
Advanced Logic
http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2023/AL/

Martin Avanzini (martin.avanzini@inria.fr)
Etienne Lozes (etienne.lozes@univ-cotedazur.fr)

2nd Semester M1, 2023

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2023/AL/
martin.avanzini@inria.fr
etienne.lozes@univ-cotedazur.fr

Today’s Lecture
First Order-Logic Recap
⋆ structures, formulas and satisfiability

Monadic Second-Order Logic
1. weak monadic second-order (WMSO) logic

2. Regularity and WMSO definability

3. Decision problems

First-Order Logic Recap

First-Order Logic
⋆ let V = {x, y, . . . } be a set of variables
⋆ let R = {P,Q, . . . } and F = {f, g, . . . } be a vocabulary of predicate/function symbols
⋆ predicate and function symbols are equipped with an arity ar ∶ R ∪ F → N

⋆ first-order terms and formulas over V, R and F are given by the following grammar:

s, t ∶∶= x ∣ f(t1, . . . , tar(f)) (terms)

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ (atomic truth values)∣ P(t1, . . . , tar(P)) ∣ s = t (predicates and equality)∣ 𝜙 ∨ 𝜓 ∣ ¬𝜙 (Boolean connectives)∣ ∃x.𝜙 (existential quantification)

⋆ further connectives definable:
𝜙 → 𝜓 ≜ ¬𝜙 ∨ 𝜓 s ≠ t ≜ ¬(s = t) 𝜙 ∧ 𝜓 ≜ ¬(¬𝜙 ∨ ¬𝜓) ∀x.𝜙 ≜ ¬(∃x.¬𝜙) . . .

⋆ to avoid parenthesis, we fix precedence ¬ > ∧,∨ > ∃,∀

First-Order Logic
⋆ let V = {x, y, . . . } be a set of variables
⋆ let R = {P,Q, . . . } and F = {f, g, . . . } be a vocabulary of predicate/function symbols
⋆ predicate and function symbols are equipped with an arity ar ∶ R ∪ F → N

⋆ first-order terms and formulas over V, R and F are given by the following grammar:

s, t ∶∶= x ∣ f(t1, . . . , tar(f)) (terms)

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ (atomic truth values)∣ P(t1, . . . , tar(P)) ∣ s = t (predicates and equality)∣ 𝜙 ∨ 𝜓 ∣ ¬𝜙 (Boolean connectives)∣ ∃x.𝜙 (existential quantification)

⋆ further connectives definable:
𝜙 → 𝜓 ≜ ¬𝜙 ∨ 𝜓 s ≠ t ≜ ¬(s = t) 𝜙 ∧ 𝜓 ≜ ¬(¬𝜙 ∨ ¬𝜓) ∀x.𝜙 ≜ ¬(∃x.¬𝜙) . . .

⋆ to avoid parenthesis, we fix precedence ¬ > ∧,∨ > ∃,∀

First-Order Logic
⋆ let V = {x, y, . . . } be a set of variables
⋆ let R = {P,Q, . . . } and F = {f, g, . . . } be a vocabulary of predicate/function symbols
⋆ predicate and function symbols are equipped with an arity ar ∶ R ∪ F → N

⋆ first-order terms and formulas over V, R and F are given by the following grammar:

s, t ∶∶= x ∣ f(t1, . . . , tar(f)) (terms)

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ (atomic truth values)∣ P(t1, . . . , tar(P)) ∣ s = t (predicates and equality)∣ 𝜙 ∨ 𝜓 ∣ ¬𝜙 (Boolean connectives)∣ ∃x.𝜙 (existential quantification)

⋆ further connectives definable:
𝜙 → 𝜓 ≜ ¬𝜙 ∨ 𝜓 s ≠ t ≜ ¬(s = t) 𝜙 ∧ 𝜓 ≜ ¬(¬𝜙 ∨ ¬𝜓) ∀x.𝜙 ≜ ¬(∃x.¬𝜙) . . .

⋆ to avoid parenthesis, we fix precedence ¬ > ∧,∨ > ∃,∀

Free Variables, Open and Closed Formulas

⋆ a quantifier ∃x.𝜙 binds the variable x within 𝜙

⋆ variables not bound are called free

⋆ the set of variables free in 𝜙 is denoted by fv(𝜙)
fv(E(x, y)) = {x, y} fv(∃y.E(x, y)) = {x} fv(∀x.∃y.E(x, y)) = ∅

⋆ the formulas without free variables are called sentences (or closed formulas)

⋆ otherwise they are called open

⋆ we consider formulas equal up to renaming of bound variables
– ∃y.E(x, y) is equal to ∃z.E(x, z) but neither to ∃y.E(x, z) nor ∃y.E(z, y)

Free Variables, Open and Closed Formulas

⋆ a quantifier ∃x.𝜙 binds the variable x within 𝜙

⋆ variables not bound are called free

⋆ the set of variables free in 𝜙 is denoted by fv(𝜙)
fv(E(x, y)) = {x, y} fv(∃y.E(x, y)) = {x} fv(∀x.∃y.E(x, y)) = ∅

⋆ the formulas without free variables are called sentences (or closed formulas)

⋆ otherwise they are called open

⋆ we consider formulas equal up to renaming of bound variables
– ∃y.E(x, y) is equal to ∃z.E(x, z) but neither to ∃y.E(x, z) nor ∃y.E(z, y)

Free Variables, Open and Closed Formulas

⋆ a quantifier ∃x.𝜙 binds the variable x within 𝜙

⋆ variables not bound are called free

⋆ the set of variables free in 𝜙 is denoted by fv(𝜙)
fv(E(x, y)) = {x, y} fv(∃y.E(x, y)) = {x} fv(∀x.∃y.E(x, y)) = ∅

⋆ the formulas without free variables are called sentences (or closed formulas)

⋆ otherwise they are called open

⋆ we consider formulas equal up to renaming of bound variables
– ∃y.E(x, y) is equal to ∃z.E(x, z) but neither to ∃y.E(x, z) nor ∃y.E(z, y)

Satisfiability, Informally

⋆ a formula is evaluated to a truth value by assigning meaning to predicates and functions

⋆ a (first-order) structure (or model) M = (D, I) on a vocabulary R consists of
– a non-empty domain D; and
– an interpretation I(P) ⊆ Dar(P) for each predicate P ∈ R
– an interpretation I(f) ∶ Dar(f) → D for each function f ∈ F

⋆ sentences describes properties of structures, consider e.g., ∀x.∃y.E(x, y):
– on directed graphs, with E interpreted as “edge”: every node has a successor
– on natural numbers, with E interpreted as “<”: for every number there is a strictly bigger one

⋆ if a formula 𝜙 holds true in a model M, we write

M ⊧ 𝜙

and say M models 𝜙, or that 𝜙 is satisfiable with M

Satisfiability, Informally

⋆ a formula is evaluated to a truth value by assigning meaning to predicates and functions
⋆ a (first-order) structure (or model) M = (D, I) on a vocabulary R consists of

– a non-empty domain D; and
– an interpretation I(P) ⊆ Dar(P) for each predicate P ∈ R
– an interpretation I(f) ∶ Dar(f) → D for each function f ∈ F

⋆ sentences describes properties of structures, consider e.g., ∀x.∃y.E(x, y):
– on directed graphs, with E interpreted as “edge”: every node has a successor
– on natural numbers, with E interpreted as “<”: for every number there is a strictly bigger one

⋆ if a formula 𝜙 holds true in a model M, we write

M ⊧ 𝜙

and say M models 𝜙, or that 𝜙 is satisfiable with M

Satisfiability, Informally

⋆ a formula is evaluated to a truth value by assigning meaning to predicates and functions
⋆ a (first-order) structure (or model) M = (D, I) on a vocabulary R consists of

– a non-empty domain D; and
– an interpretation I(P) ⊆ Dar(P) for each predicate P ∈ R
– an interpretation I(f) ∶ Dar(f) → D for each function f ∈ F

⋆ sentences describes properties of structures, consider e.g., ∀x.∃y.E(x, y):
– on directed graphs, with E interpreted as “edge”: every node has a successor
– on natural numbers, with E interpreted as “<”: for every number there is a strictly bigger one

⋆ if a formula 𝜙 holds true in a model M, we write

M ⊧ 𝜙

and say M models 𝜙, or that 𝜙 is satisfiable with M

Satisfiability, Informally

⋆ a formula is evaluated to a truth value by assigning meaning to predicates and functions
⋆ a (first-order) structure (or model) M = (D, I) on a vocabulary R consists of

– a non-empty domain D; and
– an interpretation I(P) ⊆ Dar(P) for each predicate P ∈ R
– an interpretation I(f) ∶ Dar(f) → D for each function f ∈ F

⋆ sentences describes properties of structures, consider e.g., ∀x.∃y.E(x, y):
– on directed graphs, with E interpreted as “edge”: every node has a successor
– on natural numbers, with E interpreted as “<”: for every number there is a strictly bigger one

⋆ if a formula 𝜙 holds true in a model M, we write

M ⊧ 𝜙

and say M models 𝜙, or that 𝜙 is satisfiable with M

Examples

1. consider the formula 𝜙 = ∀x.∃y.E(x, y) and E interpreted by …

G1 G2 G3

– we have G1 ⊧ 𝜑, G2 /⊧ 𝜑 and G3 /⊧ 𝜑

2. consider the formula ∃x1, x2, x3.(x1 ≠ x2 ∧ x2 ≠ x3 ∧ x3 ≠ x1)
– the formula is satisfiable by all models with three objects in the domain

Examples

1. consider the formula 𝜙 = ∀x.∃y.E(x, y) and E interpreted by …

G1 G2 G3

– we have G1 ⊧ 𝜑, G2 /⊧ 𝜑 and G3 /⊧ 𝜑

2. consider the formula ∃x1, x2, x3.(x1 ≠ x2 ∧ x2 ≠ x3 ∧ x3 ≠ x1)
– the formula is satisfiable by all models with three objects in the domain

Consequence, Equivalence and Validity

⋆ a sentence 𝜙 is a consequence of sentences Φ = 𝜓1; . . . ;𝜓n, in notation

Φ ⊧ 𝜙

if all models satisfying all 𝜓i ∈ Φ also satisfy 𝜙

– ∀x.P(x) → Q(x);∃x.P(x) ⊧ ∃x.Q(x)

⋆ two formulas 𝜙 and 𝜓 are equivalent, in notation

𝜙 ≡ 𝜓

if 𝜙 ⊧ 𝜓 and 𝜓 ⊧ 𝜙

– ∀x.P(x) → Q(x) ≡ ∀x.¬Q(x) → ¬P(x)
⋆ a formula 𝜙 is valid if it is satisfiable for all models, in notation

⊧ 𝜙

– this is to say that ¬𝜙 is unsatisfiable
– the formula ∀x.x = x is trivially valid

Consequence, Equivalence and Validity

⋆ a sentence 𝜙 is a consequence of sentences Φ = 𝜓1; . . . ;𝜓n, in notation

Φ ⊧ 𝜙

if all models satisfying all 𝜓i ∈ Φ also satisfy 𝜙

– ∀x.P(x) → Q(x);∃x.P(x) ⊧ ∃x.Q(x)
⋆ two formulas 𝜙 and 𝜓 are equivalent, in notation

𝜙 ≡ 𝜓

if 𝜙 ⊧ 𝜓 and 𝜓 ⊧ 𝜙

– ∀x.P(x) → Q(x) ≡ ∀x.¬Q(x) → ¬P(x)

⋆ a formula 𝜙 is valid if it is satisfiable for all models, in notation

⊧ 𝜙

– this is to say that ¬𝜙 is unsatisfiable
– the formula ∀x.x = x is trivially valid

Consequence, Equivalence and Validity

⋆ a sentence 𝜙 is a consequence of sentences Φ = 𝜓1; . . . ;𝜓n, in notation

Φ ⊧ 𝜙

if all models satisfying all 𝜓i ∈ Φ also satisfy 𝜙

– ∀x.P(x) → Q(x);∃x.P(x) ⊧ ∃x.Q(x)
⋆ two formulas 𝜙 and 𝜓 are equivalent, in notation

