Advanced Logic

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2023/AL/

Martin Avanzini (martin.avanzini@inria.fr)
Etienne Lozes (etienne.lozes@univ-cotedazur.fr)

UNIVERSITÉ CÔTE D'AZUR

Course Overview

$$
\forall x . r e q u e s t(x) \rightarrow \exists y . x<y . r e l e a s e(y)
$$

Course Overview

$$
\forall x . r e q u e s t(x) \rightarrow \exists y . x<y . r e l e a s e(y)
$$

* course material self-contained, available online
http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2023/AL/

Course Overview

* (non-)deterministic finite automata

Lecture 1

* MONA ()

Lecture 2
« (weak) monadic second order logic

$$
\exists X .0 \in X \wedge \forall n .(n+1 \in X \leftrightarrow n \notin X)
$$

^ alternating automata, Presburger arithmetic
Lecture 4

$$
\exists m \cdot \exists n \cdot m+n=13 \wedge m=1+n
$$

* recapitulation

Lecture 5
\star Büchi automata (infinite words)

* linear time logic

```
Globally(request }->\mathrm{ Future(release))
```

* Automata learning

Administratives

1. $1 / 3$ of lecture devoted to exercise

- to be uploaded in moodle before discussion
- participation in discussion counts towards final grade

2. one practical exercise with MONA

- solutions presented in class

3. final exam

Today's Lecture

Finite Word Automata Recap

1. regular languages and non-deterministic finite automata
2. closure properties, deterministic finite automata and Kleene's theorem
3. DFA equivalence and minimisation
4. decision procedures

Regular Languages and Non-Deterministic Finite Automata

Finite Words

\star alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}, \ldots\}$ is finite set of letters
\star (finite) word $w=\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}$ is finite sequence of letters $a_{i} \in \Sigma$

- $|w| \triangleq n$ is length of word
- $w[i] \triangleq a_{i}$ denotes i-th letter in word w
$-\epsilon$ is empty word of length 0
- $v \cdot w$ (or simply $v w$) denotes concatenation of words v and w

$$
\epsilon \cdot w=w=w \cdot \epsilon \quad u \cdot(v \cdot w)=(u \cdot v) \cdot w
$$

- v^{n} is the word v concatenated with itself n times

Finite Words

\star alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}, \ldots\}$ is finite set of letters
\star (finite) word $w=\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}$ is finite sequence of letters $a_{i} \in \Sigma$

- $|w| \triangleq n$ is length of word
- $w[i] \triangleq a_{i}$ denotes i-th letter in word w
$-\epsilon$ is empty word of length 0
- $v \cdot w$ (or simply $v w$) denotes concatenation of words v and w

$$
\epsilon \cdot w=w=w \cdot \epsilon \quad u \cdot(v \cdot w)=(u \cdot v) \cdot w
$$

- v^{n} is the word v concatenated with itself n times
$\star \Sigma^{*}$ denotes set of all words over alphabet Σ
$\star \Sigma^{+} \triangleq \Sigma^{*} \backslash\{\epsilon\}$ is set of non-empty words

Languages

* a language $L \subseteq \Sigma^{*}$ is a set of words
- for instance, $\varnothing,\{\epsilon\},\{\mathrm{aba}\},\{\mathrm{a}, \mathrm{ab}, \mathrm{abb}, \mathrm{abbb}, \ldots\}=\left\{\mathrm{ab}^{n} \mid n \in \mathbb{N}\right\}, \Sigma^{*}$ are all languages

Languages

* a language $L \subseteq \Sigma^{*}$ is a set of words
- for instance, $\varnothing,\{\epsilon\},\{\mathrm{aba}\},\{\mathrm{a}, \mathrm{ab}, \mathrm{abb}, \mathrm{abbb}, \ldots\}=\left\{\mathrm{ab}^{n} \mid n \in \mathbb{N}\right\}, \Sigma^{*}$ are all languages
« new language definable from existing ones via set operations, e.g., if $L, M \subseteq \Sigma^{*}$:
- union $L \cup M$, intersection $L \cap M$ and difference $L \backslash M$ are languages;

Languages

* a language $L \subseteq \Sigma^{*}$ is a set of words
- for instance, $\varnothing,\{\epsilon\},\{\mathrm{aba}\},\{\mathrm{a}, \mathrm{ab}, \mathrm{abb}, \mathrm{abbb}, \ldots\}=\left\{\mathrm{ab}^{n} \mid n \in \mathbb{N}\right\}, \Sigma^{*}$ are all languages
« new language definable from existing ones via set operations, e.g., if $L, M \subseteq \Sigma^{*}$:
- union $L \cup M$, intersection $L \cap M$ and difference $L \backslash M$ are languages;
- complement $\bar{L} \triangleq \Sigma^{*} \backslash L$ forms a language

Languages

* a language $L \subseteq \Sigma^{*}$ is a set of words
- for instance, $\varnothing,\{\epsilon\},\{\mathrm{aba}\},\{\mathrm{a}, \mathrm{ab}, \mathrm{abb}, \mathrm{abbb}, \ldots\}=\left\{\mathrm{ab}^{n} \mid n \in \mathbb{N}\right\}, \Sigma^{*}$ are all languages
« new language definable from existing ones via set operations, e.g., if $L, M \subseteq \Sigma^{*}$:
- union $L \cup M$, intersection $L \cap M$ and difference $L \backslash M$ are languages;
- complement $\bar{L} \triangleq \Sigma^{*} \backslash L$ forms a language
- concatenation $L \cdot M$ yields a language, defined by concatenating all words in L with those in M :

$$
L \cdot M \triangleq\{v \cdot w \mid v \in L \text { and } w \in M\}
$$

Languages

* a language $L \subseteq \Sigma^{*}$ is a set of words
- for instance, $\varnothing,\{\epsilon\},\{\mathrm{aba}\},\{\mathrm{a}, \mathrm{ab}, \mathrm{abb}, \mathrm{abbb}, \ldots\}=\left\{\mathrm{ab}^{n} \mid n \in \mathbb{N}\right\}, \Sigma^{*}$ are all languages
« new language definable from existing ones via set operations, e.g., if $L, M \subseteq \Sigma^{*}$:
- union $L \cup M$, intersection $L \cap M$ and difference $L \backslash M$ are languages;
- complement $\bar{L} \triangleq \Sigma^{*} \backslash L$ forms a language
- concatenation $L \cdot M$ yields a language, defined by concatenating all words in L with those in M :

$$
L \cdot M \triangleq\{v \cdot w \mid v \in L \text { and } w \in M\}
$$

- Kleene Star L^{*} yields a language, defined as

$$
L^{*} \triangleq \bigcup_{n \in \mathbb{N}} L^{n} \quad \text { where } L^{0} \triangleq\{\epsilon\} \text { and } L^{n+1}=L \cdot L^{n}
$$

for instance

$$
\{a b, c\}^{*}=\left\{\begin{array}{lll}
\{\epsilon, & a b, c, \quad a b a b, a b c, c a b, c c, & \ldots
\end{array}\right\}
$$

Regular Languages

The class $\operatorname{REG}(\Sigma)$ of regular languages over alphabet Σ is the smallest class (i.e., set of languages s.t.

