Advanced Logic

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2022/AL/

Martin Avanzini (martin.avanzini@inria.fr) Etienne Lozes (etienne.lozes@univ-cotedazur.fr)

2nd Semester M1, 2022

Last Lecture

- ★ a language $L \subseteq \Sigma^{\omega}$ is ω -regular if $L = \bigcup_{0 \le i \le n} U_i \cdot V_i^{\omega}$ for regular languages U_i, V_i ($0 \le i \le n$)
- ★ a Büchi Automaton is structurally similar to an NFA, but recognizes words $w \in \Sigma^{\infty}$ that visit final states infinitely often

Theorem

For recognisable $U \in \Sigma^*$ and $V, W \in \Sigma^{\omega}$ the following are recognisable:

- 1. union $V \cup W$ 4. ω -iteration U^{ω}
- 2. intersection $V \cap W$ 5. complement \overline{V}
- 3. left-concatenation $U \cdot V$

Theorem

$$L \in \omega REG(\Sigma)$$
 if and only if $L = L(\mathcal{A})$ for some NBA \mathcal{A}

Theorem

For every MSO formula ϕ there exists an NBA A_{ϕ} s.t. $\hat{L}(\phi) = L(A_{\phi})$.

Today's Lecture

- 1. Linear temporal logic (LTL)
- 2. LTL model checking

Linear temporal logic

Motivation

- ★ linear temporal logic is a logic for reasoning about events in time
 - always not $(\phi \land \psi)$ safety- always (Request implies eventually Grant)liveness- always (Request implies (Request until Grant))liveness
- $\star\,$ LTL shares algorithmic solutions with MSO

★ the set of LTL formulas over propositions $\mathcal{P} = \{p, q, ...\}$ is given by

 $\phi, \psi ::= p \mid \phi \lor \psi \mid \neg \phi$ $\mid X \phi \mid \phi \cup \psi$

(Propositional Formulas) (Next and Until)

★ the set of LTL formulas over propositions $\mathcal{P} = \{p, q, ...\}$ is given by

 $\phi, \psi ::= p \mid \phi \lor \psi \mid \neg \phi \qquad (Propositional Formulas)$ $\mid X \phi \mid \phi \cup \psi \qquad (Next and Until)$

★ LTL is a logic of temporal sequences, modeled as infinite words over $\Sigma \triangleq 2^{\mathcal{P}}$

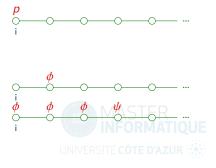
★ the set of LTL formulas over propositions $\mathcal{P} = \{p, q, ...\}$ is given by

$$\phi, \psi ::= p | \phi \lor \psi | \neg \phi \qquad (Propositional Formulas)$$
$$| X \phi | \phi \cup \psi \qquad (Next and Until)$$

★ LTL is a logic of temporal sequences, modeled as infinite words over $\Sigma \triangleq 2^{\mathcal{P}}$

★ for a sentence ϕ and $w = P_0 P_1 P_2 \dots$, we define $w \models \phi$ as w; $0 \models \phi$ where

 $\begin{array}{lll} w; i \vDash p & : \Leftrightarrow & p \in P_i \\ w; i \vDash \phi \lor \psi & : \Leftrightarrow & w; i \vDash \phi \text{ or } w; i \vDash \psi \\ w; i \vDash \neg \phi & : \Leftrightarrow & w; i \nvDash \phi \\ w, i \vDash X \phi & : \Leftrightarrow & w; i + 1 \vDash \phi \\ w; i \vDash \phi \cup \psi & : \Leftrightarrow & \text{exists } k \ge i \text{ s.t. } w; k \vDash \phi \\ & \text{and } w; j \vDash \psi \text{ for all } i \le j < k \end{array}$

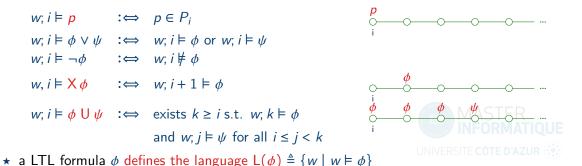


★ the set of LTL formulas over propositions $\mathcal{P} = \{p, q, ...\}$ is given by

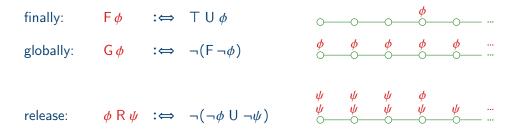
$$\phi, \psi ::= p | \phi \lor \psi | \neg \phi \qquad (Propositional Formulas)$$
$$| X \phi | \phi \cup \psi \qquad (Next and Until)$$

★ LTL is a logic of temporal sequences, modeled as infinite words over $\Sigma \triangleq 2^{\mathcal{P}}$

