Advanced Logic

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2023/AL/

Martin Avanzini (martin.avanzini@inria.fr)
Etienne Lozes (etienne.lozes@univ-cotedazur.fr)

2nd Semester M1, 2023

Course Overview

Course Overview

★ course material self-contained, available online

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2023/AL

Course Overview

- ★ (non-)deterministic finite automata
- ★ MONA ()
- ★ (weak) monadic second order logic

$$\exists X \cap \in X$$

alternating automata, Presburger arithmetic

$$\exists m$$
.

- ★ recapitulation
- Büchi automata (infinite words)
- linear time logic

Lecture 3

$$\exists X.0 \in X \land \forall n.(n+1 \in X \leftrightarrow n \notin X)$$

$$\exists m. \exists n. m + n = 13 \land m = 1 + n$$

Globally(request → Future(release))

Lecture 6

Lecture 1

Lecture 2

Lecture 4

Lecture 5

- Lecture 7

Automata learning

Administratives

- 1. 1/3 of lecture devoted to exercise
 - to be uploaded in moodle before discussion
 - participation in discussion counts towards final grade
- 2. one practical exercise with MONA
 - solutions presented in class

3. final exam 50% of grade

Today's Lecture

Finite Word Automata Recap

- 1. regular languages and non-deterministic finite automata
- 2. closure properties, deterministic finite automata and Kleene's theorem
- 3. DFA equivalence and minimisation
- 4. decision procedures

Regular Languages and Non-Deterministic Finite Automata

Finite Words

- * alphabet $\Sigma = \{a, b, ...\}$ is finite set of letters
- ★ (finite) word $w = a_1, ..., a_n$ is finite sequence of letters $a_i \in \Sigma$
 - $|w| \triangleq n$ is length of word
 - $w[i] \triangleq a_i$ denotes *i*-th letter in word w
 - $-\epsilon$ is empty word of length 0
 - $-v \cdot w$ (or simply vw) denotes concatenation of words v and w

$$\epsilon \cdot w = w = w \cdot \epsilon$$
 $u \cdot (v \cdot w) = (u \cdot v) \cdot w$

 $-v^n$ is the word v concatenated with itself n times

Finite Words

- ★ alphabet $\Sigma = \{a, b, ...\}$ is finite set of letters
- ★ (finite) word $w = a_1, ..., a_n$ is finite sequence of letters $a_i \in \Sigma$
 - $|w| \triangleq n$ is length of word
 - $w[i] \triangleq a_i$ denotes *i*-th letter in word w
 - $-\epsilon$ is empty word of length 0
 - $-v \cdot w$ (or simply vw) denotes concatenation of words v and w

$$\epsilon \cdot w = w = w \cdot \epsilon$$
 $u \cdot (v \cdot w) = (u \cdot v) \cdot w$

- $-v^n$ is the word v concatenated with itself n times
- \star Σ^* denotes set of all words over alphabet Σ
- $\star \Sigma^+ \triangleq \Sigma^* \setminus \{\epsilon\}$ is set of non-empty words

- ★ a language $L \subseteq \Sigma^*$ is a set of words
 - for instance, \emptyset , $\{\epsilon\}$, $\{a, ab, abb, abbb, \dots\} = \{ab^n \mid n \in \mathbb{N}\}$, Σ^* are all languages

- ★ a language $L \subseteq \Sigma^*$ is a set of words
 - $-\text{ for instance, } \varnothing, \ \{\epsilon\}, \ \{\mathtt{aba}\}, \ \{\mathtt{a}, \mathtt{ab}, \mathtt{abb}, \mathtt{abbb}, \dots\} = \{\mathtt{ab}^n \mid n \in \mathbb{N}\}, \ \Sigma^* \text{ are all languages}$
- ★ new language definable from existing ones via set operations, e.g., if $L, M \subseteq \Sigma^*$:
 - union $L \cup M$, intersection $L \cap M$ and difference $L \setminus M$ are languages;

- ★ a language $L \subseteq \Sigma^*$ is a set of words
 - for instance, \emptyset , $\{\epsilon\}$, $\{a, ab, abb, abbb, \dots\} = \{ab^n \mid n \in \mathbb{N}\}$, Σ^* are all languages
- * new language definable from existing ones via set operations, e.g., if $L, M \subseteq \Sigma^*$:
 - union $L \cup M$, intersection $L \cap M$ and difference $L \setminus M$ are languages;
 - complement $\overline{L} \triangleq \Sigma^* \setminus L$ forms a language

- ★ a language $L \subseteq \Sigma^*$ is a set of words
 - for instance, \emptyset , $\{\epsilon\}$, $\{a, ab, abb, abbb, ...\} = \{ab^n \mid n \in \mathbb{N}\}$, Σ^* are all languages
- ★ new language definable from existing ones via set operations, e.g., if $L, M \subseteq \Sigma^*$:
 - union $L \cup M$, intersection $L \cap M$ and difference $L \setminus M$ are languages;
 - complement $\overline{L} \triangleq \Sigma^* \setminus L$ forms a language
 - concatenation $L \cdot M$ yields a language, defined by concatenating all words in L with those in M:

$$L \cdot M \triangleq \{v \cdot w \mid v \in L \text{ and } w \in M\}$$

- ★ a language $L \subseteq \Sigma^*$ is a set of words
 - for instance, \emptyset , $\{\epsilon\}$, $\{a, ab, abb, abbb, \dots\} = \{ab^n \mid n \in \mathbb{N}\}$, Σ^* are all languages
- ★ new language definable from existing ones via set operations, e.g., if $L, M \subseteq \Sigma^*$:
 - union $L \cup M$, intersection $L \cap M$ and difference $L \setminus M$ are languages;
 - complement $\overline{L} \triangleq \Sigma^* \setminus L$ forms a language
 - concatenation $L \cdot M$ yields a language, defined by concatenating all words in L with those in M:

$$L \cdot M \triangleq \{v \cdot w \mid v \in L \text{ and } w \in M\}$$

- Kleene Star L* yields a language, defined as

$$L^* \triangleq \bigcup_{n \in \mathbb{N}} L^n$$
 where $L^0 \triangleq \{\epsilon\}$ and $L^{n+1} = L \cdot L^n$

for instance

$$\{ab,c\}^* = \{\epsilon, ab,c, abab,abc,cab,cc, \dots\}_{\text{DISTRICTS}}$$

Regular Languages

The class $REG(\Sigma)$ of regular languages over alphabet Σ is the *smallest* class (i.e., set of) languages s.t.