1. $\varnothing \in R E G(\Sigma)$ and $\{\mathrm{a}\} \in R E G(\Sigma)$ for every a $\in \Sigma$; and
2. if $L, M \in R E G(\Sigma)$ then $L \cup M \in R E G(\Sigma), L \cdot M \in R E G(\Sigma)$ and $L^{*} \in R E G(\Sigma)$.

Regular Languages

The class $\operatorname{REG}(\Sigma)$ of regular languages over alphabet Σ is the smallest class (i.e., set of languages s.t.

1. $\varnothing \in \operatorname{REG}(\Sigma)$ and $\{\mathrm{a}\} \in R E G(\Sigma)$ for every a $\in \Sigma$; and
2. if $L, M \in R E G(\Sigma)$ then $L \cup M \in R E G(\Sigma), L \cdot M \in R E G(\Sigma)$ and $L^{*} \in R E G(\Sigma)$.

Examples

$\star\{\epsilon\}=\varnothing^{*}$ is regular
$\star\{\epsilon\} \cup\left((\{a\} \cup\{b\})^{*} \cdot\{b\}\right)$, or $\epsilon \cup(a \cup b)^{*} b$ for short, is regular
\star every finite language $L=\left\{w_{1}, \ldots, w_{n}\right\}$ is regular

Regular Languages

The class $\operatorname{REG}(\Sigma)$ of regular languages over alphabet Σ is the smallest class (i.e., set of languages s.t.

1. $\varnothing \in \operatorname{REG}(\Sigma)$ and $\{\mathrm{a}\} \in R E G(\Sigma)$ for every a $\in \Sigma$; and
2. if $L, M \in R E G(\Sigma)$ then $L \cup M \in R E G(\Sigma), L \cdot M \in R E G(\Sigma)$ and $L^{*} \in R E G(\Sigma)$.

Examples

$\star\{\epsilon\}=\varnothing^{*}$ is regular
$\star\{\epsilon\} \cup\left((\{a\} \cup\{b\})^{*} \cdot\{b\}\right)$, or $\epsilon \cup(a \cup b)^{*} b$ for short, is regular
\star every finite language $L=\left\{w_{1}, \ldots, w_{n}\right\}$ is regular

Note

\star apart from those named in (2), $R E G(\Sigma)$ is closed under many more operations (particularly: intersection, complement)

* to show such closure properties, it is convenient to have a suitable characterisation

Non-deterministic Finite Automata

Non-deterministic Finite Automata

Formally, a non-deterministic finite automata (NFA) \mathcal{A} is a tuple ($Q, \Sigma, q_{l}, \delta, F$) consisting of

* a finite set of states Q
* an alphabet Σ
* an initial state $q_{l} \in Q$
\star a transition function $\delta: Q \times \Sigma \rightarrow 2^{Q}$

$$
(1, \mathrm{a}) \mapsto\{2\} ;(2, \mathrm{a}) \mapsto\{2\} ;(2, \mathrm{~b}) \mapsto\{3\} ; \ldots
$$

* a set of final states $F \subseteq Q$

Non-deterministic Finite Automata

Formally, a non-deterministic finite automata (NFA) \mathcal{A} is a tuple ($Q, \Sigma, q_{l}, \delta, F$) consisting of

* a finite set of states Q
* an alphabet Σ
* an initial state $q_{l} \in Q$
\star a transition function $\delta: Q \times \Sigma \rightarrow 2^{Q}$

$$
(1, \mathrm{a}) \mapsto\{2\} ;(2, \mathrm{a}) \mapsto\{2\} ;(2, \mathrm{~b}) \mapsto\{3\} ; \ldots
$$

* a set of final states $F \subseteq Q$

Notation: $p \xrightarrow{\mathrm{a}} q$ if $q \in \delta(p, \mathrm{a})$

Language Recognized by NFA

Consider NFA $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$
\star if q_{0} is initial state q_{l} then $q_{l}=q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \cdots \xrightarrow{a_{n}} q_{n}$ is called run on $w=a_{1} \ldots a_{n}$

Language Recognized by NFA

Consider NFA $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$
\star if q_{0} is initial state q_{l} then $q_{l}=q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \cdots \xrightarrow{a_{n}} q_{n}$ is called run on $w=a_{1} \ldots a_{n}$
\star run is accepting if $q_{n} \in F$ is final

Language Recognized by NFA

Consider NFA $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$
\star if q_{0} is initial state q_{l} then $q_{l}=q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \cdots \xrightarrow{a_{n}} q_{n}$ is called run on $w=a_{1} \ldots a_{n}$
\star run is accepting if $q_{n} \in F$ is final

* language $\mathrm{L}(\mathcal{A})$ recognized by \mathcal{A} consists of all words that have accepting run

$$
\mathrm{L}(\mathcal{A}) \triangleq\left\{w \mid \delta^{*}\left(q_{l}, w\right) \cap F \neq \varnothing\right\}
$$

where extended transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow 2^{Q}$ defined such that

$$
q \in \delta^{*}\left(p, \mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{n}}\right) \text { iff } p=q_{0} \xrightarrow{\mathrm{a}_{1}} q_{1} \xrightarrow{\mathrm{a}_{2}} \ldots \xrightarrow{\mathrm{a}_{\mathrm{n}}} q_{n}=q
$$

Language Recognized by NFA

Consider NFA $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$
\star if q_{0} is initial state q_{l} then $q_{l}=q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \cdots \xrightarrow{a_{n}} q_{n}$ is called run on $w=a_{1} \ldots a_{n}$
\star run is accepting if $q_{n} \in F$ is final
\star language $\mathrm{L}(\mathcal{A})$ recognized by \mathcal{A} consists of all words that have accepting run

$$
\mathrm{L}(\mathcal{A}) \triangleq\left\{w \mid \delta^{*}\left(q_{l}, w\right) \cap F \neq \varnothing\right\}
$$

where extended transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow 2^{Q}$ defined such that

$$
q \in \delta^{*}\left(p, \mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{n}}\right) \text { iff } p=q_{0} \xrightarrow{\mathrm{a}_{1}} q_{1} \xrightarrow{\mathrm{a}_{2}} \ldots \xrightarrow{\mathrm{a}_{\mathrm{n}}} q_{n}=q
$$

Question: $\mathrm{L}(\mathcal{A})=$?

Language Recognized by NFA

Consider NFA $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$
\star if q_{0} is initial state q_{l} then $q_{l}=q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \cdots \xrightarrow{a_{n}} q_{n}$ is called run on $w=a_{1} \ldots a_{n}$
\star run is accepting if $q_{n} \in F$ is final
\star language $\mathrm{L}(\mathcal{A})$ recognized by \mathcal{A} consists of all words that have accepting run

$$
\mathrm{L}(\mathcal{A}) \triangleq\left\{w \mid \delta^{*}\left(q_{l}, w\right) \cap F \neq \varnothing\right\}
$$

where extended transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow 2^{Q}$ defined such that

$$
q \in \delta^{*}\left(p, a_{1} \ldots a_{n}\right) \text { iff } p=q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \ldots \xrightarrow{a_{n}} q_{n}=q
$$

Question: $\mathrm{L}(\mathcal{A})=\left\{w \in \Sigma^{+} \mid w\right.$ starts and ends with a$\}$

Closure Properties, Deterministic Finite Automata and Kleene's Theorem

Closure Properties

A language L is recognizable if there is an NFA \mathcal{A} with $L(\mathcal{A})=L$

Theorem (Closure Properties of NFAs)
For recognizable L, M, the following are recognizable:

1. union $L \cup M$
2. concatenation $L \cdot M$
3. Kleene's star L^{*}
4. intersection $L \cap M$
5. complement \bar{L}

Closure Properties

A language L is recognizable if there is an NFA \mathcal{A} with $L(\mathcal{A})=L$

Theorem (Closure Properties of NFAs)
For recognizable L, M, the following are recognizable:

1. union $L \cup M$
2. concatenation $L \cdot M$
3. Kleene's star L^{*}
4. intersection $L \cap M$
5. complement \bar{L}

Proof Outline.
\star (1)-(4) follow from a construction (see exercise, next slide)
\star (5) translate to deterministic automaton (why can't we simply invert final states?)

