Advanced Logic

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2023/AL/

Martin Avanzini (martin.avanzini@inria.fr)
Etienne Lozes (etienne.lozes@univ-cotedazur.fr)

UNIVERSITÉ CÔTE D'AZUR

Today's Lecture

First Order-Logic Recap

« structures, formulas and satisfiability

Monadic Second-Order Logic

1. weak monadic second-order (WMSO) logic
2. Regularity and WMSO definability
3. Decision problems

First-Order Logic Recap

First-Order Logic
\star let $\mathcal{V}=\{x, y, \ldots\}$ be a set of variables
\star let $\mathcal{R}=\{P, Q, \ldots\}$ and $\mathcal{F}=\{f, g, \ldots\}$ be a vocabulary of predicate/function symbols
\star predicate and function symbols are equipped with an arity ar : $\mathcal{R} \cup \mathcal{F} \rightarrow \mathbb{N}$
\star first-order terms and formulas over \mathcal{V}, \mathcal{R} and \mathcal{F} are given by the following grammar:

$$
\begin{aligned}
s, t & ::=x \mid f\left(t_{1}, \ldots, t_{\operatorname{ar}(f)}\right) \\
\phi, \psi: & :=\top \mid \perp \\
& \left|P\left(t_{1}, \ldots, t_{\operatorname{ar}(P)}\right)\right| s=t \\
& |\phi \vee \psi| \neg \phi \\
& \mid \exists x . \phi
\end{aligned}
$$

(terms)
(atomic truth values)
(predicates and equality)
(Boolean connectives)
(existential quantification)

First-Order Logic

\star let $\mathcal{V}=\{x, y, \ldots\}$ be a set of variables
\star let $\mathcal{R}=\{P, Q, \ldots\}$ and $\mathcal{F}=\{f, g, \ldots\}$ be a vocabulary of predicate/function symbols
\star predicate and function symbols are equipped with an arity ar $: \mathcal{R} \cup \mathcal{F} \rightarrow \mathbb{N}$
\star first-order terms and formulas over \mathcal{V}, \mathcal{R} and \mathcal{F} are given by the following grammar:

$$
\begin{array}{rlrl}
s, t::=x \mid f\left(t_{1}, \ldots, t_{\operatorname{ar}(f)}\right) & & \text { (terms) } \\
\phi, \psi::=\top \mid \perp & & \text { (atomic truth values) } \\
& \left|P\left(t_{1}, \ldots, t_{\operatorname{ar}(P)}\right)\right| s=t & & \text { (predicates and equality) } \\
& |\phi \vee \psi| \neg \phi & & \text { (Boolean connectives) } \\
& \mid \exists x . \phi & & \text { (existential quantification) }
\end{array}
$$

* further connectives definable:

$$
\phi \rightarrow \psi \triangleq \neg \phi \vee \psi \quad s \neq t \triangleq \neg(s=t) \quad \phi \wedge \psi \triangleq \neg(\neg \phi \vee \neg \psi) \quad \forall x \cdot \phi \triangleq \neg(\exists x . \neg \phi)
$$

First-Order Logic

\star let $\mathcal{V}=\{x, y, \ldots\}$ be a set of variables
\star let $\mathcal{R}=\{P, Q, \ldots\}$ and $\mathcal{F}=\{f, g, \ldots\}$ be a vocabulary of predicate/function symbols
\star predicate and function symbols are equipped with an arity ar $: \mathcal{R} \cup \mathcal{F} \rightarrow \mathbb{N}$
\star first-order terms and formulas over \mathcal{V}, \mathcal{R} and \mathcal{F} are given by the following grammar:

$$
\begin{array}{rlrl}
s, t::=x \mid f\left(t_{1}, \ldots, t_{\operatorname{ar}(f)}\right) & & \text { (terms) } \\
\phi, \psi::=\top \mid \perp & & \text { (atomic truth values) } \\
& \left|P\left(t_{1}, \ldots, t_{\operatorname{ar}(P)}\right)\right| s=t & & \text { (predicates and equality) } \\
& |\phi \vee \psi| \neg \phi & & \text { (Boolean connectives) } \\
& \mid \exists x . \phi & & \text { (existential quantification) }
\end{array}
$$

* further connectives definable:

$$
\phi \rightarrow \psi \triangleq \neg \phi \vee \psi \quad s \neq t \triangleq \neg(s=t) \quad \phi \wedge \psi \triangleq \neg(\neg \phi \vee \neg \psi) \quad \forall x \cdot \phi \triangleq \neg(\exists x . \neg \phi)
$$

\star to avoid parenthesis, we fix precedence $\neg>\wedge, \vee>\exists, \forall$

Free Variables, Open and Closed Formulas

* a quantifier $\exists x . \phi$ binds the variable x within ϕ
« variables not bound are called free
\star the set of variables free in ϕ is denoted by $\mathrm{fv}(\phi)$

$$
\operatorname{fv}(E(x, y))=\{x, y\} \quad \operatorname{fv}(\exists y \cdot E(x, y))=\{x\} \quad \operatorname{fv}(\forall x \cdot \exists y \cdot E(x, y))=\varnothing
$$

Free Variables, Open and Closed Formulas

* a quantifier $\exists x . \phi$ binds the variable x within ϕ
« variables not bound are called free
* the set of variables free in ϕ is denoted by $\mathrm{fv}(\phi)$

$$
\operatorname{fv}(E(x, y))=\{x, y\} \quad \operatorname{fv}(\exists y \cdot E(x, y))=\{x\} \quad \operatorname{fv}(\forall x \cdot \exists y \cdot E(x, y))=\varnothing
$$

* the formulas without free variables are called sentences (or closed formulas)
\star otherwise they are called open

Free Variables, Open and Closed Formulas

* a quantifier $\exists x . \phi$ binds the variable x within ϕ
« variables not bound are called free
* the set of variables free in ϕ is denoted by $\mathrm{fv}(\phi)$

$$
\operatorname{fv}(E(x, y))=\{x, y\} \quad \operatorname{fv}(\exists y \cdot E(x, y))=\{x\} \quad \operatorname{fv}(\forall x \cdot \exists y \cdot E(x, y))=\varnothing
$$

* the formulas without free variables are called sentences (or closed formulas)
* otherwise they are called open
* we consider formulas equal up to renaming of bound variables
- $\exists y \cdot E(x, y)$ is equal to $\exists z \cdot E(x, z)$ but neither to $\exists y \cdot E(x, z)$ nor $\exists y \cdot E(z, y)$

Satisfiability, Informally

* a formula is evaluated to a truth value by assigning meaning to predicates and functions

Satisfiability, Informally

* a formula is evaluated to a truth value by assigning meaning to predicates and functions
* a (first-order) structure (or model) $\mathcal{M}=(D, \mathcal{I})$ on a vocabulary \mathcal{R} consists of
- a non-empty domain D; and
- an interpretation $\mathcal{I}(P) \subseteq D^{\operatorname{ar}(P)}$ for each predicate $P \in \mathcal{R}$
- an interpretation $\mathcal{I}(f): D^{\operatorname{ar}(f)} \rightarrow D$ for each function $f \in \mathcal{F}$

Satisfiability, Informally

* a formula is evaluated to a truth value by assigning meaning to predicates and functions
* a (first-order) structure (or model) $\mathcal{M}=(D, \mathcal{I})$ on a vocabulary \mathcal{R} consists of
- a non-empty domain D; and
- an interpretation $\mathcal{I}(P) \subseteq D^{\text {ar(}(P)}$ for each predicate $P \in \mathcal{R}$
- an interpretation $\mathcal{I}(f): D^{\operatorname{ar}(f)} \rightarrow D$ for each function $f \in \mathcal{F}$
\star sentences describes properties of structures, consider e.g., $\forall x . \exists y . E(x, y)$:
- on directed graphs, with E interpreted as "edge": every node has a successor
- on natural numbers, with E interpreted as " $<$ ": for every number there is a strictly bigger one

Satisfiability, Informally

* a formula is evaluated to a truth value by assigning meaning to predicates and functions
* a (first-order) structure (or model) $\mathcal{M}=(D, \mathcal{I})$ on a vocabulary \mathcal{R} consists of
- a non-empty domain D; and
- an interpretation $\mathcal{I}(P) \subseteq D^{\text {ar(}(P)}$ for each predicate $P \in \mathcal{R}$
- an interpretation $\mathcal{I}(f): D^{\operatorname{ar}(f)} \rightarrow D$ for each function $f \in \mathcal{F}$
\star sentences describes properties of structures, consider e.g., $\quad \forall x . \exists y . E(x, y)$:
- on directed graphs, with E interpreted as "edge": every node has a successor
- on natural numbers, with E interpreted as " $<$ ": for every number there is a strictly bigger one
* if a formula ϕ holds true in a model \mathcal{M}, we write

$$
\mathcal{M} \vDash \phi
$$

and say \mathcal{M} models ϕ, or that ϕ is satisfiable with \mathcal{M}

Examples

1. consider the formula $\quad \phi=\forall x \cdot \exists y \cdot E(x, y)$ and E interpreted by ...

\circ
G_{3}

- we have $G_{1} \vDash \varphi, G_{2} \nRightarrow \varphi$ and $G_{3} \not \vDash \varphi$

Examples

1. consider the formula $\phi=\forall x \cdot \exists y \cdot E(x, y)$ and E interpreted by ..