- 1. $\emptyset \in REG(\Sigma)$ and $\{a\} \in REG(\Sigma)$ for every $a \in \Sigma$; and
- 2. if $L, M \in REG(\Sigma)$ then $L \cup M \in REG(\Sigma)$, $L \cdot M \in REG(\Sigma)$ and $L^* \in REG(\Sigma)$.

Regular Languages

The class $REG(\Sigma)$ of regular languages over alphabet Σ is the *smallest* class (i.e., set of) languages s.t.

- 1. $\emptyset \in REG(\Sigma)$ and $\{a\} \in REG(\Sigma)$ for every $a \in \Sigma$; and
- 2. if $L, M \in REG(\Sigma)$ then $L \cup M \in REG(\Sigma)$, $L \cdot M \in REG(\Sigma)$ and $L^* \in REG(\Sigma)$.

Examples

- $\star \{\epsilon\} = \emptyset^*$ is regular
- \star $\{\epsilon\} \cup ((\{a\} \cup \{b\})^* \cdot \{b\}), \text{ or } \epsilon \cup (a \cup b)^* \text{b for short, is regular}$
- ★ every finite language $L = \{w_1, ..., w_n\}$ is regular

Regular Languages

The class $REG(\Sigma)$ of regular languages over alphabet Σ is the *smallest* class (i.e., set of) languages s.t.

- 1. $\emptyset \in REG(\Sigma)$ and $\{a\} \in REG(\Sigma)$ for every $a \in \Sigma$; and
- 2. if $L, M \in REG(\Sigma)$ then $L \cup M \in REG(\Sigma)$, $L \cdot M \in REG(\Sigma)$ and $L^* \in REG(\Sigma)$.

Examples

- $\star \{\epsilon\} = \emptyset^*$ is regular
- \star $\{\epsilon\} \cup ((\{a\} \cup \{b\})^* \cdot \{b\}), \text{ or } \epsilon \cup (a \cup b)^*b \text{ for short, is regular}$
- ★ every finite language $L = \{w_1, ..., w_n\}$ is regular

Note

- * apart from those named in (2), $REG(\Sigma)$ is closed under many more operations (particularly: intersection, complement)
- ★ to show such closure properties, it is convenient to have a suitable characterisation

Non-deterministic Finite Automata

Non-deterministic Finite Automata

Formally, a non-deterministic finite automata (NFA) A is a tuple $(Q, \Sigma, q_l, \delta, F)$ consisting of

★ a finite set of states
$$Q$$
 {1,2,3}

$$\star$$
 an alphabet Σ {a, b}

★ an initial state
$$q_l \in Q$$

$$\star \text{ a transition function } \delta: Q \times \Sigma \to 2^Q \qquad \qquad (1,\mathtt{a}) \mapsto \{2\}; \ (2,\mathtt{a}) \mapsto \{2\}; \ (2,\mathtt{b}) \mapsto \{3\}; \ldots$$

$$\star$$
 a set of final states $F \subseteq Q$

Non-deterministic Finite Automata

Formally, a non-deterministic finite automata (NFA) A is a tuple $(Q, \Sigma, q_I, \delta, F)$ consisting of

★ a finite set of states
$$Q$$
 {1, 2, 3}

$$\star$$
 an alphabet Σ {a, b}

★ an initial state
$$q_I \in Q$$

* a transition function
$$\delta: Q \times \Sigma \to 2^Q$$
 $(1, a) \mapsto \{2\}; (2, a) \mapsto \{2\}; (2, b) \mapsto \{3\}; \dots$

$$\star$$
 a set of final states $F \subseteq Q$

Notation: $p \xrightarrow{a} q$ if $q \in \delta(p, a)$

Consider NFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

 \star if q_0 is initial state q_I then $q_I = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} q_n$ is called run on $w = a_1 \dots a_n$

Consider NFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

- \star if q_0 is initial state q_I then $q_I = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} q_n$ is called run on $w = a_1 \dots a_n$
- ★ run is accepting if $q_n \in F$ is final

Consider NFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

- \star if q_0 is initial state q_I then $q_I = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} q_n$ is called run on $w = a_1 \dots a_n$
- ★ run is accepting if $q_n \in F$ is final
- \star language L($\mathcal A$) recognized by $\mathcal A$ consists of all words that have accepting run

$$\mathsf{L}(\mathcal{A}) \triangleq \{ w \mid \delta^*(q_l, w) \cap F \neq \emptyset \}$$

where extended transition function $\delta^*: Q \times \Sigma^* \to 2^Q$ defined such that

$$q \in \delta^*(p, \mathbf{a}_1 \dots \mathbf{a}_n)$$
 iff $p = q_0 \xrightarrow{\mathbf{a}_1} q_1 \xrightarrow{\mathbf{a}_2} \dots \xrightarrow{\mathbf{a}_n} q_n = q \text{MASTER}$
INFORMATION

Consider NFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

- * if q_0 is initial state q_I then $q_I = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} q_n$ is called run on $w = a_1 \dots a_n$
- ★ run is accepting if $q_n \in F$ is final
- \star language L($\mathcal A$) recognized by $\mathcal A$ consists of all words that have accepting run

$$\mathsf{L}(\mathcal{A}) \triangleq \{ w \mid \delta^*(q_l, w) \cap F \neq \emptyset \}$$

where extended transition function $\delta^*: Q \times \Sigma^* \to 2^Q$ defined such that

$$q \in \delta^*(p, \mathbf{a}_1 \dots \mathbf{a}_n)$$
 iff $p = q_0 \xrightarrow{\mathbf{a}_1} q_1 \xrightarrow{\mathbf{a}_2} \dots \xrightarrow{\mathbf{a}_n} q_n = q$ MASTER INFORMATION

Question: L(A) = ?