𝜙 ≡ 𝜓

if 𝜙 ⊧ 𝜓 and 𝜓 ⊧ 𝜙

– ∀x.P(x) → Q(x) ≡ ∀x.¬Q(x) → ¬P(x)
⋆ a formula 𝜙 is valid if it is satisfiable for all models, in notation

⊧ 𝜙

– this is to say that ¬𝜙 is unsatisfiable
– the formula ∀x.x = x is trivially valid

Satisfiability, Formally
⋆ an assignment (or valuation) for 𝜙 wrt. a model M = (D, I) is a function 𝛼 ∶ fv(𝜙) → D

⋆ together with a model, we can now interpret open terms t in its domain D
I𝛼(x) ≜ 𝛼(x) I𝛼(f(t1, . . . , tn)) ≜ I(f)(I𝛼(t1), . . . , I𝛼(tn))

⋆ for a sentence 𝜙, we can now define M ⊧ 𝜙 formally as M;∅ ⊧ 𝜙 where
M;𝛼 ⊧ ⊤ M;𝛼 /⊧ ⊥

M;𝛼 ⊧ P(t1, . . . , tn) ∶⇔ (I𝛼(t1), . . . , I𝛼(tn)) ∈ I(P)
M;𝛼 ⊧ s = t ∶⇔ I𝛼(s) = I𝛼(t)
M;𝛼 ⊧ 𝜙 ∨ 𝜓 ∶⇔ M;𝛼 ⊧ 𝜙 or M;𝛼 ⊧ 𝜓

M;𝛼 ⊧ ¬𝜙 ∶⇔ M;𝛼 /⊧ 𝜙

M;𝛼 ⊧ ∃x.𝜙 ∶⇔ M;𝛼[x ↦ d] ⊧ 𝜙 for some d ∈ D
Example

a b

c d

G

G ⊧ ∃x.∃y.E(x, y) ⇔ G;∅ ⊧ ∃x.∃y.E(x, y)
⇐ G; x ↦ a ⊧ ∃y.E(x, y)
⇐ G; x ↦ a; y ↦ b ⊧ E(x, y)
⇔ (a, b) ∈ I(E)

Satisfiability, Formally
⋆ an assignment (or valuation) for 𝜙 wrt. a model M = (D, I) is a function 𝛼 ∶ fv(𝜙) → D
⋆ together with a model, we can now interpret open terms t in its domain D

I𝛼(x) ≜ 𝛼(x) I𝛼(f(t1, . . . , tn)) ≜ I(f)(I𝛼(t1), . . . , I𝛼(tn))

⋆ for a sentence 𝜙, we can now define M ⊧ 𝜙 formally as M;∅ ⊧ 𝜙 where
M;𝛼 ⊧ ⊤ M;𝛼 /⊧ ⊥

M;𝛼 ⊧ P(t1, . . . , tn) ∶⇔ (I𝛼(t1), . . . , I𝛼(tn)) ∈ I(P)
M;𝛼 ⊧ s = t ∶⇔ I𝛼(s) = I𝛼(t)
M;𝛼 ⊧ 𝜙 ∨ 𝜓 ∶⇔ M;𝛼 ⊧ 𝜙 or M;𝛼 ⊧ 𝜓

M;𝛼 ⊧ ¬𝜙 ∶⇔ M;𝛼 /⊧ 𝜙

M;𝛼 ⊧ ∃x.𝜙 ∶⇔ M;𝛼[x ↦ d] ⊧ 𝜙 for some d ∈ D
Example

a b

c d

G

G ⊧ ∃x.∃y.E(x, y) ⇔ G;∅ ⊧ ∃x.∃y.E(x, y)
⇐ G; x ↦ a ⊧ ∃y.E(x, y)
⇐ G; x ↦ a; y ↦ b ⊧ E(x, y)
⇔ (a, b) ∈ I(E)

Satisfiability, Formally
⋆ an assignment (or valuation) for 𝜙 wrt. a model M = (D, I) is a function 𝛼 ∶ fv(𝜙) → D
⋆ together with a model, we can now interpret open terms t in its domain D

I𝛼(x) ≜ 𝛼(x) I𝛼(f(t1, . . . , tn)) ≜ I(f)(I𝛼(t1), . . . , I𝛼(tn))
⋆ for a sentence 𝜙, we can now define M ⊧ 𝜙 formally as M;∅ ⊧ 𝜙 where

M;𝛼 ⊧ ⊤ M;𝛼 /⊧ ⊥

M;𝛼 ⊧ P(t1, . . . , tn) ∶⇔ (I𝛼(t1), . . . , I𝛼(tn)) ∈ I(P)
M;𝛼 ⊧ s = t ∶⇔ I𝛼(s) = I𝛼(t)
M;𝛼 ⊧ 𝜙 ∨ 𝜓 ∶⇔ M;𝛼 ⊧ 𝜙 or M;𝛼 ⊧ 𝜓

M;𝛼 ⊧ ¬𝜙 ∶⇔ M;𝛼 /⊧ 𝜙

M;𝛼 ⊧ ∃x.𝜙 ∶⇔ M;𝛼[x ↦ d] ⊧ 𝜙 for some d ∈ D

Example
a b

c d

G

G ⊧ ∃x.∃y.E(x, y) ⇔ G;∅ ⊧ ∃x.∃y.E(x, y)
⇐ G; x ↦ a ⊧ ∃y.E(x, y)
⇐ G; x ↦ a; y ↦ b ⊧ E(x, y)
⇔ (a, b) ∈ I(E)

Satisfiability, Formally
⋆ an assignment (or valuation) for 𝜙 wrt. a model M = (D, I) is a function 𝛼 ∶ fv(𝜙) → D
⋆ together with a model, we can now interpret open terms t in its domain D

I𝛼(x) ≜ 𝛼(x) I𝛼(f(t1, . . . , tn)) ≜ I(f)(I𝛼(t1), . . . , I𝛼(tn))
⋆ for a sentence 𝜙, we can now define M ⊧ 𝜙 formally as M;∅ ⊧ 𝜙 where

M;𝛼 ⊧ ⊤ M;𝛼 /⊧ ⊥

M;𝛼 ⊧ P(t1, . . . , tn) ∶⇔ (I𝛼(t1), . . . , I𝛼(tn)) ∈ I(P)
M;𝛼 ⊧ s = t ∶⇔ I𝛼(s) = I𝛼(t)
M;𝛼 ⊧ 𝜙 ∨ 𝜓 ∶⇔ M;𝛼 ⊧ 𝜙 or M;𝛼 ⊧ 𝜓

M;𝛼 ⊧ ¬𝜙 ∶⇔ M;𝛼 /⊧ 𝜙

M;𝛼 ⊧ ∃x.𝜙 ∶⇔ M;𝛼[x ↦ d] ⊧ 𝜙 for some d ∈ D
Example

a b

c d

G

G ⊧ ∃x.∃y.E(x, y) ⇔ G;∅ ⊧ ∃x.∃y.E(x, y)
⇐ G; x ↦ a ⊧ ∃y.E(x, y)
⇐ G; x ↦ a; y ↦ b ⊧ E(x, y)
⇔ (a, b) ∈ I(E)

Monadic Second-Order Logic

Monadic Second-Order Logic
Second Order-Logic
⋆ in first-order logic, quantification confined to elements of the domain

⋆ in second-order logic, quantification is permitted on relations
– ∀x.∃X.∀y.X(x, y) ↔ x = y

Monadic Second-Order Logic
⋆ A predicate symbol P is monadic if its arity is 1
⋆ monadic second-order logic (MSO) confines second-order quantification to monadic

predicates
– monadic: ∀x.∃Y.∀y.Y(y) ↔ x = y
– non-monadic: ∀x.∃X.∀y.X(x, y) ↔ x = y

⋆ quantification over sets, but not over arbitrary predicates
– on graphs: quantification over nodes but not edges

Monadic Second-Order Logic
Second Order-Logic
⋆ in first-order logic, quantification confined to elements of the domain

⋆ in second-order logic, quantification is permitted on relations
– ∀x.∃X.∀y.X(x, y) ↔ x = y

Monadic Second-Order Logic
⋆ A predicate symbol P is monadic if its arity is 1

⋆ monadic second-order logic (MSO) confines second-order quantification to monadic
predicates

– monadic: ∀x.∃Y.∀y.Y(y) ↔ x = y
– non-monadic: ∀x.∃X.∀y.X(x, y) ↔ x = y

⋆ quantification over sets, but not over arbitrary predicates
– on graphs: quantification over nodes but not edges

Monadic Second-Order Logic
Second Order-Logic
⋆ in first-order logic, quantification confined to elements of the domain

⋆ in second-order logic, quantification is permitted on relations
– ∀x.∃X.∀y.X(x, y) ↔ x = y

Monadic Second-Order Logic
⋆ A predicate symbol P is monadic if its arity is 1
⋆ monadic second-order logic (MSO) confines second-order quantification to monadic

predicates
– monadic: ∀x.∃Y.∀y.Y(y) ↔ x = y
– non-monadic: ∀x.∃X.∀y.X(x, y) ↔ x = y

⋆ quantification over sets, but not over arbitrary predicates
– on graphs: quantification over nodes but not edges

Monadic Second-Order Logic
Second Order-Logic
⋆ in first-order logic, quantification confined to elements of the domain

⋆ in second-order logic, quantification is permitted on relations
– ∀x.∃X.∀y.X(x, y) ↔ x = y

Monadic Second-Order Logic
⋆ A predicate symbol P is monadic if its arity is 1
⋆ monadic second-order logic (MSO) confines second-order quantification to monadic

predicates
– monadic: ∀x.∃Y.∀y.Y(y) ↔ x = y
– non-monadic: ∀x.∃X.∀y.X(x, y) ↔ x = y

⋆ quantification over sets, but not over arbitrary predicates
– on graphs: quantification over nodes but not edges

Theories
⋆ A theory is a set T of sentences such that for any sentence 𝜙, if T ⊧ 𝜙, then 𝜙 ∈ T

– a theory is closed under logical consequence

⋆ A theory is decidable if the problem of belonging to T is decidable
– we have a decision procedure for reasoning about T

⋆ A theory T is complete if for any sentence 𝜙 we have 𝜙 ∈ T or ¬𝜙 ∈ T.
– a complete theory speaks about all formulas

⋆ for a class of structures C, the theory of C is the set of sentences which are valid on all
M ∈ C

Theories
⋆ A theory is a set T of sentences such that for any sentence 𝜙, if T ⊧ 𝜙, then 𝜙 ∈ T

– a theory is closed under logical consequence

⋆ A theory is decidable if the problem of belonging to T is decidable
– we have a decision procedure for reasoning about T

⋆ A theory T is complete if for any sentence 𝜙 we have 𝜙 ∈ T or ¬𝜙 ∈ T.
– a complete theory speaks about all formulas

⋆ for a class of structures C, the theory of C is the set of sentences which are valid on all
M ∈ C

Theories
⋆ A theory is a set T of sentences such that for any sentence 𝜙, if T ⊧ 𝜙, then 𝜙 ∈ T

– a theory is closed under logical consequence

⋆ A theory is decidable if the problem of belonging to T is decidable
– we have a decision procedure for reasoning about T

⋆ A theory T is complete if for any sentence 𝜙 we have 𝜙 ∈ T or ¬𝜙 ∈ T.
– a complete theory speaks about all formulas

⋆ for a class of structures C, the theory of C is the set of sentences which are valid on all
M ∈ C

Theories
⋆ A theory is a set T of sentences such that for any sentence 𝜙, if T ⊧ 𝜙, then 𝜙 ∈ T

– a theory is closed under logical consequence

⋆ A theory is decidable if the problem of belonging to T is decidable
– we have a decision procedure for reasoning about T

⋆ A theory T is complete if for any sentence 𝜙 we have 𝜙 ∈ T or ¬𝜙 ∈ T.
– a complete theory speaks about all formulas

