Advanced Logic

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2023/AL/

Martin Avanzini (martin.avanzini@inria.fr) Etienne Lozes (etienne.lozes@univ-cotedazur.fr)

2nd Semester M1, 2023

Today's Lecture

First Order-Logic Recap

★ structures, formulas and satisfiability

Monadic Second-Order Logic

- 1. weak monadic second-order (WMSO) logic
- 2. Regularity and WMSO definability
- 3. Decision problems

First-Order Logic Recap

First-Order Logic

- ★ let $\mathcal{V} = \{x, y, ...\}$ be a set of variables
- ★ let $\mathcal{R} = \{P, Q, ...\}$ and $\mathcal{F} = \{f, g, ...\}$ be a vocabulary of predicate/function symbols
- ★ predicate and function symbols are equipped with an arity ar : $\mathcal{R} \cup \mathcal{F} \rightarrow \mathbb{N}$
- \star first-order terms and formulas over $\mathcal{V},~\mathcal{R}$ and \mathcal{F} are given by the following grammar:

 $s, t ::= x | f(t_1, \dots, t_{ar(f)})$ $\phi, \psi ::= \top | \bot$ $| P(t_1, \dots, t_{ar(P)}) | s = t$ $| \phi \lor \psi | \neg \phi$ $| \exists x. \phi$

(terms)

(atomic truth values)

(predicates and equality)

(Boolean connectives)

(existential quantification)

First-Order Logic

- ★ let $\mathcal{V} = \{x, y, ...\}$ be a set of variables
- ★ let $\mathcal{R} = \{P, Q, ...\}$ and $\mathcal{F} = \{f, g, ...\}$ be a vocabulary of predicate/function symbols
- ★ predicate and function symbols are equipped with an arity ar : $\mathcal{R} \cup \mathcal{F} \rightarrow \mathbb{N}$
- \star first-order terms and formulas over $\mathcal{V},~\mathcal{R}$ and \mathcal{F} are given by the following grammar:

(atomic truth values) (predicates and equality)

(Boolean connectives)

(existential quantification)

★ further connectives definable:

 $\phi \to \psi \triangleq \neg \phi \lor \psi \quad s \neq t \triangleq \neg (s = t) \quad \phi \land \psi \triangleq \neg (\neg \phi \lor \neg \psi) \quad \forall x.\phi \triangleq \neg (\exists x. \neg \phi) \quad \dots$

First-Order Logic

- ★ let $\mathcal{V} = \{x, y, ...\}$ be a set of variables
- ★ let $\mathcal{R} = \{P, Q, ...\}$ and $\mathcal{F} = \{f, g, ...\}$ be a vocabulary of predicate/function symbols
- ★ predicate and function symbols are equipped with an arity ar : $\mathcal{R} \cup \mathcal{F} \rightarrow \mathbb{N}$
- \star first-order terms and formulas over $\mathcal{V},~\mathcal{R}$ and \mathcal{F} are given by the following grammar:

★ further connectives definable:

 $\phi \rightarrow \psi \triangleq \neg \phi \lor \psi$ $s \neq t \triangleq \neg (s = t)$ $\phi \land \psi \triangleq \neg (\neg \phi \lor \neg \psi)$ $\forall x.\phi \triangleq \neg (\exists x.\neg \phi)$... * to avoid parenthesis, we fix precedence $\neg > \land, \lor > \exists, \forall$

Free Variables, Open and Closed Formulas

- ★ a quantifier $\exists x.\phi$ binds the variable x within ϕ
- ★ variables not bound are called free
- ***** the set of variables free in ϕ is denoted by $fv(\phi)$

 $\mathsf{fv}(E(x,y)) = \{x,y\} \qquad \mathsf{fv}(\exists y.E(x,y)) = \{x\} \qquad \mathsf{fv}(\forall x.\exists y.E(x,y)) = \emptyset$

Free Variables, Open and Closed Formulas

- * a quantifier $\exists x. \phi$ binds the variable x within ϕ
- ★ variables not bound are called free
- ***** the set of variables free in ϕ is denoted by $fv(\phi)$

 $\mathsf{fv}(E(x,y)) = \{x,y\} \qquad \mathsf{fv}(\exists y.E(x,y)) = \{x\} \qquad \mathsf{fv}(\forall x.\exists y.E(x,y)) = \emptyset$

- ★ the formulas without free variables are called sentences (or closed formulas)
- ★ otherwise they are called open

Free Variables, Open and Closed Formulas

- ★ a quantifier $\exists x.\phi$ binds the variable x within ϕ
- ★ variables not bound are called free
- ***** the set of variables free in ϕ is denoted by $fv(\phi)$

 $\mathsf{fv}(E(x,y)) = \{x,y\} \qquad \mathsf{fv}(\exists y.E(x,y)) = \{x\} \qquad \mathsf{fv}(\forall x.\exists y.E(x,y)) = \emptyset$

- ★ the formulas without free variables are called sentences (or closed formulas)
- ★ otherwise they are called open
- ★ we consider formulas equal up to renaming of bound variables
 - $\exists y. E(x, y)$ is equal to $\exists z. E(x, z)$ but **neither** to $\exists y. E(x, z)$ nor $\exists y. E(z, y)$

 \star a formula is evaluated to a truth value by assigning meaning to predicates and functions

- \star a formula is evaluated to a truth value by assigning meaning to predicates and functions
- ★ a (first-order) structure (or model) $\mathcal{M} = (D, \mathcal{I})$ on a vocabulary \mathcal{R} consists of
 - a non-empty domain D; and
 - an interpretation $\mathcal{I}(P) \subseteq D^{\operatorname{ar}(P)}$ for each predicate $P \in \mathcal{R}$
 - an interpretation $\mathcal{I}(f)$: $D^{\operatorname{ar}(f)} \to D$ for each function $f \in \mathcal{F}$

- \star a formula is evaluated to a truth value by assigning meaning to predicates and functions
- ★ a (first-order) structure (or model) $\mathcal{M} = (D, \mathcal{I})$ on a vocabulary \mathcal{R} consists of
 - a non-empty domain D; and
 - − an interpretation $\mathcal{I}(P) \subseteq D^{\operatorname{ar}(P)}$ for each predicate $P \in \mathcal{R}$
 - an interpretation $\mathcal{I}(f)$: $D^{\operatorname{ar}(f)} \to D$ for each function $f \in \mathcal{F}$
- ★ sentences describes properties of structures, consider e.g., $\forall x.\exists y.E(x,y)$:
 - on directed graphs, with E interpreted as "edge": every node has a successor
 - on natural numbers, with E interpreted as "<": for every number there is a strictly bigger one

- \star a formula is evaluated to a truth value by assigning meaning to predicates and functions
- ★ a (first-order) structure (or model) $\mathcal{M} = (D, \mathcal{I})$ on a vocabulary \mathcal{R} consists of
 - a non-empty domain D; and
 - − an interpretation $\mathcal{I}(P) \subseteq D^{\operatorname{ar}(P)}$ for each predicate $P \in \mathcal{R}$
 - an interpretation $\mathcal{I}(f): D^{\operatorname{ar}(f)} \to D$ for each function $f \in \mathcal{F}$
- ★ sentences describes properties of structures, consider e.g., $\forall x.\exists y.E(x,y)$:
 - on directed graphs, with E interpreted as "edge": every node has a successor
 - on natural numbers, with E interpreted as "<": for every number there is a strictly bigger one
- \star if a formula ϕ holds true in a model \mathcal{M} , we write

 $\mathcal{M} \models \phi$

and say \mathcal{M} models ϕ , or that ϕ is satisfiable with \mathcal{M}

1. consider the formula $\phi = \forall x. \exists y. E(x, y)$ and E interpreted by ...