Consider NFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

- * if q_0 is initial state q_I then $q_I = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} q_n$ is called run on $w = a_1 \dots a_n$
- ★ run is accepting if $q_n \in F$ is final
- \star language L(A) recognized by A consists of all words that have accepting run

$$\mathsf{L}(\mathcal{A}) \triangleq \{ w \mid \delta^*(q_I, w) \cap F \neq \emptyset \}$$

where extended transition function $\delta^*: Q \times \Sigma^* \to 2^Q$ defined such that

$$q \in \delta^*(p, \mathbf{a}_1 \dots \mathbf{a}_n)$$
 iff $p = q_0 \xrightarrow{\mathbf{a}_1} q_1 \xrightarrow{\mathbf{a}_2} \dots \xrightarrow{\mathbf{a}_n} q_n = q$ MASTER INFORMATION

Question: $L(A) = \{ w \in \Sigma^+ \mid w \text{ starts and ends with a} \}$

Closure Properties, Deterministic Finite Automata and Kleene's Theorem

A language L is recognizable if there is an NFA A with L(A) = L

Theorem (Closure Properties of NFAs)

For recognizable L, M, the following are recognizable:

- 1. union $L \cup M$
- 2. concatenation $L \cdot M$
- 3. Kleene's star L*
- 4. intersection $L \cap M$
- 5. complement \overline{L}

A language L is recognizable if there is an NFA \mathcal{A} with $L(\mathcal{A}) = L$

Theorem (Closure Properties of NFAs)

For recognizable L, M, the following are recognizable:

- 1. union $L \cup M$
- 2. concatenation L · M
- 3. Kleene's star L*
- 4. intersection $I \cap M$
- 5. complement L

Proof Outline.

- ★ (1)-(4) follow from a construction (see exercise, next slide)
- * (5) translate to deterministic automaton (why can't we simply invert final states?)

A language L is recognizable if there is an NFA A with L(A) = L

Theorem (Closure Properties of NFAs)

For recognizable L, M, the following are recognizable:

- 1. union $L \cup M$
- 2. concatenation L · M
- 3. Kleene's star L*
- 4. intersection $L \cap M$
- 5. complement \overline{L}

Proof Outline.

- ★ (1)-(4) follow from a construction (see exercise, next slide)
- ★ (5) translate to deterministic automaton (why can't we simply invert final states?)

Note

★ the class of recognized languages forms a Boolean Algebra

Kleene's Star

Lemma

If L is recognizable, then so is L^* .

Proof Outline.

For NFA $\mathcal{A} = (Q, \Sigma, q_l, \delta, F)$ recognizing L, define $\mathcal{A}^* \triangleq (Q \uplus \{q'\}, \Sigma, q', \delta', F \cup \{q'\})$ where

$$\delta'(q', \mathbf{a}) \triangleq \delta(q_I, \mathbf{a}) \qquad \delta'(q, \mathbf{a}) \triangleq \begin{cases} \delta(q, \mathbf{a}) \cup \delta(q_I, \mathbf{a}) & \text{if } q \in F; \\ \delta(q, \mathbf{a}) & \text{if } q \in Q \setminus F. \end{cases}$$

Theorem

NFAs over Σ recognize precisely the regular languages $REG(\Sigma)$.

Theorem

NFAs over Σ recognize precisely the regular languages REG(Σ).

Proof Outline.

 \leftarrow By induction on $REG(\Sigma)$, using closure properties. (how, why?)

Theorem

NFAs over Σ recognize precisely the regular languages $REG(\Sigma)$.

Proof Outline.

$$\Leftarrow$$
 By induction on $REG(\Sigma)$, using closure properties. (how, why?)

$$\Rightarrow$$
 Fix NFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$.

- For $p \in Q$, start with equations

$$L(p) = \bigcup_{p \xrightarrow{a} q} a \cdot L(q) \cup \begin{cases} \{\epsilon\} & \text{if } p \text{ final;} \\ \emptyset & \text{otherwise.} \end{cases}$$

- (intuition?)

Theorem

NFAs over Σ recognize precisely the regular languages $REG(\Sigma)$.

Proof Outline.

$$\Leftarrow$$
 By induction on $REG(\Sigma)$, using closure properties. (how, why?)

$$\Rightarrow$$
 Fix NFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$.

- For $p \in Q$, start with equations

$$L(p) = \bigcup_{p \xrightarrow{a} q} a \cdot L(q) \cup \begin{cases} \{\epsilon\} & \text{if } p \text{ final;} \\ \emptyset & \text{otherwise.} \end{cases}$$

$$- \text{ thus } L(p) \text{ collects words } w = a_1 \dots a_n \text{ s.t. } p = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} q_n \in F$$

Theorem

NFAs over Σ recognize precisely the regular languages $REG(\Sigma)$.

Proof Outline.

$$\Leftarrow$$
 By induction on $REG(\Sigma)$, using closure properties. (how, why?)

$$\Rightarrow$$
 Fix NFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$.

- For $p \in Q$, start with equations

$$L(p) = \bigcup_{p \xrightarrow{a} q} a \cdot L(q) \cup \begin{cases} \{\epsilon\} & \text{if } p \text{ final;} \\ \emptyset & \text{otherwise.} \end{cases}$$

$$- \text{ thus } L(p) \text{ collects words } w = a_1 \dots a_n \text{ s.t. } p = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} q_n \in F$$

- pick $p \in Q$ and apply Arden's Equality

$$L(p) = M \cdot L(p) \cup N \quad \Rightarrow \quad L(p) = M^* \cdot N$$
 (1)

Theorem

NFAs over Σ recognize precisely the regular languages $REG(\Sigma)$.

Proof Outline.

$$\leftarrow$$
 By induction on $REG(\Sigma)$, using closure properties. (how, why?)

$$\Rightarrow$$
 Fix NFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$.

- For $p \in Q$, start with equations

$$L(p) = \bigcup_{p \xrightarrow{a} q} a \cdot L(q) \cup \begin{cases} \{\epsilon\} & \text{if } p \text{ final;} \\ \emptyset & \text{otherwise.} \end{cases}$$

$$- \text{ thus } L(p) \text{ collects words } w = a_1 \dots a_n \text{ s.t. } p = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} q_n \in F$$

- pick $p \in Q$ and apply Arden's Equality

$$L(p) = M \cdot L(p) \cup N \quad \Rightarrow \quad L(p) = M^* \cdot N$$
 (1)

simplify; substitute and repeat until (1) not applicable

Finite Automatas Characterise REG

Theorem

NFAs over Σ recognize precisely the regular languages $REG(\Sigma)$.