- we have $G_{1} \vDash \varphi, G_{2} \nRightarrow \varphi$ and $G_{3} \not \vDash \varphi$

2. consider the formula $\exists x_{1}, x_{2}, x_{3} .\left(x_{1} \neq x_{2} \wedge x_{2} \neq x_{3} \wedge x_{3} \neq x_{1}\right)$

- the formula is satisfiable by all models with three objects in the domain

Consequence, Equivalence and Validity

\star a sentence ϕ is a consequence of sentences $\Phi=\psi_{1} ; \ldots ; \psi_{n}$, in notation

$$
\Phi \vDash \phi
$$

if all models satisfying all $\psi_{i} \in \Phi$ also satisfy ϕ

- $\forall x . P(x) \rightarrow Q(x) ; \exists x \cdot P(x) \vDash \exists x \cdot Q(x)$

Consequence, Equivalence and Validity

\star a sentence ϕ is a consequence of sentences $\Phi=\psi_{1} ; \ldots ; \psi_{n}$, in notation

$$
\Phi \vDash \phi
$$

if all models satisfying all $\psi_{i} \in \Phi$ also satisfy ϕ

- $\forall x . P(x) \rightarrow Q(x) ; \exists x \cdot P(x) \vDash \exists x \cdot Q(x)$
* two formulas ϕ and ψ are equivalent, in notation

$$
\phi \equiv \psi
$$

if $\phi \vDash \psi$ and $\psi \vDash \phi$
$-\forall x . P(x) \rightarrow Q(x) \equiv \forall x \cdot \neg Q(x) \rightarrow \neg P(x)$

Consequence, Equivalence and Validity

* a sentence ϕ is a consequence of sentences $\Phi=\psi_{1} ; \ldots ; \psi_{n}$, in notation

$$
\Phi \vDash \phi
$$

if all models satisfying all $\psi_{i} \in \Phi$ also satisfy ϕ

- $\forall x \cdot P(x) \rightarrow Q(x) ; \exists x \cdot P(x) \vDash \exists x \cdot Q(x)$
* two formulas ϕ and ψ are equivalent, in notation

$$
\phi \equiv \psi
$$

if $\phi \vDash \psi$ and $\psi \vDash \phi$
$-\forall x \cdot P(x) \rightarrow Q(x) \equiv \forall x \cdot \neg Q(x) \rightarrow \neg P(x)$
« a formula ϕ is valid if it is satisfiable for all models, in notation

$$
\vDash \phi
$$

- this is to say that $\neg \phi$ is unsatisfiable
- the formula $\forall x \cdot x=x \quad$ is trivially valid

Satisfiability, Formally

\star an assignment (or valuation) for ϕ wrt. a model $\mathcal{M}=(D, \mathcal{I})$ is a function $\alpha: \mathrm{fv}(\phi) \rightarrow D$

Satisfiability, Formally

\star an assignment (or valuation) for ϕ wrt. a model $\mathcal{M}=(D, \mathcal{I})$ is a function $\alpha: f v(\phi) \rightarrow D$
\star together with a model, we can now interpret open terms t in its domain D

$$
\mathcal{I}_{\alpha}(x) \triangleq \alpha(x) \quad \mathcal{I}_{\alpha}\left(f\left(t_{1}, \ldots, t_{n}\right)\right) \triangleq \mathcal{I}(f)\left(\mathcal{I}_{\alpha}\left(t_{1}\right), \ldots, \mathcal{I}_{\alpha}\left(t_{n}\right)\right)
$$

Satisfiability, Formally

\star an assignment (or valuation) for ϕ wrt. a model $\mathcal{M}=(D, \mathcal{I})$ is a function $\alpha: f v(\phi) \rightarrow D$

* together with a model, we can now interpret open terms t in its domain D

$$
\mathcal{I}_{\alpha}(x) \triangleq \alpha(x) \quad \mathcal{I}_{\alpha}\left(f\left(t_{1}, \ldots, t_{n}\right)\right) \triangleq \mathcal{I}(f)\left(\mathcal{I}_{\alpha}\left(t_{1}\right), \ldots, \mathcal{I}_{\alpha}\left(t_{n}\right)\right)
$$

* for a sentence ϕ, we can now define $\mathcal{M} \vDash \phi$ formally as $\mathcal{M} ; \varnothing \vDash \phi$ where

$$
\begin{array}{lll}
\mathcal{M} ; \alpha \vDash 丁 & \mathcal{M} ; \alpha \not \vDash \perp & \\
\mathcal{M} ; \alpha \vDash P\left(t_{1}, \ldots, t_{n}\right) & : \Leftrightarrow\left(\mathcal{I}_{\alpha}\left(t_{1}\right), \ldots, \mathcal{I}_{\alpha}\left(t_{n}\right)\right) \in \mathcal{I}(P) \\
\mathcal{M} ; \alpha \vDash s=t & : \Leftrightarrow \mathcal{I}_{\alpha}(s)=\mathcal{I}_{\alpha}(t) \\
\mathcal{M} ; \alpha \vDash \phi \vee \psi & : \Leftrightarrow \mathcal{M} ; \alpha \vDash \phi \text { or } \mathcal{M} ; \alpha \vDash \psi \\
\mathcal{M} ; \alpha \vDash \neg \phi & : \Leftrightarrow \mathcal{M} ; \alpha \not \vDash \phi \\
\mathcal{M} ; \alpha \vDash \exists x . \phi & : \Leftrightarrow \mathcal{M} ; \alpha[x \mapsto d] \vDash \phi \text { for some } d \in D
\end{array}
$$

Satisfiability, Formally

\star an assignment (or valuation) for ϕ wrt. a model $\mathcal{M}=(D, \mathcal{I})$ is a function $\alpha: f v(\phi) \rightarrow D$

* together with a model, we can now interpret open terms t in its domain D

$$
\mathcal{I}_{\alpha}(x) \triangleq \alpha(x) \quad \mathcal{I}_{\alpha}\left(f\left(t_{1}, \ldots, t_{n}\right)\right) \triangleq \mathcal{I}(f)\left(\mathcal{I}_{\alpha}\left(t_{1}\right), \ldots, \mathcal{I}_{\alpha}\left(t_{n}\right)\right)
$$

* for a sentence ϕ, we can now define $\mathcal{M} \vDash \phi$ formally as $\mathcal{M} ; \varnothing \vDash \phi$ where

$$
\begin{array}{lll}
\mathcal{M} ; \alpha \vDash \top & \mathcal{M} ; \alpha \not \vDash \perp & \\
\mathcal{M} ; \alpha \vDash P\left(t_{1}, \ldots, t_{n}\right) & : \Leftrightarrow\left(\mathcal{I}_{\alpha}\left(t_{1}\right), \ldots, \mathcal{I}_{\alpha}\left(t_{n}\right)\right) \in \mathcal{I}(P) \\
\mathcal{M} ; \alpha \vDash s=t & : \Leftrightarrow \mathcal{I}_{\alpha}(s)=\mathcal{I}_{\alpha}(t) \\
\mathcal{M} ; \alpha \vDash \phi \vee \psi & : \Leftrightarrow \mathcal{M} ; \alpha \vDash \phi \text { or } \mathcal{M} ; \alpha \vDash \psi \\
\mathcal{M} ; \alpha \vDash \neg \phi & : \Leftrightarrow \mathcal{M} ; \alpha \not \vDash \phi \\
\mathcal{M} ; \alpha \vDash \exists x . \phi & : \Leftrightarrow \mathcal{M} ; \alpha[x \mapsto d] \vDash \phi \text { for some } d \in D
\end{array}
$$

Example

$$
\begin{aligned}
\mathcal{G} \vDash \exists x \cdot \exists y \cdot E(x, y) & \Leftrightarrow \mathcal{G} ; \varnothing \vDash \exists x \cdot \exists y \cdot E(x, y) \\
& \Leftarrow \mathcal{G} ; x \mapsto \mathrm{a} \vDash \exists y \cdot E(x, y) \\
& \Leftarrow \mathcal{G} ; x \mapsto \mathrm{a} ; y \mapsto \mathrm{~b} \vDash E(x, y) \\
& \Leftrightarrow(\mathrm{a}, \mathrm{~b}) \in \mathcal{I}(E)
\end{aligned}
$$

Monadic Second-Order Logic

Monadic Second-Order Logic

Second Order-Logic

* in first-order logic, quantification confined to elements of the domain
\star in second-order logic, quantification is permitted on relations
- $\forall x \cdot \exists X . \forall y \cdot X(x, y) \leftrightarrow x=y$

Monadic Second-Order Logic

Second Order-Logic

* in first-order logic, quantification confined to elements of the domain
* in second-order logic, quantification is permitted on relations
- $\forall x . \exists X . \forall y \cdot X(x, y) \leftrightarrow x=y$

Monadic Second-Order Logic
^ A predicate symbol P is monadic if its arity is 1

Monadic Second-Order Logic

Second Order-Logic

* in first-order logic, quantification confined to elements of the domain
\star in second-order logic, quantification is permitted on relations
- $\forall x \cdot \exists X . \forall y \cdot X(x, y) \leftrightarrow x=y$

Monadic Second-Order Logic

^ A predicate symbol P is monadic if its arity is 1
\star monadic second-order logic (MSO) confines second-order quantification to monadic predicates

- monadic: $\quad \forall x . \exists Y . \forall y . Y(y) \leftrightarrow x=y$
- non-monadic: $\quad \forall x \cdot \exists X . \forall y . X(x, y) \leftrightarrow x=y$

Monadic Second-Order Logic

Second Order-Logic

* in first-order logic, quantification confined to elements of the domain
\star in second-order logic, quantification is permitted on relations
- $\forall x . \exists X . \forall y \cdot X(x, y) \leftrightarrow x=y$

Monadic Second-Order Logic

^ A predicate symbol P is monadic if its arity is 1
\star monadic second-order logic (MSO) confines second-order quantification to monadic predicates

- monadic: $\quad \forall x . \exists Y . \forall y . Y(y) \leftrightarrow x=y$
- non-monadic: $\quad \forall x . \exists X . \forall y . X(x, y) \leftrightarrow x=y$
* quantification over sets, but not over arbitrary predicates
- on graphs: quantification over nodes but not edges

Theories

\star A theory is a set T of sentences such that for any sentence ϕ, if $T \vDash \phi$, then $\phi \in T$

- a theory is closed under logical consequence

Theories

\star A theory is a set T of sentences such that for any sentence ϕ, if $T \vDash \phi$, then $\phi \in T$

- a theory is closed under logical consequence
\star A theory is decidable if the problem of belonging to T is decidable
- we have a decision procedure for reasoning about T

Theories

\star A theory is a set T of sentences such that for any sentence ϕ, if $T \vDash \phi$, then $\phi \in T$

- a theory is closed under logical consequence
\star A theory is decidable if the problem of belonging to T is decidable
- we have a decision procedure for reasoning about T
\star A theory T is complete if for any sentence ϕ we have $\phi \in T$ or $\neg \phi \in T$.
- a complete theory speaks about all formulas

