$
- * $m = r \mod 5$: $\exists n.r < 5 \land m = 5 \cdot n + r$

- ★ *m* is even: $\exists n.m = n + n$, or shorthand $\exists n.m = 2 \cdot n$
 - generally, multiplication by constant $c \in \mathbb{N}$ permissible
- * *m* equals 1: $\forall n.n < m \rightarrow n = 0$
- ★ $m = r \mod 5$: $\exists n.r < 5 \land m = 5 \cdot n + r$
- ★ the system of linear equations

m + n = 13m - n = 1

MASTER INFORMATIQUE

has a solution: ?

- ★ *m* is even: $\exists n.m = n + n$, or shorthand $\exists n.m = 2 \cdot n$
 - generally, multiplication by constant $c \in \mathbb{N}$ permissible
- * *m* equals 1: $\forall n.n < m \rightarrow n = 0$
- ★ $m = r \mod 5$: $\exists n.r < 5 \land m = 5 \cdot n + r$
- ★ the system of linear equations

m + n = 13m - n = 1

has a solution: $\exists m. \exists n. m + n = 13 \land m = 1 + n$

A Decision Procedure for Presburger Arithmetic

General Idea

- 1. encode natural numbers as binary words (lsb-first order)
 - assignments $\alpha : \mathcal{V} \to \{0, \dots, 2^m\}$ over $\{x_1, \dots, x_n\}$ become binary matrices $\underline{\alpha} \in \{0, 1\}^{(m, n)}$

	$\alpha(x_i)$		<u>a</u>	<u>r</u>	
<i>x</i> ₁	13	(1)	(0)	(1)	(1)
<i>x</i> ₂	1	1	0	0	0
<i>x</i> 3	3	(1)	(1)	(0)	(0/

A Decision Procedure for Presburger Arithmetic

General Idea

- 1. encode natural numbers as binary words (lsb-first order)
 - − assignments $\alpha : \mathcal{V} \to \{0, ..., 2^m\}$ over $\{x_1, ..., x_n\}$ become binary matrices $\underline{\alpha} \in \{0, 1\}^{(m,n)}$

	$\alpha(x_i)$	$\underline{\alpha}$			
x_1	13	(1)(0)(1)(1)			
<i>x</i> ₂	1				
<i>x</i> 3	3	1/1/0/0/			

2. for formula ϕ , define a DFA A_{ϕ} recognizing precisely codings $\underline{\alpha}$ of valuations α making ϕ become true

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

 $\hat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

 $\hat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

Lemma

For any formula ϕ in Presburger Arithmetic, $\hat{L}(\phi)$ is regular.

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

 $\hat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

Lemma

For any formula ϕ in Presburger Arithmetic, $\hat{L}(\phi)$ is regular.

Proof Outline.

By induction on the structure of ϕ , we construct a DFA \mathcal{A}_{ϕ} recognizing $\hat{\mathsf{L}}(\phi)$.

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

 $\hat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

Lemma

For any formula ϕ in Presburger Arithmetic, $\hat{L}(\phi)$ is regular.

Proof Outline.

By induction on the structure of ϕ , we construct a DFA \mathcal{A}_{ϕ} recognizing $\hat{\mathsf{L}}(\phi)$.

- ★ $\phi = \top$, $\phi = \bot$: In these cases $\hat{L}(\phi)$ is easily seen to be regular.
- * $\phi = (s < t)$ or $\phi = (s = t)$: A corresponding automaton can be constructed (next slide).
- * $\phi = \neg \phi$ or $\phi = \psi_1 \land \psi_2$ From the induction hypothesis, using DFA-complementation and DFA-intersection.
- ★ $\phi = \forall x.\psi$: Elimination similar to construction for WMSO formulas.

Recognizing *s*<*t* ____

★ an inequality s < t can be represented as $\sum_{i} a_i \cdot x_i < b$ where $a_i, b \in \mathbb{Z}$

★ an inequality s < t can be represented as $\sum_i a_i \cdot x_i < b$ where $a_i, b \in \mathbb{Z}$

- ★ the automaton $A_{s < t}$ recognizing s < t is defined as follows
 - states *Q* are inequalities of the form $\langle \sum_{i} a_{i} \cdot x_{i} < d \rangle$ Intuition: $L(\langle \sum_{i} a_{i} \cdot x_{i} < d \rangle) = \{ \underline{\alpha} \mid \alpha \models \sum_{i} a_{i} \cdot x_{i} < d \}$

★ an inequality s < t can be represented as $\sum_i a_i \cdot x_i < b$ where $a_i, b \in \mathbb{Z}$

- ★ the automaton $A_{s < t}$ recognizing s < t is defined as follows
 - states *Q* are inequalities of the form $\langle \sum_{i} a_{i} \cdot x_{i} < d \rangle$ Intuition: $L(\langle \sum_{i} a_{i} \cdot x_{i} < d \rangle) = \{ \underline{\alpha} \mid \alpha \models \sum_{i} a_{i} \cdot x_{i} < d \}$
 - the initial state q_l is given by the representation of s < t

★ an inequality s < t can be represented as $\sum_i a_i \cdot x_i < b$ where $a_i, b \in \mathbb{Z}$