Proof Outline.

$$\Leftarrow$$
 By induction on $REG(\Sigma)$, using closure properties. (how, why?)

$$\Rightarrow$$
 Fix NFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$.

- For $p \in Q$, start with equations

$$L(p) = \bigcup_{p \xrightarrow{a} q} a \cdot L(q) \cup \begin{cases} \{\epsilon\} & \text{if } p \text{ final;} \\ \emptyset & \text{otherwise.} \end{cases}$$

$$- \text{ thus } L(p) \text{ collects words } w = a_1 \dots a_n \text{ s.t. } p = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} q_n \in F$$

- pick $p \in Q$ and apply Arden's Equality

$$L(p) = M \cdot L(p) \cup N \implies L(p) = M^* \cdot N$$

- simplify; substitute and repeat until (1) not applicable $-L(a_I) = L(A)$ eventually in $REG(\Sigma)$

$$L(1) = aL(1) \cup aL(2)$$
 $L(2) = aL(2) \cup bL(3) \cup \epsilon$ $L(3) = aL(2) \cup bL(3)$
 $\Rightarrow L(1) = a^*aL(2)$

$$L(1) = aL(1) \cup aL(2)$$
 $L(2) = aL(2) \cup bL(3) \cup \epsilon$ $L(3) = aL(2) \cup bL(3)$
 $\Rightarrow L(1) = a^*aL(2)$ $L(2) = a^*(bL(3) \cup \epsilon)$

$$L(1) = aL(1) \cup aL(2) \qquad L(2) = aL(2) \cup bL(3) \cup \epsilon \qquad L(3) = aL(2) \cup bL(3)$$

$$\Rightarrow L(1) = a^*aL(2) \qquad L(2) = a^*(bL(3) \cup \epsilon) \qquad L(3) = b^*aL(2)$$

$$L(1) = aL(1) \cup aL(2) \qquad L(2) = aL(2) \cup bL(3) \cup \epsilon \qquad L(3) = aL(2) \cup bL(3)$$

$$\Rightarrow L(1) = a^*aL(2) \qquad L(2) = a^*(bL(3) \cup \epsilon) \qquad L(3) = b^*aL(2)$$

$$\Rightarrow L(1) = a^*aL(2) \qquad L(2) = a^*(bb^*aL(2) \cup \epsilon)$$

$$L(1) = aL(1) \cup aL(2) \qquad L(2) = aL(2) \cup bL(3) \cup \epsilon \qquad L(3) = aL(2) \cup bL(3)$$

$$\Rightarrow L(1) = a^*aL(2) \qquad L(2) = a^*(bL(3) \cup \epsilon) \qquad L(3) = b^*aL(2)$$

$$\Rightarrow L(1) = a^*aL(2) \qquad L(2) = a^*(bb^*aL(2) \cup \epsilon)$$

$$\Rightarrow L(1) = a^*aL(2) \qquad L(2) = a^*bb^*aL(2) \cup a^*$$

$$L(1) = aL(1) \cup aL(2)$$
 $L(2) = aL(2) \cup bL(3) \cup \epsilon$ $L(3) = aL(2) \cup bL(3)$

$$\Rightarrow$$
 $L(1) = a^*aL(2)$ $L(2) = a^*(bL(3) \cup \epsilon)$ $L(3) = b^*aL(2)$

$$\Rightarrow L(1) = a^*aL(2) \qquad L(2) = a^*(bb^*aL(2) \cup \epsilon)$$

$$\Rightarrow L(1) = a^*aL(2)$$
 $L(2) = a^*bb^*aL(2) \cup a^*$

$$\Rightarrow L(1) = a^*aL(2)$$
 $L(2) = (a^*bb^*a)^*a^*$

 \Rightarrow

$$L(1) = aL(1) \cup aL(2) \qquad L(2) = aL(2) \cup bL(3) \cup \epsilon \qquad L(3) = aL(2) \cup bL(3)$$

$$\Rightarrow L(1) = a^*aL(2) \qquad L(2) = a^*(bL(3) \cup \epsilon) \qquad L(3) = b^*aL(2)$$

$$\Rightarrow L(1) = a^*aL(2) \qquad L(2) = a^*(bb^*aL(2) \cup \epsilon)$$

$$\Rightarrow L(1) = a^*aL(2) \qquad L(2) = a^*bb^*aL(2) \cup a^*$$

$$\Rightarrow L(1) = a^*aL(2) \qquad L(2) = (a^*bb^*a)^*a^*$$

$$\Rightarrow L(1) = a^*a(a^*bb^*a)^*a^*$$

$$L(1) = aL(1) \cup aL(2) \qquad L(2) = aL(2) \cup bL(3) \cup \epsilon \qquad L(3) = aL(2) \cup bL(3)$$

$$\Rightarrow L(1) = a^*aL(2) \qquad L(2) = a^*(bL(3) \cup \epsilon) \qquad L(3) = b^*aL(2)$$

$$\Rightarrow L(1) = a^*aL(2) \qquad L(2) = a^*(bb^*aL(2) \cup \epsilon)$$

$$\Rightarrow L(1) = a^*aL(2) \qquad L(2) = a^*bb^*aL(2) \cup a^*$$

$$\Rightarrow L(1) = a^*aL(2) \qquad L(2) = (a^*bb^*a)^*a^*$$

$$\Rightarrow L(1) = a^*(bb^*aa^*)^*a^*$$

$$\Rightarrow L(1) = a^*(bb^*aa^*)^*a^*$$

$$\Rightarrow L(1) = a^*(b^*a^*)^*$$

A deterministic finite automata (DFA) \mathcal{A} is a NFA where each state has precisely one successor state:

$$\delta: Q \times \Sigma \to Q$$

A deterministic finite automata (DFA) \mathcal{A} is a NFA where each state has precisely one successor state:

$$\delta: Q \times \Sigma \to Q$$

Theorem (Determinisation)

A language is recognizable by an NFA if and only if it is recognizable by a DFA.

A deterministic finite automata (DFA) \mathcal{A} is a NFA where each state has precisely one successor state:

$$\delta: Q \times \Sigma \to Q$$

Theorem (Determinisation)

A language is recognizable by an NFA if and only if it is recognizable by a DFA.

