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Today’s Lecture

First Order-Logic Recap

* structures, formulas and satisfiability

Monadic Second-Order Logic
1. weak monadic second-order (WMSO) logic

2. Regularity and WMSO definability

3. Decision problems



First-Order Logic Recap



First-Order Logic

* let V ={xy,...} be a set of variables

*x let R={P,Q,...} and F = {f,g,...} be a vocabulary of predicate/function symbols

* predicate and function symbols are equipped with an arity ar: RUF - N

* first-order terms and formulas over V, R and F are given by the following grammar:

stu=x | Rty ..., ta(n)
oy =T | 1
| P(t1,....tapy) | s=1¢
| ovy | -o
| 3x.¢

(terms)

(atomic truth values)
(predicates and equality)
(Boolean connectives)

(existential quantification)
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*x let R={P,Q,...} and F = {f,g,...} be a vocabulary of predicate/function symbols

* predicate and function symbols are equipped with an arity ar: RUF - N

* first-order terms and formulas over V, R and F are given by the following grammar:

stu=x | Rty ..., ta(n)
oy =T | 1
| P(t1,....tapy) | s=1¢
| ovy | -o
| 3x.¢

* further connectives definable:

(terms)

(atomic truth values)
(predicates and equality)
(Boolean connectives)

(existential quantification)
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First-Order Logic

* let V ={xy,...} be a set of variables
*x let R={P,Q,...} and F = {f,g,...} be a vocabulary of predicate/function symbols
* predicate and function symbols are equipped with an arity ar: RUF - N

* first-order terms and formulas over V, R and F are given by the following grammar:

s, ti=x | ft1, .., tar(s) (terms)
o =T | 1 (atomic truth values)
| P(ti, ..., ta(p)) | s=t (predicates and equality)
| dVY | - (Boolean connectives)
| dx.¢ (existential quantification)

* further connectives definable:
G=UE VY sELE(s=1) GAUE (= V) Vxd 2 o(Ix-0)

* to avoid parenthesis, we fix precedence - > A,v > 4V




Free Variables, Open and Closed Formulas

* a quantifier dx.¢ binds the variable x within ¢
* variables not bound are called free

* the set of variables free in ¢ is denoted by fv(¢)

WV(E(xy)) = {xy}  NEyExy))={} W(Vx3IyExy)) =2
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* otherwise they are called open



Free Variables, Open and Closed Formulas

* a quantifier dx.¢ binds the variable x within ¢
* variables not bound are called free

* the set of variables free in ¢ is denoted by fv(¢)
NV(E(xy)) = {xy}  NEyExy))=1{x3 MVx3IyExy))=0

* the formulas without free variables are called sentences (or closed formulas)

* otherwise they are called open

* we consider formulas equal up to renaming of bound variables

— dy.E(x, y) is equal to dz.E(x, z) but neither to Jy.E(x, z) nor Ay.E(z, y)
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* a formula is evaluated to a truth value by assigning meaning to predicates and functions
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* a formula is evaluated to a truth value by assigning meaning to predicates and functions
* a (first-order) structure (or model) M = (D,Z) on a vocabulary R consists of

— a non-empty domain D; and

— an interpretation Z(P) < D*"") for each predicate P € R

— an interpretation Z(f) : D - D for each function fe F
* sentences describes properties of structures, consider e.g., Vx.dy.E(x,y):

— on directed graphs, with E interpreted as “edge": every node has a successor

— on natural numbers, with E interpreted as “<": for every number there is a strictly bigger one



Satisfiability, Informally

* a formula is evaluated to a truth value by assigning meaning to predicates and functions
* a (first-order) structure (or model) M = (D,Z) on a vocabulary R consists of
— a non-empty domain D; and

— an interpretation Z(P) < D*"") for each predicate P € R
— an interpretation Z(f) : D*" D for each function fe F

* sentences describes properties of structures, consider e.g., Vx.dy.E(x,y):

— on directed graphs, with E interpreted as “edge": every node has a successor

— on natural numbers, with E interpreted as “<": for every number there is a strictly bigger one

* if a formula ¢ holds true in a model M, we write
ME ¢

and say M models ¢, or that ¢ is satisfiable with M



Examples

1. consider the formula ¢ = Vx.dy.E(x,y) and E interpreted by ...