- ★ the automaton $A_{s < t}$ recognizing s < t is defined as follows
 - states *Q* are inequalities of the form $\langle \sum_{i} a_{i} \cdot x_{i} < d \rangle$ Intuition: $L(\langle \sum_{i} a_{i} \cdot x_{i} < d \rangle) = \{ \underline{\alpha} \mid \alpha \models \sum_{i} a_{i} \cdot x_{i} < d \}$
 - the initial state q_l is given by the representation of s < t
 - the transition function δ is given by

$$\delta\left(\left\langle\sum_{i}a_{i}\cdot x_{i} < d\right\rangle, \begin{pmatrix}b_{1}\\ \vdots\\ b_{n}\end{pmatrix}\right) \triangleq \left\langle\sum_{i}a_{i}\cdot x_{i} < \left\lceil\frac{1}{2}\left(d-\sum_{i}a_{i}\cdot b_{i}\right)\right\rceil\right\rangle$$

since $\sum_{i}a_{i}\cdot (b_{i}+2\cdot x_{i}') < d \iff \sum_{i}a_{i}\cdot x_{i}' < \frac{1}{2}\cdot (d-\sum_{i}a_{i}\cdot b_{i})$

★ an inequality s < t can be represented as $\sum_i a_i \cdot x_i < b$ where $a_i, b \in \mathbb{Z}$

 $2 \cdot x_1 < x_2 + 2 \implies 2 \cdot x_1 - 1 \cdot x_2 < 2$

- ★ the automaton $A_{s < t}$ recognizing s < t is defined as follows
 - states *Q* are inequalities of the form $\langle \sum_{i} a_{i} \cdot x_{i} < d \rangle$ Intuition: $L(\langle \sum_{i} a_{i} \cdot x_{i} < d \rangle) = \{ \underline{\alpha} \mid \alpha \models \sum_{i} a_{i} \cdot x_{i} < d \}$
 - the initial state q_l is given by the representation of s < t
 - the transition function δ is given by

$$\delta\left(\left\langle\sum_{i}a_{i}\cdot x_{i} < d\right\rangle, \begin{pmatrix}b_{1}\\ \vdots\\ b_{n}\end{pmatrix}\right) \triangleq \left\langle\sum_{i}a_{i}\cdot x_{i} < \left\lceil\frac{1}{2}\left(d-\sum_{i}a_{i}\cdot b_{i}\right)\right\rceil\right\rangle$$

since $\sum_{i}a_{i}\cdot (b_{i}+2\cdot x_{i}') < d \iff \sum_{i}a_{i}\cdot x_{i}' < \frac{1}{2}\cdot \left(d-\sum_{i}a_{i}\cdot b_{i}\right)$

- final states are all those states $\sum_i a_i \cdot x_i < d$ with 0 < d

★ an inequality s < t can be represented as $\sum_i a_i \cdot x_i < b$ where $a_i, b \in \mathbb{Z}$

 $2 \cdot x_1 < x_2 + 2 \implies 2 \cdot x_1 - 1 \cdot x_2 < 2$

- ★ the automaton $A_{s < t}$ recognizing s < t is defined as follows
 - states *Q* are inequalities of the form $\langle \sum_{i} a_{i} \cdot x_{i} < d \rangle$ Intuition: $L(\langle \sum_{i} a_{i} \cdot x_{i} < d \rangle) = \{ \underline{\alpha} \mid \alpha \models \sum_{i} a_{i} \cdot x_{i} < d \}$
 - the initial state q_l is given by the representation of s < t
 - the transition function δ is given by

$$\delta\left(\left\langle\sum_{i}a_{i}\cdot x_{i} < d\right\rangle, \begin{pmatrix}b_{1}\\ \vdots\\ b_{n}\end{pmatrix}\right) \triangleq \left\langle\sum_{i}a_{i}\cdot x_{i} < \left\lceil\frac{1}{2}\left(d-\sum_{i}a_{i}\cdot b_{i}\right)\right\rceil\right\rangle$$

since $\sum_i a_i \cdot (b_i + 2 \cdot x'_i) < d \Leftrightarrow \sum_i a_i \cdot x'_i < \frac{1}{2} \cdot (d - \sum_i a_i \cdot b_i)$

- final states are all those states $\sum_{i} a_i \cdot x_i < d$ with 0 < d
- ★ finiteness: from initial state $\sum_i a_i \cdot x_i < d$, only $\sum_i a_i + d$ states reachable, hence the overall construction is finite

★ an inequality s = t can be represented as $\sum_i a_i \cdot x_i = b$ where $a_i, b \in \mathbb{Z}$

 $2 \cdot x_1 = x_2 + 2 \implies 2 \cdot x_1 - 1 \cdot x_2 = 2$

- * the automaton $A_{s=t}$ recognizing s=t is defined as follows
 - states *Q* are inequalities of the form $\langle \sum_i a_i \cdot x_i = d \rangle$ Intuition: $L(\langle \sum_i a_i \cdot x_i = d \rangle) = \{ \underline{\alpha} \mid \alpha \models \sum_i a_i \cdot x_i = d \}$
 - the initial state q_l is given by the representation of s = t
 - the transition function δ is given by