Closure Properties

A language L is recognizable if there is an NFA \mathcal{A} with $L(\mathcal{A})=L$
Theorem (Closure Properties of NFAs)
For recognizable L, M, the following are recognizable:

1. union $L \cup M$
2. concatenation $L \cdot M$
3. Kleene's star L^{*}
4. intersection $L \cap M$
5. complement \bar{L}

Proof Outline.

* (1)-(4) follow from a construction (see exercise, next slide)
\star (5) translate to deterministic automaton (why can't we simply invert final states?)
Note
\star the class of recognized languages forms a Boolean Algebra

Closure Properties \qquad
Kleene's Star

Lemma
If L is recognizable, then so is L^{*}.

Proof Outline.
For NFA $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$ recognizing L, define $\mathcal{A}^{*} \triangleq\left(Q \uplus\left\{q^{\prime}\right\}, \Sigma, q^{\prime}, \delta^{\prime}, F \cup\left\{q^{\prime}\right\}\right)$ where

$$
\delta^{\prime}\left(q^{\prime}, \mathrm{a}\right) \triangleq \delta\left(q_{l}, \mathrm{a}\right) \quad \delta^{\prime}(q, \mathrm{a}) \triangleq \begin{cases}\delta(q, \mathrm{a}) \cup \delta\left(q_{l}, \mathrm{a}\right) & \text { if } q \in F ; \\ \delta(q, \mathrm{a}) & \text { if } q \in Q \backslash F\end{cases}
$$

Finite Automatas Characterise REG
Theorem
NFAs over Σ recognize precisely the regular languages $\operatorname{REG}(\Sigma)$.

Finite Automatas Characterise REG

Theorem
NFAs over Σ recognize precisely the regular languages $R E G(\Sigma)$.

Proof Outline.
\Longleftarrow By induction on $R E G(\Sigma)$, using closure properties. (how, why?)

Finite Automatas Characterise REG

Theorem

NFAs over Σ recognize precisely the regular languages $R E G(\Sigma)$.

Proof Outline.
\Leftarrow By induction on $\operatorname{RE} G(\Sigma)$, using closure properties. (how, why?)
\Rightarrow Fix NFA $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$.

- For $p \in Q$, start with equations

$$
L(p)=\bigcup_{p \xrightarrow{a} q} a \cdot L(q) \cup \begin{cases}\{\epsilon\} & \text { if } p \text { final; } \\ \varnothing & \text { otherwise. }\end{cases}
$$

- (intuition?)

Finite Automatas Characterise REG

Theorem

NFAs over Σ recognize precisely the regular languages $\operatorname{REG}(\Sigma)$.
Proof Outline.
\Leftarrow By induction on $\operatorname{RE} G(\Sigma)$, using closure properties. (how, why?)
\Rightarrow Fix NFA $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$.

- For $p \in Q$, start with equations

$$
\begin{aligned}
& L(p)=\bigcup_{p \xrightarrow{a}}^{\stackrel{a}{a}} \mathrm{a} \cdot L(q) \cup \begin{cases}\{\epsilon\} & \text { if } p \text { final; } \\
\varnothing & \text { otherwise. }\end{cases} \\
& \text { - thus } L(p) \text { collects words } w=a_{1} \ldots a_{\mathrm{n}} \text { s.t. } p=q_{0} \xrightarrow{\mathrm{a}_{1}} q_{1} \xrightarrow{\mathrm{a}_{2}} \cdots \xrightarrow{a_{n}} q_{n} \in F
\end{aligned}
$$

Finite Automatas Characterise REG

Theorem

NFAs over Σ recognize precisely the regular languages $\operatorname{REG}(\Sigma)$.

Proof Outline.
\Leftarrow By induction on $\operatorname{RE} G(\Sigma)$, using closure properties. (how, why?)
\Rightarrow Fix NFA $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$.

- For $p \in Q$, start with equations

$$
L(p)=\bigcup_{p \xrightarrow{\mathrm{a}} q} \mathrm{a} \cdot L(q) \cup \begin{cases}\{\epsilon\} & \text { if } p \text { final; } \\ \varnothing & \text { otherwise. }\end{cases}
$$

- thus $L(p)$ collects words $w=a_{1} \ldots a_{n}$ s.t. $p=q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \cdots \xrightarrow{a_{n}} q_{n} \in F$
- pick $p \in Q$ and apply Arden's Equality

$$
\begin{equation*}
L(p)=M \cdot L(p) \cup N \Rightarrow L(p)=M^{*} \cdot N \tag{1}
\end{equation*}
$$

Finite Automatas Characterise REG

Theorem

NFAs over Σ recognize precisely the regular languages $\operatorname{REG}(\Sigma)$.

Proof Outline.
\Leftarrow By induction on $\operatorname{RE} G(\Sigma)$, using closure properties. (how, why?)
\Rightarrow Fix NFA $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$.

- For $p \in Q$, start with equations

$$
L(p)=\bigcup_{p \xrightarrow{\mathrm{a}}} \mathrm{a} \cdot L(q) \cup \begin{cases}\{\epsilon\} & \text { if } p \text { final; } \\ \varnothing & \text { otherwise. }\end{cases}
$$

- thus $L(p)$ collects words $w=a_{1} \ldots a_{n}$ s.t. $p=q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \cdots \xrightarrow{a_{n}} q_{n} \in F$
- pick $p \in Q$ and apply Arden's Equality

$$
\begin{equation*}
L(p)=M \cdot L(p) \cup N \Rightarrow L(p)=M^{*} \cdot N \tag{1}
\end{equation*}
$$

- simplify; substitute and repeat until (1) not applicable

Finite Automatas Characterise REG

Theorem

NFAs over Σ recognize precisely the regular languages $\operatorname{REG}(\Sigma)$.

Proof Outline.
\Leftarrow By induction on $\operatorname{RE} G(\Sigma)$, using closure properties. (how, why?)
\Rightarrow Fix NFA $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$.