- we have $G_1 \models \varphi$, $G_2 \notin \varphi$ and $G_3 \notin \varphi$

- we have $G_1 \vDash \varphi$, $G_2 \not\vDash \varphi$ and $G_3 \not\nvDash \varphi$

2. consider the formula $\exists x_1, x_2, x_3. (x_1 \neq x_2 \land x_2 \neq x_3 \land x_3 \neq x_1)$

G₁

- the formula is satisfiable by all models with three objects in the domain

 G_2

 G_3

Consequence, Equivalence and Validity

* a sentence ϕ is a consequence of sentences $\Phi = \psi_1; \ldots; \psi_n$, in notation

 $\Phi \models \phi$

if all models satisfying all $\psi_i \in \Phi$ also satisfy ϕ

 $- \ \forall x. P(x) \rightarrow Q(x); \exists x. P(x) \models \exists x. Q(x)$

Consequence, Equivalence and Validity

* a sentence ϕ is a consequence of sentences $\Phi = \psi_1; \ldots; \psi_n$, in notation

 $\Phi \models \phi$

- if all models satisfying all $\psi_i \in \Phi$ also satisfy ϕ
 - $\quad \forall x. P(x) \rightarrow Q(x); \exists x. P(x) \models \exists x. Q(x)$
- \star two formulas ϕ and ψ are equivalent, in notation

 $\phi\equiv\psi$

if $\phi \models \psi$ and $\psi \models \phi$ - $\forall x.P(x) \rightarrow Q(x) \equiv \forall x.\neg Q(x) \rightarrow \neg P(x)$

Consequence, Equivalence and Validity

* a sentence ϕ is a consequence of sentences $\Phi = \psi_1; \ldots; \psi_n$, in notation

 $\Phi \models \phi$

- if all models satisfying all $\psi_i \in \Phi$ also satisfy ϕ
 - $\forall x. P(x) \rightarrow Q(x); \exists x. P(x) \models \exists x. Q(x)$
- \star two formulas ϕ and ψ are equivalent, in notation

 $\phi\equiv\psi$

if $\phi \models \psi$ and $\psi \models \phi$

 $- \ \forall x. P(x) \rightarrow Q(x) \equiv \forall x. \neg Q(x) \rightarrow \neg P(x)$

 $\star\,$ a formula ϕ is valid if it is satisfiable for all models, in notation

 $\models \phi$

- this is to say that $\neg\phi$ is unsatisfiable
- the formula $\forall x.x = x$ is trivially valid

★ an assignment (or valuation) for ϕ wrt. a model $\mathcal{M} = (D, \mathcal{I})$ is a function α : fv(ϕ) $\rightarrow D$

- ★ an assignment (or valuation) for ϕ wrt. a model $\mathcal{M} = (D, \mathcal{I})$ is a function α : fv(ϕ) $\rightarrow D$
- \star together with a model, we can now interpret open terms t in its domain D

 $\mathcal{I}_{\alpha}(x) \triangleq \alpha(x) \qquad \mathcal{I}_{\alpha}(f(t_1,\ldots,t_n)) \triangleq \mathcal{I}(f)(\mathcal{I}_{\alpha}(t_1),\ldots,\mathcal{I}_{\alpha}(t_n))$

- ★ an assignment (or valuation) for ϕ wrt. a model $\mathcal{M} = (D, \mathcal{I})$ is a function $\alpha : fv(\phi) \to D$
- \star together with a model, we can now interpret open terms t in its domain D

 $\mathcal{I}_{\alpha}(x) \triangleq \alpha(x) \qquad \mathcal{I}_{\alpha}(f(t_1,\ldots,t_n)) \triangleq \mathcal{I}(f)(\mathcal{I}_{\alpha}(t_1),\ldots,\mathcal{I}_{\alpha}(t_n))$

★ for a sentence ϕ , we can now define $\mathcal{M} \models \phi$ formally as $\mathcal{M}; \emptyset \models \phi$ where

 $\begin{array}{lll} \mathcal{M}; \alpha \models \top & \mathcal{M}; \alpha \notin \bot \\ \mathcal{M}; \alpha \models P(t_1, \dots, t_n) & : \Leftrightarrow & (\mathcal{I}_{\alpha}(t_1), \dots, \mathcal{I}_{\alpha}(t_n)) \in \mathcal{I}(P) \\ \mathcal{M}; \alpha \models s = t & : \Leftrightarrow & \mathcal{I}_{\alpha}(s) = \mathcal{I}_{\alpha}(t) \\ \mathcal{M}; \alpha \models \phi \lor \psi & : \Leftrightarrow & \mathcal{M}; \alpha \models \phi \text{ or } \mathcal{M}; \alpha \models \psi \\ \mathcal{M}; \alpha \models \neg \phi & : \Leftrightarrow & \mathcal{M}; \alpha \notin \phi \\ \mathcal{M}; \alpha \models \exists x. \phi & : \Leftrightarrow & \mathcal{M}; \alpha [x \mapsto d] \models \phi \text{ for some } d \in D \end{array}$

- ★ an assignment (or valuation) for ϕ wrt. a model $\mathcal{M} = (D, \mathcal{I})$ is a function $\alpha : fv(\phi) \to D$
- \star together with a model, we can now interpret open terms t in its domain D

 $\mathcal{I}_{\alpha}(x) \triangleq \alpha(x) \qquad \mathcal{I}_{\alpha}(f(t_1,\ldots,t_n)) \triangleq \mathcal{I}(f)(\mathcal{I}_{\alpha}(t_1),\ldots,\mathcal{I}_{\alpha}(t_n))$

★ for a sentence ϕ , we can now define $\mathcal{M} \models \phi$ formally as $\mathcal{M}; \emptyset \models \phi$ where

 $\mathcal{M}: \alpha \models \top \qquad \mathcal{M}: \alpha \not\models \bot$ $\mathcal{M}: \alpha \models P(t_1, \dots, t_n) \qquad : \Leftrightarrow \quad (\mathcal{I}_{\alpha}(t_1), \dots, \mathcal{I}_{\alpha}(t_n)) \in \mathcal{I}(P)$ $\mathcal{M}: \alpha \models s = t$ $: \Leftrightarrow \mathcal{I}_{\alpha}(s) = \mathcal{I}_{\alpha}(t)$ \mathcal{M} : $\alpha \models \phi \lor \psi$ $: \Leftrightarrow \mathcal{M}; \alpha \models \phi \text{ or } \mathcal{M}; \alpha \models \psi$ $\mathcal{M}: \alpha \models \neg \phi$ $: \Leftrightarrow \mathcal{M}; \alpha \not\models \phi$: $\Leftrightarrow \mathcal{M}; \alpha[x \mapsto d] \models \phi \text{ for some } d \in D$ \mathcal{M} ; $\alpha \models \exists x.\phi$ a b $\mathcal{G} \models \exists x. \exists y. E(x, y) \Leftrightarrow \mathcal{G}; \emptyset \models \exists x. \exists y. E(x, y)$ $\leftarrow G: x \mapsto a \models \exists v. E(x, v)$ G $\leftarrow \mathcal{G}; x \mapsto a; y \mapsto b \models E(x, y)$ d \Leftrightarrow (a, b) $\in \mathcal{I}(E)$

Example

Second Order-Logic

- $\star\,$ in first-order logic, quantification confined to elements of the domain
- \star in second-order logic, quantification is permitted on relations

 $- \ \forall x. \exists X. \forall y. X(x, y) \leftrightarrow x = y$

Second Order-Logic

- \star in first-order logic, quantification confined to elements of the domain
- \star in second-order logic, quantification is permitted on relations
 - $\ \forall x. \exists X. \forall y. X(x, y) \leftrightarrow x = y$

Monadic Second-Order Logic

 $\star\,$ A predicate symbol P is monadic if its arity is 1

Second Order-Logic

- \star in first-order logic, quantification confined to elements of the domain
- \star in second-order logic, quantification is permitted on relations
 - $\ \forall x. \exists X. \forall y. X(x, y) \leftrightarrow x = y$

Monadic Second-Order Logic

- \star A predicate symbol *P* is monadic if its arity is 1
- monadic second-order logic (MSO) confines second-order quantification to monadic predicates
 - monadic: $\forall x. \exists Y. \forall y. Y(y) \leftrightarrow x = y$
 - non-monadic: $\forall x. \exists X. \forall y. X(x, y) \leftrightarrow x = y$

Second Order-Logic

- \star in first-order logic, quantification confined to elements of the domain
- \star in second-order logic, quantification is permitted on relations
 - $\ \forall x. \exists X. \forall y. X(x, y) \leftrightarrow x = y$

Monadic Second-Order Logic

- \star A predicate symbol *P* is monadic if its arity is 1
- monadic second-order logic (MSO) confines second-order quantification to monadic predicates
 - monadic: $\forall x. \exists Y. \forall y. Y(y) \leftrightarrow x = y$
 - non-monadic: $\forall x. \exists X. \forall y. X(x, y) \leftrightarrow x = y$
- ★ quantification over sets, but not over arbitrary predicates
 - on graphs: quantification over nodes but not edges

- ★ A theory is a set T of sentences such that for any sentence ϕ , if T $\models \phi$, then $\phi \in T$
 - a theory is closed under logical consequence

- ★ A theory is a set T of sentences such that for any sentence ϕ , if T $\models \phi$, then $\phi \in T$
 - a theory is closed under logical consequence
- \star A theory is decidable if the problem of belonging to T is decidable
 - we have a decision procedure for reasoning about $\ensuremath{\mathcal{T}}$

- ★ A theory is a set T of sentences such that for any sentence ϕ , if T $\models \phi$, then $\phi \in T$
 - a theory is closed under logical consequence
- \star A theory is decidable if the problem of belonging to T is decidable
 - we have a decision procedure for reasoning about $\ensuremath{\mathcal{T}}$
- ★ A theory *T* is complete if for any sentence ϕ we have $\phi \in T$ or $\neg \phi \in T$.
 - a complete theory speaks about all formulas