Theories

\star A theory is a set T of sentences such that for any sentence ϕ, if $T \vDash \phi$, then $\phi \in T$

- a theory is closed under logical consequence
\star A theory is decidable if the problem of belonging to T is decidable
- we have a decision procedure for reasoning about T
* A theory T is complete if for any sentence ϕ we have $\phi \in T$ or $\neg \phi \in T$.
- a complete theory speaks about all formulas
* for a class of structures \mathcal{C}, the theory of \mathcal{C} is the set of sentences which are valid on all $\mathcal{M} \in \mathcal{C}$

Examples

1. The theory of Presburger Arithmetic, i.e., the theory of natural numbers with addition only is decidable

- $\forall n . \exists m .(n=m+m) \vee(n=m+m+1)$
- Presburger Arithmetic admits a quantifier elimination procedure

Examples

1. The theory of Presburger Arithmetic, i.e., the theory of natural numbers with addition only is decidable

- $\forall n . \exists m .(n=m+m) \vee(n=m+m+1)$
- Presburger Arithmetic admits a quantifier elimination procedure

2. The theory of Peano Arithmetic, i.e., the theory of natural numbers is undecidable

- Gödels incompleteness theorem

Examples

1. The theory of Presburger Arithmetic, i.e., the theory of natural numbers with addition only is decidable

- $\forall n . \exists m .(n=m+m) \vee(n=m+m+1)$
- Presburger Arithmetic admits a quantifier elimination procedure

2. The theory of Peano Arithmetic, i.e., the theory of natural numbers is undecidable

- Gödels incompleteness theorem

3. The theory of graphs is undecidable

Examples

1. The theory of Presburger Arithmetic, i.e., the theory of natural numbers with addition only is decidable

- $\forall n . \exists m .(n=m+m) \vee(n=m+m+1)$
- Presburger Arithmetic admits a quantifier elimination procedure

2. The theory of Peano Arithmetic, i.e., the theory of natural numbers is undecidable

- Gödels incompleteness theorem

3. The theory of graphs is undecidable

Theorem (Büchi)
The theory of monadic second-order logic over $(\mathbb{N},<)$ is decidable

Theorem (Rabin)

The theory of monadic second-order logic over trees is decidable

A First Step Towards Rabin's and Büchi's Result

Theorem (Büchi-Elgot-Trakhtenbrot)
The theory of weak monadic second-order logic over $(\mathbb{N},<)$ is decidable

Weak Monadic Second-Order Logic

Weak Monadic Second-Order Logic (WMSO)
\star let $\mathcal{V}_{1}=\{x, y, \ldots\}$ be a set of first-order variables (ranging over \mathbb{N})
\star let $\mathcal{V}_{2}=\{X, Y, \ldots\}$ be monadic second-order variables (ranging over finite sets of \mathbb{N})
$\star \mathcal{R}=\{<\}$ and $\mathcal{F}=\varnothing$ is fixed, with $\operatorname{ar}(<)=2$

* the set of WMSO formulas over $\mathcal{V}_{1}, \mathcal{V}_{2}$ is given by the following grammar:

$$
\phi, \psi::=\top|\perp| x<y|X(x)| \phi \vee \psi|\neg \phi| \exists x . \phi \mid \exists X . \phi
$$

Weak Monadic Second-Order Logic (WMSO)

\star let $\mathcal{V}_{1}=\{x, y, \ldots\}$ be a set of first-order variables (ranging over \mathbb{N})
\star let $\mathcal{V}_{2}=\{X, Y, \ldots\}$ be monadic second-order variables (ranging over finite sets of \mathbb{N})
$\star \mathcal{R}=\{<\}$ and $\mathcal{F}=\varnothing$ is fixed, with $\operatorname{ar}(<)=2$
\star the set of WMSO formulas over $\mathcal{V}_{1}, \mathcal{V}_{2}$ is given by the following grammar:

$$
\phi, \psi::=\top|\perp| x<y|X(x)| \phi \vee \psi|\neg \phi| \exists x . \phi \mid \exists X \cdot \phi
$$

« further definable connectives / formulas

$$
\forall X . \phi \triangleq \neg(\exists X . \neg \phi) \quad x=0 \triangleq \neg(\exists y \cdot y<x) \quad x \leq y \triangleq \neg(y<x) \quad x=y \quad X(y+c) \quad \text { (exercise) }
$$

Weak Monadic Second-Order Logic (WMSO)

\star let $\mathcal{V}_{1}=\{x, y, \ldots\}$ be a set of first-order variables (ranging over \mathbb{N})
\star let $\mathcal{V}_{2}=\{X, Y, \ldots\}$ be monadic second-order variables (ranging over finite sets of \mathbb{N})
$\star \mathcal{R}=\{<\}$ and $\mathcal{F}=\varnothing$ is fixed, with $\operatorname{ar}(<)=2$
\star the set of WMSO formulas over $\mathcal{V}_{1}, \mathcal{V}_{2}$ is given by the following grammar:

$$
\phi, \psi::=\top|\perp| x<y|X(x)| \phi \vee \psi|\neg \phi| \exists x . \phi \mid \exists X . \phi
$$

« further definable connectives / formulas
$\forall X \cdot \phi \triangleq \neg(\exists X \cdot \neg \phi) \quad x=0 \triangleq \neg(\exists y \cdot y<x) \quad x \leq y \triangleq \neg(y<x) \quad x=y \quad X(y+c) \quad$ (exercise)
« weak: second-order variables refer to finite sets

- $X(y) \quad$ means informally $y \in X$ where X is finite set over \mathbb{N}
$-\vDash \exists X . \forall x \cdot X(x) \rightarrow \exists y \cdot x<y \wedge X(y)$

$$
\alpha(X)=\varnothing
$$

$-\not \vDash \exists X .(\forall x \cdot x=0 \rightarrow X(x)) \wedge(\forall x \cdot X(x) \rightarrow \exists y \cdot x<y \wedge X(y))$

Satisfiability

* since the model $(\mathbb{N},\{<\})$ is fixed, the valuation of a formula depends only on an assignment α
* α maps first-order variables $x \in \mathcal{V}_{1}$ to \mathbb{N}, and second-order variables $X \in \mathcal{V}_{2}$ to finite subsets of \mathbb{N}

Satisfiability

* since the model $(\mathbb{N},\{<\})$ is fixed, the valuation of a formula depends only on an assignment α
* α maps first-order variables $x \in \mathcal{V}_{1}$ to \mathbb{N}, and second-order variables $X \in \mathcal{V}_{2}$ to finite subsets of \mathbb{N}
\star satisfiability relation takes the form $\alpha \vDash \phi$ and is inductively defined as expected:

$$
\begin{array}{lll}
\alpha \vDash \top & \alpha \not \vDash \perp & \\
\\
\alpha \vDash x<y & & \Leftrightarrow \\
\alpha \vDash X(x) & & \alpha(x)<\alpha(y) \\
\alpha \vDash \phi \vee \psi & & \alpha(x) \in \alpha(X) \\
\alpha \vDash \neg \phi & & \Leftrightarrow \vDash \phi \text { or } \alpha \vDash \psi \\
\alpha \vDash \exists x \cdot \phi & & \Leftrightarrow \\
\alpha \not \vDash \phi \\
\alpha \vDash \exists X \cdot \phi & & \Leftrightarrow
\end{array}
$$

Connections to Formal Languages

* to encode words $w \in \Sigma^{*}$ over alphabet Σ we use to kinds of variables
- first-order variables $x \in \mathcal{V}_{1}$ refer to positions within w
- for each letter a $\in \Sigma$, second-order variables $P_{\mathrm{a}} \in \mathcal{V}_{2}$ indicate the positions of a in w

w	abba	
P_{a}	$\{0, \quad 3$	$\}$
P_{b}	$\{1,2$	$\}$

Connections to Formal Languages

* to encode words $w \in \Sigma^{*}$ over alphabet Σ we use to kinds of variables
- first-order variables $x \in \mathcal{V}_{1}$ refer to positions within w
- for each letter a $\in \Sigma$, second-order variables $P_{\mathrm{a}} \in \mathcal{V}_{2}$ indicate the positions of a in w
$\left.\begin{array}{ll}w & \text { a b ba } \\ P_{\mathrm{a}} & \{0, \quad 3 \\ P_{\mathrm{b}} & \{1,2\end{array}\right\} \underline{\text { abba }}$
\star thereby each word $w \in \Sigma^{*}$ uniquely determines an assignment, in notation \underline{w}

Connections to Formal Languages

\star to encode words $w \in \Sigma^{*}$ over alphabet Σ we use to kinds of variables

- first-order variables $x \in \mathcal{V}_{1}$ refer to positions within w
- for each letter a $\in \Sigma$, second-order variables $P_{\mathrm{a}} \in \mathcal{V}_{2}$ indicate the positions of a in w
$\left.\begin{array}{ll}w & \text { abba } \\ \hline P_{\mathrm{a}} & \{0, \quad 3 \\ P_{\mathrm{b}} & \{1,2\end{array}\right\}$
* thereby each word $w \in \Sigma^{*}$ uniquely determines an assignment, in notation \underline{w}

Examples

$\star \underline{\mathrm{ab}} \vDash \exists x \cdot P_{\mathrm{a}}(x)$
$\star \underline{\mathrm{ab}} \neq \exists x . P_{\mathrm{c}}(x)$
\star ab $\| \exists x \cdot \exists y \cdot x<y \wedge P_{\mathrm{b}}(x) \wedge P_{\mathrm{a}}(y)$
$\star \underline{\mathrm{ab}} \neq \exists X . \forall x .\left(X(x) \rightarrow P_{\mathrm{b}}(x)\right) \wedge \exists y \cdot y=0 \wedge X(y)$

Language of a WMSO Formula
\star for alphabet Σ and WMSO formula ϕ s.t. $f v(\phi) \subseteq\left\{P_{\mathrm{a}} \mid \mathrm{a} \in \Sigma\right\}$, we let

$$
\mathrm{L}(\phi) \triangleq\left\{w \in \Sigma^{*} \mid \underline{w} \vDash \phi\right\}
$$

denote the language of ϕ
\star a language L is WMSO definable iff there is some ϕ as above s.t. $L=\mathrm{L}(\phi)$