A deterministic finite automata (DFA) ${\cal A}$ is a NFA where each state has precisely one successor state:

$$\delta: Q \times \Sigma \to Q$$

Theorem (Determinisation)

A language is recognizable by an NFA if and only if it is recognizable by a DFA.

A deterministic finite automata (DFA) \mathcal{A} is a NFA where each state has precisely one successor state:

$$\delta: Q \times \Sigma \to Q$$

Theorem (Determinisation)

A language is recognizable by an NFA if and only if it is recognizable by a DFA.

Proof Outline.

- ⇐ Every DFA is an NFA.
- \Rightarrow Given NFA $\mathcal{A} = (Q, \Sigma, q_l, \delta, F)$ recognizing L, define DFA $\mathcal{A}_d(2^Q, \Sigma, \{q_l\}, \delta_d, F_d)$ s.t.:
 - $-\delta_d(\{q_1,\ldots,q_n\},\mathbf{a}) \triangleq \delta(q_1,\mathbf{a}) \cup \cdots \cup \delta(q_n,\mathbf{a})$
 - $-F_d \triangleq \{S \subseteq Q \mid F \cap S \neq \emptyset\}$, i.e., $\{q_1, \ldots, q_n\}$ final in \mathcal{A}_d if one of the q_i final in \mathcal{A}

Then A_d recognizes L:

run in new A_d on word $w \equiv all$ runs on w in A

A deterministic finite automata (DFA) \mathcal{A} is a NFA where each state has precisely one successor state:

$$\delta: Q \times \Sigma \to Q$$

Theorem (Determinisation)

A language is recognizable by an NFA if and only if it is recognizable by a DFA.

Lemma

If L is regular, then so its complement $\overline{L} = \Sigma^* \setminus L$.

Proof Outline.

- ★ Since L is regular, there is a DFA A with L(A) = L
- ★ flipping the set of final states in A results in DFA \overline{A} with $L(\overline{A}) = \overline{L}$

Kleene's Theorem

Theorem

The following are equivalent:

- 1. The class of regular languages $REG(\Sigma)$
- 2. The class of languages recognized by NFAs over Σ
- 3. The class of languages recognized by DFAs over Σ

Theorem

For every number $n \in \mathbb{N}$ there exists an NFA \mathcal{A} with n+1 states such that every equivalent DFA has at least 2^n states.

⇒ NFAs can be exponentially more succinct than DFAs

Theorem

For every number $n \in \mathbb{N}$ there exists an NFA \mathcal{A} with n+1 states such that every equivalent DFA has at least 2^n states.

Proof Outline.

★ consider the NFA

Theorem

For every number $n \in \mathbb{N}$ there exists an NFA \mathcal{A} with n+1 states such that every equivalent DFA has at least 2^n states.

★ consider the NFA

 \star for a proof by contradiction, suppose equivalent DFA \mathcal{A} has strictly less than 2^n states:

Theorem

For every number $n \in \mathbb{N}$ there exists an NFA \mathcal{A} with n+1 states such that every equivalent DFA has at least 2^n states.

Proof Outline.

★ consider the NFA

- \star for a proof by contradiction, suppose equivalent DFA \mathcal{A} has strictly less than 2^n states:
 - since there are 2^n words of length n, there must be two such distinct words $u, v \in \Sigma^n$ ending up in the same state, i.e. $\delta^*(q_l, u) = \delta^*(q_l, v)$

Theorem

For every number $n \in \mathbb{N}$ there exists an NFA \mathcal{A} with n+1 states such that every equivalent DFA has at least 2^n states.

Proof Outline.

★ consider the NFA

- \star for a proof by contradiction, suppose equivalent DFA \mathcal{A} has strictly less than 2^n states:
 - since there are 2^n words of length n, there must be two such distinct words $u, v \in \Sigma^n$ ending up in the same state, i.e. $\delta^*(q_l, u) = \delta^*(q_l, v)$
 - suppose they differ at position i, e.g., u[i] = a and v[i] = b, hence

$$u \underbrace{\mathtt{a} \cdots \mathtt{a}}_{i-1 \text{ times}} \in \mathsf{L}(\mathcal{A})$$
 but $v \underbrace{\mathtt{a} \cdots \mathtt{a}}_{i-1 \text{ times}} \notin \mathsf{L}(\mathcal{A})$

Theorem

For every number $n \in \mathbb{N}$ there exists an NFA \mathcal{A} with n+1 states such that every equivalent DFA has at least 2^n states.

Proof Outline.

★ consider the NFA

- \star for a proof by contradiction, suppose equivalent DFA \mathcal{A} has strictly less than 2^n states:
 - since there are 2^n words of length n, there must be two such distinct words $u, v \in \Sigma^n$ ending up in the same state, i.e. $\delta^*(q_l, u) = \delta^*(q_l, v)$
 - suppose they differ at position i, e.g., u[i] = a and v[i] = b, hence

$$u \underbrace{\text{a...a}}_{i-1 \text{ times}} \in L(A)$$
 but $v \underbrace{\text{a...a}}_{i-1 \text{ times}} \notin L(A)$

– the DFA now either accepts or rejects both extended words; contradicting that ${\cal A}$ is equivalent to the NFA

Two NFAs (DFAs) A_1 and A_2 are equivalent if $L(A_1) = L(A_2)$.

Two NFAs (DFAs) A_1 and A_2 are equivalent if $L(A_1) = L(A_2)$.

Theorem

For every DFA there exists a unique (up to renaming of states) minimal DFA.

Two NFAs (DFAs) A_1 and A_2 are equivalent if $L(A_1) = L(A_2)$.

Theorem

For every DFA there exists a unique (up to renaming of states) minimal DFA.

Two NFAs (DFAs) A_1 and A_2 are equivalent if $L(A_1) = L(A_2)$.

Theorem

For every DFA there exists a unique (up to renaming of states) minimal DFA.

- ★ let $L(p, A) \triangleq \{w \mid \delta^*(p, w) \in F\}$, hence in particular, $L(A) = L(q_l, A)$
- ★ two states p, q are equivalent in \mathcal{A} if accepting runs coincide:

$$p \equiv_{\mathcal{A}} q$$
 : \Leftrightarrow $L(p, \mathcal{A}) = L(q, \mathcal{A})$

Two NFAs (DFAs) A_1 and A_2 are equivalent if $L(A_1) = L(A_2)$.