⋆ for a class of structures C, the theory of C is the set of sentences which are valid on all
M ∈ C

Examples
1. The theory of Presburger Arithmetic, i.e., the theory of natural numbers with addition

only is decidable
– ∀n.∃m.(n = m +m) ∨ (n = m +m + 1)
– Presburger Arithmetic admits a quantifier elimination procedure

2. The theory of Peano Arithmetic, i.e., the theory of natural numbers is undecidable
– Gödels incompleteness theorem

3. The theory of graphs is undecidable

Theorem (Büchi)

The theory of monadic second-order logic over (N,<) is decidable

Theorem (Rabin)

The theory of monadic second-order logic over trees is decidable

Examples
1. The theory of Presburger Arithmetic, i.e., the theory of natural numbers with addition

only is decidable
– ∀n.∃m.(n = m +m) ∨ (n = m +m + 1)
– Presburger Arithmetic admits a quantifier elimination procedure

2. The theory of Peano Arithmetic, i.e., the theory of natural numbers is undecidable
– Gödels incompleteness theorem

3. The theory of graphs is undecidable

Theorem (Büchi)

The theory of monadic second-order logic over (N,<) is decidable

Theorem (Rabin)

The theory of monadic second-order logic over trees is decidable

Examples
1. The theory of Presburger Arithmetic, i.e., the theory of natural numbers with addition

only is decidable
– ∀n.∃m.(n = m +m) ∨ (n = m +m + 1)
– Presburger Arithmetic admits a quantifier elimination procedure

2. The theory of Peano Arithmetic, i.e., the theory of natural numbers is undecidable
– Gödels incompleteness theorem

3. The theory of graphs is undecidable

Theorem (Büchi)

The theory of monadic second-order logic over (N,<) is decidable

Theorem (Rabin)

The theory of monadic second-order logic over trees is decidable

Examples
1. The theory of Presburger Arithmetic, i.e., the theory of natural numbers with addition

only is decidable
– ∀n.∃m.(n = m +m) ∨ (n = m +m + 1)
– Presburger Arithmetic admits a quantifier elimination procedure

2. The theory of Peano Arithmetic, i.e., the theory of natural numbers is undecidable
– Gödels incompleteness theorem

3. The theory of graphs is undecidable

Theorem (Büchi)

The theory of monadic second-order logic over (N,<) is decidable

Theorem (Rabin)

The theory of monadic second-order logic over trees is decidable

A First Step Towards Rabin’s and Büchi’s Result

Theorem (Büchi-Elgot-Trakhtenbrot)

The theory of weak monadic second-order logic over (N,<) is decidable

quantification over finite sets

consider only models over N,
ordered by <

Weak Monadic Second-Order Logic

Weak Monadic Second-Order Logic (WMSO)

⋆ let V1 = {x, y, . . . } be a set of first-order variables (ranging over N)

⋆ let V2 = {X,Y, . . . } be monadic second-order variables (ranging over finite sets of N)

⋆ R = {<} and F = ∅ is fixed, with ar(<) = 2

⋆ the set of WMSO formulas over V1,V2 is given by the following grammar:

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ x < y ∣ X(x) ∣ 𝜙 ∨ 𝜓 ∣ ¬𝜙 ∣ ∃x.𝜙 ∣ ∃X.𝜙

⋆ further definable connectives / formulas

∀X.𝜙 ≜ ¬(∃X.¬𝜙) x = 0 ≜ ¬(∃y.y < x) x ≤ y ≜ ¬(y < x) x = y X(y + c) (exercise)

⋆ weak: second-order variables refer to finite sets
– X(y) means informally y ∈ X where X is finite set over N
– ⊧ ∃X.∀x.X(x) → ∃y.x < y ∧ X(y) 𝛼(X) = ∅
– /⊧ ∃X.(∀x.x = 0 → X(x)) ∧ (∀x.X(x) → ∃y.x < y ∧ X(y))

Weak Monadic Second-Order Logic (WMSO)

⋆ let V1 = {x, y, . . . } be a set of first-order variables (ranging over N)

⋆ let V2 = {X,Y, . . . } be monadic second-order variables (ranging over finite sets of N)

⋆ R = {<} and F = ∅ is fixed, with ar(<) = 2

⋆ the set of WMSO formulas over V1,V2 is given by the following grammar:

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ x < y ∣ X(x) ∣ 𝜙 ∨ 𝜓 ∣ ¬𝜙 ∣ ∃x.𝜙 ∣ ∃X.𝜙

⋆ further definable connectives / formulas

∀X.𝜙 ≜ ¬(∃X.¬𝜙) x = 0 ≜ ¬(∃y.y < x) x ≤ y ≜ ¬(y < x) x = y X(y + c) (exercise)

⋆ weak: second-order variables refer to finite sets
– X(y) means informally y ∈ X where X is finite set over N
– ⊧ ∃X.∀x.X(x) → ∃y.x < y ∧ X(y) 𝛼(X) = ∅
– /⊧ ∃X.(∀x.x = 0 → X(x)) ∧ (∀x.X(x) → ∃y.x < y ∧ X(y))

Weak Monadic Second-Order Logic (WMSO)

⋆ let V1 = {x, y, . . . } be a set of first-order variables (ranging over N)

⋆ let V2 = {X,Y, . . . } be monadic second-order variables (ranging over finite sets of N)

⋆ R = {<} and F = ∅ is fixed, with ar(<) = 2

⋆ the set of WMSO formulas over V1,V2 is given by the following grammar:

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ x < y ∣ X(x) ∣ 𝜙 ∨ 𝜓 ∣ ¬𝜙 ∣ ∃x.𝜙 ∣ ∃X.𝜙

⋆ further definable connectives / formulas

∀X.𝜙 ≜ ¬(∃X.¬𝜙) x = 0 ≜ ¬(∃y.y < x) x ≤ y ≜ ¬(y < x) x = y X(y + c) (exercise)

⋆ weak: second-order variables refer to finite sets
– X(y) means informally y ∈ X where X is finite set over N
– ⊧ ∃X.∀x.X(x) → ∃y.x < y ∧ X(y) 𝛼(X) = ∅
– /⊧ ∃X.(∀x.x = 0 → X(x)) ∧ (∀x.X(x) → ∃y.x < y ∧ X(y))

Satisfiability

⋆ since the model (N, {<}) is fixed, the valuation of a formula depends only on an
assignment 𝛼

⋆ 𝛼 maps first-order variables x ∈ V1 to N, and second-order variables X ∈ V2 to finite
subsets of N

⋆ satisfiability relation takes the form 𝛼 ⊧ 𝜙 and is inductively defined as expected:

𝛼 ⊧ ⊤ 𝛼 /⊧ ⊥

𝛼 ⊧ x < y ∶⇔ 𝛼(x) < 𝛼(y)
𝛼 ⊧ X(x) ∶⇔ 𝛼(x) ∈ 𝛼(X)
𝛼 ⊧ 𝜙 ∨ 𝜓 ∶⇔ 𝛼 ⊧ 𝜙 or 𝛼 ⊧ 𝜓

𝛼 ⊧ ¬𝜙 ∶⇔ 𝛼 /⊧ 𝜙

𝛼 ⊧ ∃x.𝜙 ∶⇔ 𝛼[x ↦ n] ⊧ 𝜙 for some n ∈ N
𝛼 ⊧ ∃X.𝜙 ∶⇔ 𝛼[x ↦ M] ⊧ 𝜙 for some finite M ⊂ N

Satisfiability

⋆ since the model (N, {<}) is fixed, the valuation of a formula depends only on an
assignment 𝛼

⋆ 𝛼 maps first-order variables x ∈ V1 to N, and second-order variables X ∈ V2 to finite
subsets of N

⋆ satisfiability relation takes the form 𝛼 ⊧ 𝜙 and is inductively defined as expected:

𝛼 ⊧ ⊤ 𝛼 /⊧ ⊥

𝛼 ⊧ x < y ∶⇔ 𝛼(x) < 𝛼(y)
𝛼 ⊧ X(x) ∶⇔ 𝛼(x) ∈ 𝛼(X)
𝛼 ⊧ 𝜙 ∨ 𝜓 ∶⇔ 𝛼 ⊧ 𝜙 or 𝛼 ⊧ 𝜓

𝛼 ⊧ ¬𝜙 ∶⇔ 𝛼 /⊧ 𝜙

𝛼 ⊧ ∃x.𝜙 ∶⇔ 𝛼[x ↦ n] ⊧ 𝜙 for some n ∈ N
𝛼 ⊧ ∃X.𝜙 ∶⇔ 𝛼[x ↦ M] ⊧ 𝜙 for some finite M ⊂ N

Connections to Formal Languages
⋆ to encode words w ∈ Σ∗ over alphabet Σ we use to kinds of variables

– first-order variables x ∈ V1 refer to positions within w
– for each letter a ∈ Σ, second-order variables Pa ∈ V2 indicate the positions of a in w

w a b b a

Pa { 0, 3 }
Pb { 1, 2 }

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ abba

⋆ thereby each word w ∈ Σ∗ uniquely determines an assignment, in notation w
Examples
⋆ ab ⊧ ∃x.Pa(x)
⋆ ab /⊧ ∃x.Pc(x)
⋆ ab /⊧ ∃x.∃y.x < y ∧ Pb(x) ∧ Pa(y)
⋆ ab /⊧ ∃X.∀x.(X(x) → Pb(x)) ∧ ∃y.y = 0 ∧ X(y)

Connections to Formal Languages
⋆ to encode words w ∈ Σ∗ over alphabet Σ we use to kinds of variables

– first-order variables x ∈ V1 refer to positions within w
– for each letter a ∈ Σ, second-order variables Pa ∈ V2 indicate the positions of a in w

w a b b a

Pa { 0, 3 }
Pb { 1, 2 }

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ abba

⋆ thereby each word w ∈ Σ∗ uniquely determines an assignment, in notation w

Examples
⋆ ab ⊧ ∃x.Pa(x)
⋆ ab /⊧ ∃x.Pc(x)
⋆ ab /⊧ ∃x.∃y.x < y ∧ Pb(x) ∧ Pa(y)
⋆ ab /⊧ ∃X.∀x.(X(x) → Pb(x)) ∧ ∃y.y = 0 ∧ X(y)

Connections to Formal Languages
⋆ to encode words w ∈ Σ∗ over alphabet Σ we use to kinds of variables

– first-order variables x ∈ V1 refer to positions within w
– for each letter a ∈ Σ, second-order variables Pa ∈ V2 indicate the positions of a in w

w a b b a

Pa { 0, 3 }
Pb { 1, 2 }

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ abba

⋆ thereby each word w ∈ Σ∗ uniquely determines an assignment, in notation w
Examples
⋆ ab ⊧ ∃x.Pa(x)
⋆ ab /⊧ ∃x.Pc(x)
⋆ ab /⊧ ∃x.∃y.x < y ∧ Pb(x) ∧ Pa(y)
⋆ ab /⊧ ∃X.∀x.(X(x) → Pb(x)) ∧ ∃y.y = 0 ∧ X(y)

Language of a WMSO Formula

⋆ for alphabet Σ and WMSO formula 𝜙 s.t. fv(𝜙) ⊆ {Pa ∣ a ∈ Σ}, we let

L(𝜙) ≜ {w ∈ Σ∗ ∣ w ⊧ 𝜙}
denote the language of 𝜙

⋆ a language L is WMSO definable iff there is some 𝜙 as above s.t. L = L(𝜙)

Examples

𝜙 L(𝜙)
∃x.Pa(x) ?
∃x.∃y.x < y ∧ Pb(x) ∧ Pa(y) ?
∃X.∀x.(X(x) → Pb(x)) ∧ ∃y.y = 0 ∧ X(y) ?