 $\delta\left(\langle \sum_{i} a_{i} \cdot x_{i} = d \rangle, \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix}\right) \triangleq \begin{cases} \langle \sum_{i} a_{i} \cdot x_{i} = \frac{1}{2} \left(d - \sum_{i} a_{i} \cdot b_{i} \right) \rangle & \text{if } d - \sum_{i} a_{i} \cdot b_{i} \text{ even,} \\ q_{fail} & \text{otherwise.} \end{cases}$

since $\sum_i a_i \cdot (b_i + 2 \cdot x'_i) = d \iff \sum_i a_i \cdot x'_i = \frac{1}{2} \cdot (d - \sum_i a_i \cdot b_i)$

- final states are all those states $\sum_i a_i \cdot x_i = d$ with 0 = d

★ finiteness: from initial state $\sum_i a_i \cdot x_i = d$, only $\sum_i a_i + d$ states reachable, hence the overall construction is finite

Decision Problems for Presburger Arithmetic

The Satisfiability Problem

- ★ Given: formula ϕ
- ★ Question: is there α s.t $\alpha \models \phi$?

The Validity Problem

- $\star\,$ Given: formula ϕ
- ★ Question: $\alpha \models \phi$ for all assignments α ?

Decision Problems for Presburger Arithmetic

The Satisfiability Problem

- ★ Given: formula ϕ
- ★ Question: is there α s.t $\alpha \models \phi$?

The Validity Problem

- $\star\,$ Given: formula ϕ
- ★ Question: $\alpha \models \phi$ for all assignments α ?

Theorem

Satisfiability and Validity are decidable for Presburger Arithmetic.

Theorem

For any formula ϕ , the constructed DFA recognizing $\hat{L}(\phi)$ has size $O(2^{2^n})$.

Peano Arithmetic

* Peano's arithmetic is the first-order theory natural integers with vocabulary $\{+, \times, <\}$

Peano Arithmetic

- * Peano's arithmetic is the first-order theory natural integers with vocabulary $\{+, \times, <\}$
- tis existential fragment corresponds to the Diophantine equations, i.e., polynomial equations on integers
- ★ Hilbert's 10th problem was to solve Diophantine equations

Peano Arithmetic

- * Peano's arithmetic is the first-order theory natural integers with vocabulary $\{+, \times, <\}$
- tis existential fragment corresponds to the Diophantine equations, i.e., polynomial equations on integers
- ★ Hilbert's 10th problem was to solve Diophantine equations
- * Youri Matiassevitch, drawing on the work of Julia Robinson, demonstrated that this was an undecidable problem

Skolem Arithmetic

* Skolem's arithmetic is the first order theory of natural integers with the vocabulary $\{\times, =\}$

Skolem Arithmetic

- ★ Skolem's arithmetic is the first order theory of natural integers with the vocabulary {×, =}
- ★ Skolem's arithmetic is also decidable
- proof goes via reduction to tree automata, closely resembling the proof we have just seen for Presburger's arithmetic

Alternating Automata

Angelican vs Demonic Non-Determinism

What is a non-deterministic machine (or automaton)?

- \star a "machine" which admits several executions on the same input
- \star put otherwise, during processing, several choices are possible

Angelican vs Demonic Non-Determinism

What is a non-deterministic machine (or automaton)?

- \star a "machine" which admits several executions on the same input
- ★ put otherwise, during processing, several choices are possible
- such choices can be resolved in favor (anglican non-determinism) or against (demonic non-determinism) a positive outcome (e.g. acceptance, termination, etc)

Angelican vs Demonic Non-Determinism

What is a non-deterministic machine (or automaton)?

- $\star\,$ a "machine" which admits several executions on the same input
- ★ put otherwise, during processing, several choices are possible
- such choices can be resolved in favor (anglican non-determinism) or against (demonic non-determinism) a positive outcome (e.g. acceptance, termination, etc)
 - Anglican: an angel resolves choices
 - \Rightarrow it is sufficient to have one "good" execution path, to have a positive outcome
 - Demonic: a demon resolves choices
 - \Rightarrow all execution paths must be "good", to have a positive outcome

Angelican vs Demonic Non-Determinism

What is a non-deterministic machine (or automaton)?

- $\star\,$ a "machine" which admits several executions on the same input
- ★ put otherwise, during processing, several choices are possible
- such choices can be resolved in favor (anglican non-determinism) or against (demonic non-determinism) a positive outcome (e.g. acceptance, termination, etc)
 - Anglican: an angel resolves choices
 - \Rightarrow it is sufficient to have one "good" execution path, to have a positive outcome
 - Demonic: a demon resolves choices
 - \Rightarrow all execution paths must be "good", to have a positive outcome

Example

- ★ NFAs are based on anglican non-determinism
- ★ worst-case complexity analysis assumes demonic non-determinism

NFAs with Demonic Choice

★ NFAs incorporate angelic non-determinism because, in order for $w \in L(A)$, only one accepting run of w has to exists

NFAs with Demonic Choice

- ★ NFAs incorporate angelic non-determinism because, in order for w ∈ L(A), only one accepting run of w has to exists
- ★ demonic non-determinism introduced by re-formulating the acceptance condition

 $L^{-}(A) \triangleq \{w \mid \text{all runs on } w \text{ are accepting}\}$

NFAs with Demonic Choice

- * NFAs incorporate angelic non-determinism because, in order for $w \in L(\mathcal{A})$, only one accepting run of w has to exists
- * demonic non-determinism introduced by re-formulating the acceptance condition

 $L^{-}(A) \triangleq \{w \mid \text{all runs on } w \text{ are accepting}\}$

Example

Consider automaton \mathcal{A} over $\Sigma = \{a, b\}$

★ L(A) = Σ^{*} ★ L⁻(A) = ε ∪ Σ^{*} ⋅ b (why?)