- ★ A theory is a set T of sentences such that for any sentence ϕ , if T $\models \phi$, then $\phi \in T$
 - a theory is closed under logical consequence
- \star A theory is decidable if the problem of belonging to T is decidable
 - we have a decision procedure for reasoning about $\ensuremath{\mathcal{T}}$
- ★ A theory *T* is complete if for any sentence ϕ we have $\phi \in T$ or $\neg \phi \in T$.
 - a complete theory speaks about all formulas
- ★ for a class of structures C, the theory of C is the set of sentences which are valid on all $M \in C$

- 1. The theory of Presburger Arithmetic, i.e., the theory of natural numbers with addition only is decidable
 - $\forall n. \exists m. (n = m + m) \lor (n = m + m + 1)$
 - Presburger Arithmetic admits a quantifier elimination procedure

- 1. The theory of Presburger Arithmetic, i.e., the theory of natural numbers with addition only is decidable
 - $\forall n. \exists m. (n = m + m) \lor (n = m + m + 1)$
 - Presburger Arithmetic admits a quantifier elimination procedure
- 2. The theory of Peano Arithmetic, i.e., the theory of natural numbers is undecidable
 - Gödels incompleteness theorem

- 1. The theory of Presburger Arithmetic, i.e., the theory of natural numbers with addition only is decidable
 - $\forall n. \exists m. (n = m + m) \lor (n = m + m + 1)$
 - Presburger Arithmetic admits a quantifier elimination procedure
- 2. The theory of Peano Arithmetic, i.e., the theory of natural numbers is undecidable
 - Gödels incompleteness theorem
- 3. The theory of graphs is undecidable

- 1. The theory of Presburger Arithmetic, i.e., the theory of natural numbers with addition only is decidable
 - $\forall n. \exists m. (n = m + m) \lor (n = m + m + 1)$
 - Presburger Arithmetic admits a quantifier elimination procedure
- 2. The theory of Peano Arithmetic, i.e., the theory of natural numbers is undecidable
 - Gödels incompleteness theorem
- 3. The theory of graphs is undecidable

Theorem (Büchi)

The theory of monadic second-order logic over $(\mathbb{N}, <)$ is decidable

Theorem (Rabin)

The theory of monadic second-order logic over trees is decidable

A First Step Towards Rabin's and Büchi's Result

consider only models over $\mathbb{N},$ ordered by <

Theorem (Büchi-Elgot-Trakhtenbrot)

The theory of weak monadic second-order logic over $(\mathbb{N}, <)$ is decidable

quantification over finite sets

Weak Monadic Second-Order Logic

Weak Monadic Second-Order Logic (WMSO)

- ★ let $\mathcal{V}_1 = \{x, y, ...\}$ be a set of first-order variables (ranging over \mathbb{N})
- ★ let $V_2 = \{X, Y, ...\}$ be monadic second-order variables (ranging over finite sets of \mathbb{N})
- ★ $\mathcal{R} = \{<\}$ and $\mathcal{F} = \emptyset$ is fixed, with ar(<) = 2
- ★ the set of WMSO formulas over V_1, V_2 is given by the following grammar:

 $\phi, \psi ::= \top \mid \perp \mid x < y \mid X(x) \mid \phi \lor \psi \mid \neg \phi \mid \exists x.\phi \mid \exists X.\phi$

Weak Monadic Second-Order Logic (WMSO)

- ★ let $\mathcal{V}_1 = \{x, y, ...\}$ be a set of first-order variables (ranging over \mathbb{N})
- ★ let $V_2 = \{X, Y, ...\}$ be monadic second-order variables (ranging over finite sets of \mathbb{N})
- ★ $\mathcal{R} = \{<\}$ and $\mathcal{F} = \emptyset$ is fixed, with ar(<) = 2
- ★ the set of WMSO formulas over V_1, V_2 is given by the following grammar:

 $\phi, \psi ::= \top \ \left| \ \bot \ \right| \ x < y \ \left| \ X(x) \ \right| \ \phi \lor \psi \ \left| \ \neg \phi \ \right| \ \exists x.\phi \ \left| \ \exists X.\phi \right|$

 $\star\,$ further definable connectives / formulas

 $\forall X.\phi \triangleq \neg (\exists X.\neg \phi) \quad x = 0 \triangleq \neg (\exists y.y < x) \quad x \le y \triangleq \neg (y < x) \quad x = y \quad X(y + c) \quad (\text{exercise})$

Weak Monadic Second-Order Logic (WMSO)

- ★ let $\mathcal{V}_1 = \{x, y, ...\}$ be a set of first-order variables (ranging over \mathbb{N})
- ★ let $V_2 = \{X, Y, ...\}$ be monadic second-order variables (ranging over finite sets of \mathbb{N})
- ★ $\mathcal{R} = \{<\}$ and $\mathcal{F} = \emptyset$ is fixed, with ar(<) = 2
- \star the set of WMSO formulas over $\mathcal{V}_1, \mathcal{V}_2$ is given by the following grammar:

 $\phi, \psi ::= \top \mid \perp \mid x < y \mid X(x) \mid \phi \lor \psi \mid \neg \phi \mid \exists x.\phi \mid \exists X.\phi$

★ further definable connectives / formulas

 $\forall X.\phi \triangleq \neg (\exists X.\neg\phi) \quad x = 0 \triangleq \neg (\exists y.y < x) \quad x \le y \triangleq \neg (y < x) \quad x = y \quad X(y + c) \quad (\text{exercise})$

- ★ weak: second-order variables refer to finite sets
 - -X(y) means informally $y \in X$ where X is finite set over \mathbb{N}
 - $\models \exists X. \forall x. X(x) \rightarrow \exists y. x < y \land X(y)$
 - $\not \models \exists X.(\forall x.x = 0 \rightarrow X(x)) \land (\forall x.X(x) \rightarrow \exists y.x < y \land X(y))$

Satisfiability

- \star since the model (N, {<}) is fixed, the valuation of a formula depends only on an assignment α
- ★ α maps first-order variables x ∈ V₁ to N, and second-order variables X ∈ V₂ to finite subsets of N

Satisfiability

- \star since the model (N, {<}) is fixed, the valuation of a formula depends only on an assignment α
- ★ α maps first-order variables x ∈ V₁ to N, and second-order variables X ∈ V₂ to finite subsets of N
- ***** satisfiability relation takes the form $\alpha \models \phi$ and is inductively defined as expected:

$\alpha \models \top \qquad \alpha \not\models \bot$		
$\alpha \vDash x < y$:⇔	$\alpha(x) < \alpha(y)$
$\alpha \models X(x)$:⇔	$\alpha(x) \in \alpha(X)$
$\alpha \vDash \phi \lor \psi$:⇔	$\alpha \vDash \phi \text{ or } \alpha \vDash \psi$
$\alpha \vDash \neg \phi$:⇔	$\alpha \not\models \phi$
$\alpha \models \exists x.\phi$:⇔	$\alpha[x \mapsto n] \models \phi \text{ for some } n \in \mathbb{N}$
$\alpha \models \exists X.\phi$:⇔	$\alpha[x \mapsto M] \models \phi \text{ for some } finite \ M \subset \mathbb{N} \text{ STER}$

Connections to Formal Languages

- ★ to encode words $w \in \Sigma^*$ over alphabet Σ we use to kinds of variables
 - first-order variables $x \in \mathcal{V}_1$ refer to positions within w
 - for each letter $a \in \Sigma$, second-order variables $P_a \in \mathcal{V}_2$ indicate the positions of a in w

W	a b	ba	
Pa	{ 0,	3	}
$P_{\rm b}$	{ 1,	2	}

Connections to Formal Languages

- ★ to encode words $w \in \Sigma^*$ over alphabet Σ we use to kinds of variables
 - first-order variables $x \in \mathcal{V}_1$ refer to positions within w
 - for each letter $a \in \Sigma$, second-order variables $P_a \in \mathcal{V}_2$ indicate the positions of a in w

$$\begin{array}{c|c}
w & a b b a \\
\hline
P_a & \{0, 3\} \\
P_b & \{1, 2\}
\end{array}$$
abba

★ thereby each word $w \in \Sigma^*$ uniquely determines an assignment, in notation <u>w</u>

Connections to Formal Languages

- ★ to encode words $w \in \Sigma^*$ over alphabet Σ we use to kinds of variables
 - first-order variables $x \in \mathcal{V}_1$ refer to positions within w
 - for each letter $a \in \Sigma$, second-order variables $P_a \in \mathcal{V}_2$ indicate the positions of a in w

$$\begin{array}{c|cc}
w & a b b a \\
\hline
P_a & \{0, 3\} \\
P_b & \{1, 2\}
\end{array}$$
abba

 \star thereby each word $w\in \Sigma^*$ uniquely determines an assignment, in notation \underline{w} Examples