O——>0O O——>0O
I T T
@) @) @) @)

G G, G

— we have G F o, G F pand G3 i ¢



Examples

1. consider the formula ¢ = Vx.dy.E(x,y) and E interpreted by ...

O——>0O O——>0O
I T T
@) @) @) @)

G G, G

— we have G F o, G F pand G3 i ¢

2. consider the formula 3X1,X2,X3.(X1 FXo ANXp FX3AX3#F x1)

— the formula is satisfiable by all models with three objects in the domain



Consequence, Equivalence and Validity

DE ¢

if all models satisfying all ¢; € ® also satisfy ¢
- Vx.P(x) = Q(x); Ix.P(x) F Ax.Q(x)



Consequence, Equivalence and Validity

DE ¢

if all models satisfying all ¢; € ® also satisfy ¢
- Vx.P(x) = Q(x); Ix.P(x) F Ax.Q(x)

* two formulas ¢ and ¢ are equivalent, in notation
=y

ifo Fy and Y E ¢
- Vx.P(x) = Q(x) = Vx.=Q(x) = =P(x)



Consequence, Equivalence and Validity

* a sentence ¢ is a consequence of sentences ® = y/q;...;¥,, in notation
DF ¢

if all models satisfying all ¢; € ® also satisfy ¢
- Vx.P(x) = Q(x); Ix.P(x) F Ax.Q(x)

* two formulas ¢ and ¢ are equivalent, in notation
p=y
ifo Fy and Y E ¢
- Vx.P(x) = Q(x) = Vx.=Q(x) = =P(x)
* a formula ¢ is valid if it is satisfiable for all models, in notation
F o

— this is to say that —¢ is unsatisfiable
— the formula  Vx.x = x is trivially valid
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* an assignment (or valuation) for ¢ wrt. a model M = (D,Z) is a function a : fv(¢) —» D
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* an assignment (or valuation) for ¢ wrt. a model M = (D,Z) is a function a : fv(¢) —» D
* together with a model, we can now interpret open terms t in its domain D

To(x) 2a(x)  Zo(Rtr,....t5)) 2 Z(O(Zoltr), . ... Zo(tn))
* for a sentence ¢, we can now define M F ¢ formally as M; @ F ¢ where

M,aET M;a L

M;a E P(ty,...,t,) = (Z,(t1),....Z,(t,)) € Z(P)
M;aEs=t 1= To(s) = Z,(t)

M,aE¢pVvy = MiakEgpor M;aEy

M;a E —¢ = Malt g

M;a E Ix.¢ = M;a[xw— d] E ¢ for some d € D



Satisfiability, Formally

* an assignment (or valuation) for ¢ wrt. a model M = (D,Z) is a function a : fv(¢) —» D
* together with a model, we can now interpret open terms t in its domain D

To(x) 2a(x)  Zo(Rtr,....t5)) 2 Z(O(Zoltr), . ... Zo(tn))
* for a sentence ¢, we can now define M F ¢ formally as M; @ F ¢ where

M,aET M;a L

M;a E P(ty,...,t,) = (Zo(t),....Iu(t,)) €Z(P)
M;akEs=t = To(s) =Z,(t)
M,aE¢pVvy = MiakEgpor M;aEy
M;a E —¢ = Malt g
M;a E Ix.¢ = M;a[x d] E ¢ for some d € D
Example
@4’® GEdxAy.E(x,y) & G, @ F IxAy.E(x, y)

I g J =G, xakF dy.E(xy)
=Gx—ayrbF Exy)

®%@ & (a,b) € Z(E)
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Second Order-Logic

* in first-order logic, quantification confined to elements of the domain

* in second-order logic, quantification is permitted on relations
- VxAXVyX(xy) o x=y

Monadic Second-Order Logic
* A predicate symbol P is monadic if its arity is 1

* monadic second-order logic (MSO) confines second-order quantification to monadic
predicates

— monadic: Vx.AY.Vy.Y(y) o x=y
— non-monadic: Vx.AXVyX(x,y) & x=y



Monadic Second-Order Logic

Second Order-Logic

* in first-order logic, quantification confined to elements of the domain

* in second-order logic, quantification is permitted on relations
- VxAXVyX(xy) o x=y

Monadic Second-Order Logic
* A predicate symbol P is monadic if its arity is 1

* monadic second-order logic (MSO) confines second-order quantification to monadic
predicates

— monadic: Vx.AY.Vy.Y(y) o x=y
— non-monadic: Vx.AXVyX(x,y) & x=y

* quantification over sets, but not over arbitrary predicates
— on graphs: quantification over nodes but not edges
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* A theory is a set T of sentences such that for any sentence ¢, if TE ¢, then ¢ € T

— a theory is closed under logical consequence
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Theories

* A theory is a set T of sentences such that for any sentence ¢, if TE ¢, then ¢ € T

— a theory is closed under logical consequence

* A theory is decidable if the problem of belonging to T is decidable

— we have a decision procedure for reasoning about T

* A theory T is complete if for any sentence ¢ we have ¢ € T or =¢ € T.