Language of a WMSO Formula

⋆ for alphabet Σ and WMSO formula 𝜙 s.t. fv(𝜙) ⊆ {Pa ∣ a ∈ Σ}, we let

L(𝜙) ≜ {w ∈ Σ∗ ∣ w ⊧ 𝜙}
denote the language of 𝜙

⋆ a language L is WMSO definable iff there is some 𝜙 as above s.t. L = L(𝜙)
Examples

𝜙 L(𝜙)
∃x.Pa(x) ?
∃x.∃y.x < y ∧ Pb(x) ∧ Pa(y) ?
∃X.∀x.(X(x) → Pb(x)) ∧ ∃y.y = 0 ∧ X(y) ?

Language of a WMSO Formula

⋆ for alphabet Σ and WMSO formula 𝜙 s.t. fv(𝜙) ⊆ {Pa ∣ a ∈ Σ}, we let

L(𝜙) ≜ {w ∈ Σ∗ ∣ w ⊧ 𝜙}
denote the language of 𝜙

⋆ a language L is WMSO definable iff there is some 𝜙 as above s.t. L = L(𝜙)
Examples

𝜙 L(𝜙)
∃x.Pa(x) {vaw ∣ v,w ∈ Σ∗}
∃x.∃y.x < y ∧ Pb(x) ∧ Pa(y) ?
∃X.∀x.(X(x) → Pb(x)) ∧ ∃y.y = 0 ∧ X(y) ?

Language of a WMSO Formula

⋆ for alphabet Σ and WMSO formula 𝜙 s.t. fv(𝜙) ⊆ {Pa ∣ a ∈ Σ}, we let

L(𝜙) ≜ {w ∈ Σ∗ ∣ w ⊧ 𝜙}
denote the language of 𝜙

⋆ a language L is WMSO definable iff there is some 𝜙 as above s.t. L = L(𝜙)
Examples

𝜙 L(𝜙)
∃x.Pa(x) {vaw ∣ v,w ∈ Σ∗}
∃x.∃y.x < y ∧ Pb(x) ∧ Pa(y) {ubvaw ∣ u, v,w ∈ Σ∗}
∃X.∀x.(X(x) → Pb(x)) ∧ ∃y.y = 0 ∧ X(y) ?

Language of a WMSO Formula

⋆ for alphabet Σ and WMSO formula 𝜙 s.t. fv(𝜙) ⊆ {Pa ∣ a ∈ Σ}, we let

L(𝜙) ≜ {w ∈ Σ∗ ∣ w ⊧ 𝜙}
denote the language of 𝜙

⋆ a language L is WMSO definable iff there is some 𝜙 as above s.t. L = L(𝜙)
Examples

𝜙 L(𝜙)
∃x.Pa(x) {vaw ∣ v,w ∈ Σ∗}
∃x.∃y.x < y ∧ Pb(x) ∧ Pa(y) {ubvaw ∣ u, v,w ∈ Σ∗}
∃X.∀x.(X(x) → Pb(x)) ∧ ∃y.y = 0 ∧ X(y) {bw ∣ w ∈ Σ∗}

Regularity and WMSO Definability

Büchi-Elgot-Trakhtenbrot

Theorem
Let L ⊆ Σ∗ be a language. The following are equivalent:
⋆ L is regular
⋆ L is recognizable by a finite automata
⋆ L is WMSO definable

Proof Outline.

⋆ (1) ⇔ (2) Kleene’s Theorem.
⋆ (2) ⇒ (3) Given an Automata A, we define a WMSO formula 𝜙A s.t. L(A) = L(𝜙A)
⋆ (3) ⇒ (1) Given a WMSO formula 𝜙, define a regular Language L𝜙 s.t. L(𝜙) = L𝜙

Büchi-Elgot-Trakhtenbrot

Theorem
Let L ⊆ Σ∗ be a language. The following are equivalent:
⋆ L is regular
⋆ L is recognizable by a finite automata
⋆ L is WMSO definable

Proof Outline.

⋆ (1) ⇔ (2) Kleene’s Theorem.
⋆ (2) ⇒ (3) Given an Automata A, we define a WMSO formula 𝜙A s.t. L(A) = L(𝜙A)
⋆ (3) ⇒ (1) Given a WMSO formula 𝜙, define a regular Language L𝜙 s.t. L(𝜙) = L𝜙

From Automatons to Formulas

Encoding for given A = (Q, Σ, qI, 𝛿, F)
⋆ first-order variables m, n, . . . refer to positions in input words w
⋆ for a ∈ Σ: second-order variables Pa encode words: as before

⋆ for q ∈ Q: second-order variables Xq encode run: Xq(m) ⟺ qI
a0−→ . . .

am−→ q

Example example run p a
−→ q b

−→ p b
−→ r

Pa { 0 }
Pb { 1, 2 }
Xp { (−1) 1 }
Xq { 0 }
Xr { 2 }

⋆ ultimately, 𝜙A ≜ ∃Xq1∃Xqn .𝜓A with 𝜓A saying that Xqi encode an accepting run of
A on input word described by Pa.

From Automatons to Formulas

Encoding for given A = (Q, Σ, qI, 𝛿, F)
⋆ first-order variables m, n, . . . refer to positions in input words w
⋆ for a ∈ Σ: second-order variables Pa encode words: as before

⋆ for q ∈ Q: second-order variables Xq encode run: Xq(m) ⟺ qI
a0−→ . . .

am−→ q

Example example run p a
−→ q b

−→ p b
−→ r

Pa { 0 }
Pb { 1, 2 }
Xp { (−1) 1 }
Xq { 0 }
Xr { 2 }

⋆ ultimately, 𝜙A ≜ ∃Xq1∃Xqn .𝜓A with 𝜓A saying that Xqi encode an accepting run of
A on input word described by Pa.

From Automatons to Formulas

Encoding for given A = (Q, Σ, qI, 𝛿, F)
⋆ first-order variables m, n, . . . refer to positions in input words w
⋆ for a ∈ Σ: second-order variables Pa encode words: as before

⋆ for q ∈ Q: second-order variables Xq encode run: Xq(m) ⟺ qI
a0−→ . . .

am−→ q

Example example run p a
−→ q b

−→ p b
−→ r

Pa { 0 }
Pb { 1, 2 }
Xp { (−1) 1 }
Xq { 0 }
Xr { 2 }

⋆ ultimately, 𝜙A ≜ ∃Xq1∃Xqn .𝜓A with 𝜓A saying that Xqi encode an accepting run of
A on input word described by Pa.

Linking Run-Variables
for all word lengths len, we define:
⋆ 𝜓setup ≜ ∀m.m < len → (⋁q∈Q Xq(m)) ∧ (⋀p/=q¬(Xq(m) ∧ Xp(m)))

– reading m < len symbols ends up in a state, and this state is unique

⋆ 𝜓initial ≜ len = 0 ∨⋁a∈Σ,p∈𝛿(qI,a)(Pa(0) ∧ Xp(0))
– encoding of the initial transition

⋆ 𝜓run ≜ ∀m.m < len → ⋁a∈Σ,q∈Q,p∈𝛿(q,a)(Xq(m) ∧ Pa(m + 1) ∧ Xp(m + 1))
– encoding of intermediate transitions

⋆ 𝜙accept ≜ (len = 0 ∧ ⌜qI ∈ F⌝) ∨ ∃m.len = m + 1 ∧⋁q∈F(Xq(m))
– encoded transition of word a0 . . . am of length m + 1 lands in a final state

𝜙A ≜ ∃Xq1 .⋯∃Xqn .

∀len. (⋀
a∈Σ

¬Pa(len) ∧∀m. ⋀
a∈Σ

Pa(m) → m ≤ len)ÍÒÒÑÒÒ Ï
len gives length of input

→ 𝜓setup ∧ 𝜓initial ∧ 𝜓run ∧ 𝜓accept

Linking Run-Variables
for all word lengths len, we define:
⋆ 𝜓setup ≜ ∀m.m < len → (⋁q∈Q Xq(m)) ∧ (⋀p/=q¬(Xq(m) ∧ Xp(m)))

– reading m < len symbols ends up in a state, and this state is unique

⋆ 𝜓initial ≜ len = 0 ∨⋁a∈Σ,p∈𝛿(qI,a)(Pa(0) ∧ Xp(0))
– encoding of the initial transition

⋆ 𝜓run ≜ ∀m.m < len → ⋁a∈Σ,q∈Q,p∈𝛿(q,a)(Xq(m) ∧ Pa(m + 1) ∧ Xp(m + 1))
– encoding of intermediate transitions

⋆ 𝜙accept ≜ (len = 0 ∧ ⌜qI ∈ F⌝) ∨ ∃m.len = m + 1 ∧⋁q∈F(Xq(m))
– encoded transition of word a0 . . . am of length m + 1 lands in a final state

𝜙A ≜ ∃Xq1 .⋯∃Xqn .

∀len. (⋀
a∈Σ

¬Pa(len) ∧∀m. ⋀
a∈Σ

Pa(m) → m ≤ len)ÍÒÒÑÒÒ Ï
len gives length of input

→ 𝜓setup ∧ 𝜓initial ∧ 𝜓run ∧ 𝜓accept

Linking Run-Variables
for all word lengths len, we define:
⋆ 𝜓setup ≜ ∀m.m < len → (⋁q∈Q Xq(m)) ∧ (⋀p/=q¬(Xq(m) ∧ Xp(m)))

– reading m < len symbols ends up in a state, and this state is unique

⋆ 𝜓initial ≜ len = 0 ∨⋁a∈Σ,p∈𝛿(qI,a)(Pa(0) ∧ Xp(0))
– encoding of the initial transition

⋆ 𝜓run ≜ ∀m.m < len → ⋁a∈Σ,q∈Q,p∈𝛿(q,a)(Xq(m) ∧ Pa(m + 1) ∧ Xp(m + 1))
– encoding of intermediate transitions

⋆ 𝜙accept ≜ (len = 0 ∧ ⌜qI ∈ F⌝) ∨ ∃m.len = m + 1 ∧⋁q∈F(Xq(m))
– encoded transition of word a0 . . . am of length m + 1 lands in a final state

𝜙A ≜ ∃Xq1 .⋯∃Xqn .

∀len. (⋀
a∈Σ

¬Pa(len) ∧∀m. ⋀
a∈Σ

Pa(m) → m ≤ len)ÍÒÒÑÒÒ Ï
len gives length of input

→ 𝜓setup ∧ 𝜓initial ∧ 𝜓run ∧ 𝜓accept

Linking Run-Variables
for all word lengths len, we define:
⋆ 𝜓setup ≜ ∀m.m < len → (⋁q∈Q Xq(m)) ∧ (⋀p/=q¬(Xq(m) ∧ Xp(m)))

– reading m < len symbols ends up in a state, and this state is unique

⋆ 𝜓initial ≜ len = 0 ∨⋁a∈Σ,p∈𝛿(qI,a)(Pa(0) ∧ Xp(0))
– encoding of the initial transition

⋆ 𝜓run ≜ ∀m.m < len → ⋁a∈Σ,q∈Q,p∈𝛿(q,a)(Xq(m) ∧ Pa(m + 1) ∧ Xp(m + 1))
– encoding of intermediate transitions

⋆ 𝜙accept ≜ (len = 0 ∧ ⌜qI ∈ F⌝) ∨ ∃m.len = m + 1 ∧⋁q∈F(Xq(m))
– encoded transition of word a0 . . . am of length m + 1 lands in a final state

𝜙A ≜ ∃Xq1 .⋯∃Xqn .

∀len. (⋀
a∈Σ

¬Pa(len) ∧∀m. ⋀
a∈Σ

Pa(m) → m ≤ len)ÍÒÒÑÒÒ Ï
len gives length of input

→ 𝜓setup ∧ 𝜓initial ∧ 𝜓run ∧ 𝜓accept

Büchi-Elgot-Trakhtenbrot

Theorem
Let L ⊆ Σ∗ be a language. The following are equivalent:
⋆ L is regular
⋆ L is recognizable by a finite automata
⋆ L is WMSO definable

Proof Outline.