- For $p \in Q$, start with equations

$$
L(p)=\bigcup_{p \xrightarrow{\mathrm{a}} q} \mathrm{a} \cdot L(q) \cup \begin{cases}\{\epsilon\} & \text { if } p \text { final; } \\ \varnothing & \text { otherwise. }\end{cases}
$$

- thus $L(p)$ collects words $w=a_{1} \ldots a_{n}$ s.t. $p=q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \cdots \xrightarrow{a_{n}} q_{n} \in F$
- pick $p \in Q$ and apply Arden's Equality

$$
\begin{equation*}
L(p)=M \cdot L(p) \cup N \Rightarrow L(p)=M^{*} \cdot N \tag{1}
\end{equation*}
$$

- simplify; substitute and repeat until (1) not applicable
- $L\left(q_{I}\right)=L(\mathcal{A})$ eventually in $\operatorname{REG}(\Sigma)$

Example

$$
\begin{aligned}
L(1) & =a L(1) \cup a L(2) \quad L(2)=a L(2) \cup b L(3) \cup \epsilon \quad L(3)=a L(2) \cup b L(3) \\
\Rightarrow \quad L(1) & =a^{*} a L(2)
\end{aligned}
$$

Example

$$
\begin{array}{rlrl}
L(1) & =a L(1) \cup a L(2) & L(2) & =a L(2) \cup b L(3) \cup \epsilon \quad L(3)=a L(2) \cup b L(3) \\
\Rightarrow & L(1) & =a^{*} a L(2) & \\
L(2)=a^{*}(b L(3) \cup \epsilon)
\end{array}
$$

Example

$$
\begin{array}{rll}
& L(1)=a L(1) \cup a L(2) & L(2)=a L(2) \cup b L(3) \cup \epsilon \\
\Rightarrow & L(1)=a^{*} a L(2) & L(2)=a^{*}(b L(3) \cup \epsilon) \\
\Rightarrow & &
\end{array}
$$

Example

$$
\begin{array}{rlll}
& L(1)=a L(1) \cup a L(2) & L(2)=a L(2) \cup b L(3) \cup \epsilon & L(3)=a L(2) \cup b L(3) \\
\Rightarrow & L(1)=a^{*} a L(2) & L(2)=a^{*}(b L(3) \cup \epsilon) & L(3)=b^{*} a L(2) \\
\Rightarrow & L(1)=a^{*} a L(2) & L(2)=a^{*}\left(b^{*} a L(2) \cup \epsilon\right) & \\
\Rightarrow & &
\end{array}
$$

Example

$$
\begin{array}{rlll}
& L(1)=a L(1) \cup a L(2) & L(2)=a L(2) \cup b L(3) \cup \epsilon & L(3)=a L(2) \cup b L(3) \\
\Rightarrow & L(1)=a^{*} a L(2) & L(2)=a^{*}(b L(3) \cup \epsilon) & L(3)=b^{*} a L(2) \\
\Rightarrow & L(1)=a^{*} a L(2) & L(2)=a^{*}\left(b^{*} a L(2) \cup \epsilon\right) & \\
\Rightarrow & L(1)=a^{*} a L(2) & L(2)=a^{*} b^{*} a L(2) \cup a^{*} & \\
\Rightarrow & & &
\end{array}
$$

Example

$$
\begin{array}{rlll}
& L(1)=a L(1) \cup a L(2) & L(2)=a L(2) \cup b L(3) \cup \epsilon & L(3)=a L(2) \cup b L(3) \\
\Rightarrow & L(1)=a^{*} a L(2) & L(2)=a^{*}(b L(3) \cup \epsilon) & L(3)=b^{*} a L(2) \\
\Rightarrow & L(1)=a^{*} a L(2) & L(2)=a^{*}\left(b b^{*} a L(2) \cup \epsilon\right) & \\
\Rightarrow & L(1)=a^{*} a L(2) & L(2)=a^{*} b b^{*} a L(2) \cup a^{*} & \\
\Rightarrow & L(1)=a^{*} a L(2) & & L(2)=\left(a^{*} b b^{*} a\right)^{*} a^{*}
\end{array}
$$

Example

$$
\begin{array}{rlll}
& L(1)=a L(1) \cup a L(2) & L(2)=a L(2) \cup b L(3) \cup \epsilon & L(3)=a L(2) \cup b L(3) \\
\Rightarrow & L(1)=a^{*} a L(2) & L(2)=a^{*}(b L(3) \cup \epsilon) & L(3)=b^{*} a L(2) \\
\Rightarrow & L(1)=a^{*} a L(2) & L(2)=a^{*}\left(b b^{*} a L(2) \cup \epsilon\right) & \\
\Rightarrow & L(1)=a^{*} a L(2) & L(2)=a^{*} b b^{*} a L(2) \cup a^{*} & \\
\Rightarrow & L(1)=a^{*} a L(2) & L(2)=\left(a^{*} b b^{*} a\right)^{*} a^{*} & \\
\Rightarrow & L(1)=a^{*} a\left(a^{*} b b^{*} a\right)^{*} a^{*} & &
\end{array}
$$

$$
\Rightarrow
$$

Example

$$
\begin{array}{rlll}
& L(1)=a L(1) \cup a L(2) & L(2)=a L(2) \cup b L(3) \cup \epsilon & L(3)=a L(2) \cup b L(3) \\
\Rightarrow & L(1)=a^{*} a L(2) & L(2)=a^{*}(b L(3) \cup \epsilon) & L(3)=b^{*} a L(2) \\
\Rightarrow & L(1)=a^{*} a L(2) & L(2)=a^{*}\left(b b^{*} a L(2) \cup \epsilon\right) & \\
\Rightarrow & L(1)=a^{*} a L(2) & L(2)=a^{*} b b^{*} a L(2) \cup a^{*} & \\
\Rightarrow & L(1)=a^{*} a L(2) & L(2)=\left(a^{*} b b^{*} a\right)^{*} a^{*} & \\
\Rightarrow & L(1)=a^{*} a\left(a^{*} b^{*} a\right)^{*} a^{*} & & \\
\Rightarrow & L(1)=a a^{*}\left(b b^{*} a a^{*}\right)^{*} a^{*} & & \\
\Rightarrow & L(1)=a^{+}\left(b^{+} a^{+}\right)^{*} & &
\end{array}
$$

Deterministic Finite Automata

A deterministic finite automata (DFA) \mathcal{A} is a NFA where each state has precisely one successor state:

$$
\delta: Q \times \Sigma \rightarrow Q
$$

Deterministic Finite Automata

A deterministic finite automata (DFA) \mathcal{A} is a NFA where each state has precisely one successor state:

$$
\delta: Q \times \Sigma \rightarrow Q
$$

Theorem (Determinisation)
A language is recognizable by an NFA if and only if it is recognizable by a DFA.