Language of a WMSO Formula

\star for alphabet Σ and WMSO formula ϕ s.t. $\mathrm{fv}(\phi) \subseteq\left\{P_{\mathrm{a}} \mid \mathrm{a} \in \Sigma\right\}$, we let

$$
\mathrm{L}(\phi) \triangleq\left\{w \in \Sigma^{*} \mid \underline{w} \vDash \phi\right\}
$$

denote the language of ϕ
\star a language L is WMSO definable iff there is some ϕ as above s.t. $L=\mathrm{L}(\phi)$

Examples

ϕ	$L(\phi)$
$\exists x \cdot P_{\mathrm{a}}(x)$	$?$
$\exists x \cdot \exists y \cdot x<y \wedge P_{\mathrm{b}}(x) \wedge P_{\mathrm{a}}(y)$	$?$
$\exists X \cdot \forall x \cdot\left(X(x) \rightarrow P_{\mathrm{b}}(x)\right) \wedge \exists y \cdot y=0 \wedge X(y)$	$?$

Language of a WMSO Formula

\star for alphabet Σ and WMSO formula ϕ s.t. $\mathrm{fv}(\phi) \subseteq\left\{P_{\mathrm{a}} \mid \mathrm{a} \in \Sigma\right\}$, we let

$$
\mathrm{L}(\phi) \triangleq\left\{w \in \Sigma^{*} \mid \underline{w} \vDash \phi\right\}
$$

denote the language of ϕ
\star a language L is WMSO definable iff there is some ϕ as above s.t. $L=\mathrm{L}(\phi)$

Examples

ϕ	$L(\phi)$
$\exists x \cdot P_{\mathrm{a}}(x)$	$\left\{v a w \mid v, w \in \Sigma^{*}\right\}$
$\exists x \cdot \exists y \cdot x<y \wedge P_{\mathrm{b}}(x) \wedge P_{\mathrm{a}}(y)$	$?$
$\exists X \cdot \forall x \cdot\left(X(x) \rightarrow P_{\mathrm{b}}(x)\right) \wedge \exists y \cdot y=0 \wedge X(y)$	$?$

Language of a WMSO Formula

\star for alphabet Σ and WMSO formula ϕ s.t. $\mathrm{fv}(\phi) \subseteq\left\{P_{\mathrm{a}} \mid \mathrm{a} \in \Sigma\right\}$, we let

$$
\mathrm{L}(\phi) \triangleq\left\{w \in \Sigma^{*} \mid \underline{w} \vDash \phi\right\}
$$

denote the language of ϕ
\star a language L is WMSO definable iff there is some ϕ as above s.t. $L=\mathrm{L}(\phi)$

Examples

ϕ	$L(\phi)$
$\exists x \cdot P_{\mathrm{a}}(x)$	$\left\{\right.$ vaw $\left.\mid v, w \in \Sigma^{*}\right\}$
$\exists x \cdot \exists y \cdot x<y \wedge P_{\mathrm{b}}(x) \wedge P_{\mathrm{a}}(y)$	$\left\{u \mathrm{bva} w \mid u, v, w \in \Sigma^{*}\right\}$
$\exists X \cdot \forall x \cdot\left(X(x) \rightarrow P_{\mathrm{b}}(x)\right) \wedge \exists y \cdot y=0 \wedge X(y)$	$?$

Language of a WMSO Formula

\star for alphabet Σ and WMSO formula ϕ s.t. $\mathrm{fv}(\phi) \subseteq\left\{P_{\mathrm{a}} \mid \mathrm{a} \in \Sigma\right\}$, we let

$$
\mathrm{L}(\phi) \triangleq\left\{w \in \Sigma^{*} \mid \underline{w} \vDash \phi\right\}
$$

denote the language of ϕ
\star a language L is WMSO definable iff there is some ϕ as above s.t. $L=\mathrm{L}(\phi)$

Examples

ϕ	$L(\phi)$
$\exists x \cdot P_{\mathrm{a}}(x)$	$\left\{\right.$ vaw $\left.\mid v, w \in \Sigma^{*}\right\}$
$\exists x \cdot \exists y \cdot x<y \wedge P_{\mathrm{b}}(x) \wedge P_{\mathrm{a}}(y)$	$\left\{u \mathrm{bva} w \mid u, v, w \in \Sigma^{*}\right\}$
$\exists X \cdot \forall x \cdot\left(X(x) \rightarrow P_{\mathrm{b}}(x)\right) \wedge \exists y \cdot y=0 \wedge X(y)$	$\left\{\mathrm{b} w \mid w \in \Sigma^{*}\right\}$

Regularity and WMSO Definability

Büchi-Elgot-Trakhtenbrot

```
Theorem
Let L\subseteq\mp@subsup{\Sigma}{}{*}\mathrm{ be a language. The following are equivalent:}
    \star L is regular
    \star L is recognizable by a finite automata
    \star L is WMSO definable
```


Büchi-Elgot-Trakhtenbrot

Theorem

Let $L \subseteq \Sigma^{*}$ be a language. The following are equivalent:
$\star L$ is regular

* L is recognizable by a finite automata
$\star L$ is WMSO definable

Proof Outline.
$\star(1) \Leftrightarrow(2)$ Kleene's Theorem.
$\star(2) \Rightarrow(3)$ Given an Automata \mathcal{A}, we define a WMSO formula $\phi_{\mathcal{A}}$ s.t. $\mathrm{L}(\mathcal{A})=\mathrm{L}\left(\phi_{\mathcal{A}}\right)$
$\star(3) \Rightarrow(1)$ Given a WMSO formula ϕ, define a regular Language L_{ϕ} s.t. $L(\phi)=L_{\phi}$

From Automatons to Formulas

Encoding for given $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$
\star first-order variables m, n, \ldots refer to positions in input words w
\star for $\mathrm{a} \in \Sigma$: second-order variables P_{a} encode words: as before
\star for $q \in Q$: second-order variables X_{q} encode run: $X_{q}(m) \Longleftrightarrow q_{1} \xrightarrow{a_{0}} \ldots \xrightarrow{a_{m}} q$

From Automatons to Formulas

Encoding for given $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$
\star first-order variables m, n, \ldots refer to positions in input words w
\star for $\mathrm{a} \in \Sigma$: second-order variables P_{a} encode words: as before
\star for $q \in Q$: second-order variables X_{q} encode run: $X_{q}(m) \Longleftrightarrow q_{l} \xrightarrow{a_{0}} \ldots \xrightarrow{a_{m}} q$
Example

example run	$p \xrightarrow{\mathrm{a}} q \xrightarrow{\mathrm{~b}} p \xrightarrow{\mathrm{~b}} r$			
P_{a}	$\left\{\begin{array}{lllll} \\ P_{\mathrm{b}} & \{ & & 1, & 2\end{array}\right\}$			
X_{p}	$\{(-1)$	1	$\}$	
X_{q}	$\{$	0		
X_{r}	$\{$			2

From Automatons to Formulas

Encoding for given $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$
\star first-order variables m, n, \ldots refer to positions in input words w
\star for a $\in \Sigma$: second-order variables P_{a} encode words: as before
\star for $q \in Q$: second-order variables X_{q} encode run: $X_{q}(m) \Longleftrightarrow q_{l} \xrightarrow{a_{0}} \ldots \xrightarrow{a_{m}} q$
Example

\star ultimately, $\phi_{\mathcal{A}} \triangleq \exists X_{q_{1}} \ldots \exists X_{q_{n}} \cdot \psi_{\mathcal{A}}$ with $\psi_{\mathcal{A}}$ saying that $X_{q_{i}}$ encode an accepting run of \mathcal{A} on input word described by P_{a}.

Linking Run-Variables

for all word lengths len, we define:
$\star \psi_{\text {setup }} \triangleq \forall m . m<l e n \rightarrow\left(\bigvee_{q \in Q} X_{q}(m)\right) \wedge\left(\bigwedge_{p \neq q} \neg\left(X_{q}(m) \wedge X_{p}(m)\right)\right)$

- reading $m<l e n$ symbols ends up in a state, and this state is unique

Linking Run-Variables

for all word lengths len, we define:
$\star \psi_{\text {setup }} \triangleq \forall m . m<l e n \rightarrow\left(\bigvee_{q \in Q} X_{q}(m)\right) \wedge\left(\bigwedge_{p \neq q} \neg\left(X_{q}(m) \wedge X_{p}(m)\right)\right)$

- reading $m<l e n$ symbols ends up in a state, and this state is unique
$\star \psi_{\text {initial }} \triangleq l e n=0 \vee \bigvee_{\mathrm{a} \in \Sigma, p \in \delta\left(q_{l}, \mathrm{a}\right)}\left(P_{\mathrm{a}}(0) \wedge X_{p}(0)\right)$
- encoding of the initial transition

Linking Run-Variables

for all word lengths len, we define:
$\star \psi_{\text {setup }} \triangleq \forall m . m<$ len $\rightarrow\left(\bigvee_{q \in Q} X_{q}(m)\right) \wedge\left(\bigwedge_{p \neq q} \neg\left(X_{q}(m) \wedge X_{p}(m)\right)\right)$

- reading m < len symbols ends up in a state, and this state is unique
$\star \psi_{\text {initial }} \triangleq$ len $=0 \vee \bigvee_{\mathrm{a} \in \Sigma, p \in \delta(q /, \mathrm{a})}\left(P_{\mathrm{a}}(0) \wedge X_{p}(0)\right)$
- encoding of the initial transition
$\star \psi_{\text {run }} \triangleq \forall m . m<l e n \rightarrow \bigvee_{\mathrm{a} \in \Sigma, q \in Q, p \in \delta(q, \mathrm{a})}\left(X_{q}(m) \wedge P_{\mathrm{a}}(m+1) \wedge X_{p}(m+1)\right)$
- encoding of intermediate transitions