⋆ (1) ⇔ (2) Kleene’s Theorem.
⋆ (2) ⇒ (3) Given an Automata A, we define a WMSO formula 𝜙A s.t. L(A) = L(𝜙A)

– 𝜙A given on previous slide satisfies the case

⋆ (3) ⇒ (1) Given a WMSO formula 𝜙, define a regular Language L𝜙 s.t. L(𝜙) = L𝜙

Büchi-Elgot-Trakhtenbrot

Theorem
Let L ⊆ Σ∗ be a language. The following are equivalent:
⋆ L is regular
⋆ L is recognizable by a finite automata
⋆ L is WMSO definable

Proof Outline.

⋆ (1) ⇔ (2) Kleene’s Theorem.
⋆ (2) ⇒ (3) Given an Automata A, we define a WMSO formula 𝜙A s.t. L(A) = L(𝜙A)

– 𝜙A given on previous slide satisfies the case

⋆ (3) ⇒ (1) Given a WMSO formula 𝜙, define a regular Language L𝜙 s.t. L(𝜙) = L𝜙

From Formulas to Regular Languages

Encoding for given 𝜙 over V2 = {X1, . . . ,Xm} and V1 = {ym+1, . . . , ym+n}
⋆ the alphabet Σ𝜙 is given by m + n bit-vectors, i.e., Σ𝜙 ≜ {0, 1}n+m

⋆ word w ∈ Σ∗𝜙 can then be seen as a bit-matrix, encoding a valuation 𝛼:
– rows 1 ≤ i ≤ m encode valuations of Xi ∈ V2: 1 at column 1 ≤ j ≤ ∣w∣ ⟺ j ∈ 𝛼(Xi)
– rows m + 1 ≤ i ≤ m + n encode valuations of yi ∈ V1: 1 at column 1 ≤ j ≤ ∣w∣ ⟺ j = 𝛼(yi)

v 𝛼(v)
X1 {0, 2}
X2 {1, 3, 4}
y3 3
y4 0

≡

w[0] w[1] w[2] w[3] w[4]⎛⎜⎜⎜⎜⎜⎜⎝
1
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
0
1
1
0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎠
⋆ for a valuation 𝛼 for 𝜙, let us write 𝛼 ∈ Σ∗𝜙 for its encoding

From Formulas to Regular Languages

Encoding for given 𝜙 over V2 = {X1, . . . ,Xm} and V1 = {ym+1, . . . , ym+n}
⋆ the alphabet Σ𝜙 is given by m + n bit-vectors, i.e., Σ𝜙 ≜ {0, 1}n+m

⋆ word w ∈ Σ∗𝜙 can then be seen as a bit-matrix, encoding a valuation 𝛼:
– rows 1 ≤ i ≤ m encode valuations of Xi ∈ V2: 1 at column 1 ≤ j ≤ ∣w∣ ⟺ j ∈ 𝛼(Xi)
– rows m + 1 ≤ i ≤ m + n encode valuations of yi ∈ V1: 1 at column 1 ≤ j ≤ ∣w∣ ⟺ j = 𝛼(yi)

v 𝛼(v)
X1 {0, 2}
X2 {1, 3, 4}
y3 3
y4 0

≡

w[0] w[1] w[2] w[3] w[4]⎛⎜⎜⎜⎜⎜⎜⎝
1
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
0
1
1
0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎠

⋆ for a valuation 𝛼 for 𝜙, let us write 𝛼 ∈ Σ∗𝜙 for its encoding

From Formulas to Regular Languages

Encoding for given 𝜙 over V2 = {X1, . . . ,Xm} and V1 = {ym+1, . . . , ym+n}
⋆ the alphabet Σ𝜙 is given by m + n bit-vectors, i.e., Σ𝜙 ≜ {0, 1}n+m

⋆ word w ∈ Σ∗𝜙 can then be seen as a bit-matrix, encoding a valuation 𝛼:
– rows 1 ≤ i ≤ m encode valuations of Xi ∈ V2: 1 at column 1 ≤ j ≤ ∣w∣ ⟺ j ∈ 𝛼(Xi)
– rows m + 1 ≤ i ≤ m + n encode valuations of yi ∈ V1: 1 at column 1 ≤ j ≤ ∣w∣ ⟺ j = 𝛼(yi)

v 𝛼(v)
X1 {0, 2}
X2 {1, 3, 4}
y3 3
y4 0

≡

w[0] w[1] w[2] w[3] w[4]⎛⎜⎜⎜⎜⎜⎜⎝
1
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
0
1
1
0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎠
⋆ for a valuation 𝛼 for 𝜙, let us write 𝛼 ∈ Σ∗𝜙 for its encoding

The Main Lemma
let us denote by L̂(𝜙) ⊆ Σ∗𝜙 the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}

Lemma
For any WMSO formula 𝜙, L̂(𝜙) is regular

Proof Outline.
By induction on the structure of 𝜙.
⋆ 𝜙 = ⊤, 𝜙 = ⊥: In these cases L̂(𝜙) is Σ∗𝜙 or ∅, thus regular.

⋆ 𝜙 = (x < y): Then L̂(𝜙) = (0
0)∗ (1

0) (0
0)∗ (0

1) (0
0) or L̂(𝜙) = (0

0)∗ (0
1) (0

0)∗ (1
0) (0

0),
both of them regular.

⋆ 𝜙 = X(y): Then L̂(𝜙) = ((0
0) ∪ (1

0))∗ (1
1) ((0

0) ∪ (1
0))∗ is regular.

⋆ 𝜙 ∨ 𝜓, ∃x.𝜙: ?

The Main Lemma
let us denote by L̂(𝜙) ⊆ Σ∗𝜙 the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}
Lemma
For any WMSO formula 𝜙, L̂(𝜙) is regular

Proof Outline.
By induction on the structure of 𝜙.
⋆ 𝜙 = ⊤, 𝜙 = ⊥: In these cases L̂(𝜙) is Σ∗𝜙 or ∅, thus regular.

⋆ 𝜙 = (x < y): Then L̂(𝜙) = (0
0)∗ (1

0) (0
0)∗ (0

1) (0
0) or L̂(𝜙) = (0

0)∗ (0
1) (0

0)∗ (1
0) (0

0),
both of them regular.

⋆ 𝜙 = X(y): Then L̂(𝜙) = ((0
0) ∪ (1

0))∗ (1
1) ((0

0) ∪ (1
0))∗ is regular.

⋆ 𝜙 ∨ 𝜓, ∃x.𝜙: ?

The Main Lemma
let us denote by L̂(𝜙) ⊆ Σ∗𝜙 the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}
Lemma
For any WMSO formula 𝜙, L̂(𝜙) is regular

Proof Outline.
By induction on the structure of 𝜙.

⋆ 𝜙 = ⊤, 𝜙 = ⊥: In these cases L̂(𝜙) is Σ∗𝜙 or ∅, thus regular.

⋆ 𝜙 = (x < y): Then L̂(𝜙) = (0
0)∗ (1

0) (0
0)∗ (0

1) (0
0) or L̂(𝜙) = (0

0)∗ (0
1) (0

0)∗ (1
0) (0

0),
both of them regular.

⋆ 𝜙 = X(y): Then L̂(𝜙) = ((0
0) ∪ (1

0))∗ (1
1) ((0

0) ∪ (1
0))∗ is regular.

⋆ 𝜙 ∨ 𝜓, ∃x.𝜙: ?

The Main Lemma
let us denote by L̂(𝜙) ⊆ Σ∗𝜙 the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}
Lemma
For any WMSO formula 𝜙, L̂(𝜙) is regular

Proof Outline.
By induction on the structure of 𝜙.
⋆ 𝜙 = ⊤, 𝜙 = ⊥: ?

In these cases L̂(𝜙) is Σ∗𝜙 or ∅, thus regular.

⋆ 𝜙 = (x < y): Then L̂(𝜙) = (0
0)∗ (1

0) (0
0)∗ (0

1) (0
0) or L̂(𝜙) = (0

0)∗ (0
1) (0

0)∗ (1
0) (0

0),
both of them regular.

⋆ 𝜙 = X(y): Then L̂(𝜙) = ((0
0) ∪ (1

0))∗ (1
1) ((0

0) ∪ (1
0))∗ is regular.

⋆ 𝜙 ∨ 𝜓, ∃x.𝜙: ?

The Main Lemma
let us denote by L̂(𝜙) ⊆ Σ∗𝜙 the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}
Lemma
For any WMSO formula 𝜙, L̂(𝜙) is regular

Proof Outline.
By induction on the structure of 𝜙.
⋆ 𝜙 = ⊤, 𝜙 = ⊥: In these cases L̂(𝜙) is Σ∗𝜙 or ∅, thus regular.

⋆ 𝜙 = (x < y): Then L̂(𝜙) = (0
0)∗ (1

0) (0
0)∗ (0

1) (0
0) or L̂(𝜙) = (0

0)∗ (0
1) (0

0)∗ (1
0) (0

0),
both of them regular.

⋆ 𝜙 = X(y): Then L̂(𝜙) = ((0
0) ∪ (1

0))∗ (1
1) ((0

0) ∪ (1
0))∗ is regular.

⋆ 𝜙 ∨ 𝜓, ∃x.𝜙: ?

The Main Lemma
let us denote by L̂(𝜙) ⊆ Σ∗𝜙 the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}
Lemma
For any WMSO formula 𝜙, L̂(𝜙) is regular

Proof Outline.
By induction on the structure of 𝜙.
⋆ 𝜙 = ⊤, 𝜙 = ⊥: In these cases L̂(𝜙) is Σ∗𝜙 or ∅, thus regular.

⋆ 𝜙 = (x < y): ?

Then L̂(𝜙) = (0
0)∗ (1

0) (0
0)∗ (0

1) (0
0) or L̂(𝜙) = (0

0)∗ (0
1) (0

0)∗ (1
0) (0

0),
both of them regular.

⋆ 𝜙 = X(y): Then L̂(𝜙) = ((0
0) ∪ (1

0))∗ (1
1) ((0

0) ∪ (1
0))∗ is regular.

⋆ 𝜙 ∨ 𝜓, ∃x.𝜙: ?

The Main Lemma
let us denote by L̂(𝜙) ⊆ Σ∗𝜙 the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}
Lemma
For any WMSO formula 𝜙, L̂(𝜙) is regular

Proof Outline.
By induction on the structure of 𝜙.
⋆ 𝜙 = ⊤, 𝜙 = ⊥: In these cases L̂(𝜙) is Σ∗𝜙 or ∅, thus regular.

⋆ 𝜙 = (x < y): Then L̂(𝜙) = (0
0)∗ (1

0) (0
0)∗ (0

1) (0
0) or L̂(𝜙) = (0

0)∗ (0
1) (0

0)∗ (1
0) (0

0),
both of them regular.

⋆ 𝜙 = X(y): Then L̂(𝜙) = ((0
0) ∪ (1

0))∗ (1
1) ((0

0) ∪ (1
0))∗ is regular.

⋆ 𝜙 ∨ 𝜓, ∃x.𝜙: ?

The Main Lemma
let us denote by L̂(𝜙) ⊆ Σ∗𝜙 the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}
Lemma
For any WMSO formula 𝜙, L̂(𝜙) is regular

Proof Outline.
By induction on the structure of 𝜙.
⋆ 𝜙 = ⊤, 𝜙 = ⊥: In these cases L̂(𝜙) is Σ∗𝜙 or ∅, thus regular.

⋆ 𝜙 = (x < y): Then L̂(𝜙) = (0
0)∗ (1

0) (0
0)∗ (0

1) (0
0) or L̂(𝜙) = (0

0)∗ (0
1) (0

0)∗ (1
0) (0

0),
both of them regular.

⋆ 𝜙 = X(y): ?

Then L̂(𝜙) = ((0
0) ∪ (1

0))∗ (1
1) ((0

0) ∪ (1
0))∗ is regular.

⋆ 𝜙 ∨ 𝜓, ∃x.𝜙: ?