Deterministic Finite Automata

A deterministic finite automata (DFA) \mathcal{A} is a NFA where each state has precisely one successor state:

$$
\delta: Q \times \Sigma \rightarrow Q
$$

Theorem (Determinisation)
A language is recognizable by an NFA if and only if it is recognizable by a DFA.
Example

Deterministic Finite Automata

A deterministic finite automata (DFA) \mathcal{A} is a NFA where each state has precisely one successor state:

$$
\delta: Q \times \Sigma \rightarrow Q
$$

Theorem (Determinisation)
A language is recognizable by an NFA if and only if it is recognizable by a DFA.
Example

Deterministic Finite Automata

A deterministic finite automata (DFA) \mathcal{A} is a NFA where each state has precisely one successor state:

$$
\delta: Q \times \Sigma \rightarrow Q
$$

Theorem (Determinisation)
A language is recognizable by an NFA if and only if it is recognizable by a DFA.
Proof Outline.
\Leftarrow Every DFA is an NFA.
\Rightarrow Given NFA $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$ recognizing L, define DFA $\mathcal{A}_{d}\left(2^{Q}, \Sigma,\left\{q_{l}\right\}, \delta_{d}, F_{d}\right)$ s.t.:
$-\delta_{d}\left(\left\{q_{1}, \ldots, q_{n}\right\}, \mathrm{a}\right) \triangleq \delta\left(q_{1}, \mathrm{a}\right) \cup \cdots \cup \delta\left(q_{n}, \mathrm{a}\right)$

- $F_{d} \triangleq\{S \subseteq Q \mid F \cap S \neq \varnothing\}$, i.e., $\left\{q_{1}, \ldots, q_{n}\right\}$ final in \mathcal{A}_{d} if one of the q_{i} final in \mathcal{A}

Then \mathcal{A}_{d} recognizes L :

$$
\text { run in new } \mathcal{A}_{d} \text { on word } w \equiv \text { all runs on } w \text { in } \mathcal{A}
$$

Deterministic Finite Automata

A deterministic finite automata (DFA) \mathcal{A} is a NFA where each state has precisely one successor state:

$$
\delta: Q \times \Sigma \rightarrow Q
$$

Theorem (Determinisation)
A language is recognizable by an NFA if and only if it is recognizable by a DFA.
Lemma
If L is regular, then so its complement $\bar{L}=\Sigma^{*} \backslash L$.
Proof Outline.

* Since L is regular, there is a DFA \mathcal{A} with $\mathrm{L}(\mathcal{A})=L$
* flipping the set of final states in \mathcal{A} results in DFA $\overline{\mathcal{A}}$ with $L(\overline{\mathcal{A}})=\bar{L}$

Kleene's Theorem

Theorem

The following are equivalent:

1. The class of regular languages $R E G(\Sigma)$
2. The class of languages recognized by NFAs over Σ
3. The class of languages recognized by DFAs over Σ

An Unpleasant Theorem

Theorem

For every number $n \in \mathbb{N}$ there exists an NFA \mathcal{A} with $n+1$ states such that every equivalent DFA has at least 2^{n} states.
\Rightarrow NFAs can be exponentially more succinct than DFAs

An Unpleasant Theorem

Theorem

For every number $n \in \mathbb{N}$ there exists an NFA \mathcal{A} with $n+1$ states such that every equivalent DFA has at least 2^{n} states.

Proof Outline.

* consider the NFA

An Unpleasant Theorem

Theorem

For every number $n \in \mathbb{N}$ there exists an NFA \mathcal{A} with $n+1$ states such that every equivalent DFA has at least 2^{n} states.

Proof Outline.
« consider the NFA

\star for a proof by contradiction, suppose equivalent DFA \mathcal{A} has strictly less than 2^{n} states:

An Unpleasant Theorem

Theorem

For every number $n \in \mathbb{N}$ there exists an NFA \mathcal{A} with $n+1$ states such that every equivalent DFA has at least 2^{n} states.

Proof Outline.

« consider the NFA

* for a proof by contradiction, suppose equivalent DFA \mathcal{A} has strictly less than 2^{n} states:
- since there are 2^{n} words of length n, there must be two such distinct words $u, v \in \Sigma^{n}$ ending up in the same state, i.e. $\delta^{*}\left(q_{l}, u\right)=\delta^{*}\left(q_{l}, v\right)$

An Unpleasant Theorem

Theorem

For every number $n \in \mathbb{N}$ there exists an NFA \mathcal{A} with $n+1$ states such that every equivalent DFA has at least 2^{n} states.

Proof Outline.

* consider the NFA

* for a proof by contradiction, suppose equivalent DFA \mathcal{A} has strictly less than 2^{n} states:
- since there are 2^{n} words of length n, there must be two such distinct words $u, v \in \Sigma^{n}$ ending up in the same state, i.e. $\delta^{*}\left(q_{l}, u\right)=\delta^{*}\left(q_{l}, v\right)$
- suppose they differ at position i, e.g., $u[i]=\mathrm{a}$ and $v[i]=\mathrm{b}$, hence

$$
u \underbrace{a \cdots a}_{i-1 \text { times }} \in L(\mathcal{A}) \quad \text { but } \quad v \underbrace{a \cdots a}_{i-1 \text { times }} \notin \mathrm{L}(\mathcal{A})
$$

An Unpleasant Theorem

Theorem

For every number $n \in \mathbb{N}$ there exists an NFA \mathcal{A} with $n+1$ states such that every equivalent DFA has at least 2^{n} states.

Proof Outline.

* consider the NFA

* for a proof by contradiction, suppose equivalent DFA \mathcal{A} has strictly less than 2^{n} states:
- since there are 2^{n} words of length n, there must be two such distinct words $u, v \in \Sigma^{n}$ ending up in the same state, i.e. $\delta^{*}\left(q_{l}, u\right)=\delta^{*}\left(q_{l}, v\right)$
- suppose they differ at position i, e.g., $u[i]=\mathrm{a}$ and $v[i]=\mathrm{b}$, hence

$$
u \underbrace{a \cdots a}_{i-1 \text { times }} \in \mathrm{L}(\mathcal{A}) \quad \text { but } \quad v \underbrace{a \cdots a}_{i-1 \text { times }} \notin \mathrm{L}(\mathcal{A})
$$

- the DFA now either accepts or rejects both extended words; contradicting that \mathcal{A} is equivalent to the NFA

DFA Equivalence and Minimisation

DFA Equivalence and Minimisation

Two NFAs (DFAs) \mathcal{A}_{1} and \mathcal{A}_{2} are equivalent if $\mathrm{L}\left(\mathcal{A}_{1}\right)=\mathrm{L}\left(\mathcal{A}_{2}\right)$.

DFA Equivalence and Minimisation

Two NFAs (DFAs) \mathcal{A}_{1} and \mathcal{A}_{2} are equivalent if $\mathrm{L}\left(\mathcal{A}_{1}\right)=\mathrm{L}\left(\mathcal{A}_{2}\right)$.
Theorem
For every DFA there exists a unique (up to renaming of states) minimal DFA.

DFA Equivalence and Minimisation

Two NFAs (DFAs) \mathcal{A}_{1} and \mathcal{A}_{2} are equivalent if $\mathrm{L}\left(\mathcal{A}_{1}\right)=\mathrm{L}\left(\mathcal{A}_{2}\right)$.

Theorem

For every DFA there exists a unique (up to renaming of states) minimal DFA.
Example

DFA Equivalence and Minimisation

Two NFAs (DFAs) \mathcal{A}_{1} and \mathcal{A}_{2} are equivalent if $\mathrm{L}\left(\mathcal{A}_{1}\right)=\mathrm{L}\left(\mathcal{A}_{2}\right)$.