Theorem

For every DFA there exists a unique (up to renaming of states) minimal DFA.

Example

- ★ let $L(p, A) \triangleq \{w \mid \delta^*(p, w) \in F\}$, hence in particular, $L(A) = L(q_l, A)$
- \star two states p, q are equivalent in \mathcal{A} if accepting runs coincide:

$$p \equiv_{\mathcal{A}} q \qquad :\Leftrightarrow \qquad \mathsf{L}(p,\mathcal{A}) = \mathsf{L}(q,\mathcal{A})$$

* merging equivalent states (e.g. $2 \equiv_{\mathcal{A}} 4$) does not change $L(\mathcal{A})$; results in minimal DFA

Definition (Computing Distinguished States)

- 1. initially, we distinguish pairs $\mathcal{D} \triangleq \{(p,q) \mid p \in F \text{ and } q \notin F\}$
- 2. As long as new pairs are added, repeat:

$$\mathcal{D} := \mathcal{D} \cup \{ (p,q) \mid \exists \mathtt{a} \in \Sigma. \ (\delta(p,\mathtt{a}),\delta(q,\mathtt{a})) \in \mathcal{D} \}$$

3. Return \mathcal{D}

Definition (Computing Distinguished States)

- 1. initially, we distinguish pairs $\mathcal{D} \triangleq \{(p,q) \mid p \in F \text{ and } q \notin F\}$
- 2. As long as new pairs are added, repeat:

$$\mathcal{D} := \mathcal{D} \cup \{(p,q) \mid \exists a \in \Sigma. \ (\delta(p,a), \delta(q,a)) \in \mathcal{D}\}$$

3. Return \mathcal{D}

\mathcal{I})	1	2	3	4	5
1		_	_	_		_
2			_	_		_
3				_		_
4					_	_
5						_

Definition (Computing Distinguished States)

- 1. initially, we distinguish pairs $\mathcal{D} \triangleq \{(p,q) \mid p \in F \text{ and } q \notin F\}$
- 2. As long as new pairs are added, repeat:

$$\mathcal{D} := \mathcal{D} \cup \{ (p, q) \mid \exists a \in \Sigma. \ (\delta(p, a), \delta(q, a)) \in \mathcal{D} \}$$

3. Return \mathcal{D}

		2		4	5
1	_	 o	_	_	_
2	0	_	_	_	_
3		0	_	_	_
4	0		0	_	_
5		0		0	_

Definition (Computing Distinguished States)

- 1. initially, we distinguish pairs $\mathcal{D} \triangleq \{(p,q) \mid p \in F \text{ and } q \notin F\}$
- 2. As long as new pairs are added, repeat:

$$\mathcal{D} := \mathcal{D} \cup \{(p,q) \mid \exists a \in \Sigma. \ (\delta(p,a), \delta(q,a)) \in \mathcal{D}\}$$

3. Return \mathcal{D}

\mathcal{D}	1	2	3	4	5
1	_	 o	_	_	_
2	0	_	_	_	_
3		0	_	_	_
4	0		0	_	_
5	0	0	0	0	_

Definition (Computing Distinguished States)

- 1. initially, we distinguish pairs $\mathcal{D} \triangleq \{(p,q) \mid p \in F \text{ and } q \notin F\}$
- 2. As long as new pairs are added, repeat:

$$\mathcal{D} := \mathcal{D} \cup \{(p,q) \mid \exists a \in \Sigma. \ (\delta(p,a), \delta(q,a)) \in \mathcal{D}\}$$

3. Return \mathcal{D}

\mathcal{D}	1	2	3	4	5
1	_	 o	_	_	_
2	0	_	_	_	_
3	0	0	_	_	_
4	0		0	_	_
5	0	0	0	0	_

Definition (Computing Distinguished States)

- 1. initially, we distinguish pairs $\mathcal{D} \triangleq \{(p,q) \mid p \in F \text{ and } q \notin F\}$
- 2. As long as new pairs are added, repeat:

$$\mathcal{D} := \mathcal{D} \cup \{ (p, q) \mid \exists a \in \Sigma. \ (\delta(p, a), \delta(q, a)) \in \mathcal{D} \}$$

3. Return \mathcal{D}

Example

		2		4	5
1	_	 o	_	_	_
2	0	_	_	_	_
3	0	0	_	_	_
4	0		0	_	_
5	0	0	0	0	_

Lemma (Correctness)

If two states are not distinguished, then they are equivalent.

Definition (Computing Distinguished States)

- 1. initially, we distinguish pairs $\mathcal{D} \triangleq \{(p,q) \mid p \in F \text{ and } q \notin F\}$
- 2. As long as new pairs are added, repeat:

$$\mathcal{D} := \mathcal{D} \cup \{(p,q) \mid \exists a \in \Sigma. \ (\delta(p,a), \delta(q,a)) \in \mathcal{D}\}$$

3. Return \mathcal{D}

Example

		2			
1	_	— ∘ ≡ _A	_	_	_
2	0	_	_	_	_
3	0	0	_	_	_
4	0	$\equiv_{\mathcal{A}}$	0	_	_
5	0	0	0	0	

Lemma (Correctness)

If two states are not distinguished, then they are equivalent.