- * recall that for each NFA A, its dual \overline{A} is given by complementing final states
- ★ in general, only when A is deterministic, then $L(\overline{A}) = \overline{L(A)}$

- * recall that for each NFA A, its dual \overline{A} is given by complementing final states
- ★ in general, only when A is deterministic, then $L(\overline{A}) = \overline{L(A)}$

Proposition

$$w \in L(\mathcal{A}) \iff w \notin L^{-}(\overline{\mathcal{A}})$$

- * recall that for each NFA \mathcal{A} , its dual $\overline{\mathcal{A}}$ is given by complementing final states
- ★ in general, only when A is deterministic, then $L(\overline{A}) = \overline{L(A)}$

Proposition

$$w \in L(\mathcal{A}) \iff w \notin L^{-}(\overline{\mathcal{A}})$$

- ★ regime to resolve non-determinism has no effect on expressiveness of NFAs
- \star although potentially on the conciseness of the language description through NFAs

- \star recall that for each NFA \mathcal{A} , its dual $\overline{\mathcal{A}}$ is given by complementing final states
- ★ in general, only when A is deterministic, then $L(\overline{A}) = \overline{L(A)}$

Proposition

$$w \in L(\mathcal{A}) \iff w \notin L^{-}(\overline{\mathcal{A}})$$

- ★ regime to resolve non-determinism has no effect on expressiveness of NFAs
- \star although potentially on the conciseness of the language description through NFAs

what happens if we leave regime internal to the automata?

Alternating Finite Automata

Alternating Finite Automata

 \star General Idea: mix Anglican an Demonic choice on the level of individual transitions

$$\delta(0, a) = 1 \lor 2$$

$$\delta(1, b) = 3 \land 4$$

$$\delta(2, b) = 5 \land 6$$

:

Alternating Finite Automata

 \star General Idea: mix Anglican an Demonic choice on the level of individual transitions

Alternating Finite Automata, Formally

Positive Boolean Formulas

- ★ let $A = \{a, b, ...\}$ be a set of atoms
- * the positive Boolean formulas $\mathbb{B}^+(A)$ over atoms A are given by the following grammar:

$$\phi,\psi ::= a \ \left| \ \phi \land \psi \ \right| \ \phi \lor \psi$$

- such formulas are called positive because negation is missing

Alternating Finite Automata, Formally

Positive Boolean Formulas

- ★ let $A = \{a, b, ...\}$ be a set of atoms
- * the positive Boolean formulas $\mathbb{B}^+(A)$ over atoms A are given by the following grammar:

$$\phi,\psi ::= a \ \left| \ \phi \land \psi \ \right| \ \phi \lor \psi$$

- such formulas are called positive because negation is missing

★ a set $M \subseteq A$ is a model of ϕ if $M \models \phi$ where

 $M \models a : \Leftrightarrow a \in M$ $M \models \phi \land \psi : \Leftrightarrow M \models \phi$ and $M \models \psi$ $M \models \phi \lor \psi : \Leftrightarrow M \models \phi$ or $M \models \psi$

Alternating Finite Automata, Formally

Positive Boolean Formulas

- ★ let $A = \{a, b, ...\}$ be a set of atoms
- * the positive Boolean formulas $\mathbb{B}^+(A)$ over atoms A are given by the following grammar:

$$\phi,\psi ::= a \ \left| \ \phi \land \psi \ \right| \ \phi \lor \psi$$

- such formulas are called positive because negation is missing

★ a set $M \subseteq A$ is a model of ϕ if $M \models \phi$ where

 $M \models a : \Leftrightarrow a \in M$ $M \models \phi \land \psi : \Leftrightarrow M \models \phi$ and $M \models \psi$ $M \models \phi \lor \psi : \Leftrightarrow M \models \phi$ or $M \models \psi$

Example

consider $\phi = a \land (b \lor c)$, then

 $\{a,b\} \vDash \phi \qquad \qquad \{a,c\} \vDash \phi$

 $\{a\}
ot = \phi$

Alternating Finite Automata, Formally (II)

an alternating finite automata (AFA) is a tuple $\mathcal{A} = (Q, \Sigma, q_l, \delta, F)$ where all components are identical to an NFA except that

 $\delta: Q \times \Sigma \to \mathbb{B}^+(Q)$

Alternating Finite Automata, Formally (II)

an alternating finite automata (AFA) is a tuple $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ where all components are identical to an NFA except that

 $\delta: Q \times \Sigma \to \mathbb{B}^+(Q)$

Example

δ	a	b	С
q 0	$q_0 \vee q_1$	q_{\perp}	q_{\perp}
q_1	q_{\perp}	$q_1 \wedge q_2$	q_1
q ₂	q_{\perp}	q ₂	q_1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

Runs in an AFA

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ be an AFA

- ★ an execution for a word $w = a_1 ... a_n \in \Sigma^*$ is a tree T_w whose nodes are labeled by states Q s.t.:
 - 1. the root node of T_w is labeled by the initial state q_I
 - 2. for all nodes v labeled by q on the *i*th layer (i = 0, ..., n 1) and successors $v_1, ..., v_k$ on layer i + 1, labeled by $q_1, ..., q_k$, respectively:

 $\{q_1,\ldots,q_k\} \models \delta(q,\mathtt{a}_{\mathtt{i}+\mathtt{1}})$

Runs in an AFA

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ be an AFA

- ★ an execution for a word $w = a_1 ... a_n \in \Sigma^*$ is a tree T_w whose nodes are labeled by states Q s.t.:
 - 1. the root node of T_w is labeled by the initial state q_I
 - 2. for all nodes v labeled by q on the *i*th layer (i = 0, ..., n 1) and successors $v_1, ..., v_k$ on layer i + 1, labeled by $q_1, ..., q_k$, respectively:

 $\{q_1,\ldots,q_k\} \models \delta(q,a_{i+1})$

 $\star\,$ an execution is accepting if all leafs are labeled by final states

Runs in an AFA

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ be an AFA

- ★ an execution for a word $w = a_1 ... a_n \in \Sigma^*$ is a tree T_w whose nodes are labeled by states Q s.t.:
 - 1. the root node of T_w is labeled by the initial state q_I
 - 2. for all nodes v labeled by q on the *i*th layer (i = 0, ..., n 1) and successors $v_1, ..., v_k$ on layer i + 1, labeled by $q_1, ..., q_k$, respectively:

 $\{q_1,\ldots,q_k\} \models \delta(q,\mathtt{a}_{\mathtt{i}+\mathtt{1}})$

- \star an execution is accepting if all leafs are labeled by final states
- \star the language recognized by \mathcal{A} is given by

 $L(A) \triangleq \{w \mid \text{there exists an accepting execution } T_w \text{ for } w\}$

δ	а	Ь	С
q 0	$q_0 \lor q_1$	q_{\perp}	q_{\perp}
q_1	q_{\perp}	$q_1 \wedge q_2$	q_1
q ₂	q_{\perp}	q ₂	q_1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

δ	а	Ь	С
q 0	$q_0 \vee q_1$	q_{\perp}	q_{\perp}
q_1	q_{\perp}	$q_1 \wedge q_2$	q_1
q ₂	q_{\perp}	q ₂	q_1
q_{\perp}	q_\perp	q_{\perp}	q_{\perp}

δ	а	b	С
q 0	$q_0 \lor q_1$	q_{\perp}	q_{\perp}
q_1	q_{\perp}	$q_1 \wedge q_2$	q_1
q ₂	q_{\perp}	q ₂	q_1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

$$\{q_1,q_2\} \models q_1 \land q_2$$

δ	а	b	С
q 0	$q_0 \lor q_1$	q_{\perp}	q_{\perp}
q_1	q_{\perp}	$q_1 \wedge q_2$	q_1
q ₂	q_{\perp}	q ₂	q_1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

$$\{q_1,q_2\} \vDash q_1 \land q_2$$

δ	а	Ь	С
q 0	$q_0 \lor q_1$	q_{\perp}	q_{\perp}
q_1	q_{\perp}	$q_1 \wedge q_2$	q_1
q_2	q_{\perp}	q ₂	q_1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

δ	а	Ь	С
q 0	$q_0 \lor q_1$	q_{\perp}	q_{\perp}
q_1	q_{\perp}	$q_1 \wedge q_2$	q_1
q ₂	q_{\perp}	<i>q</i> ₂	q_1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

 $\{q_1\} Dash q_1$

δ	а	b	С
<i>q</i> 0	$q_0 \lor q_1$	q_{\perp}	q_{\perp}
q_1	q_{\perp}	$q_1 \wedge q_2$	q_1
q ₂	q_{\perp}	q ₂	q_1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

$$\{q_1, q_1, q_1\} \subseteq F$$

Extended Transition Function

the extended transition function

 $\hat{\delta}: \mathbb{B}^+(Q) \times \Sigma^* \to \mathbb{B}^+(Q)$

is recursively defined by:

$$\hat{\delta}(q,\epsilon) \triangleq q$$

 $\hat{\delta}(q, \mathbf{a} \cdot w) \triangleq \hat{\delta}(\delta(q, \mathbf{a}), w)$

$$\begin{split} \hat{\delta}(\phi \lor \psi, w) &= \hat{\delta}(\phi, w) \lor \hat{\delta}(\psi, w) \\ \hat{\delta}(\phi \land \psi, w) &= \hat{\delta}(\phi, w) \land \hat{\delta}(\psi, w) \end{split}$$

Extended Transition Function

the extended transition function

 $\hat{\delta}: \mathbb{B}^+(Q) \times \Sigma^* \to \mathbb{B}^+(Q)$

is recursively defined by:

 $\hat{\delta}(q,\epsilon) \triangleq q$ $\hat{\delta}(q,\mathbf{a}\cdot w) \triangleq \hat{\delta}(\delta(q,\mathbf{a}),w)$

$$\begin{split} \hat{\delta}(\phi \lor \psi, w) &= \hat{\delta}(\phi, w) \lor \hat{\delta}(\psi, w) \\ \hat{\delta}(\phi \land \psi, w) &= \hat{\delta}(\phi, w) \land \hat{\delta}(\psi, w) \end{split}$$

