Finite Automata Exercises

Deadline: 03/04 09:00

Exercise 1

Explain what a language is. When is a language regular? What does it mean for a language to be recognized by an NFA.

Consider the regular language $(a \cup b)^* a(ab)^*$

- 1. construct an NFA recognizing this language;
- 2. translate this NFA to an equivalent DFA; and
- 3. minimise the resulting DFA.

Exercise 2

What does Kleene's Theorem tell us?

Let L and M be two languages recognized by NFAs, say \mathcal{A} and \mathcal{B} , respectively. Show that the following languages are recognizable as well.

- 1. concatenation $L \cdot M$;
- 2. union $L \cup M$; and
- 3. intersection $L \cap M$.

Hint: Construct corresponding new automatons based on \mathcal{A} and \mathcal{B} . For the last point, use a product construction, that runs \mathcal{A} and \mathcal{B} in parallel.

Exercise 3

What is a decision problem, and what does it mean for such a problem to be in PTIME?

Define an algorithm that checks if a NFA \mathcal{A} accepts at least the words accepted by \mathcal{B} . What is the complexity of your algorithm. Is it optimal?

Hint: You may exploit the closure properties of recognizable languages and the known complexity bounds discussed in the lecture.