Linking Run-Variables

for all word lengths len, we define:
$\star \psi_{\text {setup }} \triangleq \forall m . m<$ len $\rightarrow\left(\bigvee_{q \in Q} X_{q}(m)\right) \wedge\left(\bigwedge_{p \neq q} \neg\left(X_{q}(m) \wedge X_{p}(m)\right)\right)$

- reading m < len symbols ends up in a state, and this state is unique
$\star \psi_{\text {initial }} \triangleq l e n=0 \vee \bigvee_{\mathrm{a} \in \Sigma, p \in \delta(q /, \mathrm{a})}\left(P_{\mathrm{a}}(0) \wedge X_{p}(0)\right)$
- encoding of the initial transition
$\star \psi_{r u n} \triangleq \forall m . m<l e n \rightarrow \bigvee_{\mathrm{a} \in \Sigma, q \in Q, p \in \delta(q, \mathrm{a})}\left(X_{q}(m) \wedge P_{\mathrm{a}}(m+1) \wedge X_{p}(m+1)\right)$
- encoding of intermediate transitions
$\star \phi_{\text {accept }} \triangleq\left(\right.$ len $=0 \wedge\left\ulcorner q_{\jmath} \in F^{\urcorner}\right) \vee \exists m$.len $=m+1 \wedge \bigvee_{q \in F}\left(X_{q}(m)\right)$
- encoded transition of word $\mathrm{a}_{0} \ldots \mathrm{a}_{m}$ of length $m+1$ lands in a final state

$$
\phi_{\mathcal{A}} \triangleq \exists X_{q_{1}} \cdots \exists X_{q_{n}}
$$

\forall len. $\underbrace{\left(\bigwedge_{\mathrm{a} \in \Sigma} \neg P_{\mathrm{a}}(\text { len }) \wedge \forall m . \bigwedge_{\mathrm{a} \in \Sigma} P_{\mathrm{a}}(m) \rightarrow m \leq \text { len }\right)} \rightarrow \psi_{\text {setup }} \wedge \psi_{\text {initial }} \wedge \psi_{\text {run }} \wedge \psi_{\text {accept }}$

Büchi-Elgot-Trakhtenbrot

Theorem

Let $L \subseteq \Sigma^{*}$ be a language. The following are equivalent:
$\star L$ is regular

* L is recognizable by a finite automata
$\star L$ is WMSO definable

Proof Outline.
$\star(1) \Leftrightarrow(2)$ Kleene's Theorem.
$\star(2) \Rightarrow(3)$ Given an Automata \mathcal{A}, we define a WMSO formula $\phi_{\mathcal{A}}$ s.t. $\mathrm{L}(\mathcal{A})=\mathrm{L}\left(\phi_{\mathcal{A}}\right)$

- $\phi_{\mathcal{A}}$ given on previous slide satisfies the case
$\star(3) \Rightarrow(1)$ Given a WMSO formula ϕ, define a regular Language L_{ϕ} s.t. $L(\phi)=L_{\phi}$

Büchi-Elgot-Trakhtenbrot

Theorem

Let $L \subseteq \Sigma^{*}$ be a language. The following are equivalent:
$\star L$ is regular

* L is recognizable by a finite automata
$\star L$ is WMSO definable

Proof Outline.
$\star(1) \Leftrightarrow(2)$ Kleene's Theorem.
$\star(2) \Rightarrow(3)$ Given an Automata \mathcal{A}, we define a WMSO formula $\phi_{\mathcal{A}}$ s.t. $\mathrm{L}(\mathcal{A})=\mathrm{L}\left(\phi_{\mathcal{A}}\right)$

- $\phi_{\mathcal{A}}$ given on previous slide satisfies the case
$\star(3) \Rightarrow(1)$ Given a WMSO formula ϕ, define a regular Language L_{ϕ} s.t. $L(\phi)=L_{\phi}$

From Formulas to Regular Languages
Encoding for given ϕ over $\mathcal{V}_{2}=\left\{X_{1}, \ldots, X_{m}\right\}$ and $\mathcal{V}_{1}=\left\{y_{m+1}, \ldots, y_{m+n}\right\}$
\star the alphabet Σ_{ϕ} is given by $m+n$ bit-vectors, i.e., $\Sigma_{\phi} \triangleq\{0,1\}^{n+m}$

From Formulas to Regular Languages

Encoding for given ϕ over $\mathcal{V}_{2}=\left\{X_{1}, \ldots, X_{m}\right\}$ and $\mathcal{V}_{1}=\left\{y_{m+1}, \ldots, y_{m+n}\right\}$
\star the alphabet Σ_{ϕ} is given by $m+n$ bit-vectors, i.e., $\Sigma_{\phi} \triangleq\{0,1\}^{n+m}$
\star word $w \in \Sigma_{\phi}^{*}$ can then be seen as a bit-matrix, encoding a valuation α :

- rows $1 \leq i \leq m$ encode valuations of $X_{i} \in \mathcal{V}_{2}: 1$ at column $1 \leq j \leq|w| \Longleftrightarrow j \in \alpha\left(X_{i}\right)$
- rows $m+1 \leq i \leq m+n$ encode valuations of $y_{i} \in \mathcal{V}_{1}: 1$ at column $1 \leq j \leq|w| \Longleftrightarrow j=\alpha\left(y_{i}\right)$

v	$\alpha(v)$						
X_{1}	$\{0,2\}$						
X_{2}	$\{1,3,4\}$						
y_{3}	3						
y_{4}	0	\equiv	$w[0]$	$w[1]$	$w[2]$	$w[3]$	$w[4]$
:---	:---	:---	:---	:---			

From Formulas to Regular Languages

Encoding for given ϕ over $\mathcal{V}_{2}=\left\{X_{1}, \ldots, X_{m}\right\}$ and $\mathcal{V}_{1}=\left\{y_{m+1}, \ldots, y_{m+n}\right\}$
\star the alphabet Σ_{ϕ} is given by $m+n$ bit-vectors, i.e., $\Sigma_{\phi} \triangleq\{0,1\}^{n+m}$
\star word $w \in \Sigma_{\phi}^{*}$ can then be seen as a bit-matrix, encoding a valuation α :

- rows $1 \leq i \leq m$ encode valuations of $X_{i} \in \mathcal{V}_{2}: 1$ at column $1 \leq j \leq|w| \Longleftrightarrow j \in \alpha\left(X_{i}\right)$
- rows $m+1 \leq i \leq m+n$ encode valuations of $y_{i} \in \mathcal{V}_{1}: 1$ at column $1 \leq j \leq|w| \Longleftrightarrow j=\alpha\left(y_{i}\right)$

v	$\alpha(v)$						
X_{1}	$\{0,2\}$						
X_{2}	$\{1,3,4\}$						
y_{3}	3						
y_{4}	0	\equiv	$w[0]$	$w[1]$	$w[2]$	$w[3]$	$w[4]$
:---	:---	:---	:---	:---			

\star for a valuation α for ϕ, let us write $\underline{\alpha} \in \Sigma_{\phi}^{*}$ for its encoding

The Main Lemma

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

$$
\hat{\mathrm{L}}(\phi) \triangleq\{\underline{\alpha} \mid \alpha \vDash \phi\}
$$

The Main Lemma

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

$$
\hat{\mathrm{L}}(\phi) \triangleq\{\underline{\alpha} \mid \alpha \vDash \phi\}
$$

Lemma

For any WMSO formula $\phi, \hat{\mathrm{L}}(\phi)$ is regular

The Main Lemma

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

$$
\hat{\mathrm{L}}(\phi) \triangleq\{\underline{\alpha} \mid \alpha \vDash \phi\}
$$

Lemma

For any WMSO formula $\phi, \hat{\mathrm{L}}(\phi)$ is regular
Proof Outline.
By induction on the structure of ϕ.

The Main Lemma

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

$$
\hat{\mathrm{L}}(\phi) \triangleq\{\underline{\alpha} \mid \alpha \vDash \phi\}
$$

Lemma

For any WMSO formula $\phi, \hat{\mathrm{L}}(\phi)$ is regular
Proof Outline.
By induction on the structure of ϕ.
$\star \phi=\top, \phi=\perp: ?$

The Main Lemma

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

$$
\hat{\mathrm{L}}(\phi) \triangleq\{\underline{\alpha} \mid \alpha \vDash \phi\}
$$

Lemma

For any WMSO formula $\phi, \hat{\mathrm{L}}(\phi)$ is regular
Proof Outline.
By induction on the structure of ϕ.
$\star \phi=\top, \phi=\perp$: In these cases $\hat{\mathrm{L}}(\phi)$ is Σ_{ϕ}^{*} or \varnothing, thus regular.

The Main Lemma

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

$$
\hat{\mathrm{L}}(\phi) \triangleq\{\underline{\alpha} \mid \alpha \vDash \phi\}
$$

Lemma

For any WMSO formula $\phi, \hat{L}(\phi)$ is regular

Proof Outline.
By induction on the structure of ϕ.
$\star \phi=\top, \phi=\perp$: In these cases $\hat{\mathrm{L}}(\phi)$ is Σ_{ϕ}^{*} or \varnothing, thus regular.
$\star \phi=(x<y): ?$

The Main Lemma

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

$$
\hat{\mathrm{L}}(\phi) \triangleq\{\underline{\alpha} \mid \alpha \vDash \phi\}
$$

Lemma

For any WMSO formula $\phi, \hat{L}(\phi)$ is regular
Proof Outline.
By induction on the structure of ϕ.
$\star \phi=\top, \phi=\perp$: In these cases $\hat{\mathrm{L}}(\phi)$ is Σ_{ϕ}^{*} or \varnothing, thus regular.
$\star \phi=(x<y)$: Then $\hat{\mathrm{L}}(\phi)=\binom{0}{0}^{*}\binom{1}{0}\binom{0}{0}^{*}\binom{0}{1}\binom{0}{0}$ or $\hat{L}(\phi)=\binom{0}{0}^{*}\binom{0}{1}\binom{0}{0}^{*}\binom{1}{0}\binom{0}{0}$, both of them regular.