- ★ <u>ab</u> $\models \exists x.P_a(x)$
- ★ <u>ab</u> $\notin \exists x. P_{c}(x)$
- * <u>ab</u> $\notin \exists x. \exists y. x < y \land P_{b}(x) \land P_{a}(y)$
- ★ <u>ab</u> $\notin \exists X. \forall x. (X(x) \rightarrow P_{b}(x)) \land \exists y. y = 0 \land X(y)$

Language of a WMSO Formula

★ for alphabet Σ and WMSO formula ϕ s.t. fv(ϕ) \subseteq { $P_a \mid a \in \Sigma$ }, we let

 $\mathsf{L}(\phi) \triangleq \{ w \in \Sigma^* \mid \underline{w} \vDash \phi \}$

denote the language of ϕ

★ a language L is WMSO definable iff there is some ϕ as above s.t. $L = L(\phi)$

Language of a WMSO Formula ____

★ for alphabet Σ and WMSO formula ϕ s.t. fv(ϕ) \subseteq { $P_a \mid a \in \Sigma$ }, we let

 $\mathsf{L}(\phi) \triangleq \{ w \in \Sigma^* \mid \underline{w} \vDash \phi \}$

denote the language of ϕ

★ a language L is WMSO definable iff there is some ϕ as above s.t. $L = L(\phi)$

Examples

-

ϕ	L(<i>φ</i>)
$\exists x. P_{a}(x)$?
$\exists x. \exists y. x < y \land P_{\rm b}(x) \land P_{\rm a}(y)$?
$\exists X. \forall x. (X(x) \rightarrow P_{\rm b}(x)) \land \exists y. y = 0 \land X(y)$?

Language of a WMSO Formula ____

★ for alphabet Σ and WMSO formula ϕ s.t. fv(ϕ) \subseteq { $P_a \mid a \in \Sigma$ }, we let

 $\mathsf{L}(\phi) \triangleq \{ w \in \Sigma^* \mid \underline{w} \vDash \phi \}$

denote the language of ϕ

★ a language L is WMSO definable iff there is some ϕ as above s.t. $L = L(\phi)$

Examples

-

ϕ	$L(\phi)$
$\exists x. P_{a}(x)$	$\{vaw \mid v, w \in \Sigma^*\}$
$\exists x. \exists y. x < y \land P_{\rm b}(x) \land P_{\rm a}(y)$?
$\exists X. \forall x. (X(x) \rightarrow P_{\rm b}(x)) \land \exists y. y = 0 \land X(y)$?

Language of a WMSO Formula ____

★ for alphabet Σ and WMSO formula ϕ s.t. $fv(\phi) \subseteq \{P_a \mid a \in \Sigma\}$, we let

 $\mathsf{L}(\phi) \triangleq \{ w \in \Sigma^* \mid w \models \phi \}$

denote the language of ϕ

 \star a language L is WMSO definable iff there is some ϕ as above s.t. $L = L(\phi)$

Examples

$L(\phi)$
$\{vaw \mid v, w \in \Sigma^*\}$
$\{ubvaw \mid u, v, w \in \Sigma^*\}$
?

Language of a WMSO Formula _____

★ for alphabet Σ and WMSO formula ϕ s.t. fv(ϕ) \subseteq { $P_a \mid a \in \Sigma$ }, we let

 $\mathsf{L}(\phi) \triangleq \{ w \in \Sigma^* \mid \underline{w} \vDash \phi \}$

denote the language of ϕ

★ a language L is WMSO definable iff there is some ϕ as above s.t. $L = L(\phi)$

Examples

φ	$L(\phi)$
$\exists x. P_{a}(x)$	$\{vaw \mid v, w \in \Sigma^*\}$
$\exists x. \exists y. x < y \land P_{\rm b}(x) \land P_{\rm a}(y)$	$\{ubvaw \mid u, v, w \in \Sigma^*\}$
$\exists X. \forall x. (X(x) \rightarrow P_{\rm b}(x)) \land \exists y. y = 0 \land X(y)$	$\{\mathbf{b}w \mid w \in \Sigma^*\}$
	MASTER

Regularity and WMSO Definability

Büchi-Elgot-Trakhtenbrot

Theorem

Let $L \subseteq \Sigma^*$ be a language. The following are equivalent:

- ★ L is regular
- ★ L is recognizable by a finite automata
- ★ L is WMSO definable

Büchi-Elgot-Trakhtenbrot

Theorem

Let $L \subseteq \Sigma^*$ be a language. The following are equivalent:

- ★ L is regular
- ★ L is recognizable by a finite automata
- ★ L is WMSO definable

Proof Outline.

- ★ (1) \Leftrightarrow (2) Kleene's Theorem.
- ★ (2) ⇒ (3) Given an Automata A, we define a WMSO formula ϕ_A s.t. $L(A) = L(\phi_A)$
- ★ (3) ⇒ (1) Given a WMSO formula ϕ , define a regular Language L_{ϕ} s.t. $L(\phi) = L_{\phi}$

From Automatons to Formulas

Encoding for given $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

- \star first-order variables m, n, \ldots refer to positions in input words w
- ★ for a $\in \Sigma$: second-order variables P_a encode words: as before
- ★ for $q \in Q$: second-order variables X_q encode run: $X_q(m) \iff q_I \xrightarrow{a_0} \ldots \xrightarrow{a_m} q$

From Automatons to Formulas

Encoding for given $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

- \star first-order variables m, n, \ldots refer to positions in input words w
- ★ for a $\in \Sigma$: second-order variables P_a encode words: as before

★ for $q \in Q$: second-order variables X_q encode run: $X_q(m) \iff q_1 \xrightarrow{a_0} \dots \xrightarrow{a_m} q$ $p \xrightarrow{a} q \xrightarrow{b} p \xrightarrow{b} r$ Example example run $P_{\rm a}$ $\{ \begin{array}{ccc} 0 & & \\ \{ & 1, & 2 \end{array} \}$ $P_{\rm h}$

From Automatons to Formulas

Encoding for given $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

- \star first-order variables m, n, \ldots refer to positions in input words w
- ★ for a $\in \Sigma$: second-order variables P_a encode words: as before

* for $q \in Q$: second-order variables X_q encode run: $X_q(m) \iff q_I \xrightarrow{a_0} \dots \xrightarrow{a_m} q$ Example $\frac{\text{example run}}{P_a} \qquad p \xrightarrow{a} q \xrightarrow{b} p \xrightarrow{b} r$ $P_b \qquad \{ 0 \qquad \}$ $P_b \qquad \{ 1, 2 \ \}$ $X_p \qquad \{ (-1) \qquad 1 \ \}$ $X_q \qquad \{ 0 \qquad \}$ $X_r \qquad \{ 0 \qquad \}$

★ ultimately, $\phi_{\mathcal{A}} \triangleq \exists X_{q_1} \dots \exists X_{q_n} \psi_{\mathcal{A}}$ with $\psi_{\mathcal{A}}$ saying that X_{q_i} encode an accepting run of \mathcal{A} on input word described by P_a .

for all word lengths *len*, we define:

 $\star \ \psi_{setup} \triangleq \forall m.m < len \rightarrow \left(\bigvee_{q \in Q} X_q(m)\right) \land \left(\bigwedge_{p \neq q} \neg (X_q(m) \land X_p(m))\right)$

- reading m < len symbols ends up in a state, and this state is unique

for all word lengths *len*, we define:

- $\star \ \psi_{setup} \triangleq \forall m.m < len \rightarrow \left(\bigvee_{q \in Q} X_q(m)\right) \land \left(\bigwedge_{p \neq q} \neg (X_q(m) \land X_p(m))\right)$
 - reading m < len symbols ends up in a state, and this state is unique
- $\star \ \psi_{initial} \triangleq len = 0 \lor \bigvee_{\mathsf{a} \in \Sigma, p \in \delta(q_l, \mathsf{a})} (P_\mathsf{a}(0) \land X_p(0))$
 - encoding of the initial transition

for all word lengths *len*, we define:

- $\star \ \psi_{setup} \triangleq \forall m.m < len \rightarrow \left(\bigvee_{q \in Q} X_q(m) \right) \land \left(\bigwedge_{p \neq q} \neg (X_q(m) \land X_p(m)) \right)$
 - reading m < len symbols ends up in a state, and this state is unique
- $\star \ \psi_{initial} \triangleq len = 0 \lor \bigvee_{\mathsf{a} \in \Sigma, p \in \delta(q_l, \mathsf{a})} (P_\mathsf{a}(0) \land X_p(0))$
 - encoding of the initial transition
- $\star \ \psi_{run} \triangleq \forall m.m < len \rightarrow \bigvee_{\mathsf{a} \in \Sigma, q \in Q, p \in \delta(q, \mathsf{a})} (X_q(m) \land P_\mathsf{a}(m+1) \land X_p(m+1))$
 - encoding of intermediate transitions

for all word lengths *len*, we define:

- $\star \ \psi_{setup} \triangleq \forall m.m < len \rightarrow \left(\bigvee_{q \in Q} X_q(m) \right) \land \left(\bigwedge_{p \neq q} \neg (X_q(m) \land X_p(m)) \right)$
 - reading m < len symbols ends up in a state, and this state is unique
- $\star \ \psi_{initial} \triangleq len = 0 \lor \bigvee_{a \in \Sigma, p \in \delta(q_l, a)} (P_a(0) \land X_p(0))$
 - encoding of the initial transition
- $\star \psi_{run} \triangleq \forall m.m < len \rightarrow \bigvee_{a \in \Sigma, q \in Q, p \in \delta(q, a)} (X_q(m) \land P_a(m+1) \land X_p(m+1))$
 - encoding of intermediate transitions
- ★ $\phi_{accept} \triangleq (len = 0 \land [q_l \in F]) \lor \exists m.len = m + 1 \land \bigvee_{q \in F} (X_q(m))$
 - encoded transition of word $a_0 \dots a_m$ of length m+1 lands in a final state

$$\phi_{\mathcal{A}} \triangleq \exists X_{q_{1}} \cdots \exists X_{q_{n}}.$$

$$\forall len. \left(\bigwedge_{a \in \Sigma} \neg P_{a}(len) \land \forall m. \bigwedge_{a \in \Sigma} P_{a}(m) \rightarrow m \leq len \right) \rightarrow \psi_{setup} \land \psi_{initial} \land \psi_{run} \land \psi_{accept}$$

$$len \text{ gives length of input}$$

Büchi-Elgot-Trakhtenbrot

Theorem

Let $L \subseteq \Sigma^*$ be a language. The following are equivalent:

- ★ L is regular
- ★ L is recognizable by a finite automata
- ★ L is WMSO definable

Proof Outline.

- ★ (1) \Leftrightarrow (2) Kleene's Theorem.
- ★ (2) ⇒ (3) Given an Automata A, we define a WMSO formula ϕ_A s.t. $L(A) = L(\phi_A)$
 - $\phi_{\mathcal{A}}$ given on previous slide satisfies the case

★ (3) ⇒ (1) Given a WMSO formula ϕ , define a regular Language L_{ϕ} s.t. $L(\phi) = L_{\phi}$

Büchi-Elgot-Trakhtenbrot

Theorem

Let $L \subseteq \Sigma^*$ be a language. The following are equivalent:

- ★ L is regular
- ★ L is recognizable by a finite automata
- ★ L is WMSO definable

Proof Outline.

- ★ (1) \Leftrightarrow (2) Kleene's Theorem.
- ★ (2) ⇒ (3) Given an Automata A, we define a WMSO formula ϕ_A s.t. $L(A) = L(\phi_A)$
 - $\phi_{\mathcal{A}}$ given on previous slide satisfies the case

★ (3) ⇒ (1) Given a WMSO formula ϕ , define a regular Language L_{ϕ} s.t. $L(\phi) = L_{\phi}$

From Formulas to Regular Languages

Encoding for given ϕ over $\mathcal{V}_2 = \{X_1, \dots, X_m\}$ and $\mathcal{V}_1 = \{y_{m+1}, \dots, y_{m+n}\}$

★ the alphabet Σ_{ϕ} is given by m + n bit-vectors, i.e., $\Sigma_{\phi} \triangleq \{0, 1\}^{n+m}$

From Formulas to Regular Languages

Encoding for given ϕ over $\mathcal{V}_2 = \{X_1, \dots, X_m\}$ and $\mathcal{V}_1 = \{y_{m+1}, \dots, y_{m+n}\}$

- ★ the alphabet Σ_{ϕ} is given by m + n bit-vectors, i.e., $\Sigma_{\phi} \triangleq \{0, 1\}^{n+m}$
- * word $w \in \Sigma_{\phi}^*$ can then be seen as a bit-matrix, encoding a valuation α :
 - − rows $1 \le i \le m$ encode valuations of $X_i \in V_2$: 1 at column $1 \le j \le |w| \iff j \in \alpha(X_i)$
 - rows $m + 1 \le i \le m + n$ encode valuations of $y_i \in \mathcal{V}_1$: 1 at column $1 \le j \le |w| \iff j = \alpha(y_i)$

From Formulas to Regular Languages

Encoding for given ϕ over $\mathcal{V}_2 = \{X_1, \dots, X_m\}$ and $\mathcal{V}_1 = \{y_{m+1}, \dots, y_{m+n}\}$

- ★ the alphabet Σ_{ϕ} is given by m + n bit-vectors, i.e., $\Sigma_{\phi} \triangleq \{0, 1\}^{n+m}$
- * word $w \in \Sigma_{\phi}^*$ can then be seen as a bit-matrix, encoding a valuation α :
 - rows $1 \le i \le m$ encode valuations of $X_i \in \mathcal{V}_2$: 1 at column $1 \le j \le |w| \iff j \in \alpha(X_i)$
 - rows $m + 1 \le i \le m + n$ encode valuations of $y_i \in \mathcal{V}_1$: 1 at column $1 \le j \le |w| \iff j = \alpha(y_i)$

★ for a valuation α for ϕ , let us write $\underline{\alpha} \in \Sigma_{\phi}^{*}$ for its encoding

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

 $\widehat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

 $\hat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

Lemma

For any WMSO formula ϕ , $\hat{L}(\phi)$ is regular

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

 $\hat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

Lemma

For any WMSO formula ϕ , $\hat{L}(\phi)$ is regular

Proof Outline.

By induction on the structure of ϕ .

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

 $\hat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

Lemma

For any WMSO formula ϕ , $\hat{L}(\phi)$ is regular

Proof Outline.

By induction on the structure of ϕ .

* $\phi = \top$, $\phi = \bot$: ?

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

 $\widehat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

Lemma

For any WMSO formula ϕ , $\hat{L}(\phi)$ is regular

Proof Outline.

By induction on the structure of ϕ .

★ $\phi = \top$, $\phi = \bot$: In these cases $\hat{L}(\phi)$ is Σ_{ϕ}^{*} or \emptyset , thus regular.

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

 $\widehat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

Lemma

For any WMSO formula ϕ , $\hat{L}(\phi)$ is regular

Proof Outline.

By induction on the structure of ϕ .

★ $\phi = \top$, $\phi = \bot$: In these cases $\hat{L}(\phi)$ is Σ_{ϕ}^* or \emptyset , thus regular.

★ $\phi = (x < y)$: ?

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

 $\hat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

Lemma

For any WMSO formula ϕ , $\hat{L}(\phi)$ is regular

Proof Outline.

By induction on the structure of ϕ .

- ★ $\phi = \top$, $\phi = \bot$: In these cases $\hat{L}(\phi)$ is Σ_{ϕ}^* or \emptyset , thus regular.
- * $\phi = (x < y)$: Then $\hat{L}(\phi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ or $\hat{L}(\phi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, both of them regular.
The Main Lemma

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

 $\widehat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

Lemma

For any WMSO formula ϕ , $\hat{L}(\phi)$ is regular

Proof Outline.

By induction on the structure of ϕ .

- ★ $\phi = \top$, $\phi = \bot$: In these cases $\hat{L}(\phi)$ is Σ_{ϕ}^{*} or \emptyset , thus regular.
- * $\phi = (x < y)$: Then $\hat{L}(\phi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ or $\hat{L}(\phi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, both of them regular.
- $\star \phi = X(y)$: ?

The Main Lemma

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

 $\hat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

Lemma

For any WMSO formula ϕ , $\hat{L}(\phi)$ is regular

Proof Outline.

By induction on the structure of ϕ .

- ★ $\phi = \top$, $\phi = \bot$: In these cases $\hat{L}(\phi)$ is Σ_{ϕ}^{*} or \emptyset , thus regular.
- * $\phi = (x < y)$: Then $\hat{L}(\phi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ or $\hat{L}(\phi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, both of them regular.

*
$$\phi = X(y)$$
: Then $\hat{L}(\phi) = \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix} \cup \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right)^* \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix} \cup \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right)^*$ is regular.

The Main Lemma

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

 $\hat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

Lemma

For any WMSO formula ϕ , $\hat{L}(\phi)$ is regular

Proof Outline.

By induction on the structure of ϕ .

- ★ $\phi = \top$, $\phi = \bot$: In these cases $\hat{L}(\phi)$ is Σ_{ϕ}^{*} or \emptyset , thus regular.
- * $\phi = (x < y)$: Then $\hat{L}(\phi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ or $\hat{L}(\phi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, both of them regular.

*
$$\phi = X(y)$$
: Then $\hat{L}(\phi) = \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix} \cup \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right)^* \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix} \cup \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right)^*$ is regular

* $\phi \lor \psi$, $\exists x.\phi$: ?