Lemma

 $\mathsf{L}(\mathcal{A}) = \{ w \mid F \vDash \hat{\delta}(q_l, w) \}$

δ	а	b	С
q 0	$q_0 \lor q_1$	q_{\perp}	q_{\perp}
q_1	q_{\perp}	$q_1 \wedge q_2$	q_1
q ₂	q_{\perp}	q ₂	q_1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

$$\begin{split} \hat{\delta}(q_0, \mathsf{abbc}) &= \hat{\delta}(q_0 \lor q_1, \mathsf{bbc}) \\ &= \hat{\delta}(q_0, \mathsf{bbc}) \lor \hat{\delta}(q_1, \mathsf{bbc}) \\ &= \hat{\delta}(q_{\perp}, \mathsf{bc}) \lor (\hat{\delta}(q_1, \mathsf{bc}) \land \hat{\delta}(q_2, \mathsf{bc})) \\ &= \hat{\delta}(q_{\perp}, \mathsf{c}) \lor (\hat{\delta}(q_1, \mathsf{c}) \land \hat{\delta}(q_2, \mathsf{c})) \\ &= \hat{\delta}(q_{\perp}, \epsilon) \lor \hat{\delta}(q_1, \epsilon) \\ &= q_{\perp} \lor q_1 \\ \{q_1\} \vDash q_{\perp} \lor q_1 \end{split}$$

Comparison to NFAs and DFAs _

- ★ AFAs generalise NFAs
 - every DFA is a NFA is an AFA

Comparison to NFAs and DFAs _

- ★ AFAs generalise NFAs
 - every DFA is a NFA is an AFA
- \star AFAs allow often more succinct encoding / automata constructions

Comparison to NFAs and DFAs

- ★ AFAs generalise NFAs
 - $-\,$ every DFA is a NFA is an AFA
- \star AFAs allow often more succinct encoding / automata constructions

Example

* let $\mathcal{A}^{(m)} = (Q^{(m)}, \{a\}, \delta^{(m)}, q_l^{(m)}, F^{(m)})$ be an NFA with $L(\mathcal{A}^{(m)}) = \{w \mid |w| = 0 \mod m\}$

- this NFA has at least *m* states

Comparison to NFAs and DFAs

- ★ AFAs generalise NFAs
 - every DFA is a NFA is an AFA
- \star AFAs allow often more succinct encoding / automata constructions

Example

- * let $\mathcal{A}^{(m)} = (Q^{(m)}, \{a\}, \delta^{(m)}, q_I^{(m)}, F^{(m)})$ be an NFA with $L(\mathcal{A}^{(m)}) = \{w \mid |w| = 0 \mod m\}$
 - this NFA has at least m states
- ★ consider the AFA A defined from $A^{(m)}$ for primes m = 7, 13, 17, 19 by

Comparison to NFAs and DFAs

- ★ AFAs generalise NFAs
 - every DFA is a NFA is an AFA
- \star AFAs allow often more succinct encoding / automata constructions

Example

- * let $\mathcal{A}^{(m)} = (Q^{(m)}, \{a\}, \delta^{(m)}, q_I^{(m)}, F^{(m)})$ be an NFA with $L(\mathcal{A}^{(m)}) = \{w \mid |w| = 0 \mod m\}$
 - this NFA has at least m states
- ★ consider the AFA A defined from $A^{(m)}$ for primes m = 7, 13, 17, 19 by

- $L(A) = \{w \mid |w| = 1 \mod 29393\}$ since $29393 = 7 \cdot 13 \cdot 17 \cdot 19$

Comparison to NFAs and DFAs

- ★ AFAs generalise NFAs
 - $-\,$ every DFA is a NFA is an AFA
- \star AFAs allow often more succinct encoding / automata constructions

Example

- * let $\mathcal{A}^{(m)} = (Q^{(m)}, \{a\}, \delta^{(m)}, q_I^{(m)}, F^{(m)})$ be an NFA with $L(\mathcal{A}^{(m)}) = \{w \mid |w| = 0 \mod m\}$
 - this NFA has at least m states
- ★ consider the AFA A defined from $A^{(m)}$ for primes m = 7, 13, 17, 19 by

- $L(A) = \{w \mid |w| = 1 \mod 29393\}$ since $29393 = 7 \cdot 13 \cdot 17 \cdot 19$
- AFA A has 57 = 1 + 7 + 13 + 17 + 19, whereas a corresponding NFA needs 29393 states

* recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFA A there exists an AFA \overline{A} of equal size such that $L(\overline{A}) = \overline{L(A)}$

* recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFA A there exists an AFA \overline{A} of equal size such that $L(\overline{A}) = \overline{L(A)}$

Proof Outline.

- * let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- \star define the dual formula $\overline{\phi}$ of $\phi \in \mathbb{B}^+(Q)$ following De Morgans rules

 $\overline{q} \triangleq q \qquad \overline{\phi \lor \psi} \triangleq \overline{\phi} \land \overline{\psi} \qquad \overline{\phi \land \psi} \triangleq \overline{\phi} \lor \overline{\psi}$

- morally, $q \in Q$ re-used for their "negation"; we have (i) $M \vDash \phi$ iff $Q \setminus M \notin \overline{\phi}$

* recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFA A there exists an AFA \overline{A} of equal size such that $L(\overline{A}) = \overline{L(A)}$

Proof Outline.