— a complete theory speaks about all formulas

* for a class of structures C, the theory of C is the set of sentences which are valid on all

MecC



Examples

1. The theory of Presburger Arithmetic, i.e., the theory of natural numbers with addition
only is decidable

- VYnadm(n=m+m)v(n=m+m+1)

— Presburger Arithmetic admits a quantifier elimination procedure
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Examples

1. The theory of Presburger Arithmetic, i.e., the theory of natural numbers with addition
only is decidable

- VYnadm(n=m+m)v(n=m+m+1)

— Presburger Arithmetic admits a quantifier elimination procedure

2. The theory of Peano Arithmetic, i.e., the theory of natural numbers is undecidable

— Godels incompleteness theorem

3. The theory of graphs is undecidable

Theorem (Biichi)

The theory of monadic second-order logic over (N, <) is decidable

Theorem (Rabin)

The theory of monadic second-order logic over trees is decidable



A First Step Towards Rabin’s and Biichi’s Result

consider only models over N,

ordered by <

Theorem (Btichi-Elgot-Trakhtenbrot)

The theory of weak monadic second-order logic over (N, <) is decidable

quantification over finite sets




Weak Monadic Second-Order Logic



Weak Monadic Second-Order Logic (WMSO)

»*

let V1 = {x,y,...} be a set of first-order variables (ranging over N)

*

let Vo, = {X,Y,...} be monadic second-order variables (ranging over finite sets of N)

»*

R = {<} and F = @ is fixed, with ar(<) =2

*

the set of WMSO formulas over V1,15 is given by the following grammar:

ppun=T | L | x<y | X | ovul-¢ | 3xe | IXo
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Weak Monadic Second-Order Logic (WMSO)

*

*

»*

*

»*

let V1 = {x,y,...} be a set of first-order variables (ranging over N)
let Vo, = {X,Y,...} be monadic second-order variables (ranging over finite sets of N)
R = {<} and F = @ is fixed, with ar(<) =2

the set of WMSO formulas over V1,15 is given by the following grammar:
o, =T | 1 | x<y | X(x) | dNVY | = | dx.¢ | IX.¢

further definable connectives / formulas

VX¢ 2 a(IXag) x=02a(Fyy<x) xsy2=(y<x) x=y X(y+c) (exercise)

weak: second-order variables refer to finite sets
— X(y) means informally y € X where X is finite set over N
- FEAXVxX(x) - yx< yn X(y) a(X) =2
- FIX(Vxx=0-> X(x)) A (VxX(x) = Ay.x< yA X(y))



Satisfiability

* since the model (N, {<}) is fixed, the valuation of a formula depends only on an
assignment «

* « maps first-order variables x € V; to N, and second-order variables X € V), to finite
subsets of N



Satisfiability

* since the model (N, {<}) is fixed, the valuation of a formula depends only on an
assignment «

* « maps first-order variables x € V; to N, and second-order variables X € V), to finite
subsets of N

* satisfiability relation takes the form « E ¢ and is inductively defined as expected:

aET alt L

aEx<y = a(x) < aly)

a E X(x) = a(x) € a(X)

akEoVvy = akFgoraFy

a k¢ = al¢

a FE Ix.¢ i< a[xm n]F ¢ for some n €N

a EAX.¢ = a[x+— M]E ¢ for some finite M C N



Connections to Formal Languages

* to encode words w € 2 over alphabet X we use to kinds of variables
— first-order variables x € V; refer to positions within w
— for each letter a € X, second-order variables P, € V>, indicate the positions of a in w

w abba

P, {o, 3}
Py { 1,2
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* thereby each word w € £* uniquely determines an assignment, in notation w