Minimisation

- ★ let $A = (Q, \Sigma, q_I, \delta, F)$ without non-reachable states (otherwise, remove them)
- **★** note $\equiv_{\mathcal{A}}$ is an equivalence relation
- \star let [q] denote the equivalence class of q ∈ Q
- ★ define the quotient automata $A_{\equiv} \triangleq (Q_{\equiv}, \Sigma, [q_I], \delta_{\equiv}, F_{\equiv})$ where:
 - $Q_{\equiv} \triangleq \{ [q] \mid q \in Q \}$
 - $-\delta_{\equiv}([q], a) \triangleq [\delta(q, a)] \text{ for all } a \in \Sigma$
 - $\ F_\equiv \triangleq \{[q] \mid q \in F\}$

Minimisation

- ★ let $A = (Q, \Sigma, q_I, \delta, F)$ without non-reachable states (otherwise, remove them)
- ★ note \equiv_A is an equivalence relation
- ★ let [q] denote the equivalence class of $q \in Q$
- ★ define the quotient automata $A_{\equiv} \triangleq (Q_{\equiv}, \Sigma, [q_I], \delta_{\equiv}, F_{\equiv})$ where:
 - $Q_{\equiv} \triangleq \{ [q] \mid q \in Q \}$
 - $-\delta_{\equiv}([q], a) \triangleq [\delta(q, a)] \text{ for all } a \in \Sigma$
 - $F_{\equiv} \triangleq \{ [q] \mid q \in F \}$

Theorem

The quotient automata A_{\equiv} is the minimal and unique DFA equivalent to A

Discussion

How computationally difficult is it to \dots

- 1. check $L(A) = \emptyset$ for given A
- 2. check $w \in L(A)$ for given $w \in A$
- 3. check $L(A) = \Sigma^*$ for given $w \in A$

Decision Procedures

- ★ A decision problem presents itself as a question to which must be answered yes or no.
 - Is the list sorted? Is the automaton minimal? etc.

- ★ A decision problem presents itself as a question to which must be answered yes or no.
 - Is the list sorted? Is the automaton minimal? etc.
- \star A decision problem depends on a given input, which has a certain size n
 - the list of length n, the automaton with n states, etc.

- ★ A decision problem presents itself as a question to which must be answered yes or no.
 - Is the list sorted? Is the automaton minimal? etc.
- \star A decision problem depends on a given input, which has a certain size n
 - the list of length n, the automaton with n states, etc.
- ★ Often, a problem admits several algorithmic solutions, whose effectiveness varies.

- * A decision problem presents itself as a question to which must be answered yes or no.
 - Is the list sorted? Is the automaton minimal? etc.
- \star A decision problem depends on a given input, which has a certain size n
 - the list of length n, the automaton with n states, etc.
- ★ Often, a problem admits several algorithmic solutions, whose effectiveness varies.
- ★ For some problems, no algorithmic solution exists
 - halting problem, Hilberts 10th problem, etc.

- ★ A decision problem presents itself as a question to which must be answered yes or no.
 - Is the list sorted? Is the automaton minimal? etc.
- \star A decision problem depends on a given input, which has a certain size n
 - the list of length n, the automaton with n states, etc.
- ★ Often, a problem admits several algorithmic solutions, whose effectiveness varies.
- ★ For some problems, no algorithmic solution exists
 - halting problem, Hilberts 10th problem, etc.
- ★ To compare them, from a theoretical point of view, we usually assess their worst case complexity wrt. some notion of cost
 - e.g. time or space

- ★ A decision problem presents itself as a question to which must be answered yes or no.
 - Is the list sorted? Is the automaton minimal? etc.
- \star A decision problem depends on a given input, which has a certain size n
 - the list of length n, the automaton with n states, etc.
- ★ Often, a problem admits several algorithmic solutions, whose effectiveness varies.
- ★ For some problems, no algorithmic solution exists
 - halting problem, Hilberts 10th problem, etc.
- ★ To compare them, from a theoretical point of view, we usually assess their worst case complexity wrt. some notion of cost
 - e.g. time or space
- ★ The complexity is generally described by a function in the input size n.

- ★ A decision problem presents itself as a question to which must be answered yes or no.
 - Is the list sorted? Is the automaton minimal? etc.
- \star A decision problem depends on a given input, which has a certain size n
 - the list of length n, the automaton with n states, etc.
- ★ Often, a problem admits several algorithmic solutions, whose effectiveness varies.
- ★ For some problems, no algorithmic solution exists
 - halting problem, Hilberts 10th problem, etc.
- ★ To compare them, from a theoretical point of view, we usually assess their worst case complexity wrt. some notion of cost
 - e.g. time or space
- ★ The complexity is generally described by a function in the input size n.
- ★ Usually, we are interested in an asymptotic analysis.
 - $O(n), O(n^2), O(2^n), ...$

★ The complexity of a problem can be thought of as the complexity of the best algorithm that solves it.

- ★ The complexity of a problem can be thought of as the complexity of the best algorithm that solves it.
- ★ this allows us to classify problems based on their inherent difficulty
 - polynomial time (P or PTIME), non-deterministic polynomial time (NP), exponential time (EXPTIME), etc.
 - polynomial space (PSPACE), etc.

- ★ The complexity of a problem can be thought of as the complexity of the best algorithm that solves it.
- ★ this allows us to classify problems based on their inherent difficulty
 - polynomial time (P or PTIME), non-deterministic polynomial time (NP), exponential time (EXPTIME), etc.
 - polynomial space (PSPACE), etc.
- ★ complexity theory is concerned with the classification and relationships among classes

$PTIME \subseteq NP \subseteq PSPACE \subseteq EXPTIME$

- we know PTIME ⊊ EXPTIME, but we do not know the status of individual inclusions
- solving PTIME

 NP is worth 1.000.000\$: a strict inclusion would separate, what we assume to be, feasible from unfeasible problems

- ★ The complexity of a problem can be thought of as the complexity of the best algorithm that solves it.
- ★ this allows us to classify problems based on their inherent difficulty
 - polynomial time (P or PTIME), non-deterministic polynomial time (NP), exponential time (EXPTIME), etc.
 - polynomial space (PSPACE), etc.
- ★ complexity theory is concerned with the classification and relationships among classes

$PTIME \subseteq NP \subseteq PSPACE \subseteq EXPTIME$

- solving PTIME ⊊ NP is worth 1.000.000\$: a strict inclusion would separate, what we assume
 to be, feasible from unfeasible problems
- nowadays, some pretty good algorithms exists that can tackle unfeasible problems on average cases (e.g. SAT solvers)

- \star Given: An NFA ${\mathcal A}$ with n states and word w of length |w|
- ★ Question: $w \in L(A)$?

Theorem

The word problem for NFAs is in PTIME.

- ★ Given: An NFA \mathcal{A} with n states and word w of length |w|
- ★ Question: $w \in L(A)$?

Theorem

The word problem for NFAs is in PTIME.

- \star Given: An NFA $\mathcal A$ with n states and word w of length |w|
- ★ Question: $w \in L(A)$?

Theorem

The word problem for NFAs is in PTIME.

Proof Outline.