The Main Lemma
let us denote by L̂(𝜙) ⊆ Σ∗𝜙 the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}
Lemma
For any WMSO formula 𝜙, L̂(𝜙) is regular

Proof Outline.
By induction on the structure of 𝜙.
⋆ 𝜙 = ⊤, 𝜙 = ⊥: In these cases L̂(𝜙) is Σ∗𝜙 or ∅, thus regular.

⋆ 𝜙 = (x < y): Then L̂(𝜙) = (0
0)∗ (1

0) (0
0)∗ (0

1) (0
0) or L̂(𝜙) = (0

0)∗ (0
1) (0

0)∗ (1
0) (0

0),
both of them regular.

⋆ 𝜙 = X(y): Then L̂(𝜙) = ((0
0) ∪ (1

0))∗ (1
1) ((0

0) ∪ (1
0))∗ is regular.

⋆ 𝜙 ∨ 𝜓, ∃x.𝜙: ?

The Main Lemma
let us denote by L̂(𝜙) ⊆ Σ∗𝜙 the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}
Lemma
For any WMSO formula 𝜙, L̂(𝜙) is regular

Proof Outline.
By induction on the structure of 𝜙.
⋆ 𝜙 = ⊤, 𝜙 = ⊥: In these cases L̂(𝜙) is Σ∗𝜙 or ∅, thus regular.

⋆ 𝜙 = (x < y): Then L̂(𝜙) = (0
0)∗ (1

0) (0
0)∗ (0

1) (0
0) or L̂(𝜙) = (0

0)∗ (0
1) (0

0)∗ (1
0) (0

0),
both of them regular.

⋆ 𝜙 = X(y): Then L̂(𝜙) = ((0
0) ∪ (1

0))∗ (1
1) ((0

0) ∪ (1
0))∗ is regular.

⋆ 𝜙 ∨ 𝜓, ∃x.𝜙: ?

Homomorphisms
Consider h ∶ Σ → Γ∗ and extend it to words w by replacing each letter a in w by h(w):

h(𝜖) ≜ 𝜖 h(aw) ≜ h(a) ⋅ h(w)
⋆ each function h ∶ Σ∗ → Γ∗ defined this way is called a homomorphism

⋆ for a language L ⊆ Σ∗ we let h(L) ≜ {h(w) ∣ w ∈ L} be the application of h to L

⋆ for a language L ⊆ Γ∗ we let h−1(L) ≜ {w ∣ h(w) ∈ L} be the inverse application of h to
L

Lemma (Closure of REG(Σ) under homomorphism)

The set of regular languages is closed under (inverse) applications of homomorphisms.

Homomorphisms
Consider h ∶ Σ → Γ∗ and extend it to words w by replacing each letter a in w by h(w):

h(𝜖) ≜ 𝜖 h(aw) ≜ h(a) ⋅ h(w)
⋆ each function h ∶ Σ∗ → Γ∗ defined this way is called a homomorphism
⋆ for a language L ⊆ Σ∗ we let h(L) ≜ {h(w) ∣ w ∈ L} be the application of h to L

⋆ for a language L ⊆ Γ∗ we let h−1(L) ≜ {w ∣ h(w) ∈ L} be the inverse application of h to
L

Lemma (Closure of REG(Σ) under homomorphism)

The set of regular languages is closed under (inverse) applications of homomorphisms.

Homomorphisms
Consider h ∶ Σ → Γ∗ and extend it to words w by replacing each letter a in w by h(w):

h(𝜖) ≜ 𝜖 h(aw) ≜ h(a) ⋅ h(w)
⋆ each function h ∶ Σ∗ → Γ∗ defined this way is called a homomorphism
⋆ for a language L ⊆ Σ∗ we let h(L) ≜ {h(w) ∣ w ∈ L} be the application of h to L

⋆ for a language L ⊆ Γ∗ we let h−1(L) ≜ {w ∣ h(w) ∈ L} be the inverse application of h to
L

Lemma (Closure of REG(Σ) under homomorphism)

The set of regular languages is closed under (inverse) applications of homomorphisms.

Homomorphisms
Consider h ∶ Σ → Γ∗ and extend it to words w by replacing each letter a in w by h(w):

h(𝜖) ≜ 𝜖 h(aw) ≜ h(a) ⋅ h(w)
⋆ each function h ∶ Σ∗ → Γ∗ defined this way is called a homomorphism
⋆ for a language L ⊆ Σ∗ we let h(L) ≜ {h(w) ∣ w ∈ L} be the application of h to L

⋆ for a language L ⊆ Γ∗ we let h−1(L) ≜ {w ∣ h(w) ∈ L} be the inverse application of h to
L

Lemma (Closure of REG(Σ) under homomorphism)

The set of regular languages is closed under (inverse) applications of homomorphisms.

Example
For 1 ≤ i ≤ k, let deli,k ∶ {0, 1}k → {0, 1}k−1 delete the i-th entry of its argument, e.g.,

del1,3
⎛⎜⎝⎛⎜⎝ a

b
c

⎞⎟⎠⎞⎟⎠ ≜ (b
c) del2,3

⎛⎜⎝⎛⎜⎝ a
b
c

⎞⎟⎠⎞⎟⎠ ≜ (a
c) del3,3

⎛⎜⎝⎛⎜⎝ a
b
c

⎞⎟⎠⎞⎟⎠ ≜ (a
b)

and thus

del1,3
⎛⎜⎜⎝⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗⎞⎟⎟⎠ = (1

0) (0
1)∗ del−1

1,3 ((1
0) (0

1)∗) =
⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 1
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 1

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 1

1
0

⎞⎟⎠⎛⎜⎝ 1
0
1

⎞⎟⎠
∗

Concretely, for WMSO formulas 𝜙 over V2 = {X1, . . . ,Xm}, V1 = {ym+1, . . . , ym+n}:
⋆ for 1 ≤ i ≤ n, deli,n+m(L̂(𝜙))= deli,n+m({𝛼 ∣ 𝛼 ⊧ 𝜙})

≈ {𝛽 ∣ 𝛽[Xi ↦ S] ⊧ 𝜙 for some S ⊆ N} = L̂(∃Xi.𝜙)
⋆ inversely, del−1

i,1+n+m(L̂(𝜙)) = {𝛼[X ↦ S] ∣ 𝛼 ⊧ 𝜙 and S ⊆ N} extends valid assignments
⋆ similar for first order variables yi (m + 1 ≤ i ≤ m + n)
⋆ Attention: One has to be slightly more careful with codings.

𝜙 ↝
X
Y (a1

b1
)⋯ (an

bn
) (an+1

1) (1
0) ∃X.𝜙 ↝ (b1)⋯ (bn) (1) (0)

Example
For 1 ≤ i ≤ k, let deli,k ∶ {0, 1}k → {0, 1}k−1 delete the i-th entry of its argument, e.g.,

del1,3
⎛⎜⎝⎛⎜⎝ a

b
c

⎞⎟⎠⎞⎟⎠ ≜ (b
c) del2,3

⎛⎜⎝⎛⎜⎝ a
b
c

⎞⎟⎠⎞⎟⎠ ≜ (a
c) del3,3

⎛⎜⎝⎛⎜⎝ a
b
c

⎞⎟⎠⎞⎟⎠ ≜ (a
b)

and thus

del1,3
⎛⎜⎜⎝⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗⎞⎟⎟⎠ = (1

0) (0
1)∗ del−1

1,3 ((1
0) (0

1)∗) =
⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 1
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 1

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 1

1
0

⎞⎟⎠⎛⎜⎝ 1
0
1

⎞⎟⎠
∗

Concretely, for WMSO formulas 𝜙 over V2 = {X1, . . . ,Xm}, V1 = {ym+1, . . . , ym+n}:
⋆ for 1 ≤ i ≤ n, deli,n+m(L̂(𝜙))= deli,n+m({𝛼 ∣ 𝛼 ⊧ 𝜙})

≈ {𝛽 ∣ 𝛽[Xi ↦ S] ⊧ 𝜙 for some S ⊆ N} = L̂(∃Xi.𝜙)
⋆ inversely, del−1

i,1+n+m(L̂(𝜙)) = {𝛼[X ↦ S] ∣ 𝛼 ⊧ 𝜙 and S ⊆ N} extends valid assignments
⋆ similar for first order variables yi (m + 1 ≤ i ≤ m + n)
⋆ Attention: One has to be slightly more careful with codings.

𝜙 ↝
X
Y (a1

b1
)⋯ (an

bn
) (an+1

1) (1
0) ∃X.𝜙 ↝ (b1)⋯ (bn) (1) (0)

Example
For 1 ≤ i ≤ k, let deli,k ∶ {0, 1}k → {0, 1}k−1 delete the i-th entry of its argument, e.g.,

del1,3
⎛⎜⎝⎛⎜⎝ a

b
c

⎞⎟⎠⎞⎟⎠ ≜ (b
c) del2,3

⎛⎜⎝⎛⎜⎝ a
b
c

⎞⎟⎠⎞⎟⎠ ≜ (a
c) del3,3

⎛⎜⎝⎛⎜⎝ a
b
c

⎞⎟⎠⎞⎟⎠ ≜ (a
b)

and thus

del1,3
⎛⎜⎜⎝⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗⎞⎟⎟⎠ = (1

0) (0
1)∗ del−1

1,3 ((1
0) (0

1)∗) =
⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 1
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 1

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 1

1
0

⎞⎟⎠⎛⎜⎝ 1
0
1

⎞⎟⎠
∗

Concretely, for WMSO formulas 𝜙 over V2 = {X1, . . . ,Xm}, V1 = {ym+1, . . . , ym+n}:

⋆ for 1 ≤ i ≤ n, deli,n+m(L̂(𝜙))= deli,n+m({𝛼 ∣ 𝛼 ⊧ 𝜙})
≈ {𝛽 ∣ 𝛽[Xi ↦ S] ⊧ 𝜙 for some S ⊆ N} = L̂(∃Xi.𝜙)

⋆ inversely, del−1
i,1+n+m(L̂(𝜙)) = {𝛼[X ↦ S] ∣ 𝛼 ⊧ 𝜙 and S ⊆ N} extends valid assignments

⋆ similar for first order variables yi (m + 1 ≤ i ≤ m + n)
⋆ Attention: One has to be slightly more careful with codings.

𝜙 ↝
X
Y (a1

b1
)⋯ (an

bn
) (an+1

1) (1
0) ∃X.𝜙 ↝ (b1)⋯ (bn) (1) (0)

Example
For 1 ≤ i ≤ k, let deli,k ∶ {0, 1}k → {0, 1}k−1 delete the i-th entry of its argument, e.g.,

del1,3
⎛⎜⎝⎛⎜⎝ a

b
c

⎞⎟⎠⎞⎟⎠ ≜ (b
c) del2,3

⎛⎜⎝⎛⎜⎝ a
b
c

⎞⎟⎠⎞⎟⎠ ≜ (a
c) del3,3

⎛⎜⎝⎛⎜⎝ a
b
c

⎞⎟⎠⎞⎟⎠ ≜ (a
b)

and thus

del1,3
⎛⎜⎜⎝⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗⎞⎟⎟⎠ = (1

0) (0
1)∗ del−1

1,3 ((1
0) (0

1)∗) =
⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 1
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 1

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 1

1
0

⎞⎟⎠⎛⎜⎝ 1
0
1

⎞⎟⎠
∗

Concretely, for WMSO formulas 𝜙 over V2 = {X1, . . . ,Xm}, V1 = {ym+1, . . . , ym+n}:
⋆ for 1 ≤ i ≤ n, deli,n+m(L̂(𝜙))= deli,n+m({𝛼 ∣ 𝛼 ⊧ 𝜙})

≈ {𝛽 ∣ 𝛽[Xi ↦ S] ⊧ 𝜙 for some S ⊆ N} = L̂(∃Xi.𝜙)

⋆ inversely, del−1
i,1+n+m(L̂(𝜙)) = {𝛼[X ↦ S] ∣ 𝛼 ⊧ 𝜙 and S ⊆ N} extends valid assignments

⋆ similar for first order variables yi (m + 1 ≤ i ≤ m + n)
⋆ Attention: One has to be slightly more careful with codings.

