Infinite Regular Languages Exercises

Deadline: 15/05 09:00

Exercise 1

Give an NBA \mathcal{A} over $\Sigma = \{a, b, c\}$ s.t.

$$L(\mathcal{A}) = \{ w \in \Sigma^{\omega} \mid |w|_{\mathbf{a}} = \infty \Rightarrow |w|_{\mathbf{b}} = \infty \}$$

Exercise 2

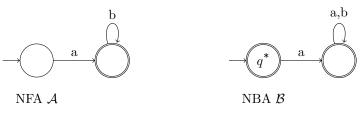
Show that $L = \{ w \in \Sigma^{\omega} \mid |w|_{\mathtt{a}} \neq \infty \}$ is not recognised by any DBA, for $\Sigma = \{\mathtt{a},\mathtt{b}\}.$

Hint: For a proof by contradiction, suppose DBA \mathcal{A} recognises L and consider runs on the family of words $w_0 = ab^{\omega}$, $w_1 = ab^{i_0}ab^{\omega}$, $w_2 = ab^{i_0}ab^{i_1}ab^{\omega}$, ..., for a carefully chosen i's. Reason then that $w = ab^{i_0}ab^{i_1}ab^{i_2}a\cdots \in L(\mathcal{A})$.

Exercise 3

Show that for every NFA \mathcal{A} with $\epsilon \notin L(\mathcal{A})$, there exists a NBA \mathcal{B} s.t. $L(\mathcal{B}) = L(\mathcal{A})^{\omega}$.

Hint: The NFA construction for $L(A)^*$ does not work, see the following counter example. You may assume that the initial state of A does not have incoming edges (why?). For the construction of B, use a fresh final state.



$$L(\mathcal{A}) = ab^*$$
 $L(\mathcal{B}) = a(a+b)^{\omega} \neq L(\mathcal{A})^{\omega}$