Homomorphisms ____

Consider $h: \Sigma \to \Gamma^*$ and extend it to words w by replacing each letter a in w by h(w):

 $h(\epsilon) \triangleq \epsilon$ $h(aw) \triangleq h(a) \cdot h(w)$

★ each function $h: \Sigma^* \to \Gamma^*$ defined this way is called a homomorphism

Homomorphisms

Consider $h: \Sigma \to \Gamma^*$ and extend it to words w by replacing each letter a in w by h(w):

 $h(\epsilon) \triangleq \epsilon$ $h(aw) \triangleq h(a) \cdot h(w)$

- ★ each function $h: \Sigma^* \to \Gamma^*$ defined this way is called a homomorphism
- ★ for a language $L \subseteq \Sigma^*$ we let $h(L) \triangleq \{h(w) \mid w \in L\}$ be the application of h to L

Homomorphisms

Consider $h: \Sigma \to \Gamma^*$ and extend it to words w by replacing each letter a in w by h(w):

 $h(\epsilon) \triangleq \epsilon$ $h(aw) \triangleq h(a) \cdot h(w)$

- ★ each function $h: \Sigma^* \to \Gamma^*$ defined this way is called a homomorphism
- ★ for a language $L \subseteq \Sigma^*$ we let $h(L) \triangleq \{h(w) \mid w \in L\}$ be the application of h to L
- ★ for a language $L \subseteq \Gamma^*$ we let $h^{-1}(L) \triangleq \{w \mid h(w) \in L\}$ be the inverse application of h to L

Homomorphisms

Consider $h: \Sigma \to \Gamma^*$ and extend it to words w by replacing each letter a in w by h(w):

 $h(\epsilon) \triangleq \epsilon$ $h(aw) \triangleq h(a) \cdot h(w)$

- ★ each function $h: \Sigma^* \to \Gamma^*$ defined this way is called a homomorphism
- ★ for a language $L \subseteq \Sigma^*$ we let $h(L) \triangleq \{h(w) \mid w \in L\}$ be the application of h to L
- ★ for a language $L \subseteq \Gamma^*$ we let $h^{-1}(L) \triangleq \{w \mid h(w) \in L\}$ be the inverse application of h to L

Lemma (Closure of $REG(\Sigma)$ under homomorphism)

The set of regular languages is closed under (inverse) applications of homomorphisms.

For $1 \le i \le k$, let $del_{i,k} : \{0,1\}^k \to \{0,1\}^{k-1}$ delete the *i*-th entry of its argument, e.g., $del_{1,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}b\\c\end{pmatrix} \qquad del_{2,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\c\end{pmatrix} \qquad del_{3,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\b\end{pmatrix}$

For $1 \le i \le k$, let $del_{i,k} : \{0,1\}^k \to \{0,1\}^{k-1}$ delete the *i*-th entry of its argument, e.g.,

$$del_{1,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}b\\c\end{pmatrix} \qquad del_{2,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\c\end{pmatrix} \qquad del_{3,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\b\\c\end{pmatrix}$$

and thus

$$del_{1,3}\left(\begin{pmatrix}0\\1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^*\right) = \begin{pmatrix}1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* \qquad del_{1,3}^{-1}\left(\begin{pmatrix}1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^*\right) = \begin{pmatrix}0\\1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* \cup \begin{pmatrix}0\\1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* \cup \begin{pmatrix}1\\0\\1\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* \cup \begin{pmatrix}1\\1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* \cup \begin{pmatrix}1\\0\\0\end{pmatrix}(0)^* (0)^* \cup \begin{pmatrix}1\\0\\0\end{pmatrix}(0)^* (0$$

For $1 \le i \le k$, let $del_{i,k} : \{0,1\}^k \to \{0,1\}^{k-1}$ delete the *i*-th entry of its argument, e.g.,

$$del_{1,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}b\\c\end{pmatrix} \qquad del_{2,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\c\end{pmatrix} \qquad del_{3,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\b\\c\end{pmatrix}$$

and thus

Concretely, for WMSO formulas ϕ over $\mathcal{V}_2 = \{X_1, \dots, X_m\}$, $\mathcal{V}_1 = \{y_{m+1}, \dots, y_{m+n}\}$:

For $1 \le i \le k$, let $del_{i,k} : \{0,1\}^k \to \{0,1\}^{k-1}$ delete the *i*-th entry of its argument, e.g.,

$$del_{1,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}b\\c\end{pmatrix} \qquad del_{2,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\c\end{pmatrix} \qquad del_{3,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\b\\c\end{pmatrix}$$

and thus

Concretely, for WMSO formulas ϕ over $\mathcal{V}_2 = \{X_1, \dots, X_m\}$, $\mathcal{V}_1 = \{y_{m+1}, \dots, y_{m+n}\}$: * for $1 \le i \le n$, $del_{i,n+m}(\hat{L}(\phi)) = del_{i,n+m}(\{\underline{\alpha} \mid \alpha \models \phi\})$ $\approx \{\beta \mid \beta[X_i \mapsto S] \models \phi \text{ for some } S \subseteq \mathbb{N}\} = \hat{L}(\exists X_i, \phi)$

For $1 \le i \le k$, let $del_{i,k} : \{0,1\}^k \to \{0,1\}^{k-1}$ delete the *i*-th entry of its argument, e.g.,

$$del_{1,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}b\\c\end{pmatrix} \qquad del_{2,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\c\end{pmatrix} \qquad del_{3,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\b\\c\end{pmatrix}$$

and thus

$$del_{1,3}\left(\begin{pmatrix}0\\1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^*\right) = \begin{pmatrix}1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* \qquad del_{1,3}^{-1}\left(\begin{pmatrix}1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^*\right) = \begin{pmatrix}0\\1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* \cup \begin{pmatrix}0\\1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* \cup \begin{pmatrix}1\\1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* \cup \begin{pmatrix}1\\1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* \cup \begin{pmatrix}1\\1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* = \begin{pmatrix}1\\0\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* = \begin{pmatrix}1\\0\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* = \begin{pmatrix}1\\0\\0\end{pmatrix}\begin{pmatrix}0\\0\\1\end{pmatrix}^* = \begin{pmatrix}1\\0\\0\end{pmatrix}\begin{pmatrix}0\\0\end{pmatrix}^* = \begin{pmatrix}1\\0\\0\end{pmatrix}\begin{pmatrix}0\\0\\0\end{pmatrix}^* = \begin{pmatrix}1\\0\\0\end{pmatrix}\begin{pmatrix}0\\0\end{pmatrix}^* = \begin{pmatrix}1\\0\\0\end{pmatrix}\begin{pmatrix}0\\0\\0\end{pmatrix}^* = \begin{pmatrix}1\\0\\0\end{pmatrix}\begin{pmatrix}0\\0\end{pmatrix}^* = \begin{pmatrix}1\\0\\0\end{pmatrix}\begin{pmatrix}0\\0\end{pmatrix}^* = \begin{pmatrix}1\\0\\0\end{pmatrix}\begin{pmatrix}0\\0\end{pmatrix}^* = \begin{pmatrix}1\\0\\0\end{pmatrix}\begin{pmatrix}0\\0\end{pmatrix}^* = \begin{pmatrix}1\\0\\0\end{pmatrix}\begin{pmatrix}0\\0\end{pmatrix}^* = \begin{pmatrix}1\\0\\0\end{pmatrix}\begin{pmatrix}0\\0\end{pmatrix}(0\end{pmatrix}^* = \begin{pmatrix}1\\0\\0\end{pmatrix}(0)\end{pmatrix}^* = \begin{pmatrix}1\\0\\0\\0\end{pmatrix}(0)\end{pmatrix}^* = \begin{pmatrix}1\\0\\0\\0\\0\end{pmatrix}(0)\end{pmatrix}^* = \begin{pmatrix}1\\0\\0\\0\\0\end{pmatrix}(0)\end{pmatrix}^* = \begin{pmatrix}1\\0\\0\\0\\0\\0\end{pmatrix}(0)\end{pmatrix}^* = \begin{pmatrix}1\\0\\0\\0\\0\\0\\0\end{pmatrix}(0)\end{pmatrix}^* = \begin{pmatrix}1\\0\\0\\$$

Concretely, for WMSO formulas ϕ over $\mathcal{V}_2 = \{X_1, \dots, X_m\}$, $\mathcal{V}_1 = \{y_{m+1}, \dots, y_{m+n}\}$: * for $1 \le i \le n$, $del_{i,n+m}(\hat{L}(\phi)) = del_{i,n+m}(\{\underline{\alpha} \mid \alpha \vDash \phi\})$ $\approx \{\beta \mid \beta[X_i \mapsto S] \vDash \phi \text{ for some } S \subseteq \mathbb{N}\} = \hat{L}(\exists X_i.\phi)$