Connections to Formal Languages

* to encode words w € 2 over alphabet X we use to kinds of variables
— first-order variables x € V; refer to positions within w
— for each letter a € X, second-order variables P, € V>, indicate the positions of a in w

w abba
P, {0, 3} abba
Py { 1,2 }

* thereby each word w € £* uniquely determines an assignment, in notation w
Examples
* ab F dx.P,(x)

* ab i Ix.Pe(x)
* ab if Ax.Ay.x < y A Py(x) A P.(y)
* ab i IAXVx.(X(x) = Ppo(x)) A Jy.y=0nA X(y)



Language of a WMSO Formula

* for alphabet ¥ and WMSO formula ¢ s.t. fv(¢) € {P. | a € }, we let
L(¢) 2 {weZ" | wk ¢}

denote the language of ¢
* a language L is WMSO definable iff there is some ¢ as above s.t. L = L(¢)
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Language of a WMSO Formula

* for alphabet ¥ and WMSO formula ¢ s.t. fv(¢) € {P. | a € }, we let
L(¢) 2 {weZ" | wk ¢}

denote the language of ¢
* a language L is WMSO definable iff there is some ¢ as above s.t. L = L(¢)

Examples
¢ L(¢)
Ix.P,(x) {vaw | v, w € =¥}
Ix.Ty.x < y A Py(x) A Pa(y) {ubvaw | u, v, w € =%}

AXVx.(X(x) = Py(x)) A dy.y =0 A X(y) {ow|wex™}
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Biichi-Elgot-Trakhtenbrot

Theorem

Let L € 2% be a language. The following are equivalent:
* L is regular
* L is recognizable by a finite automata

*x L is WMSO definable



Biichi-Elgot-Trakhtenbrot

Theorem

Let L € 2% be a language. The following are equivalent:
* L is regular
* L is recognizable by a finite automata

*x L is WMSO definable

Proof Outline.

* (1) & (2) Kleene's Theorem.

* (2) = (3) Given an Automata A, we define a WMSO formula ¢ 4 s.t. L(A) = L(¢4)
* (3) = (1) Given a WMSO formula ¢, define a regular Language Ly s.t. L(¢) = L,



From Automatons to Formulas

Encoding for given A = (Q, %, q, 6, F)

* first-order variables m, n, ... refer to positions in input words w

* for a € X: second-order variables P, encode words: as before

x for g € Q: second-order variables X, encode run: Xq(m) = q SRR q
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From Automatons to Formulas

Encoding for given A = (Q, %, q, 6, F)

* first-order variables m, n, ... refer to positions in input words w

* for a € X: second-order variables P, encode words: as before

x for g € Q: second-order variables X, encode run: Xq(m) = q SRR q

Example example run pi qL pi) r
P, { 0 }
Py { 1, 2 }
Xp {(_1) 1 }
Xq { 0 }
X; { 2}

* ultimately, ¢4 = 3X,,....3X,, ¥ 4 with ¥ 4 saying that X, encode an accepting run of
A on input word described by P,.



Linking Run-Variables

for all word lengths len, we define:

* Wserup = Ym.m < len = (\ .o Xg(m)) A (N ppq =(Xg(m) A Xp(m)))

— reading m < len symbols ends up in a state, and this state is unique
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— reading m < len symbols ends up in a state, and this state is unique
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Linking Run-Variables

for all word lengths len, we define:

* Wserup = Ym.m < len = (\ .o Xg(m)) A (N ppq =(Xg(m) A Xp(m)))

— reading m < len symbols ends up in a state, and this state is unique

* Yinitial = len =0 v \/aEZ,peé(q,,a)(Pa(O) A X,(0))

— encoding of the initial transition

* Ypn 2VYmm < len - \/ Xg(m) A Py(m+1) A Xp(m+1))

an,qu,peé(q,a)(
— encoding of intermediate transitions
* Gaccept = (len=0A"g € F)vIAmlen=m+ 1A\ (X,(m))

— encoded transition of word ag ... a,, of length m+ 1 lands in a final state

g 23X, .--3X,,.

Vlen. /\ _‘Pa(len) AN'm. /\ Pa(m) - ms len) - wsetup A winitial A wrun A waccept

a€X a€eX

len gives length of input



Biichi-Elgot-Trakhtenbrot

Theorem

Let L € 2% be a language. The following are equivalent:
* L is regular
* L is recognizable by a finite automata

*x L is WMSO definable

Proof Outline.