𝜙 ↝
X
Y (a1

b1
)⋯ (an

bn
) (an+1

1) (1
0) ∃X.𝜙 ↝ (b1)⋯ (bn) (1) (0)

Example
For 1 ≤ i ≤ k, let deli,k ∶ {0, 1}k → {0, 1}k−1 delete the i-th entry of its argument, e.g.,

del1,3
⎛⎜⎝⎛⎜⎝ a

b
c

⎞⎟⎠⎞⎟⎠ ≜ (b
c) del2,3

⎛⎜⎝⎛⎜⎝ a
b
c

⎞⎟⎠⎞⎟⎠ ≜ (a
c) del3,3

⎛⎜⎝⎛⎜⎝ a
b
c

⎞⎟⎠⎞⎟⎠ ≜ (a
b)

and thus

del1,3
⎛⎜⎜⎝⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗⎞⎟⎟⎠ = (1

0) (0
1)∗ del−1

1,3 ((1
0) (0

1)∗) =
⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 1
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 1

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 1

1
0

⎞⎟⎠⎛⎜⎝ 1
0
1

⎞⎟⎠
∗

Concretely, for WMSO formulas 𝜙 over V2 = {X1, . . . ,Xm}, V1 = {ym+1, . . . , ym+n}:
⋆ for 1 ≤ i ≤ n, deli,n+m(L̂(𝜙))= deli,n+m({𝛼 ∣ 𝛼 ⊧ 𝜙})

≈ {𝛽 ∣ 𝛽[Xi ↦ S] ⊧ 𝜙 for some S ⊆ N} = L̂(∃Xi.𝜙)
⋆ inversely, del−1

i,1+n+m(L̂(𝜙)) = {𝛼[X ↦ S] ∣ 𝛼 ⊧ 𝜙 and S ⊆ N} extends valid assignments

⋆ similar for first order variables yi (m + 1 ≤ i ≤ m + n)
⋆ Attention: One has to be slightly more careful with codings.

𝜙 ↝
X
Y (a1

b1
)⋯ (an

bn
) (an+1

1) (1
0) ∃X.𝜙 ↝ (b1)⋯ (bn) (1) (0)

Example
For 1 ≤ i ≤ k, let deli,k ∶ {0, 1}k → {0, 1}k−1 delete the i-th entry of its argument, e.g.,

del1,3
⎛⎜⎝⎛⎜⎝ a

b
c

⎞⎟⎠⎞⎟⎠ ≜ (b
c) del2,3

⎛⎜⎝⎛⎜⎝ a
b
c

⎞⎟⎠⎞⎟⎠ ≜ (a
c) del3,3

⎛⎜⎝⎛⎜⎝ a
b
c

⎞⎟⎠⎞⎟⎠ ≜ (a
b)

and thus

del1,3
⎛⎜⎜⎝⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗⎞⎟⎟⎠ = (1

0) (0
1)∗ del−1

1,3 ((1
0) (0

1)∗) =
⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 1
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 1

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 1

1
0

⎞⎟⎠⎛⎜⎝ 1
0
1

⎞⎟⎠
∗

Concretely, for WMSO formulas 𝜙 over V2 = {X1, . . . ,Xm}, V1 = {ym+1, . . . , ym+n}:
⋆ for 1 ≤ i ≤ n, deli,n+m(L̂(𝜙))= deli,n+m({𝛼 ∣ 𝛼 ⊧ 𝜙})

≈ {𝛽 ∣ 𝛽[Xi ↦ S] ⊧ 𝜙 for some S ⊆ N} = L̂(∃Xi.𝜙)
⋆ inversely, del−1

i,1+n+m(L̂(𝜙)) = {𝛼[X ↦ S] ∣ 𝛼 ⊧ 𝜙 and S ⊆ N} extends valid assignments
⋆ similar for first order variables yi (m + 1 ≤ i ≤ m + n)

⋆ Attention: One has to be slightly more careful with codings.

𝜙 ↝
X
Y (a1

b1
)⋯ (an

bn
) (an+1

1) (1
0) ∃X.𝜙 ↝ (b1)⋯ (bn) (1) (0)

Example
For 1 ≤ i ≤ k, let deli,k ∶ {0, 1}k → {0, 1}k−1 delete the i-th entry of its argument, e.g.,

del1,3
⎛⎜⎝⎛⎜⎝ a

b
c

⎞⎟⎠⎞⎟⎠ ≜ (b
c) del2,3

⎛⎜⎝⎛⎜⎝ a
b
c

⎞⎟⎠⎞⎟⎠ ≜ (a
c) del3,3

⎛⎜⎝⎛⎜⎝ a
b
c

⎞⎟⎠⎞⎟⎠ ≜ (a
b)

and thus

del1,3
⎛⎜⎜⎝⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗⎞⎟⎟⎠ = (1

0) (0
1)∗ del−1

1,3 ((1
0) (0

1)∗) =
⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 1
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 1

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 1

1
0

⎞⎟⎠⎛⎜⎝ 1
0
1

⎞⎟⎠
∗

Concretely, for WMSO formulas 𝜙 over V2 = {X1, . . . ,Xm}, V1 = {ym+1, . . . , ym+n}:
⋆ for 1 ≤ i ≤ n, deli,n+m(L̂(𝜙))= deli,n+m({𝛼 ∣ 𝛼 ⊧ 𝜙})

≈ {𝛽 ∣ 𝛽[Xi ↦ S] ⊧ 𝜙 for some S ⊆ N} = L̂(∃Xi.𝜙)
⋆ inversely, del−1

i,1+n+m(L̂(𝜙)) = {𝛼[X ↦ S] ∣ 𝛼 ⊧ 𝜙 and S ⊆ N} extends valid assignments
⋆ similar for first order variables yi (m + 1 ≤ i ≤ m + n)
⋆ Attention: One has to be slightly more careful with codings.

𝜙 ↝
X
Y (a1

b1
)⋯ (an

bn
) (an+1

1) (1
0) ∃X.𝜙 ↝ (b1)⋯ (bn) (1) (0)

The Main Lemma (Continued)

Lemma
For any WMSO formula 𝜙, L̂(𝜙) is regular

Proof Outline.
⋆ 𝜙 = 𝜓1 ∨ 𝜓2:

– by induction hypothesis, L1 ≜ L̂(𝜓1) and L2 ≜ L̂(𝜓2) are regular
– L1 and L2 speak about assignments to variables in 𝜓1 and 𝜓2
– inverse applications of deli,∗ extends these codings to valuations over fv(𝜓1 ∨ 𝜓2)
– their union yields L̂(𝜓1 ∨ 𝜓2) and is thus regular

⋆ 𝜙 = ¬𝜓: Then L̂(𝜙) = L̂(𝜓) ∩ Lvalid.
– Lvalid ∈ REG constrains Σ𝜙 to valid codings (e.g., for FO variables, only one bit is set)
– by induction hypothesis and closure properties of REG, L̂(𝜙) is valid

⋆ 𝜙 = ∃Xi.𝜓 or 𝜙 = ∃yj.𝜓: from induction hypothesis, using homomorphism deli,∗ to drop
the rows referring to Xi or yj; taking care of trailing zero-vectors (see previous slide)

The Main Lemma (Continued)

Lemma
For any WMSO formula 𝜙, L̂(𝜙) is regular

Proof Outline.
⋆ 𝜙 = 𝜓1 ∨ 𝜓2:

– by induction hypothesis, L1 ≜ L̂(𝜓1) and L2 ≜ L̂(𝜓2) are regular
– L1 and L2 speak about assignments to variables in 𝜓1 and 𝜓2
– inverse applications of deli,∗ extends these codings to valuations over fv(𝜓1 ∨ 𝜓2)
– their union yields L̂(𝜓1 ∨ 𝜓2) and is thus regular

⋆ 𝜙 = ¬𝜓: Then L̂(𝜙) = L̂(𝜓) ∩ Lvalid.
– Lvalid ∈ REG constrains Σ𝜙 to valid codings (e.g., for FO variables, only one bit is set)
– by induction hypothesis and closure properties of REG, L̂(𝜙) is valid

⋆ 𝜙 = ∃Xi.𝜓 or 𝜙 = ∃yj.𝜓: from induction hypothesis, using homomorphism deli,∗ to drop
the rows referring to Xi or yj; taking care of trailing zero-vectors (see previous slide)

The Main Lemma (Continued)

Lemma
For any WMSO formula 𝜙, L̂(𝜙) is regular

Proof Outline.
⋆ 𝜙 = 𝜓1 ∨ 𝜓2:

– by induction hypothesis, L1 ≜ L̂(𝜓1) and L2 ≜ L̂(𝜓2) are regular
– L1 and L2 speak about assignments to variables in 𝜓1 and 𝜓2
– inverse applications of deli,∗ extends these codings to valuations over fv(𝜓1 ∨ 𝜓2)
– their union yields L̂(𝜓1 ∨ 𝜓2) and is thus regular

⋆ 𝜙 = ¬𝜓: Then L̂(𝜙) = L̂(𝜓) ∩ Lvalid.
– Lvalid ∈ REG constrains Σ𝜙 to valid codings (e.g., for FO variables, only one bit is set)
– by induction hypothesis and closure properties of REG, L̂(𝜙) is valid

⋆ 𝜙 = ∃Xi.𝜓 or 𝜙 = ∃yj.𝜓: from induction hypothesis, using homomorphism deli,∗ to drop
the rows referring to Xi or yj; taking care of trailing zero-vectors (see previous slide)

Büchi-Elgot-Trakhtenbrot

Theorem
Let L ⊆ Σ∗ be a language. The following are equivalent:
⋆ L is regular
⋆ L is recognizable by a finite automata
⋆ L is WMSO definable

Proof Outline.

⋆ (1) ⇔ (2) Kleene’s Theorem.
⋆ (2) ⇒ (3) Given an Automata A, we define a WMSO formula 𝜙A s.t. L(A) = L(𝜙A)
⋆ (3) ⇒ (1) Given a WMSO formula 𝜙, define a regular Language L𝜙 s.t. L(𝜙) = L𝜙

– we can define a homomorphism h ∶ {0, 1}∣Σ∣ → Σ, and thereby a function from codings 𝛼 to
words w

– this homomorphism maps L̂(𝜙) to L(𝜙) (how?)

– as the former is regular and REG(Σ) closed under homomorphisms, the direction follows

Büchi-Elgot-Trakhtenbrot

Theorem
Let L ⊆ Σ∗ be a language. The following are equivalent:
⋆ L is regular
⋆ L is recognizable by a finite automata
⋆ L is WMSO definable

Proof Outline.

⋆ (1) ⇔ (2) Kleene’s Theorem.
⋆ (2) ⇒ (3) Given an Automata A, we define a WMSO formula 𝜙A s.t. L(A) = L(𝜙A)
⋆ (3) ⇒ (1) Given a WMSO formula 𝜙, define a regular Language L𝜙 s.t. L(𝜙) = L𝜙

– we can define a homomorphism h ∶ {0, 1}∣Σ∣ → Σ, and thereby a function from codings 𝛼 to
words w

– this homomorphism maps L̂(𝜙) to L(𝜙) (how?)
– as the former is regular and REG(Σ) closed under homomorphisms, the direction follows

Decision Problems

Decision Problems for WMSO
The Satisfiability Problem
⋆ Given: WMSO formula 𝜙

⋆ Question: is there 𝛼 s.t 𝛼 ⊧ 𝜙?

The Validity Problem
⋆ Given: WMSO formula 𝜙

⋆ Question: 𝛼 ⊧ 𝜙 for all assignments 𝛼?

Theorem
Satisfiability and Validity are decidable for WMSO.

Proof Outline.
through the construction of corresponding DFAs, checking emptiness

Decision Problems for WMSO
The Satisfiability Problem
⋆ Given: WMSO formula 𝜙

⋆ Question: is there 𝛼 s.t 𝛼 ⊧ 𝜙?

The Validity Problem
⋆ Given: WMSO formula 𝜙

⋆ Question: 𝛼 ⊧ 𝜙 for all assignments 𝛼?