- * let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- ★ define the dual formula $\overline{\phi}$ of $\phi \in \mathbb{B}^+(Q)$ following De Morgans rules $\overline{q} \triangleq q$ $\overline{\phi \lor \psi} \triangleq \overline{\phi} \land \overline{\psi}$ $\overline{\phi \land \psi} \triangleq \overline{\phi} \lor \overline{\psi}$

- morally, $q \in Q$ re-used for their "negation"; we have (i) $M \vDash \phi$ iff $Q \setminus M \notin \overline{\phi}$

* we now define $\overline{\mathcal{A}} \triangleq (Q, \Sigma, \overline{\delta}, q_I, Q \setminus F)$ where $\overline{\delta}(q, \mathbf{a}) \triangleq \overline{\delta}(q, \mathbf{a})$ for all $q \in Q$, $\mathbf{a} \in \Sigma$

* recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFA A there exists an AFA \overline{A} of equal size such that $L(\overline{A}) = \overline{L(A)}$

Proof Outline.

- * let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- ★ define the dual formula $\overline{\phi}$ of $\phi \in \mathbb{B}^+(Q)$ following De Morgans rules $\overline{q} \triangleq q$ $\overline{\phi \lor \psi} \triangleq \overline{\phi} \land \overline{\psi}$ $\overline{\phi \land \psi} \triangleq \overline{\phi} \lor \overline{\psi}$

- morally, $q \in Q$ re-used for their "negation"; we have (i) $M \vDash \phi$ iff $Q \setminus M \notin \overline{\phi}$

* we now define $\overline{\mathcal{A}} \triangleq (Q, \Sigma, \overline{\delta}, q_I, Q \setminus F)$ where $\overline{\delta}(q, \mathbf{a}) \triangleq \overline{\delta}(q, \mathbf{a})$ for all $q \in Q$, $\mathbf{a} \in \Sigma$

- by induction on |w| it can now be shown that (ii) $\hat{\overline{\delta}}(q, w) = \overline{\hat{\delta}(q, w)}$

* recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFA A there exists an AFA \overline{A} of equal size such that $L(\overline{A}) = \overline{L(A)}$

Proof Outline.

- * let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- ★ define the dual formula $\overline{\phi}$ of $\phi \in \mathbb{B}^+(Q)$ following De Morgans rules

$$\overline{q} \triangleq q \qquad \overline{\phi \lor \psi} \triangleq \overline{\phi} \land \overline{\psi} \qquad \overline{\phi \land \psi} \triangleq \overline{\phi} \lor \overline{\psi}$$

- morally, $q \in Q$ re-used for their "negation"; we have (i) $M \vDash \phi$ iff $Q \setminus M \notin \overline{\phi}$
- * we now define $\overline{\mathcal{A}} \triangleq (Q, \Sigma, \overline{\delta}, q_I, Q \setminus F)$ where $\overline{\delta}(q, \mathbf{a}) \triangleq \overline{\delta}(q, \mathbf{a})$ for all $q \in Q$, $\mathbf{a} \in \Sigma$
 - by induction on |w| it can now be shown that (ii) $\hat{\delta}(q, w) = \hat{\delta}(q, w)$
 - overall, we have

 $w \notin \mathsf{L}(\mathcal{A}) \stackrel{\text{def.}}{\longleftrightarrow} F \notin \hat{\delta}(q_l, w) \stackrel{(i)}{\longleftrightarrow} Q \backslash F \models \overline{\hat{\delta}(q_l, w)} \stackrel{(ii)}{\longleftrightarrow} Q \backslash F \models \overline{\hat{\delta}}(q_l, w) \stackrel{\text{def.}}{\longleftrightarrow} w \in \mathsf{L}(\overline{\mathcal{A}})$

Example

complement

Relationship with Regular Languages

Theorem

For every AFA \mathcal{A} there exist a DFA \mathcal{B} with $O(2^{2^{|\mathcal{A}|}})$ states such that $L(\mathcal{A}) = L(\mathcal{B})$.

Theorem

For every AFA \mathcal{A} there exist a DFA \mathcal{B} with $O(2^{2^{|\mathcal{A}|}})$ states such that $L(\mathcal{A}) = L(\mathcal{B})$.

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Idea:

- \star the states of ${\cal B}$ are formulas
- $\star \phi \xrightarrow{\mathbf{a}} \psi \text{ in } \mathcal{B} \text{ if } \hat{\delta}(\phi, \mathbf{a}) = \psi$
 - Example: $\delta(p, \mathbf{a}) = q \wedge r$ and $\delta(q, \mathbf{a}) = r \implies p \lor q \xrightarrow{\mathbf{a}} (q \wedge r) \lor r$
 - a run $q_1 \xrightarrow{a_1} \cdots \xrightarrow{a_n} \phi$ thus models $\hat{\delta}(q_l, a_1 \dots a_n) = \phi$
- **\star** the formula q_l is the initial state
- \star the formulas modeled by F are final

b а (3∧ $1 \vee 2$ 0 (5 A

the translated DFA

the initial AFA

Theorem

For every AFA \mathcal{A} there exist a DFA \mathcal{B} with $O(2^{2^{|\mathcal{A}|}})$ states such that $L(\mathcal{A}) = L(\mathcal{B})$.