* (1) & (2) Kleene's Theorem.
* (2) = (3) Given an Automata A, we define a WMSO formula ¢ 4 s.t. L(A) = L(¢4)

— ¢ 4 given on previous slide satisfies the case

* (3) = (1) Given a WMSO formula ¢, define a regular Language Ly s.t. L(¢) = L,
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Theorem

Let L € 2% be a language. The following are equivalent:
* L is regular
* L is recognizable by a finite automata

*x L is WMSO definable

Proof Outline.

* (1) & (2) Kleene's Theorem.
* (2) = (3) Given an Automata A, we define a WMSO formula ¢ 4 s.t. L(A) = L(¢4)

— ¢ 4 given on previous slide satisfies the case

* (3) = (1) Given a WMSO formula ¢, define a regular Language Ly s.t. L(¢) = Ly



From Formulas to Regular Languages
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n+m

* the alphabet 2 is given by m + n bit-vectors, i.e., X4 = {0,1}

* word w € Z; can then be seen as a bit-matrix, encoding a valuation a:
— rows 1 </ < m encode valuations of X; € V,: 1 at column 1 << |w| < j€ a(X))

— rows m+ 1 < i< m+ nencode valuations of y; € Vi: 1 atcolumn 1 << |w| < j=a(y)

v a(v) w[0] w[l] w[2] w[3] w[4]
X, {02} 1\ [0\ [1\ [0\ /[0
Xo  {1,3,4} = 0 1 0 1 1
y3 3 0 0 0 1 0
va 0 1) ‘o) \o/ \o) \o

* for a valuation a for ¢, let us write @ € Z; for its encoding
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The Main Lemma

let us denote by L(¢) € Z;, the language of coded valuations making ¢ true:
L(g) 2 {a|ak ¢}

Lemma

For any WMSO formula ¢, L(¢) is regular

Proof Outline.
By induction on the structure of ¢.

* ¢=T,¢=_L: In these cases L(¢) is Z; or @, thus regular.

« 0= (< Then £60) = ()7 (5) ()7 (5) (2) or Lo = (3) (2) (2) " (5) (2)

both of them regular.

* ¢ = X(y): Then L(¢) = ((8) U (é))*(i)((g)u(é))* is regular.
* ¢V, Ax.p: ?
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Homomorphisms

Consider h: £ — I'" and extend it to words w by replacing each letter a in w by h(w):
h(e) £ € h(aw) £ h(a) - h(w)

* each function h: =" — I'™ defined this way is called a homomorphism
* for a language L € =" we let h(L) 2 {h(w) | w € L} be the application of h to L

* for a language L S T we let h (L) 2 {w| h(w) € L} be the inverse application of h to
L

Lemma (Closure of REG(X) under homomorphism)

The set of regular languages is closed under (inverse) applications of homomorphisms.
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Example

For 1 < i<k, let del; : {0, 1}k - {0, 1}k—1 delete the i-th entry of its argument, e.g.,

wlflt) @ w30

AT st CET-COET--

Concretely, for WMSO formulas ¢ over Vo = {X1,.. ., Xn}, Vi = {Vms1s- - s Ymen):

* for 1< i< n, delipem(L(¢))= delipem({a | @ E ¢})
~ {B | B[Xi+ S]F ¢ for some S c N} = L(3X.0)

*

o

* inversely, delzll+n+m(li(¢)) ={a[X— S| | aF ¢ and S S N} extends valid assignments

* similar for first order variables y; (m+1<i< m+ n)

* Attention: One has to be slightly more careful with codings.

(R et



The Main Lemma (Continued)

Lemma

For any WMSO formula ¢, L(¢) is regular

Proof Outline.
*x ¢ =y Vo
— by induction hypothesis, L1 2 [(1) and Ly £ L(¢») are regular

— Ly and L, speak about assignments to variables in /1 and ¢»
— inverse applications of del; , extends these codings to valuations over fv(y1 V ¢3)

— their union yields L(¢1 Vv ¢») and is thus regular
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The Main Lemma (Continued)

Lemma

For any WMSO formula ¢, L(¢) is regular

Proof Outline.