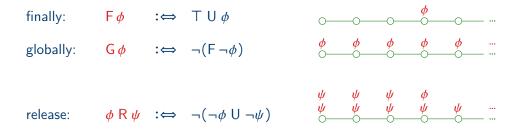
★ for a sentence ϕ and $w = P_0 P_1 P_2 \dots$, we define $w \models \phi$ as w; $0 \models \phi$ where



Derived Operators and Positive Normal Forms ____

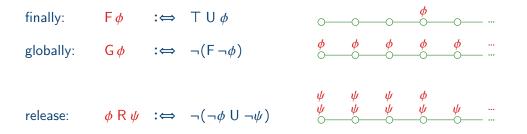


Derived Operators and Positive Normal Forms _____



★ F ϕ , G ϕ and X ϕ are sometimes denoted by $\diamond \phi$, □ ϕ and $\circ \phi$, respectively

Derived Operators and Positive Normal Forms _____



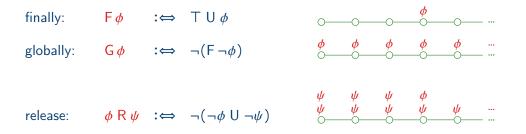
★ F ϕ , G ϕ and X ϕ are sometimes denoted by $\diamond \phi$, □ ϕ and $\circ \phi$, respectively

* a formula ϕ is in positive normal form (PNF) if it is derived from the following grammar:

$$\phi, \psi ::= p \ \left| \begin{array}{c} \neg p \end{array} \right| \ \phi \land \psi \ \left| \begin{array}{c} \phi \lor \psi \end{array} \right| \ X \phi \ \left| \begin{array}{c} \phi \lor \psi \end{array} \right| \ \phi \mathrel{\mathsf{R}} \psi$$

- negation only in front of literals

Derived Operators and Positive Normal Forms _____



★ F ϕ , G ϕ and X ϕ are sometimes denoted by $\diamond \phi$, □ ϕ and $\circ \phi$, respectively

* a formula ϕ is in positive normal form (PNF) if it is derived from the following grammar:

$$\phi, \psi ::= p \ \left| \begin{array}{c} \neg p \end{array} \right| \ \phi \land \psi \ \left| \begin{array}{c} \phi \lor \psi \end{array} \right| \ X \phi \ \left| \begin{array}{c} \phi \lor \psi \end{array} \right| \ \phi \mathrel{\mathsf{R}} \psi$$

- negation only in front of literals

Lemma

Every formula ϕ can be turned into an equivalent formula ψ in PNF with $|\psi| \leq 2|\phi|$

Safety = something bad never happens = $G \neg \phi_{bad}$

Safety = something bad never happens = $G \neg \phi_{bad}$

Example

- ★ a ...A train is approaching
- ★ c ...A train is crossing
- \star | ...The light is blinking
- \star b ... The barrier is down

Safety = something bad never happens = $G \neg \phi_{bad}$

Example

- ★ a ...A train is approaching
- ★ c ...A train is crossing
- \star | ...The light is blinking
- \star b ... The barrier is down
- $\star\,$ when a train is crossing, the barrier is down:

Safety = something bad never happens = $G \neg \phi_{bad}$

Example

- ★ a ...A train is approaching
- ★ c ...A train is crossing
- \star | ...The light is blinking
- ★ b ...The barrier is down

 \star when a train is crossing, the barrier is down:

 $G(c \rightarrow b) \equiv G \neg (c \land \neg b)$

Safety = something bad never happens = $G \neg \phi_{bad}$

Example

- ★ a ...A train is approaching
- ★ c ...A train is crossing
- \star | ...The light is blinking
- ★ b ...The barrier is down

 $\star\,$ when a train is crossing, the barrier is down:

 $G(c \rightarrow b) \equiv G \neg (c \land \neg b)$

 $\star\,$ if a train is approaching or crossing, the light must be blinking:

Safety = something bad never happens = $G \neg \phi_{bad}$

Example

- ★ a ...A train is approaching
- ★ c ...A train is crossing
- \star | ...The light is blinking
- ★ b ...The barrier is down

 $\star\,$ when a train is crossing, the barrier is down:

 $G(c \rightarrow b) \equiv G \neg (c \land \neg b)$

 \star if a train is approaching or crossing, the light must be blinking:

 $G(a \lor c \to b) \equiv G \neg ((a \lor c) \land \neg I)$

Safety = something bad never happens = $G \neg \phi_{bad}$

Example

- ★ a ...A train is approaching
- ★ c ...A train is crossing
- \star | ... The light is blinking
- ★ b ...The barrier is down

★ when a train is crossing, the barrier is down:

 $G(c \rightarrow b) \equiv G \neg (c \land \neg b)$

 \star if a train is approaching or crossing, the light must be blinking:

 $G(a \lor c \to b) \equiv G \neg ((a \lor c) \land \neg I)$

 \star if the barrier is up and the light is off, no train is approaching or crossing: FOR

Safety = something bad never happens = $G \neg \phi_{bad}$

Example

- ★ a ...A train is approaching
- ★ c ...A train is crossing
- \star | ... The light is blinking
- ★ b ...The barrier is down

★ when a train is crossing, the barrier is down:

 $G(c \rightarrow b) \equiv G \neg (c \land \neg b)$

 \star if a train is approaching or crossing, the light must be blinking:

 $G(a \lor c \to b) \equiv G \neg ((a \lor c) \land \neg I)$

★ if the barrier is up and the light is off, no train is approaching or crossing: FORMATION $G(\neg b \land \neg l \rightarrow \neg a \land \neg c) \equiv G \neg (\neg b \land \neg l \land (a \lor c))^{\text{RSITE COTE DAZUR}}$

Liveness = something intiated eventually terminates = $G(\phi_{init} \rightarrow F \phi_{term})$

Liveness = something intiated eventually terminates = $G(\phi_{init} \rightarrow F \phi_{term})$

★ approaching trains eventually cross:

Liveness = something intiated eventually terminates = $G(\phi_{init} \rightarrow F \phi_{term})$

★ approaching trains eventually cross:

 $G(a \rightarrow Fc)$

Liveness = something intiated eventually terminates = $G(\phi_{init} \rightarrow F \phi_{term})$

★ approaching trains eventually cross:

 $G(a \rightarrow Fc)$

 \star when a train is approaching, the barrier is down before it crosses:

Liveness = something initiated eventually terminates = $G(\phi_{init} \rightarrow F \phi_{term})$

★ approaching trains eventually cross:

 $G(a \rightarrow Fc)$

 \star when a train is approaching, the barrier is down before it crosses:

 $G(a \rightarrow \neg c \cup b)$

Liveness = something intiated eventually terminates = $G(\phi_{init} \rightarrow F \phi_{term})$

★ approaching trains eventually cross:

 $G(a \rightarrow Fc)$

 \star when a train is approaching, the barrier is down before it crosses:

 $G(a \rightarrow \neg c \cup b)$

 $\star\,$ if a train finished crossing, the barrier will be eventually risen

Liveness = something intiated eventually terminates = $G(\phi_{init} \rightarrow F \phi_{term})$

★ approaching trains eventually cross:

 $G(a \rightarrow Fc)$

 \star when a train is approaching, the barrier is down before it crosses:

 $G(a \rightarrow \neg c \cup b)$

 $\star\,$ if a train finished crossing, the barrier will be eventually risen

 $\mathsf{G}\left(\mathsf{c}\wedge\mathsf{X}\,\neg\mathsf{c}\to\mathsf{X}\,\mathsf{F}\,\neg\mathsf{b}\right)$

Characterising LTL

- ★ LTL can be "expressed" within MSO \equiv Büchi Automata
- * MSO and Büchi Automata are strictly more expressive

LTL recognisability < ω -regular

- * LTL most naturally translated to alternating Büchi Automata (ABA)
- * loop-free (very weak) ABA characterise precisely the class of LTL recognisable languages

Characterising LTL

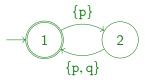
- ★ LTL can be "expressed" within MSO \equiv Büchi Automata
- * MSO and Büchi Automata are strictly more expressive

LTL recognisability < ω -regular

- * LTL most naturally translated to alternating Büchi Automata (ABA)
- * loop-free (very weak) ABA characterise precisely the class of LTL recognisable languages

Example

the Büchi Automaton $\mathcal A$ over $\mathcal P$ = $\{p,q\}$ given by



is not loop-free (and cannot be turned into equivalent loop-free one) $\Rightarrow L(A)$ not expressible in LTL

(Very Weak) Alternating Büchi Automata ____

- * an alternating Büchi Automaton (ABA) is a tuple $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ identical to an AFA
- ★ execution on words $w \in \Sigma^{\omega}$ are now infinite tree T_w
- \star an execution is accepting in the sense of Büchi: every path visits F infinitely often
- ★ L(\mathcal{A}) ≜ { $w \in \Sigma^{\omega}$ | there exist an accepting execution T_w for w}