The Main Lemma

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

$$
\hat{\mathrm{L}}(\phi) \triangleq\{\underline{\alpha} \mid \alpha \vDash \phi\}
$$

Lemma

For any WMSO formula $\phi, \hat{L}(\phi)$ is regular
Proof Outline.
By induction on the structure of ϕ.
$\star \phi=\top, \phi=\perp$: In these cases $\hat{\mathrm{L}}(\phi)$ is Σ_{ϕ}^{*} or \varnothing, thus regular.
$\star \phi=(x<y)$: Then $\hat{\mathrm{L}}(\phi)=\binom{0}{0}^{*}\binom{1}{0}\binom{0}{0}^{*}\binom{0}{1}\binom{0}{0}$ or $\hat{L}(\phi)=\binom{0}{0}^{*}\binom{0}{1}\binom{0}{0}^{*}\binom{1}{0}\binom{0}{0}$, both of them regular.
$\star \phi=X(y): ?$

The Main Lemma

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

$$
\hat{\mathrm{L}}(\phi) \triangleq\{\underline{\alpha} \mid \alpha \vDash \phi\}
$$

Lemma

For any WMSO formula $\phi, \hat{L}(\phi)$ is regular

Proof Outline.

By induction on the structure of ϕ.
$\star \phi=\top, \phi=\perp$: In these cases $\hat{\mathrm{L}}(\phi)$ is Σ_{ϕ}^{*} or \varnothing, thus regular.
$\star \phi=(x<y)$: Then $\hat{L}(\phi)=\binom{0}{0}^{*}\binom{1}{0}\binom{0}{0}^{*}\binom{0}{1}\binom{0}{0}$ or $\hat{L}(\phi)=\binom{0}{0}^{*}\binom{0}{1}\binom{0}{0}^{*}\binom{1}{0}\binom{0}{0}$, both of them regular.
$\star \phi=X(y)$: Then $\hat{L}(\phi)=\left(\binom{0}{0} \cup\binom{1}{0}\right)^{*}\binom{1}{1}\left(\binom{0}{0} \cup\binom{1}{0}\right)^{*}$ is regular.

The Main Lemma

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

$$
\hat{\mathrm{L}}(\phi) \triangleq\{\underline{\alpha} \mid \alpha \vDash \phi\}
$$

Lemma

For any WMSO formula $\phi, \hat{L}(\phi)$ is regular

Proof Outline.

By induction on the structure of ϕ.
$\star \phi=\top, \phi=\perp$: In these cases $\hat{\mathrm{L}}(\phi)$ is Σ_{ϕ}^{*} or \varnothing, thus regular.
$\star \phi=(x<y)$: Then $\hat{L}(\phi)=\binom{0}{0}^{*}\binom{1}{0}\binom{0}{0}^{*}\binom{0}{1}\binom{0}{0}$ or $\hat{L}(\phi)=\binom{0}{0}^{*}\binom{0}{1}\binom{0}{0}^{*}\binom{1}{0}\binom{0}{0}$, both of them regular.
$\star \phi=X(y)$: Then $\hat{\mathrm{L}}(\phi)=\left(\binom{0}{0} \cup\binom{1}{0}\right)^{*}\binom{1}{1}\left(\binom{0}{0} \cup\binom{1}{0}\right)^{*}$ is regular.
$\star \phi \vee \psi, \exists x \cdot \phi: ?$

Homomorphisms

Consider $h: \Sigma \rightarrow \Gamma^{*}$ and extend it to words w by replacing each letter a in wh by $h(w)$

$$
h(\epsilon) \triangleq \epsilon \quad h(\mathrm{a} w) \triangleq h(\mathrm{a}) \cdot h(w)
$$

\star each function $h: \Sigma^{*} \rightarrow \Gamma^{*}$ defined this way is called a homomorphism

Homomorphisms

Consider $h: \Sigma \rightarrow \Gamma^{*}$ and extend it to words w by replacing each letter a in w by $h(w)$:

$$
h(\epsilon) \triangleq \epsilon \quad h(\mathrm{a} w) \triangleq h(\mathrm{a}) \cdot h(w)
$$

\star each function $h: \Sigma^{*} \rightarrow \Gamma^{*}$ defined this way is called a homomorphism
\star for a language $L \subseteq \Sigma^{*}$ we let $h(L) \triangleq\{h(w) \mid w \in L\}$ be the application of h to L

Homomorphisms

Consider $h: \Sigma \rightarrow \Gamma^{*}$ and extend it to words w by replacing each letter a in w by $h(w)$:

$$
h(\epsilon) \triangleq \epsilon \quad h(\mathrm{a} w) \triangleq h(\mathrm{a}) \cdot h(w)
$$

\star each function $h: \Sigma^{*} \rightarrow \Gamma^{*}$ defined this way is called a homomorphism

* for a language $L \subseteq \Sigma^{*}$ we let $h(L) \triangleq\{h(w) \mid w \in L\}$ be the application of h to L
\star for a language $L \subseteq \Gamma^{*}$ we let $h^{-1}(L) \triangleq\{w \mid h(w) \in L\}$ be the inverse application of h to L

Homomorphisms

Consider $h: \Sigma \rightarrow \Gamma^{*}$ and extend it to words w by replacing each letter a in wh by $h(w)$

$$
h(\epsilon) \triangleq \epsilon \quad h(\mathrm{a} w) \triangleq h(\mathrm{a}) \cdot h(w)
$$

\star each function $h: \Sigma^{*} \rightarrow \Gamma^{*}$ defined this way is called a homomorphism

* for a language $L \subseteq \Sigma^{*}$ we let $h(L) \triangleq\{h(w) \mid w \in L\}$ be the application of h to L
\star for a language $L \subseteq \Gamma^{*}$ we let $h^{-1}(L) \triangleq\{w \mid h(w) \in L\}$ be the inverse application of h to L

Lemma (Closure of REG(Σ) under homomorphism)
The set of regular languages is closed under (inverse) applications of homomorphisms.

Example

For $1 \leq i \leq k$, let $\operatorname{del}_{i, k}:\{0,1\}^{k} \rightarrow\{0,1\}^{k-1}$ delete the i-th entry of its argument, e.g.,

$$
\operatorname{del}_{1,3}\left(\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right) \triangleq\binom{b}{c} \quad \operatorname{del}_{2,3}\left(\left(\begin{array}{c}
a \\
b \\
c
\end{array}\right)\right) \triangleq\binom{a}{c} \quad \operatorname{del}_{3,3}\left(\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right) \triangleq\binom{a}{b}
$$

Example

For $1 \leq i \leq k$, let $\operatorname{del}_{i, k}:\{0,1\}^{k} \rightarrow\{0,1\}^{k-1}$ delete the i-th entry of its argument, e.g.,

$$
\operatorname{del}_{1,3}\left(\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right) \triangleq\binom{b}{c} \quad \operatorname{del}_{2,3}\left(\left(\begin{array}{c}
a \\
b \\
c
\end{array}\right)\right) \triangleq\binom{a}{c} \quad \operatorname{del}_{3,3}\left(\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right) \triangleq\binom{a}{b}
$$

and thus

$$
\operatorname{del}_{1,3}\left(\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)^{*}\right)=\binom{1}{0}\binom{0}{1}^{*} \quad \operatorname{del}_{1,3}^{-1}\left(\binom{1}{0}\binom{0}{1}^{*}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)^{*} \cup\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)^{*} \cup\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)^{*} \cup\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)^{*}
$$

Example

For $1 \leq i \leq k$, let $\operatorname{del}_{i, k}:\{0,1\}^{k} \rightarrow\{0,1\}^{k-1}$ delete the i-th entry of its argument, e.g.,

$$
\operatorname{del}_{1,3}\left(\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right) \triangleq\binom{b}{c} \quad \operatorname{del}_{2,3}\left(\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right) \triangleq\binom{a}{c} \quad \operatorname{del}_{3,3}\left(\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right) \triangleq\binom{a}{b}
$$

and thus

$$
\operatorname{del}_{1,3}\left(\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)^{*}\right)=\binom{1}{0}\binom{0}{1}^{*} \quad \operatorname{del}_{1,3}^{-1}\left(\binom{1}{0}\binom{0}{1}^{*}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)^{*} \cup\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)^{*} \cup\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)^{*} \cup\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)^{*}
$$

Concretely, for WMSO formulas ϕ over $\mathcal{V}_{2}=\left\{X_{1}, \ldots, X_{m}\right\}, \mathcal{V}_{1}=\left\{y_{m+1}, \ldots, y_{m+n}\right\}$:

Example

For $1 \leq i \leq k$, let $\operatorname{del}_{i, k}:\{0,1\}^{k} \rightarrow\{0,1\}^{k-1}$ delete the i-th entry of its argument, e.g.,

$$
\operatorname{del}_{1,3}\left(\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right) \triangleq\binom{b}{c} \quad \operatorname{del}_{2,3}\left(\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right) \triangleq\binom{a}{c} \quad \operatorname{del}_{3,3}\left(\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right) \triangleq\binom{a}{b}
$$

and thus

$$
\operatorname{del}_{1,3}\left(\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)^{*}\right)=\binom{1}{0}\binom{0}{1}^{*} \quad \operatorname{del}_{1,3}^{-1}\left(\binom{1}{0}\binom{0}{1}^{*}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)^{*} \cup\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)^{*} \cup\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)^{*} \cup\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)^{*}
$$

Concretely, for WMSO formulas ϕ over $\mathcal{V}_{2}=\left\{X_{1}, \ldots, X_{m}\right\}, \mathcal{V}_{1}=\left\{y_{m+1}, \ldots, y_{m+n}\right\}$:
\star for $1 \leq i \leq n, \operatorname{del}_{i, n+m}(\hat{\mathrm{~L}}(\phi))=\operatorname{del}_{i, n+m}(\{\underline{\alpha} \mid \alpha \vDash \phi\})$

$$
\approx\left\{\underline{\beta} \mid \beta\left[X_{i} \mapsto S\right] \vDash \phi \text { for some } S \subseteq \mathbb{N}\right\}=\hat{L}\left(\exists X_{i} \cdot \phi\right)
$$