*x ¢ =y Vo
by induction hypothesis, L1 2 [(41) and Ly £ L(¢») are regular

— Ly and L, speak about assignments to variables in ¥ and ¥,
— inverse applications of del; , extends these codings to valuations over fv(y1 V ¢3)

— their union yields I:(glrl V ») and is thus regular

* ¢ ==y Then L(¢) = L(¥) N Lyajia-
— Lyajiq € REG constrains X, to valid codings (e.g., for FO variables, only one bit is set)
— by induction hypothesis and closure properties of REG, L(¢) is valid

* ¢ = dXj. or ¢ = dy;.f: from induction hypothesis, using homomorphism de/; , to drop
the rows referring to X; or yj; taking care of trailing zero-vectors (see previous slide)



Biichi-Elgot-Trakhtenbrot

Theorem

Let L € X% be a language. The following are equivalent:
* L is regular
* L s recognizable by a finite automata

*x L is WMSO definable

Proof Outline.

* (1) < (2) Kleene's Theorem.

* (2) = (3) Given an Automata A, we define a WMSO formula ¢ 4 s.t. L(A) = L(¢4)
* (3) = (1) Given a WMSO formula ¢, define a regular Language Ly s.t. L(¢) = L,

— we can define a homomorphism h : {0, 1}IZI — X, and thereby a function from codings @ to
words w

— this homomorphism maps L(¢) to L(¢) (how?)



Biichi-Elgot-Trakhtenbrot

Theorem

Let L € X% be a language. The following are equivalent:
* L is regular
* L s recognizable by a finite automata

*x L is WMSO definable

Proof Outline.
* (1) < (2) Kleene's Theorem.

* (2) = (3) Given an Automata A, we define a WMSO formula ¢ 4 s.t. L(A) = L(¢4)
* (3) = (1) Given a WMSO formula ¢, define a regular Language Ly s.t. L(¢) = L,

— we can define a homomorphism h : {0, 1}IEI — X, and thereby a function from codings @ to
words w

— this homomorphism maps L(¢) to L(¢) (how?)
— as the former is regular and REG(X) closed under homomorphisms, the direction follows
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Decision Problems for WMSO

The Satisfiability Problem The Validity Problem

* Given: WMSO formula ¢ * Given: WMSO formula ¢

* Question: is there @ s.t a F ¢7? * Question: a F ¢ for all assignments a?
Theorem

Satisfiability and Validity are decidable for WMSO.

Proof Outline.

through the construction of corresponding DFAs, checking emptiness
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Complexity

* Emptiness for an DFA A, is in PTIME (in the number | A,| of nodes of A,)
* the complexity of satisfiability /validity thus essentially depends on the size of A,

* Ay is constructed recursively on the structure of ¢

— base cases ¢ = T, L, (x< y), X(y): DFAs of constant size 0(1)
— disjunction ¢ = 1 V ¢2: Ay DFA-union of A, and A,, O(| Ay, | + | Ay, 1)
— negations ¢ = - A, DFA-complement of A, O(|Ayl)
— existentials ¢ = Ix.y or ¢ = IAX.y: homomorphism application and determinisation oAl

Theorem (Hardness) P

Satisfiability and validity are in DTII\/IE(26(,,)), where 2}, is a tower of exponentials 22-. of
height k.

Theorem (Completeness)

Any language L decidable in time DTIME(28(,,)) can be reduced (within polynomial time) to
the satisfiability of formulas ¢,, (w € L) of size polynomial in |w]|.



WMSO and Alternating Finite Automata

* What if we translate WMSO formulas to AFAs?
— for basic formulas x < y and X(y), the construction is as seen previously
— Boolean connectives are reflected directly in the transition

— Quantifier elimination through projection homomorphisms



WMSO and Alternating Finite Automata

* What if we translate WMSO formulas to AFAs?

— for basic formulas x < y and X(y), the construction is as seen previously
— Boolean connectives are reflected directly in the transition

— Quantifier elimination through projection homomorphisms

* this suggests resulting automaton is linear in size of formula

= WMSO model-checking in exponential time, contradicting the lower-bound result!
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WMSO and Alternating Finite Automata

* What if we translate WMSO formulas to AFAs?

— for basic formulas x < y and X(y), the construction is as seen previously
— Boolean connectives are reflected directly in the transition

— Quantifier elimination through projection homomorphisms

* this suggests resulting automaton is linear in size of formula

= WMSO model-checking in exponential time, contradicting the lower-bound result!

Problem:
We do not have a polytime algorithm for homorphism applications on AFAs