* redundant calls can be eliminated via memoisation (i.e., tabulate calls explore(q, w))

- ★ Given: An NFA \mathcal{A} with n states and word w of length |w|
- ★ Question: $w \in L(A)$?

Theorem

The word problem for NFAs is in PTIME.

```
Proof Outline.
```

```
★ the following depth-first search solves the problem in exponential time

    def explore(q, w)
        if w is ε : return q ∈ F
        for p in δ(q, w[0]) :
            if explore(p, w[1:]) : return True
            return False
        def member(w) : return explore(q<sub>I</sub>, w)

★ redundant calls can be eliminated via memoisation (i.e., tabulate calls explore(q, w))
```

* table bounded in size $O(n \cdot |w|^2)$

The Emptiness Problem

★ Given: An NFA A

★ Question: $L(A) = \emptyset$?

Theorem

The emptiness problem for NFAs is in PTIME.

The Emptiness Problem

★ Given: An NFA A

★ Question: $L(A) = \emptyset$?

Theorem

The emptiness problem for NFAs is in PTIME.

- ★ essentially a graph reachability problem (why?)
- * solvable by depth-first or breath-first search in time $O(n^2)$

★ Given: An NFA A

★ Question: $L(A) = \Sigma^*$?

Theorem

The universal language problem for NFAs is in PSPACE ⊆ EXPTIME.

* result non-trivial, because an infinity of words Σ^* should be accepting

- ★ Given: An NFA A
- ★ Question: $L(A) = \Sigma^*$?

Theorem

The universal language problem for NFAs is in PSPACE ⊆ EXPTIME.

- \star result non-trivial, because an infinity of words Σ^* should be accepting
- ★ however, the problem is equivalent to $\overline{L(A)} = \emptyset$

- ★ Given: An NFA A
- ★ Question: $L(A) = \Sigma^*$?

Theorem

The universal language problem for NFAs is in PSPACE ⊆ EXPTIME.

- \star result non-trivial, because an infinity of words Σ^* should be accepting
- ★ however, the problem is equivalent to $\overline{L(A)} = \emptyset$
- * for DFAs, this amounts to checking $L(\overline{A}) = \emptyset$, thus is in PTIME

★ Given: An NFA A

★ Question: $L(A) = \Sigma^*$?

Theorem

The universal language problem for NFAs is in PSPACE ⊆ EXPTIME.

- \star result non-trivial, because an infinity of words Σ^* should be accepting
- ★ however, the problem is equivalent to $\overline{L(A)} = \emptyset$
- ★ for DFAs, this amounts to checking $L(\overline{A}) = \emptyset$, thus is in PTIME
- ★ translating NFAs to equivalent DFAs results in EXPTIME algorithm

- ★ Given: An NFA A
- ★ Question: $L(A) = \Sigma^*$?

Theorem

The universal language problem for NFAs is in PSPACE \subseteq EXPTIME.

Proof Outline.

* we check $L(A) = \Sigma^*$ in PSPACE for $A = (Q, \Sigma, q_I, \delta, F)$

- ★ Given: An NFA A
- ★ Question: $L(A) = \Sigma^*$?

Theorem

The universal language problem for NFAs is in PSPACE \subseteq EXPTIME.

- * we check $L(A) = \Sigma^*$ in PSPACE for $A = (Q, \Sigma, q_I, \delta, F)$
- \star as we saw, this amount to translating ${\mathcal A}$ into an equivalent DFA ${\mathcal B}$ and checking $\overline{{\mathcal B}}={\varnothing}$

- ★ Given: An NFA A
- ★ Question: $L(A) = \Sigma^*$?

Theorem

The universal language problem for NFAs is in PSPACE \subseteq EXPTIME.

- * we check $L(A) = \Sigma^*$ in PSPACE for $A = (Q, \Sigma, q_I, \delta, F)$
- \star as we saw, this amount to translating ${\mathcal A}$ into an equivalent DFA ${\mathcal B}$ and checking $\overline{{\mathcal B}}={\varnothing}$
- \star constructing $\overline{\mathcal{B}}$ on-the-fly, this can be done non-deterministically in polynomial space

- ★ Given: An NFA A
- ★ Question: $L(A) = \Sigma^*$?

Theorem

The universal language problem for NFAs is in PSPACE \subseteq EXPTIME.

- * we check $L(A) = \Sigma^*$ in PSPACE for $A = (Q, \Sigma, q_I, \delta, F)$
- \star as we saw, this amount to translating ${\mathcal A}$ into an equivalent DFA ${\mathcal B}$ and checking $\overline{{\mathcal B}}={\varnothing}$
- \star constructing $\overline{\mathcal{B}}$ on-the-fly, this can be done non-deterministically in polynomial space
- ★ by Savich's theorem, any such algorithm can be turned into a deterministic one in PSPACE

Further Consequences

The Inclusion Problem

 \star Given: two NFA ${\cal A}$ and ${\cal B}$

★ Question: $L(A) \subseteq L(B)$?

The Equivalence Problem

 \star Given: two NFA ${\cal A}$ and ${\cal B}$

★ Question: L(A) = L(B)?

Theorem

Both problem are PSPACE complete.

* model checking, i.e., checking an implementation against high-level specifications, usually expressed as language inclusion.

Summary

	Word	Emptiness	Universality	Inclusion	Equivalence
DFA	PTIME	PTIME	PTIME	PTIME	PTIME
NFA	PTIME	PTIME	PSPACE	PSPACE	PSPACE

★ Michael Rabin and Dana Scott received their Turing Award for their work "Finite Automat and Their Decision Problems"

Summary

	Word	Emptiness	Universality	Inclusion	Equivalence
DFA	PTIME	PTIME	PTIME	PTIME	PTIME
NFA	PTIME	PTIME	PSPACE	PSPACE	PSPACE

* Michael Rabin and Dana Scott received their Turing Award for their work "Finite Automat and Their Decision Problems"

Applications

- ★ finite state machines (and its extensions) used in many disciplines
- ★ efficient string search (Knuth-Morris-Pratt algorithm), e.g., in grep, sed, awk, Java, C#...
- ★ Antivirus software
- ⋆ DNA/protein analysis
- ★ ..

★ effectively satisiability/validity decision procedures for certain logics (see next lecture)