Theorem

For every DFA there exists a unique (up to renaming of states) minimal DFA.
Example

\star let $\mathrm{L}(p, \mathcal{A}) \triangleq\left\{w \mid \delta^{*}(p, w) \in F\right\}$, hence in particular, $\mathrm{L}(\mathcal{A})=\mathrm{L}\left(q_{1}, \mathcal{A}\right)$
\star two states p, q are equivalent in \mathcal{A} if accepting runs coincide:

$$
p \equiv_{\mathcal{A}} q \quad: \Leftrightarrow \quad \mathrm{L}(p, \mathcal{A})=\mathrm{L}(q, \mathcal{A})
$$

DFA Equivalence and Minimisation

Two NFAs (DFAs) \mathcal{A}_{1} and \mathcal{A}_{2} are equivalent if $\mathrm{L}\left(\mathcal{A}_{1}\right)=\mathrm{L}\left(\mathcal{A}_{2}\right)$.

Theorem

For every DFA there exists a unique (up to renaming of states) minimal DFA.
Example

\star let $\mathrm{L}(p, \mathcal{A}) \triangleq\left\{w \mid \delta^{*}(p, w) \in F\right\}$, hence in particular, $\mathrm{L}(\mathcal{A})=\mathrm{L}\left(q_{1}, \mathcal{A}\right)$
\star two states p, q are equivalent in \mathcal{A} if accepting runs coincide:

$$
p \equiv_{\mathcal{A}} q \quad: \Leftrightarrow \quad \mathrm{L}(p, \mathcal{A})=\mathrm{L}(q, \mathcal{A})
$$

\star merging equivalent states (e.g. $2 \equiv_{\mathcal{A}} 4$) does not change $L(\mathcal{A})$; results in minimal DFA

Table Filling Algorithm

Definition (Computing Distinguished States)

1. initially, we distinguish pairs $\mathcal{D} \triangleq\{(p, q) \mid p \in F$ and $q \notin F\}$
2. As long as new pairs are added, repeat:
$\mathcal{D}:=\mathcal{D} \cup\{(p, q) \mid \exists a \in \Sigma .(\delta(p, a), \delta(q, a)) \in \mathcal{D}\}$
3. Return \mathcal{D}

Table Filling Algorithm

Definition (Computing Distinguished States)

1. initially, we distinguish pairs $\mathcal{D} \triangleq\{(p, q) \mid p \in F$ and $q \notin F\}$
2. As long as new pairs are added, repeat:

$$
\mathcal{D}:=\mathcal{D} \cup\{(p, q) \mid \exists a \in \Sigma .(\delta(p, a), \delta(q, a)) \in \mathcal{D}\}
$$

3. Return \mathcal{D}

Example

\mathcal{D}	1	2	3	4	5
1	-	-	-	-	-
2		-	-	-	-
3			-	-	-
4				-	-
5					-

Table Filling Algorithm

Definition (Computing Distinguished States)

1. initially, we distinguish pairs $\mathcal{D} \triangleq\{(p, q) \mid p \in F$ and $q \notin F\}$
2. As long as new pairs are added, repeat:

$$
\mathcal{D}:=\mathcal{D} \cup\{(p, q) \mid \exists a \in \Sigma .(\delta(p, a), \delta(q, a)) \in \mathcal{D}\}
$$

3. Return \mathcal{D}

Example

\mathcal{D}	1	2	3	4	5
1	-	-	-	-	-
2	\circ	-	-	-	-
3		\circ	-	-	-
4	\circ		\circ	-	-
5		\circ		\circ	-

Table Filling Algorithm

Definition (Computing Distinguished States)

1. initially, we distinguish pairs $\mathcal{D} \triangleq\{(p, q) \mid p \in F$ and $q \notin F\}$
2. As long as new pairs are added, repeat:

$$
\mathcal{D}:=\mathcal{D} \cup\{(p, q) \mid \exists a \in \Sigma .(\delta(p, a), \delta(q, a)) \in \mathcal{D}\}
$$

3. Return \mathcal{D}

Example

\mathcal{D}	1	2	3	4	5
1	-	-	-	-	-
2	\circ	-	-	-	-
3		\circ	-	-	-
4	\circ		\circ	-	-
5	\circ	\circ	\circ	\circ	-

Table Filling Algorithm

Definition (Computing Distinguished States)

1. initially, we distinguish pairs $\mathcal{D} \triangleq\{(p, q) \mid p \in F$ and $q \notin F\}$
2. As long as new pairs are added, repeat:

$$
\mathcal{D}:=\mathcal{D} \cup\{(p, q) \mid \exists a \in \Sigma .(\delta(p, a), \delta(q, a)) \in \mathcal{D}\}
$$

3. Return \mathcal{D}

Example

\mathcal{D}	1	2	3	4	5
1	-	-	-	-	-
2	\circ	-	-	-	-
3	\circ	\circ	-	-	-
4	\circ		\circ	-	-
5	\circ	\circ	\circ	\circ	-

Table Filling Algorithm

Definition (Computing Distinguished States)

1. initially, we distinguish pairs $\mathcal{D} \triangleq\{(p, q) \mid p \in F$ and $q \notin F\}$
2. As long as new pairs are added, repeat:

$$
\mathcal{D}:=\mathcal{D} \cup\{(p, q) \mid \exists \mathrm{a} \in \Sigma .(\delta(p, \mathrm{a}), \delta(q, \mathrm{a})) \in \mathcal{D}\}
$$

3. Return \mathcal{D}

Example

\mathcal{D}	1	2	3	4	5
1	-	-	-	-	-
2	\circ	-	-	-	-
3	\circ	\circ	-	-	-
4	\circ		\circ	-	-
5	\circ	\circ	\circ	\circ	-

Lemma (Correctness)
If two states are not distinguished, then they are equivalent.

Table Filling Algorithm

Definition (Computing Distinguished States)

1. initially, we distinguish pairs $\mathcal{D} \triangleq\{(p, q) \mid p \in F$ and $q \notin F\}$
2. As long as new pairs are added, repeat:

$$
\mathcal{D}:=\mathcal{D} \cup\{(p, q) \mid \exists \mathrm{a} \in \Sigma .(\delta(p, \mathrm{a}), \delta(q, \mathrm{a})) \in \mathcal{D}\}
$$

3. Return \mathcal{D}

Example

\mathcal{D}	1	2	3	4	5
1	-	-	-	-	-
2	\circ	-	-	-	-
3	\circ	\circ	-	-	-
4	\circ	$\equiv_{\mathcal{A}}$	\circ	-	-
5	\circ	\circ	\circ	\circ	-

Lemma (Correctness)
If two states are not distinguished, then they are equivalent.

Minimisation

\star let $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$ without non-reachable states (otherwise, remove them)
\star note $\equiv_{\mathcal{A}}$ is an equivalence relation
\star let $[q]$ denote the equivalence class of $q \in Q$
\star define the quotient automata $\mathcal{A}_{\equiv} \triangleq\left(Q_{\equiv}, \Sigma,\left[q_{l}\right], \delta_{\equiv}, F_{\equiv}\right)$ where:
$-Q_{\equiv} \triangleq\{[q] \mid q \in Q\}$

- $\delta_{\equiv}([q], a) \triangleq[\delta(q, a)]$ for all $a \in \Sigma$
- $F_{\equiv} \triangleq\{[q] \mid q \in F\}$

Minimisation

\star let $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$ without non-reachable states (otherwise, remove them)
\star note $\equiv_{\mathcal{A}}$ is an equivalence relation
\star let $[q]$ denote the equivalence class of $q \in Q$
\star define the quotient automata $\mathcal{A}_{\equiv} \triangleq\left(Q_{\equiv}, \Sigma,\left[q_{l}\right], \delta_{\equiv}, F_{\equiv}\right)$ where:
$-Q_{\equiv} \triangleq\{[q] \mid q \in Q\}$

- $\delta_{\equiv}([q], a) \triangleq[\delta(q, a)]$ for all $a \in \Sigma$
- $F_{\equiv} \triangleq\{[q] \mid q \in F\}$

Theorem

The quotient automata \mathcal{A}_{\equiv} is the minimal and unique DFA equivalent to \mathcal{A}

Discussion

How computationally difficult is it to ...