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Idea:

- \star the states of ${\cal B}$ are formulas
- $\star \phi \xrightarrow{\mathbf{a}} \psi \text{ in } \mathcal{B} \text{ if } \hat{\delta}(\phi, \mathbf{a}) = \psi$
 - Example: $\delta(p, \mathbf{a}) = q \wedge r$ and $\delta(q, \mathbf{a}) = r \implies p \lor q \xrightarrow{\mathbf{a}} (q \wedge r) \lor r$
 - $\text{ a run } q_{l} \xrightarrow{a_{1}} \cdots \xrightarrow{a_{n}} \phi \text{ thus models } \hat{\delta}(q_{l}, a_{1} \dots a_{n}) = \phi$
- **\star** the formula q_l is the initial state
- \star the formulas modeled by F are final
- \star to keep the construction finite, we'll identify equivalent formulas

Theorem

For every AFA \mathcal{A} there exist a DFA \mathcal{B} with $O(2^{2^{|\mathcal{A}|}})$ states such that $L(\mathcal{A}) = L(\mathcal{B})$.

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Formally:

* the equivalence ~ on $\mathbb{B}^+(Q)$ is given by $\phi \sim \psi$ if $\{M \mid M \vDash \phi\} = \{M \mid M \vDash \psi\}$

 $- q \sim q \lor q \sim q \land q \text{ but } q \not= p \lor q \not= p \land q$

Theorem

For every AFA \mathcal{A} there exist a DFA \mathcal{B} with $O(2^{2^{|\mathcal{A}|}})$ states such that $L(\mathcal{A}) = L(\mathcal{B})$.

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Formally:

★ the equivalence ~ on $\mathbb{B}^+(Q)$ is given by $\phi \sim \psi$ if $\{M \mid M \vDash \phi\} = \{M \mid M \vDash \psi\}$

 $- q \sim q \lor q \sim q \land q \text{ but } q \neq p \lor q \neq p \land q$

★ the equivalence class $[\phi]_{\sim}$ can be simply conceived as the formula ϕ , with equivalent formulas $\phi \sim \psi$ identified

 $- [q \lor q]_{\sim} = \{q, q \lor q, q \land q, \dots\}$

Theorem

For every AFA \mathcal{A} there exist a DFA \mathcal{B} with $O(2^{2^{|\mathcal{A}|}})$ states such that $L(\mathcal{A}) = L(\mathcal{B})$.

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Formally:

* the equivalence ~ on $\mathbb{B}^+(Q)$ is given by $\phi \sim \psi$ if $\{M \mid M \vDash \phi\} = \{M \mid M \vDash \psi\}$

 $- q \sim q \lor q \sim q \land q \text{ but } q \neq p \lor q \neq p \land q$

★ the equivalence class $[\phi]_{\sim}$ can be simply conceived as the formula ϕ , with equivalent formulas $\phi \sim \psi$ identified

 $- [q \lor q]_{\sim} = \{q, q \lor q, q \land q, \dots\}$

* the set of all such equivalence classes $\mathbb{B}^+(Q)/\sim \text{contains O}(2^{2^{|Q|}})$ elements

Theorem

For every AFA \mathcal{A} there exist a DFA \mathcal{B} with $O(2^{2^{|\mathcal{A}|}})$ states such that $L(\mathcal{A}) = L(\mathcal{B})$.

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Formally:

★ the equivalence ~ on $\mathbb{B}^+(Q)$ is given by $\phi \sim \psi$ if $\{M \mid M \vDash \phi\} = \{M \mid M \vDash \psi\}$

 $- q \sim q \lor q \sim q \land q \text{ but } q \neq p \lor q \neq p \land q$

★ the equivalence class $[\phi]_{\sim}$ can be simply conceived as the formula ϕ , with equivalent formulas $\phi \sim \psi$ identified

 $- [q \lor q]_{\sim} = \{q, q \lor q, q \land q, \dots\}$

- * the set of all such equivalence classes $\mathbb{B}^+(Q)/\sim \text{contains O}(2^{2^{|Q|}})$ elements
- * $\mathcal{B} \triangleq (\mathbb{B}^+(Q)/\sim, \Sigma, q_l, \delta_\sim, \{[\phi]_\sim \mid F \vDash \phi\})$ where $\delta_\sim([\phi]_\sim, a) \triangleq [\hat{\delta}(\phi, a)]_\sim$ recognises $L(\mathcal{A})$

From AFAs to NFA

Theorem

For every AFA \mathcal{A} there exist a NFA \mathcal{B} with $O(2^{|\mathcal{A}|})$ states such that $L(\mathcal{A}) = L(\mathcal{B})$.

Proof Outline.

- * let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- $\star\,$ idea: models executions, states of the NFA are the levels of the execution tree
 - the construction is simpler, at the expense of non-determinism

From AFAs to NFA

Theorem

For every AFA \mathcal{A} there exist a NFA \mathcal{B} with $O(2^{|\mathcal{A}|})$ states such that $L(\mathcal{A}) = L(\mathcal{B})$.

Proof Outline.

* let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

 \star idea: models executions, states of the NFA are the levels of the execution tree

- the construction is simpler, at the expense of non-determinism
- ★ the NFA is given by $\mathcal{B} \triangleq (2^Q, \Sigma, \{q_I\}, \delta', \{M \mid M \subseteq F\})$ where

$$N \in \delta'(M, a)$$
 : \Leftrightarrow $N \models \bigwedge_{q \in M} \delta(q, a)$

Example (II)

the initial AFA

the translated DFA