Example

For $1 \leq i \leq k$, let $\operatorname{del}_{i, k}:\{0,1\}^{k} \rightarrow\{0,1\}^{k-1}$ delete the i-th entry of its argument, e.g.,

$$
\operatorname{del}_{1,3}\left(\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right) \triangleq\binom{b}{c}
$$

$$
\operatorname{det}_{2,3}\left(\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right) \triangleq\binom{a}{c}
$$

$$
\operatorname{del}_{3,3}\left(\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right) \triangleq\binom{a}{b}
$$

and thus

$$
\operatorname{del}_{1,3}\left(\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)^{*}\right)=\binom{1}{0}\binom{0}{1}^{*} \quad \operatorname{del}_{1,3}^{-1}\left(\binom{1}{0}\binom{0}{1}^{*}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)^{*} \cup\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)^{*} \cup\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)^{*} \cup\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)^{*}
$$

Concretely, for WMSO formulas ϕ over $\mathcal{V}_{2}=\left\{X_{1}, \ldots, X_{m}\right\}, \mathcal{V}_{1}=\left\{y_{m+1}, \ldots, y_{m+n}\right\}$:
\star for $1 \leq i \leq n, \operatorname{del}_{i, n+m}(\hat{L}(\phi))=\operatorname{del}_{i, n+m}(\{\underline{\alpha} \mid \alpha \vDash \phi\})$

$$
\approx\left\{\underline{\beta} \mid \beta\left[X_{i} \mapsto S\right] \vDash \phi \text { for some } S \subseteq \mathbb{N}\right\}=\hat{L}\left(\exists X_{i} \cdot \phi\right)
$$

\star inversely, $d e l_{i, 1+n+m}^{-1}(\hat{L}(\phi))=\{\underline{\alpha[X \mapsto S]} \mid \alpha \vDash \phi$ and $S \subseteq \mathbb{N}\}$ extends valid assignments

Example

For $1 \leq i \leq k$, let $\operatorname{del}_{i, k}:\{0,1\}^{k} \rightarrow\{0,1\}^{k-1}$ delete the i-th entry of its argument, e.g.,

$$
\operatorname{del}_{1,3}\left(\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right) \triangleq\binom{b}{c}
$$

$$
\operatorname{det}_{2,3}\left(\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right) \triangleq\binom{a}{c}
$$

$$
\operatorname{del}_{3,3}\left(\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right) \triangleq\binom{a}{b}
$$

and thus

$$
\operatorname{del}_{1,3}\left(\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)^{*}\right)=\binom{1}{0}\binom{0}{1}^{*} \quad \operatorname{del}_{1,3}^{-1}\left(\binom{1}{0}\binom{0}{1}^{*}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)^{*} \cup\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)^{*} \cup\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)^{*} \cup\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)^{*}
$$

Concretely, for WMSO formulas ϕ over $\mathcal{V}_{2}=\left\{X_{1}, \ldots, X_{m}\right\}, \mathcal{V}_{1}=\left\{y_{m+1}, \ldots, y_{m+n}\right\}$:
\star for $1 \leq i \leq n, \operatorname{del}_{i, n+m}(\hat{\mathrm{~L}}(\phi))=\operatorname{del}_{i, n+m}(\{\underline{\alpha} \mid \alpha \vDash \phi\})$

$$
\approx\left\{\underline{\beta} \mid \beta\left[X_{i} \mapsto S\right] \vDash \phi \text { for some } S \subseteq \mathbb{N}\right\}=\hat{L}\left(\exists X_{i} \cdot \phi\right)
$$

\star inversely, $d e l_{i, 1+n+m}^{-1}(\hat{\mathrm{~L}}(\phi))=\{\alpha[X \mapsto S] \mid \alpha \vDash \phi$ and $S \subseteq \mathbb{N}\}$ extends valid assignments
\star similar for first order variables $y_{i}(m+1 \leq i \leq m+n)$

Example

For $1 \leq i \leq k$, let $\operatorname{del}_{i, k}:\{0,1\}^{k} \rightarrow\{0,1\}^{k-1}$ delete the i-th entry of its argument, e.g.,

$$
\operatorname{del}_{1,3}\left(\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right) \triangleq\binom{b}{c} \quad \operatorname{del}_{2,3}\left(\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right) \triangleq\binom{a}{c} \quad \operatorname{del}_{3,3}\left(\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right) \triangleq\binom{a}{b}
$$

and thus

$$
\operatorname{del}_{1,3}\left(\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)^{*}\right)=\binom{1}{0}\binom{0}{1}^{*} \quad \operatorname{del}_{1,3}^{-1}\left(\binom{1}{0}\binom{0}{1}^{*}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)^{*} \cup\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)^{*} \cup\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)^{*} \cup\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)^{*}
$$

Concretely, for WMSO formulas ϕ over $\mathcal{V}_{2}=\left\{X_{1}, \ldots, X_{m}\right\}, \mathcal{V}_{1}=\left\{y_{m+1}, \ldots, y_{m+n}\right\}$:
\star for $1 \leq i \leq n, \operatorname{del}_{i, n+m}(\hat{\mathrm{~L}}(\phi))=\operatorname{del}_{i, n+m}(\{\underline{\alpha} \mid \alpha \vDash \phi\})$

$$
\approx\left\{\underline{\beta} \mid \beta\left[X_{i} \mapsto S\right] \vDash \phi \text { for some } S \subseteq \mathbb{N}\right\}=\hat{L}\left(\exists X_{i} \cdot \phi\right)
$$

\star inversely, $d e l_{i, 1+n+m}^{-1}(\hat{\mathrm{~L}}(\phi))=\{\alpha[X \mapsto S] \mid \alpha \vDash \phi$ and $S \subseteq \mathbb{N}\}$ extends valid assignments
\star similar for first order variables $y_{i}(m+1 \leq i \leq m+n)$
\star Attention: One has to be slightly more careful with codings.

$$
\phi \leadsto \begin{aligned}
& X \\
& Y
\end{aligned}\binom{a_{1}}{b_{1}} \cdots\binom{a_{n}}{b_{n}}\binom{a_{n+1}}{1}\binom{1}{0} \quad \exists X \cdot \phi \leadsto\left(b_{1}\right) \cdots\left(b_{n}\right)(1)(0)
$$

The Main Lemma (Continued)

Lemma

For any WMSO formula $\phi, \hat{\mathrm{L}}(\phi)$ is regular
Proof Outline.
$\star \phi=\psi_{1} \vee \psi_{2}$:

- by induction hypothesis, $L_{1} \triangleq \hat{\mathrm{~L}}\left(\psi_{1}\right)$ and $L_{2} \triangleq \hat{\mathrm{~L}}\left(\psi_{2}\right)$ are regular
- L_{1} and L_{2} speak about assignments to variables in ψ_{1} and ψ_{2}
- inverse applications of $d e l_{i, *}$ extends these codings to valuations over $f v\left(\psi_{1} \vee \psi_{2}\right)$
- their union yields $\hat{L}\left(\psi_{1} \vee \psi_{2}\right)$ and is thus regular

The Main Lemma (Continued)

Lemma

For any WMSO formula $\phi, \hat{L}(\phi)$ is regular

Proof Outline.

$\star \phi=\psi_{1} \vee \psi_{2}$:

- by induction hypothesis, $L_{1} \triangleq \hat{\mathrm{~L}}\left(\psi_{1}\right)$ and $L_{2} \triangleq \hat{\mathrm{~L}}\left(\psi_{2}\right)$ are regular
- L_{1} and L_{2} speak about assignments to variables in ψ_{1} and ψ_{2}
- inverse applications of $d e l_{i, *}$ extends these codings to valuations over $f v\left(\psi_{1} \vee \psi_{2}\right)$
- their union yields $\hat{\mathrm{L}}\left(\psi_{1} \vee \psi_{2}\right)$ and is thus regular
$\star \phi=\neg \psi$: Then $\hat{\mathrm{L}}(\phi)=\overline{\hat{\mathrm{L}}(\psi)} \cap L_{\text {valid }}$.
- $L_{\text {valid }} \in R E G$ constrains Σ_{ϕ} to valid codings (e.g., for FO variables, only one bit is set)
- by induction hypothesis and closure properties of $R E G, \hat{L}(\phi)$ is valid

The Main Lemma (Continued)

Lemma

For any WMSO formula $\phi, \hat{\mathrm{L}}(\phi)$ is regular

Proof Outline.

$\star \phi=\psi_{1} \vee \psi_{2}$:

- by induction hypothesis, $L_{1} \triangleq \hat{\mathrm{~L}}\left(\psi_{1}\right)$ and $L_{2} \triangleq \hat{\mathrm{~L}}\left(\psi_{2}\right)$ are regular
- L_{1} and L_{2} speak about assignments to variables in ψ_{1} and ψ_{2}
- inverse applications of $d e l_{i, *}$ extends these codings to valuations over $f v\left(\psi_{1} \vee \psi_{2}\right)$
- their union yields $\hat{\mathrm{L}}\left(\psi_{1} \vee \psi_{2}\right)$ and is thus regular
$\star \phi=\neg \psi$: Then $\hat{\mathrm{L}}(\phi)=\overline{\hat{\mathrm{L}}(\psi)} \cap L_{\text {valid }}$.
- $L_{\text {valid }} \in R E G$ constrains Σ_{ϕ} to valid codings (e.g., for FO variables, only one bit is set)
- by induction hypothesis and closure properties of $R E G, \hat{L}(\phi)$ is valid
$\star \phi=\exists X_{i} \cdot \psi$ or $\phi=\exists y_{j} \cdot \psi$: from induction hypothesis, using homomorphism $d e l_{i, *}$ to drop the rows referring to X_{i} or y_{j}; taking care of trailing zero-vectors (see previous slide)

Büchi-Elgot-Trakhtenbrot

Theorem

Let $L \subseteq \Sigma^{*}$ be a language. The following are equivalent:
$\star L$ is regular

* L is recognizable by a finite automata
$\star L$ is WMSO definable

Proof Outline.
$\star(1) \Leftrightarrow(2)$ Kleene's Theorem.
$\star(2) \Rightarrow(3)$ Given an Automata \mathcal{A}, we define a WMSO formula $\phi_{\mathcal{A}}$ s.t. $\mathrm{L}(\mathcal{A})=\mathrm{L}\left(\phi_{\mathcal{A}}\right)$
$\star(3) \Rightarrow(1)$ Given a WMSO formula ϕ, define a regular Language L_{ϕ} s.t. $L(\phi)=L_{\phi}$

- we can define a homomorphism $h:\{0,1\}^{|\Sigma|} \rightarrow \Sigma$, and thereby a function from codings $\underline{\alpha}$ to words w
- this homomorphism maps $\hat{L}(\phi)$ to $L(\phi)$ (how?)