1. check $\mathrm{L}(\mathcal{A})=\varnothing$ for given \mathcal{A}
2. check $w \in L(\mathcal{A})$ for given $w \in \mathcal{A}$
3. check $\mathrm{L}(\mathcal{A})=\Sigma^{*}$ for given $w \in \mathcal{A}$

Decision Procedures

Decision Problems

\star A decision problem presents itself as a question to which must be answered yes or no.

- Is the list sorted? Is the automaton minimal? etc.

Decision Problems

» A decision problem presents itself as a question to which must be answered yes or no.

- Is the list sorted? Is the automaton minimal? etc.
* A decision problem depends on a given input, which has a certain size n
- the list of length n, the automaton with n states, etc.

Decision Problems

» A decision problem presents itself as a question to which must be answered yes or no.

- Is the list sorted? Is the automaton minimal? etc.
* A decision problem depends on a given input, which has a certain size n
- the list of length n, the automaton with n states, etc.
« Often, a problem admits several algorithmic solutions, whose effectiveness varies.

Decision Problems

» A decision problem presents itself as a question to which must be answered yes or no.

- Is the list sorted? Is the automaton minimal? etc.
* A decision problem depends on a given input, which has a certain size n
- the list of length n, the automaton with n states, etc.
« Often, a problem admits several algorithmic solutions, whose effectiveness varies.
« For some problems, no algorithmic solution exists
- halting problem, Hilberts 10th problem, etc.

Decision Problems

» A decision problem presents itself as a question to which must be answered yes or no.

- Is the list sorted? Is the automaton minimal? etc.
\star A decision problem depends on a given input, which has a certain size n
- the list of length n, the automaton with n states, etc.
« Often, a problem admits several algorithmic solutions, whose effectiveness varies.
« For some problems, no algorithmic solution exists
- halting problem, Hilberts 10th problem, etc.
* To compare them, from a theoretical point of view, we usually assess their worst case complexity wrt. some notion of cost
- e.g. time or space

Decision Problems

» A decision problem presents itself as a question to which must be answered yes or no.

- Is the list sorted? Is the automaton minimal? etc.
\star A decision problem depends on a given input, which has a certain size n
- the list of length n, the automaton with n states, etc.
« Often, a problem admits several algorithmic solutions, whose effectiveness varies.
« For some problems, no algorithmic solution exists
- halting problem, Hilberts 10th problem, etc.
* To compare them, from a theoretical point of view, we usually assess their worst case complexity wrt. some notion of cost
- e.g. time or space
\star The complexity is generally described by a function in the input size n.

Decision Problems

« A decision problem presents itself as a question to which must be answered yes or no.

- Is the list sorted? Is the automaton minimal? etc.
* A decision problem depends on a given input, which has a certain size n
- the list of length n, the automaton with n states, etc.
« Often, a problem admits several algorithmic solutions, whose effectiveness varies.
« For some problems, no algorithmic solution exists
- halting problem, Hilberts 10th problem, etc.
« To compare them, from a theoretical point of view, we usually assess their worst case complexity wrt. some notion of cost
- e.g. time or space
* The complexity is generally described by a function in the input size n.
* Usually, we are interested in an asymptotic analysis.
- $\mathrm{O}(n), \mathrm{O}\left(n^{2}\right), \mathrm{O}\left(2^{n}\right), \ldots$

Complexity Classes

\star The complexity of a problem can be thought of as the complexity of the best algorithm that solves it.

Complexity Classes

* The complexity of a problem can be thought of as the complexity of the best algorithm that solves it.
* this allows us to classify problems based on their inherent difficulty
- polynomial time (P or PTIME), non-deterministic polynomial time (NP), exponential time (EXPTIME), etc.
- polynomial space (PSPACE), etc.

Complexity Classes

\star The complexity of a problem can be thought of as the complexity of the best algorithm that solves it.

* this allows us to classify problems based on their inherent difficulty
- polynomial time (P or PTIME), non-deterministic polynomial time (NP), exponential time (EXPTIME), etc.
- polynomial space (PSPACE), etc.
\star complexity theory is concerned with the classification and relationships among classes

$P T I M E \subseteq N P \subseteq P S P A C E \subseteq E X P T I M E$

- we know PTIME \mp EXPTIME, but we do not know the status of individual inclusions
- solving PTIME $\stackrel{?}{\mp}$ NP is worth $1.000 .000 \$$: a strict inclusion would separate, what we assume to be, feasible from unfeasible problems

Complexity Classes

\star The complexity of a problem can be thought of as the complexity of the best algorithm that solves it.

* this allows us to classify problems based on their inherent difficulty
- polynomial time (P or PTIME), non-deterministic polynomial time (NP), exponential time (EXPTIME), etc.
- polynomial space (PSPACE), etc.
\star complexity theory is concerned with the classification and relationships among classes

PTIME $\subseteq N P \subseteq P S P A C E \subseteq E X P T I M E$

- we know PTIME \mp EXPTIME, but we do not know the status of individual inclusions
- solving PTIME $\stackrel{?}{\mp}$ NP is worth $1.000 .000 \$$: a strict inclusion would separate, what we assume to be, feasible from unfeasible problems
- nowadays, some pretty good algorithms exists that can tackle unfeasible problems on average cases (e.g. SAT solvers)

The Word Problem

\star Given: An NFA \mathcal{A} with n states and word w of length $|w|$
\star Question: $w \in \mathrm{~L}(\mathcal{A})$?

Theorem

The word problem for NFAs is in PTIME.

The Word Problem

\star Given: An NFA \mathcal{A} with n states and word w of length $|w|$
\star Question: $w \in \mathrm{~L}(\mathcal{A})$?

Theorem

The word problem for NFAs is in PTIME.

Proof Outline.

* the following depth-first search solves the problem in exponential time

```
def explore(q, w)
    if w is \epsilon : return q\inF
    for p in \delta(q, w[0]) :
            if explore(p, w[1:]) : return True
    return False
def member(w) : return explore(q/, w)
```


The Word Problem

* Given: An NFA \mathcal{A} with n states and word w of length $|w|$
\star Question: $w \in \mathrm{~L}(\mathcal{A})$?

Theorem

The word problem for NFAs is in PTIME.

Proof Outline.

* the following depth-first search solves the problem in exponential time

```
def explore(q, w)
    if }w\mathrm{ is }\epsilon: return q\in
        for p in \delta(q, w[0]) :
            if explore(p, w[1:]) : return True
        return False
def member(w) : return explore(q|, w)
```

\star redundant calls can be eliminated via memoisation (i.e., tabulate calls explore($q, w)$)

The Word Problem

* Given: An NFA \mathcal{A} with n states and word w of length $|w|$
\star Question: $w \in \mathrm{~L}(\mathcal{A})$?