Theorem
Satisfiability and Validity are decidable for WMSO.

Proof Outline.
through the construction of corresponding DFAs, checking emptiness

Complexity
⋆ Emptiness for an DFA A𝜙 is in PTIME (in the number ∣A𝜙∣ of nodes of A𝜙)
⋆ the complexity of satisfiability/validity thus essentially depends on the size of A𝜙

⋆ A𝜙 is constructed recursively on the structure of 𝜙
– base cases 𝜙 = ⊤, ⊥, (x < y), X(y): DFAs of constant size O(1)
– disjunction 𝜙 = 𝜓1 ∨ 𝜓2: A𝜙 DFA-union of A𝜓1 and A𝜓2 O(∣A𝜓1∣ + ∣A𝜓2∣)
– negations 𝜙 = ¬𝜓: A𝜙 DFA-complement of A𝜓 O(∣A𝜓∣)
– existentials 𝜙 = ∃x.𝜓 or 𝜙 = ∃X.𝜓: homomorphism application and determinisation 2∣A𝜓∣

Theorem (Hardness)

Satisfiability and validity are in DTIME(2c
O(n)), where 2c

k is a tower of exponentials 22. .
.2

c

of
height k.

Theorem (Completeness)

Any language L decidable in time DTIME(2c
O(n)) can be reduced (within polynomial time) to

the satisfiability of formulas 𝜙w (w ∈ L) of size polynomial in ∣w∣.

Complexity
⋆ Emptiness for an DFA A𝜙 is in PTIME (in the number ∣A𝜙∣ of nodes of A𝜙)
⋆ the complexity of satisfiability/validity thus essentially depends on the size of A𝜙

⋆ A𝜙 is constructed recursively on the structure of 𝜙

– base cases 𝜙 = ⊤, ⊥, (x < y), X(y): DFAs of constant size O(1)
– disjunction 𝜙 = 𝜓1 ∨ 𝜓2: A𝜙 DFA-union of A𝜓1 and A𝜓2 O(∣A𝜓1∣ + ∣A𝜓2∣)
– negations 𝜙 = ¬𝜓: A𝜙 DFA-complement of A𝜓 O(∣A𝜓∣)
– existentials 𝜙 = ∃x.𝜓 or 𝜙 = ∃X.𝜓: homomorphism application and determinisation 2∣A𝜓∣

Theorem (Hardness)

Satisfiability and validity are in DTIME(2c
O(n)), where 2c

k is a tower of exponentials 22. .
.2

c

of
height k.

Theorem (Completeness)

Any language L decidable in time DTIME(2c
O(n)) can be reduced (within polynomial time) to

the satisfiability of formulas 𝜙w (w ∈ L) of size polynomial in ∣w∣.

Complexity
⋆ Emptiness for an DFA A𝜙 is in PTIME (in the number ∣A𝜙∣ of nodes of A𝜙)
⋆ the complexity of satisfiability/validity thus essentially depends on the size of A𝜙

⋆ A𝜙 is constructed recursively on the structure of 𝜙
– base cases 𝜙 = ⊤, ⊥, (x < y), X(y): DFAs of constant size O(1)

– disjunction 𝜙 = 𝜓1 ∨ 𝜓2: A𝜙 DFA-union of A𝜓1 and A𝜓2 O(∣A𝜓1∣ + ∣A𝜓2∣)
– negations 𝜙 = ¬𝜓: A𝜙 DFA-complement of A𝜓 O(∣A𝜓∣)
– existentials 𝜙 = ∃x.𝜓 or 𝜙 = ∃X.𝜓: homomorphism application and determinisation 2∣A𝜓∣

Theorem (Hardness)

Satisfiability and validity are in DTIME(2c
O(n)), where 2c

k is a tower of exponentials 22. .
.2

c

of
height k.

Theorem (Completeness)

Any language L decidable in time DTIME(2c
O(n)) can be reduced (within polynomial time) to

the satisfiability of formulas 𝜙w (w ∈ L) of size polynomial in ∣w∣.

Complexity
⋆ Emptiness for an DFA A𝜙 is in PTIME (in the number ∣A𝜙∣ of nodes of A𝜙)
⋆ the complexity of satisfiability/validity thus essentially depends on the size of A𝜙

⋆ A𝜙 is constructed recursively on the structure of 𝜙
– base cases 𝜙 = ⊤, ⊥, (x < y), X(y): DFAs of constant size O(1)
– disjunction 𝜙 = 𝜓1 ∨ 𝜓2: A𝜙 DFA-union of A𝜓1 and A𝜓2 O(∣A𝜓1∣ + ∣A𝜓2∣)

– negations 𝜙 = ¬𝜓: A𝜙 DFA-complement of A𝜓 O(∣A𝜓∣)
– existentials 𝜙 = ∃x.𝜓 or 𝜙 = ∃X.𝜓: homomorphism application and determinisation 2∣A𝜓∣

Theorem (Hardness)

Satisfiability and validity are in DTIME(2c
O(n)), where 2c

k is a tower of exponentials 22. .
.2

c

of
height k.

Theorem (Completeness)

Any language L decidable in time DTIME(2c
O(n)) can be reduced (within polynomial time) to

the satisfiability of formulas 𝜙w (w ∈ L) of size polynomial in ∣w∣.

Complexity
⋆ Emptiness for an DFA A𝜙 is in PTIME (in the number ∣A𝜙∣ of nodes of A𝜙)
⋆ the complexity of satisfiability/validity thus essentially depends on the size of A𝜙

⋆ A𝜙 is constructed recursively on the structure of 𝜙
– base cases 𝜙 = ⊤, ⊥, (x < y), X(y): DFAs of constant size O(1)
– disjunction 𝜙 = 𝜓1 ∨ 𝜓2: A𝜙 DFA-union of A𝜓1 and A𝜓2 O(∣A𝜓1∣ + ∣A𝜓2∣)
– negations 𝜙 = ¬𝜓: A𝜙 DFA-complement of A𝜓 O(∣A𝜓∣)

– existentials 𝜙 = ∃x.𝜓 or 𝜙 = ∃X.𝜓: homomorphism application and determinisation 2∣A𝜓∣
Theorem (Hardness)

Satisfiability and validity are in DTIME(2c
O(n)), where 2c

k is a tower of exponentials 22. .
.2

c

of
height k.

Theorem (Completeness)

Any language L decidable in time DTIME(2c
O(n)) can be reduced (within polynomial time) to

the satisfiability of formulas 𝜙w (w ∈ L) of size polynomial in ∣w∣.

Complexity
⋆ Emptiness for an DFA A𝜙 is in PTIME (in the number ∣A𝜙∣ of nodes of A𝜙)
⋆ the complexity of satisfiability/validity thus essentially depends on the size of A𝜙

⋆ A𝜙 is constructed recursively on the structure of 𝜙
– base cases 𝜙 = ⊤, ⊥, (x < y), X(y): DFAs of constant size O(1)
– disjunction 𝜙 = 𝜓1 ∨ 𝜓2: A𝜙 DFA-union of A𝜓1 and A𝜓2 O(∣A𝜓1∣ + ∣A𝜓2∣)
– negations 𝜙 = ¬𝜓: A𝜙 DFA-complement of A𝜓 O(∣A𝜓∣)
– existentials 𝜙 = ∃x.𝜓 or 𝜙 = ∃X.𝜓: homomorphism application and determinisation 2∣A𝜓∣

Theorem (Hardness)

Satisfiability and validity are in DTIME(2c
O(n)), where 2c

k is a tower of exponentials 22. .
.2

c

of
height k.

Theorem (Completeness)

Any language L decidable in time DTIME(2c
O(n)) can be reduced (within polynomial time) to

the satisfiability of formulas 𝜙w (w ∈ L) of size polynomial in ∣w∣.

Complexity
⋆ Emptiness for an DFA A𝜙 is in PTIME (in the number ∣A𝜙∣ of nodes of A𝜙)
⋆ the complexity of satisfiability/validity thus essentially depends on the size of A𝜙

⋆ A𝜙 is constructed recursively on the structure of 𝜙
– base cases 𝜙 = ⊤, ⊥, (x < y), X(y): DFAs of constant size O(1)
– disjunction 𝜙 = 𝜓1 ∨ 𝜓2: A𝜙 DFA-union of A𝜓1 and A𝜓2 O(∣A𝜓1∣ + ∣A𝜓2∣)
– negations 𝜙 = ¬𝜓: A𝜙 DFA-complement of A𝜓 O(∣A𝜓∣)
– existentials 𝜙 = ∃x.𝜓 or 𝜙 = ∃X.𝜓: homomorphism application and determinisation 2∣A𝜓∣

Theorem (Hardness)

Satisfiability and validity are in DTIME(2c
O(n)), where 2c

k is a tower of exponentials 22. .
.2

c

of
height k.

Theorem (Completeness)

Any language L decidable in time DTIME(2c
O(n)) can be reduced (within polynomial time) to

the satisfiability of formulas 𝜙w (w ∈ L) of size polynomial in ∣w∣.

Complexity
⋆ Emptiness for an DFA A𝜙 is in PTIME (in the number ∣A𝜙∣ of nodes of A𝜙)
⋆ the complexity of satisfiability/validity thus essentially depends on the size of A𝜙

⋆ A𝜙 is constructed recursively on the structure of 𝜙
– base cases 𝜙 = ⊤, ⊥, (x < y), X(y): DFAs of constant size O(1)
– disjunction 𝜙 = 𝜓1 ∨ 𝜓2: A𝜙 DFA-union of A𝜓1 and A𝜓2 O(∣A𝜓1∣ + ∣A𝜓2∣)
– negations 𝜙 = ¬𝜓: A𝜙 DFA-complement of A𝜓 O(∣A𝜓∣)
– existentials 𝜙 = ∃x.𝜓 or 𝜙 = ∃X.𝜓: homomorphism application and determinisation 2∣A𝜓∣

Theorem (Hardness)

Satisfiability and validity are in DTIME(2c
O(n)), where 2c

k is a tower of exponentials 22. .
.2

c

of
height k.

Theorem (Completeness)

Any language L decidable in time DTIME(2c
O(n)) can be reduced (within polynomial time) to

the satisfiability of formulas 𝜙w (w ∈ L) of size polynomial in ∣w∣.

WMSO and Alternating Finite Automata
⋆ What if we translate WMSO formulas to AFAs?

– for basic formulas x < y and X(y), the construction is as seen previously
– Boolean connectives are reflected directly in the transition
– Quantifier elimination through projection homomorphisms

⋆ this suggests resulting automaton is linear in size of formula
⇒ WMSO model-checking in exponential time, contradicting the lower-bound result!

Problem:
We do not have a polytime algorithm for homorphism applications on AFAs

WMSO and Alternating Finite Automata
⋆ What if we translate WMSO formulas to AFAs?

– for basic formulas x < y and X(y), the construction is as seen previously
– Boolean connectives are reflected directly in the transition
– Quantifier elimination through projection homomorphisms

⋆ this suggests resulting automaton is linear in size of formula
⇒ WMSO model-checking in exponential time, contradicting the lower-bound result!

Problem:
We do not have a polytime algorithm for homorphism applications on AFAs

Projections and AFAs

0 ∧

1

2

3

4

5

6

(0
0)

(0
0)

(0
0)

(0
0)

(0
1)

(0
1)

L(A) = ∅

⇒ 0 ∧

1

2

3

4

5

6

(0)

(0)

(0)

(0)
(0)

(0)
L(del2,2(A)) = {00}

WMSO and Alternating Finite Automata
⋆ What if we translate WMSO formulas to AFAs?

– for basic formulas x < y and X(y), the construction is as seen previously
– Boolean connectives are reflected directly in the transition
– Quantifier elimination through projection homomorphisms

⋆ this suggests resulting automaton is linear in size of formula
⇒ WMSO model-checking in exponential time, contradicting the lower-bound result!

Problem:
We do not have a polytime algorithm for homorphism applications on AFAs

