WMSO Exercises

Deadline: $4/05 \ 09:00$

Exercise 1

How do we define the language $L(\phi)$ of a WMSO formula ϕ .

For each language L below, give a formula ϕ_L of WMSO such that $L = \mathsf{L}(\phi_L)$, assuming $\Sigma = \{\mathsf{a}, \mathsf{b}\}$. When possible, take a formula in FO.

- 1. a*b*.
- 2. $\{a_0 \dots a_n \mid a_{3i} = a \text{ for all } i < \frac{n}{3} \}$, in other words language of words containing an a on all positions that are multiples of 3.
- 3. Generalize to the language $L_k = \{a_0 \dots a_n \mid a_{ki} = a \text{ for all } i < \frac{n}{k}\}.$

Exercise 2

Determine the language $L(\phi)$ over $\Sigma = \{a, b\}$ for the following WMSO formulas ϕ :

- 1. $\forall x. P_{\mathsf{a}}(x) \to \forall y. x < y \to P_{\mathsf{b}}(y)$.
- 2. $\exists x. P_b(x) \land \forall y. y < x \rightarrow P_a(y)$.
- 3. $\exists l. \exists X, Y. \ (\forall z.z \leq l \rightarrow (X(z) \vee Y(z)))$ $\wedge (\forall x, y. X(x) \wedge Y(y) \rightarrow x < y \wedge P_{\mathtt{a}}(x) \wedge P_{\mathtt{b}}(y))$.
- 4. $\forall x.(\exists z.x < z) \rightarrow \exists y.x < y \land (P_a(x) \leftrightarrow \neg P_a(y))$

Exercise 3

Outline the construction of an NFA from ϕ that recognizes the same language. Why is this useful?

Give an NFA which recognizes $\hat{\mathsf{L}}(\phi)$ for $\phi = X(x) \to \exists y.y < x \land Y(y)$. Use the variable order X, Y, x, y in the construction.