Theorem

The word problem for NFAs is in PTIME.

Proof Outline.

\star the following depth-first search solves the problem in exponential time

```
def explore(q, w)
    if w is \epsilon : return q\inF
        for p in \delta(q, w[0]) :
            if explore(p,w[1:]) : return True
        return False
def member(w) : return explore(q|, w)
```

* redundant calls can be eliminated via memoisation (i.e., tabulate calls explore (q, w))
\star table bounded in size $\mathrm{O}\left(n \cdot|w|^{2}\right)$

The Emptiness Problem

* Given: An NFA \mathcal{A}
* Question: $\mathrm{L}(\mathcal{A})=\varnothing$?

Theorem
The emptiness problem for NFAs is in PTIME.

The Emptiness Problem

* Given: An NFA \mathcal{A}
\star Question: $\mathrm{L}(\mathcal{A})=\varnothing$?

Theorem

The emptiness problem for NFAs is in PTIME.
Proof Outline.

* essentially a graph reachability problem (why?)
\star solvable by depth-first or breath-first search in time $\mathrm{O}\left(n^{2}\right)$

The Universal Language Problem

\star Given: An NFA \mathcal{A}
\star Question: $\mathrm{L}(\mathcal{A})=\Sigma^{*}$?

Theorem

The universal language problem for NFAs is in PSPACE \subseteq EXPTIME.
\star result non-trivial, because an infinity of words Σ^{*} should be accepting

The Universal Language Problem

\star Given: An NFA \mathcal{A}
\star Question: $\mathrm{L}(\mathcal{A})=\Sigma^{*}$?

Theorem

The universal language problem for NFAs is in PSPACE \subseteq EXPTIME.
\star result non-trivial, because an infinity of words Σ^{*} should be accepting
\star however, the problem is equivalent to $\overline{\mathrm{L}(\mathcal{A})}=\varnothing$

The Universal Language Problem

\star Given: An NFA \mathcal{A}
\star Question: $\mathrm{L}(\mathcal{A})=\Sigma^{*}$?

Theorem

The universal language problem for NFAs is in PSPACE \subseteq EXPTIME.
\star result non-trivial, because an infinity of words Σ^{*} should be accepting
\star however, the problem is equivalent to $\overline{\mathrm{L}(\mathcal{A})}=\varnothing$
\star for DFAs, this amounts to checking $L(\overline{\mathcal{A}})=\varnothing$, thus is in PTIME

The Universal Language Problem

\star Given: An NFA \mathcal{A}
\star Question: $\mathrm{L}(\mathcal{A})=\Sigma^{*}$?

Theorem

The universal language problem for NFAs is in PSPACE \subseteq EXPTIME.
\star result non-trivial, because an infinity of words Σ^{*} should be accepting
\star however, the problem is equivalent to $\overline{\mathrm{L}(\mathcal{A})}=\varnothing$
\star for DFAs, this amounts to checking $\mathrm{L}(\overline{\mathcal{A}})=\varnothing$, thus is in PTIME

* translating NFAs to equivalent DFAs results in EXPTIME algorithm

The Universal Language Problem

\star Given: An NFA \mathcal{A}
\star Question: $\mathrm{L}(\mathcal{A})=\Sigma^{*}$?

Theorem

The universal language problem for NFAs is in PSPACE \subseteq EXPTIME.

Proof Outline.
\star we check $\mathrm{L}(\mathcal{A})=\Sigma^{*}$ in PSPACE for $\mathcal{A}=\left(Q, \Sigma, q_{I}, \delta, F\right)$

The Universal Language Problem

\star Given: An NFA \mathcal{A}
\star Question: $\mathrm{L}(\mathcal{A})=\Sigma^{*}$?

Theorem

The universal language problem for NFAs is in PSPACE \subseteq EXPTIME.
Proof Outline.
\star we check $\mathrm{L}(\mathcal{A})=\Sigma^{*}$ in PSPACE for $\mathcal{A}=\left(Q, \Sigma, q_{I}, \delta, F\right)$
\star as we saw, this amount to translating \mathcal{A} into an equivalent DFA \mathcal{B} and checking $\overline{\mathcal{B}}=\varnothing$

The Universal Language Problem

\star Given: An NFA \mathcal{A}
\star Question: $\mathrm{L}(\mathcal{A})=\Sigma^{*}$?

Theorem

The universal language problem for NFAs is in PSPACE \subseteq EXPTIME.
Proof Outline.
\star we check $\mathrm{L}(\mathcal{A})=\Sigma^{*}$ in PSPACE for $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$
\star as we saw, this amount to translating \mathcal{A} into an equivalent DFA \mathcal{B} and checking $\overline{\mathcal{B}}=\varnothing$
\star constructing $\overline{\mathcal{B}}$ on-the-fly, this can be done non-deterministically in polynomial space

The Universal Language Problem

\star Given: An NFA \mathcal{A}
\star Question: $\mathrm{L}(\mathcal{A})=\Sigma^{*}$?

Theorem

The universal language problem for NFAs is in PSPACE \subseteq EXPTIME.
Proof Outline.
\star we check $\mathrm{L}(\mathcal{A})=\Sigma^{*}$ in PSPACE for $\mathcal{A}=\left(Q, \Sigma, q_{l}, \delta, F\right)$
\star as we saw, this amount to translating \mathcal{A} into an equivalent DFA \mathcal{B} and checking $\overline{\mathcal{B}}=\varnothing$
\star constructing $\overline{\mathcal{B}}$ on-the-fly, this can be done non-deterministically in polynomial space

* by Savich's theorem, any such algorithm can be turned into a deterministic one in PSPACE

Further Consequences

The Inclusion Problem
\star Given: two NFA \mathcal{A} and \mathcal{B}

* Question: $\mathrm{L}(\mathcal{A}) \subseteq \mathrm{L}(\mathcal{B})$?

The Equivalence Problem
\star Given: two NFA \mathcal{A} and \mathcal{B}
\star Question: $\mathrm{L}(\mathcal{A})=\mathrm{L}(\mathcal{B})$?

Theorem
Both problem are PSPACE complete.

* model checking, i.e., checking an implementation against high-level specifications, usually expressed as language inclusion.

Summary

	Word	Emptiness	Universality	Inclusion	Equivalence
DFA	PTIME	PTIME	PTIME	PTIME	PTIME
NFA	PTIME	PTIME	PSPACE	PSPACE	PSPACE

\star Michael Rabin and Dana Scott received their Turing Award for their work "Finite Automat and Their Decision Problems"

Summary

	Word	Emptiness	Universality	Inclusion	Equivalence
DFA	PTIME	PTIME	PTIME	PTIME	PTIME
NFA	PTIME	PTIME	PSPACE	PSPACE	PSPACE

\star Michael Rabin and Dana Scott received their Turing Award for their work "Finite Automat and Their Decision Problems"

Applications

* finite state machines (and its extensions) used in many disciplines
» efficient string search (Knuth-Morris-Pratt algorithm), e.g., in grep, sed, awk, Java, C\#...
* Antivirus software
^ DNA/protein analysis
\star effectively satisiability/validity decision procedures for certain logics (see next lecture)