Büchi-Elgot-Trakhtenbrot

Theorem

Let $L \subseteq \Sigma^{*}$ be a language. The following are equivalent:
$\star L$ is regular
$\star L$ is recognizable by a finite automata
$\star L$ is WMSO definable

Proof Outline.
$\star(1) \Leftrightarrow(2)$ Kleene's Theorem.
$\star(2) \Rightarrow(3)$ Given an Automata \mathcal{A}, we define a WMSO formula $\phi_{\mathcal{A}}$ s.t. $\mathrm{L}(\mathcal{A})=\mathrm{L}\left(\phi_{\mathcal{A}}\right)$
$\star(3) \Rightarrow(1)$ Given a WMSO formula ϕ, define a regular Language L_{ϕ} s.t. $L(\phi)=L_{\phi}$

- we can define a homomorphism $h:\{0,1\}^{|\Sigma|} \rightarrow \Sigma$, and thereby a function from codings $\underline{\alpha}$ to words w
- this homomorphism maps $\hat{L}(\phi)$ to $L(\phi)$ (how?)
- as the former is regular and $\operatorname{REG}(\Sigma)$ closed under homomorphisms, the direction follows

Decision Problems

Decision Problems for WMSO

The Satisfiability Problem

* Given: WMSO formula ϕ
\star Question: is there α s.t $\alpha \vDash \phi$?
The Validity Problem
^ Given: WMSO formula ϕ
\star Question: $\alpha \vDash \phi$ for all assignments α ?

Decision Problems for WMSO

The Satisfiability Problem

* Given: WMSO formula ϕ
\star Question: is there α s.t $\alpha \vDash \phi$?

The Validity Problem
\star Given: WMSO formula ϕ
\star Question: $\alpha \vDash \phi$ for all assignments α ?

Theorem
Satisfiability and Validity are decidable for WMSO.

Proof Outline.
through the construction of corresponding DFAs, checking emptiness

Complexity

\star Emptiness for an DFA \mathcal{A}_{ϕ} is in PTIME (in the number $\left|\mathcal{A}_{\phi}\right|$ of nodes of \mathcal{A}_{ϕ})
\star the complexity of satisfiability/validity thus essentially depends on the size of \mathcal{A}_{ϕ}

Complexity

\star Emptiness for an DFA \mathcal{A}_{ϕ} is in PTIME (in the number $\left|\mathcal{A}_{\phi}\right|$ of nodes of \mathcal{A}_{ϕ})
\star the complexity of satisfiability/validity thus essentially depends on the size of \mathcal{A}_{ϕ}
$\star \mathcal{A}_{\phi}$ is constructed recursively on the structure of ϕ

Complexity

\star Emptiness for an DFA \mathcal{A}_{ϕ} is in PTIME (in the number $\left|\mathcal{A}_{\phi}\right|$ of nodes of \mathcal{A}_{ϕ})
\star the complexity of satisfiability/validity thus essentially depends on the size of \mathcal{A}_{ϕ}
$\star \mathcal{A}_{\phi}$ is constructed recursively on the structure of ϕ

- base cases $\phi=\mathrm{T}, \perp,(x<y), X(y)$: DFAs of constant size

Complexity

\star Emptiness for an DFA \mathcal{A}_{ϕ} is in PTIME (in the number $\left|\mathcal{A}_{\phi}\right|$ of nodes of \mathcal{A}_{ϕ})
\star the complexity of satisfiability/validity thus essentially depends on the size of \mathcal{A}_{ϕ}
$\star \mathcal{A}_{\phi}$ is constructed recursively on the structure of ϕ

- base cases $\phi=\mathrm{T}, \perp,(x<y), X(y)$: DFAs of constant size
- disjunction $\phi=\psi_{1} \vee \psi_{2}: \mathcal{A}_{\phi}$ DFA-union of $\mathcal{A}_{\psi_{1}}$ and $\mathcal{A}_{\psi_{2}}$

Complexity

\star Emptiness for an DFA \mathcal{A}_{ϕ} is in PTIME (in the number $\left|\mathcal{A}_{\phi}\right|$ of nodes of \mathcal{A}_{ϕ})
\star the complexity of satisfiability/validity thus essentially depends on the size of \mathcal{A}_{ϕ}
$\star \mathcal{A}_{\phi}$ is constructed recursively on the structure of ϕ

- base cases $\phi=\mathrm{T}, \perp,(x<y), X(y)$: DFAs of constant size
- disjunction $\phi=\psi_{1} \vee \psi_{2}: \mathcal{A}_{\phi}$ DFA-union of $\mathcal{A}_{\psi_{1}}$ and $\mathcal{A}_{\psi_{2}}$
- negations $\phi=\neg \psi: \mathcal{A}_{\phi}$ DFA-complement of \mathcal{A}_{ψ}

Complexity

\star Emptiness for an DFA \mathcal{A}_{ϕ} is in PTIME (in the number $\left|\mathcal{A}_{\phi}\right|$ of nodes of \mathcal{A}_{ϕ})
\star the complexity of satisfiability/validity thus essentially depends on the size of \mathcal{A}_{ϕ}
$\star \mathcal{A}_{\phi}$ is constructed recursively on the structure of ϕ

- base cases $\phi=\mathrm{T}, \perp,(x<y), X(y)$: DFAs of constant size
- disjunction $\phi=\psi_{1} \vee \psi_{2}: \mathcal{A}_{\phi}$ DFA-union of $\mathcal{A}_{\psi_{1}}$ and $\mathcal{A}_{\psi_{2}}$
$\mathrm{O}\left(\left|\mathcal{A}_{\psi_{1}}\right|+\left|\mathcal{A}_{\psi_{2}}\right|\right)$
- negations $\phi=\neg \psi: \mathcal{A}_{\phi}$ DFA-complement of \mathcal{A}_{ψ}
- existentials $\phi=\exists x . \psi$ or $\phi=\exists X . \psi$: homomorphism application and determinisation

Complexity

\star Emptiness for an DFA \mathcal{A}_{ϕ} is in PTIME (in the number $\left|\mathcal{A}_{\phi}\right|$ of nodes of \mathcal{A}_{ϕ})
\star the complexity of satisfiability/validity thus essentially depends on the size of \mathcal{A}_{ϕ}
$\star \mathcal{A}_{\phi}$ is constructed recursively on the structure of ϕ

- base cases $\phi=\mathrm{T}, \perp,(x<y), X(y)$: DFAs of constant size
- disjunction $\phi=\psi_{1} \vee \psi_{2}: \mathcal{A}_{\phi}$ DFA-union of $\mathcal{A}_{\psi_{1}}$ and $\mathcal{A}_{\psi_{2}}$
- negations $\phi=\neg \psi: \mathcal{A}_{\phi}$ DFA-complement of \mathcal{A}_{ψ}
- existentials $\phi=\exists x . \psi$ or $\phi=\exists X . \psi$: homomorphism application and determinisation

Theorem (Hardness)
Satisfiability and validity are in $\operatorname{DTIME}\left(2_{\mathrm{O}(n)}^{c}\right)$, where 2_{k}^{c} is a tower of exponentials 2^{2} of height k.

Complexity

» Emptiness for an DFA \mathcal{A}_{ϕ} is in PTIME (in the number $\left|\mathcal{A}_{\phi}\right|$ of nodes of \mathcal{A}_{ϕ})
\star the complexity of satisfiability/validity thus essentially depends on the size of \mathcal{A}_{ϕ}
$\star \mathcal{A}_{\phi}$ is constructed recursively on the structure of ϕ

- base cases $\phi=\mathrm{T}, \perp,(x<y), X(y)$: DFAs of constant size
- disjunction $\phi=\psi_{1} \vee \psi_{2}: \mathcal{A}_{\phi}$ DFA-union of $\mathcal{A}_{\psi_{1}}$ and $\mathcal{A}_{\psi_{2}}$
- negations $\phi=\neg \psi: \mathcal{A}_{\phi}$ DFA-complement of \mathcal{A}_{ψ}
- existentials $\phi=\exists x . \psi$ or $\phi=\exists X . \psi$: homomorphism application and determinisation

Theorem (Hardness)
Satisfiability and validity are in $\operatorname{DTIME}\left(2_{\mathrm{O}(n)}^{c}\right)$, where 2_{k}^{c} is a tower of exponentials 2^{2} of height k.

Theorem (Completeness)

Any language L decidable in time $\operatorname{DTIME}\left(2_{\mathrm{O}(n)}^{c}\right)$ can be reduced (within polynomial time) to the satisfiability of formulas $\phi_{w}(w \in L)$ of size polynomial in $|w|$.

WMSO and Alternating Finite Automata

« What if we translate WMSO formulas to AFAs?

- for basic formulas $x<y$ and $X(y)$, the construction is as seen previously
- Boolean connectives are reflected directly in the transition
- Quantifier elimination through projection homomorphisms

WMSO and Alternating Finite Automata

« What if we translate WMSO formulas to AFAs?

- for basic formulas $x<y$ and $X(y)$, the construction is as seen previously
- Boolean connectives are reflected directly in the transition
- Quantifier elimination through projection homomorphisms
« this suggests resulting automaton is linear in size of formula
\Rightarrow WMSO model-checking in exponential time, contradicting the lower-bound result!

Projections and AFAs

WMSO and Alternating Finite Automata

« What if we translate WMSO formulas to AFAs?

- for basic formulas $x<y$ and $X(y)$, the construction is as seen previously
- Boolean connectives are reflected directly in the transition
- Quantifier elimination through projection homomorphisms
« this suggests resulting automaton is linear in size of formula
\Rightarrow WMSO model-checking in exponential time, contradicting the lower-bound result!

Problem:

We do not have a polytime algorithm for homorphism applications on AFAs