★ inversely, $de \int_{i,1+n+m}^{-1} (\hat{\mathsf{L}}(\phi)) = \{ \underline{\alpha[X \mapsto S]} \mid \alpha \models \phi \text{ and } S \subseteq \mathbb{N} \}$ extends valid assignments

For $1 \le i \le k$, let $del_{i,k} : \{0,1\}^k \to \{0,1\}^{k-1}$ delete the *i*-th entry of its argument, e.g.,

$$del_{1,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}b\\c\end{pmatrix} \qquad del_{2,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\c\end{pmatrix} \qquad del_{3,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\b\\c\end{pmatrix}$$

and thus

$$del_{1,3}\left(\begin{pmatrix}0\\1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^*\right) = \begin{pmatrix}1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* \qquad del_{1,3}^{-1}\left(\begin{pmatrix}1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^*\right) = \begin{pmatrix}0\\1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* \cup \begin{pmatrix}0\\1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* \cup \begin{pmatrix}1\\1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* \cup \begin{pmatrix}1\\1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* \cup \begin{pmatrix}1\\1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* = \begin{pmatrix}1\\0\\0\end{pmatrix}(1)^* = \begin{pmatrix}1\\0\\0\\0\end{pmatrix}(1)^* = \begin{pmatrix}1\\0\\0\\0\\0\end{pmatrix}(1)^* = \begin{pmatrix}1\\0\\0\\0\end{pmatrix}(1)^* = \begin{pmatrix}1\\0\\0\\0\\0\end{pmatrix}(1)^* = \begin{pmatrix}1\\0\\0\\0\\0\end{pmatrix}(1)^$$

Concretely, for WMSO formulas ϕ over $\mathcal{V}_2 = \{X_1, \dots, X_m\}$, $\mathcal{V}_1 = \{y_{m+1}, \dots, y_{m+n}\}$: * for $1 \le i \le n$, $del_{i,n+m}(\hat{L}(\phi)) = del_{i,n+m}(\{\underline{\alpha} \mid \alpha \vDash \phi\})$ $\approx \{\beta \mid \beta[X_i \mapsto S] \vDash \phi \text{ for some } S \subseteq \mathbb{N}\} = \hat{L}(\exists X_i.\phi)$

★ inversely, $de \int_{i,1+n+m}^{-1} (\hat{\mathsf{L}}(\phi)) = \{ \alpha[X \mapsto S] \mid \alpha \models \phi \text{ and } S \subseteq \mathbb{N} \}$ extends valid assignments

★ similar for first order variables y_i ($m + 1 \le i \le m + n$)

For $1 \le i \le k$, let $del_{i,k} : \{0,1\}^k \to \{0,1\}^{k-1}$ delete the *i*-th entry of its argument, e.g.,

$$del_{1,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}b\\c\end{pmatrix} \qquad del_{2,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\c\end{pmatrix} \qquad del_{3,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\b\\c\end{pmatrix}$$

and thus

Concretely, for WMSO formulas ϕ over $\mathcal{V}_2 = \{X_1, \dots, X_m\}$, $\mathcal{V}_1 = \{y_{m+1}, \dots, y_{m+n}\}$: * for $1 \le i \le n$, $del_{i,n+m}(\hat{L}(\phi)) = del_{i,n+m}(\{\underline{\alpha} \mid \alpha \vDash \phi\})$ $\approx \{\beta \mid \beta[X_i \mapsto S] \vDash \phi \text{ for some } S \subseteq \mathbb{N}\} = \hat{L}(\exists X_i.\phi)$

★ inversely, $de \int_{i,1+n+m}^{-1} (\hat{\mathsf{L}}(\phi)) = \{ \alpha[X \mapsto S] \mid \alpha \models \phi \text{ and } S \subseteq \mathbb{N} \}$ extends valid assignments

 $\exists X.\phi \rightsquigarrow (b_1) \cdots (b_n) (1) (0)$

- ★ similar for first order variables y_i ($m + 1 \le i \le m + n$)
- ★ Attention: One has to be slightly more careful with codings.

$$\phi \rightsquigarrow \begin{array}{c} X \\ Y \\ \end{array} \begin{pmatrix} a_1 \\ b_1 \\ \end{pmatrix} \cdots \\ \begin{pmatrix} a_n \\ b_n \\ \end{pmatrix} \\ \begin{pmatrix} a_{n+1} \\ 1 \\ \end{pmatrix} \\ \begin{pmatrix} 1 \\ 0 \\ \end{pmatrix}$$

The Main Lemma (Continued)

Lemma

For any WMSO formula ϕ , $\hat{L}(\phi)$ is regular

- $\star \ \phi = \psi_1 \vee \psi_2:$
 - by induction hypothesis, $L_1 \triangleq \hat{L}(\psi_1)$ and $L_2 \triangleq \hat{L}(\psi_2)$ are regular
 - L_1 and L_2 speak about assignments to variables in ψ_1 and ψ_2
 - inverse applications of $del_{i,*}$ extends these codings to valuations over fv($\psi_1 \lor \psi_2$)
 - their union yields $\hat{\mathsf{L}}(\psi_1 \lor \psi_2)$ and is thus regular

The Main Lemma (Continued)

Lemma

For any WMSO formula ϕ , $\hat{L}(\phi)$ is regular

- $\star \ \phi = \psi_1 \vee \psi_2:$
 - by induction hypothesis, $L_1 \triangleq \hat{L}(\psi_1)$ and $L_2 \triangleq \hat{L}(\psi_2)$ are regular
 - L_1 and L_2 speak about assignments to variables in ψ_1 and ψ_2
 - inverse applications of $del_{i,*}$ extends these codings to valuations over fv($\psi_1 \lor \psi_2$)
 - their union yields $\hat{\mathsf{L}}(\psi_1 \lor \psi_2)$ and is thus regular
- * $\phi = \neg \psi$: Then $\hat{L}(\phi) = \hat{L}(\psi) \cap L_{valid}$.
 - $L_{valid} \in REG$ constrains Σ_{ϕ} to valid codings (e.g., for FO variables, only one bit is set)
 - by induction hypothesis and closure properties of REG, $\hat{L}(\phi)$ is valid

The Main Lemma (Continued)

Lemma

For any WMSO formula ϕ , $\hat{L}(\phi)$ is regular

- $\star \ \phi = \psi_1 \vee \psi_2:$
 - by induction hypothesis, $L_1 \triangleq \hat{L}(\psi_1)$ and $L_2 \triangleq \hat{L}(\psi_2)$ are regular
 - L_1 and L_2 speak about assignments to variables in ψ_1 and ψ_2
 - inverse applications of $del_{i,*}$ extends these codings to valuations over fv($\psi_1 \lor \psi_2$)
 - their union yields $\hat{\mathsf{L}}(\psi_1 \lor \psi_2)$ and is thus regular
- * $\phi = \neg \psi$: Then $\hat{L}(\phi) = \hat{L}(\psi) \cap L_{valid}$.
 - $L_{valid} \in REG$ constrains Σ_{ϕ} to valid codings (e.g., for FO variables, only one bit is set)
 - by induction hypothesis and closure properties of REG, $\hat{L}(\phi)$ is valid
- * $\phi = \exists X_{i}.\psi$ or $\phi = \exists y_{j}.\psi$: from induction hypothesis, using homomorphism $del_{i,*}$ to drop the rows referring to X_{i} or y_{i} ; taking care of trailing zero-vectors (see previous slide)

Büchi-Elgot-Trakhtenbrot

Theorem

Let $L \subseteq \Sigma^*$ be a language. The following are equivalent:

- ★ L is regular
- ★ L is recognizable by a finite automata
- ★ L is WMSO definable

- ★ (1) \Leftrightarrow (2) Kleene's Theorem.
- ★ (2) ⇒ (3) Given an Automata A, we define a WMSO formula ϕ_A s.t. $L(A) = L(\phi_A)$
- ★ (3) ⇒ (1) Given a WMSO formula ϕ , define a regular Language L_{ϕ} s.t. $L(\phi) = L_{\phi}$
 - we can define a homomorphism $h: \{0,1\}^{|\Sigma|} \to \Sigma$, and thereby a function from codings $\underline{\alpha}$ to words w
 - this homomorphism maps $\hat{L}(\phi)$ to $L(\phi)$ (how?)

Büchi-Elgot-Trakhtenbrot

Theorem

Let $L \subseteq \Sigma^*$ be a language. The following are equivalent:

- ★ L is regular
- ★ L is recognizable by a finite automata
- ★ L is WMSO definable

- ★ (1) \Leftrightarrow (2) Kleene's Theorem.
- ★ (2) ⇒ (3) Given an Automata A, we define a WMSO formula ϕ_A s.t. $L(A) = L(\phi_A)$
- ★ (3) ⇒ (1) Given a WMSO formula ϕ , define a regular Language L_{ϕ} s.t. $L(\phi) = L_{\phi}$
 - we can define a homomorphism $h: \{0,1\}^{|\Sigma|} \to \Sigma$, and thereby a function from codings $\underline{\alpha}$ to words w
 - this homomorphism maps $\hat{L}(\phi)$ to $L(\phi)$ (how?)
 - as the former is regular and $REG(\Sigma)$ closed under homomorphisms, the direction follows

Decision Problems

Decision Problems for WMSO

The Satisfiability Problem

- ★ Given: WMSO formula ϕ
- ★ Question: is there α s.t $\alpha \models \phi$?

The Validity Problem

- ★ Given: WMSO formula ϕ
- ★ Question: $\alpha \models \phi$ for all assignments α ?

Decision Problems for WMSO

The Satisfiability Problem

- ★ Given: WMSO formula ϕ
- ★ Question: is there α s.t $\alpha \models \phi$?

The Validity Problem

- ★ Given: WMSO formula ϕ
- ★ Question: $\alpha \models \phi$ for all assignments α ?

Theorem

Satisfiability and Validity are decidable for WMSO.

Proof Outline.

through the construction of corresponding DFAs, checking emptiness

- ★ Emptiness for an DFA A_{ϕ} is in PTIME (in the number $|A_{\phi}|$ of nodes of A_{ϕ})
- \star the complexity of satisfiability/validity thus essentially depends on the size of \mathcal{A}_{ϕ}

- ★ Emptiness for an DFA A_{ϕ} is in PTIME (in the number $|A_{\phi}|$ of nodes of A_{ϕ})
- \star the complexity of satisfiability/validity thus essentially depends on the size of \mathcal{A}_{ϕ}
- \star \mathcal{A}_{ϕ} is constructed recursively on the structure of ϕ

- ★ Emptiness for an DFA A_{ϕ} is in PTIME (in the number $|A_{\phi}|$ of nodes of A_{ϕ})
- \star the complexity of satisfiability/validity thus essentially depends on the size of \mathcal{A}_{ϕ}
- $\star~\mathcal{A}_{\phi}$ is constructed recursively on the structure of ϕ

- base cases $\phi = \top$, \bot , (x < y), X(y): DFAs of constant size

O(1)

- ★ Emptiness for an DFA A_{ϕ} is in PTIME (in the number $|A_{\phi}|$ of nodes of A_{ϕ})
- \star the complexity of satisfiability/validity thus essentially depends on the size of \mathcal{A}_{ϕ}
- \star \mathcal{A}_{ϕ} is constructed recursively on the structure of ϕ
 - base cases $\phi = \top$, \bot , (x < y), X(y): DFAs of constant size
 - disjunction $\phi = \psi_1 \lor \psi_2$: \mathcal{A}_{ϕ} DFA-union of \mathcal{A}_{ψ_1} and \mathcal{A}_{ψ_2}

O(1) $O(|\mathcal{A}_{\psi_1}| + |\mathcal{A}_{\psi_2}|)$

- ★ Emptiness for an DFA A_{ϕ} is in PTIME (in the number $|A_{\phi}|$ of nodes of A_{ϕ})
- \star the complexity of satisfiability/validity thus essentially depends on the size of \mathcal{A}_{ϕ}
- \star \mathcal{A}_{ϕ} is constructed recursively on the structure of ϕ
 - base cases $\phi = \top$, \bot , (x < y), X(y): DFAs of constant size
 - disjunction $\phi = \psi_1 \lor \psi_2$: \mathcal{A}_{ϕ} DFA-union of \mathcal{A}_{ψ_1} and \mathcal{A}_{ψ_2}
 - negations $\phi = \neg \psi$: \mathcal{A}_{ϕ} DFA-complement of \mathcal{A}_{ψ}

O(1) $O(|A_{\psi_1}| + |A_{\psi_2}|)$ $O(|\mathcal{A}_{ii}|)$

- ★ Emptiness for an DFA A_{ϕ} is in PTIME (in the number $|A_{\phi}|$ of nodes of A_{ϕ})
- \star the complexity of satisfiability/validity thus essentially depends on the size of \mathcal{A}_{ϕ}
- \star \mathcal{A}_{ϕ} is constructed recursively on the structure of ϕ
 - base cases $\phi = \top$, \bot , (x < y), X(y): DFAs of constant size
 - disjunction $\phi = \psi_1 \lor \psi_2$: \mathcal{A}_{ϕ} DFA-union of \mathcal{A}_{ψ_1} and \mathcal{A}_{ψ_2}
 - negations $\phi = \neg \psi$: \mathcal{A}_{ϕ} DFA-complement of \mathcal{A}_{ψ}
 - existentials $\phi = \exists x.\psi$ or $\phi = \exists X.\psi$: homomorphism application and determinisation

O(1)

 $O(|\mathcal{A}_{\psi}|)$ $2^{|\mathcal{A}_{\psi}|}$

 $O(|A_{\psi_1}| + |A_{\psi_2}|)$

- ★ Emptiness for an DFA A_{ϕ} is in PTIME (in the number $|A_{\phi}|$ of nodes of A_{ϕ})
- \star the complexity of satisfiability/validity thus essentially depends on the size of \mathcal{A}_{ϕ}
- \star \mathcal{A}_{ϕ} is constructed recursively on the structure of ϕ
 - base cases $\phi = \top$, \bot , (x < y), X(y): DFAs of constant size O(1)
 - disjunction $\phi = \psi_1 \vee \psi_2$: \mathcal{A}_{ϕ} DFA-union of \mathcal{A}_{ψ_1} and \mathcal{A}_{ψ_2} $O(|\mathcal{A}_{\psi_1}| + |\mathcal{A}_{\psi_2}|)$
 - negations $\phi = \neg \psi$: \mathcal{A}_{ϕ} DFA-complement of \mathcal{A}_{ψ}
 - existentials $\phi = \exists x.\psi$ or $\phi = \exists X.\psi$: homomorphism application and determinisation

Theorem (Hardness)

Satisfiability and validity are in $\text{DTIME}(2_{O(n)}^{c})$, where 2_{k}^{c} is a tower of exponentials $2^{2^{c}}$ of height k.

 $O(|\mathcal{A}_{\psi}|)$ $2^{|\mathcal{A}_{\psi}|}$

- ★ Emptiness for an DFA A_{ϕ} is in PTIME (in the number $|A_{\phi}|$ of nodes of A_{ϕ})
- \star the complexity of satisfiability/validity thus essentially depends on the size of \mathcal{A}_{ϕ}
- \star \mathcal{A}_{ϕ} is constructed recursively on the structure of ϕ
 - base cases $\phi = \top$, \bot , (x < y), X(y): DFAs of constant size O(1)

 $O(|\mathcal{A}_{\psi}|)$ $2^{|\mathcal{A}_{\psi}|}$

- disjunction $\phi = \psi_1 \vee \psi_2$: \mathcal{A}_{ϕ} DFA-union of \mathcal{A}_{ψ_1} and \mathcal{A}_{ψ_2} $O(|\mathcal{A}_{\psi_1}| + |\mathcal{A}_{\psi_2}|)$
- negations $\phi = \neg \psi$: \mathcal{A}_{ϕ} DFA-complement of \mathcal{A}_{ψ}
- existentials $\phi = \exists x.\psi$ or $\phi = \exists X.\psi$: homomorphism application and determinisation

Theorem (Hardness)

Satisfiability and validity are in DTIME $(2_{O(n)}^{c})$, where 2_{k}^{c} is a tower of exponentials $2^{2^{2^{c}}}$ of height k.

Theorem (Completeness)

Any language L decidable in time $\text{DTIME}(2_{O(n)}^c)$ can be reduced (within polynomial time) to the satisfiability of formulas ϕ_w ($w \in L$) of size polynomial in |w|.

WMSO and Alternating Finite Automata

- ★ What if we translate WMSO formulas to AFAs?
 - for basic formulas x < y and X(y), the construction is as seen previously
 - Boolean connectives are reflected directly in the transition
 - Quantifier elimination through projection homomorphisms

WMSO and Alternating Finite Automata

- ★ What if we translate WMSO formulas to AFAs?
 - for basic formulas x < y and X(y), the construction is as seen previously
 - Boolean connectives are reflected directly in the transition
 - Quantifier elimination through projection homomorphisms
- \star this suggests resulting automaton is linear in size of formula
 - \Rightarrow WMSO model-checking in exponential time, contradicting the lower-bound result!

Projections and AFAs

WMSO and Alternating Finite Automata

- ★ What if we translate WMSO formulas to AFAs?
 - for basic formulas x < y and X(y), the construction is as seen previously
 - Boolean connectives are reflected directly in the transition
 - Quantifier elimination through projection homomorphisms
- \star this suggests resulting automaton is linear in size of formula
 - ⇒ WMSO model-checking in exponential time, contradicting the lower-bound result!

Problem:

We do not have a polytime algorithm for homorphism applications on AFAs