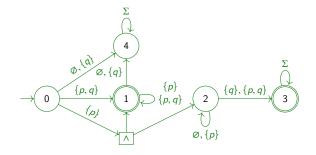
(Very Weak) Alternating Büchi Automata

- * an alternating Büchi Automaton (ABA) is a tuple $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ identical to an AFA
- ★ execution on words $w \in \Sigma^{\omega}$ are now infinite tree T_w
- \star an execution is accepting in the sense of Büchi: every path visits F infinitely often
- ★ L(\mathcal{A}) ≜ { $w \in \Sigma^{\omega}$ | there exist an accepting execution T_w for w}
- ★ very weak ABA (VWABA) is an ABA if for every $a \in \Sigma$, $\xrightarrow{a} \subseteq \leq$ for some linear order $\leq \subseteq Q \times Q$

(Very Weak) Alternating Büchi Automata

- * an alternating Büchi Automaton (ABA) is a tuple $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ identical to an AFA
- ★ execution on words $w \in \Sigma^{\omega}$ are now infinite tree T_w
- \star an execution is accepting in the sense of Büchi: every path visits F infinitely often
- ★ L(\mathcal{A}) ≜ { $w \in \Sigma^{\omega}$ | there exist an accepting execution T_w for w}
- ★ very weak ABA (VWABA) is an ABA if for every $a \in \Sigma$, $\xrightarrow{a} \subseteq \leq$ for some linear order $\leq \subseteq Q \times Q$

Example



LTL and Automata

Theorem

Let L be a language over $\Sigma = 2^{\mathcal{P}}$. The following are equivalent:

- ★ L is LTL definable.
- ★ L is recognizable by VWABA.

From Automata to LTL

fix a VWABA $\mathcal{A} = (\{q_0, \ldots, q_n\}, 2^{\mathcal{P}}, q_0, \delta, F)$ where wlog. $q_0 > q_1 > \cdots > q_n$

From Automata to LTL

fix a VWABA $\mathcal{A} = (\{q_0, \ldots, q_n\}, 2^{\mathcal{P}}, q_0, \delta, F)$ where wlog. $q_0 > q_1 > \cdots > q_n$

★ since A is very weak, there are transitions from q_i to q_j only if $i \ge j$

fix a VWABA $\mathcal{A} = (\{q_0, \ldots, q_n\}, 2^{\mathcal{P}}, q_0, \delta, F)$ where wlog. $q_0 > q_1 > \cdots > q_n$

- ★ since A is very weak, there are transitions from q_i to q_j only if $i \ge j$
- * we now associate each state q_i with a formula ϕ_i s.t.

 $\mathsf{L}(\phi_i) = \mathsf{L}_{\mathcal{A}}(q_i)$

fix a VWABA $\mathcal{A} = (\{q_0, \ldots, q_n\}, 2^{\mathcal{P}}, q_0, \delta, F)$ where wlog. $q_0 > q_1 > \cdots > q_n$

- ★ since A is very weak, there are transitions from q_i to q_j only if $i \ge j$
- ***** we now associate each state q_i with a formula ϕ_i s.t.

 $\mathsf{L}(\phi_i) = \mathsf{L}_{\mathcal{A}}(q_i)$

★ this can be done inductively: while construction ϕ_i , we already have suitable formulas ϕ_j for i > j

fix a VWABA $\mathcal{A} = (\{q_0, \ldots, q_n\}, 2^{\mathcal{P}}, q_0, \delta, F)$ where wlog. $q_0 > q_1 > \cdots > q_n$

- ★ since A is very weak, there are transitions from q_i to q_j only if $i \ge j$
- ***** we now associate each state q_i with a formula ϕ_i s.t.

 $\mathsf{L}(\phi_i) = \mathsf{L}_{\mathcal{A}}(q_i)$

- ★ this can be done inductively: while construction ϕ_i , we already have suitable formulas ϕ_j for i > j
- ★ for propositions $P \subseteq P$, the construction uses the characteristic function

$$\chi_{P} \triangleq \left(\bigwedge_{p \in P} p \right) \land \left(\bigwedge_{p \notin P} \neg p \right)$$

fix a VWABA $\mathcal{A} = (\{q_0, \ldots, q_n\}, 2^{\mathcal{P}}, q_0, \delta, F)$ where wlog. $q_0 > q_1 > \cdots > q_n$

- ★ since A is very weak, there are transitions from q_i to q_j only if $i \ge j$
- * we now associate each state q_i with a formula ϕ_i s.t.

 $\mathsf{L}(\phi_i) = \mathsf{L}_{\mathcal{A}}(q_i)$

- ★ this can be done inductively: while construction ϕ_i , we already have suitable formulas ϕ_j for i > j
- ★ for propositions $P \subseteq P$, the construction uses the characteristic function

$$\chi_{P} \triangleq \left(\bigwedge_{p \in P} p \right) \land \left(\bigwedge_{p \notin P} \neg p \right)$$

 \star the construction differs whether the state is final, we thus consider two cases

From Automata to LTL (II)

fix a VWABA $\mathcal{A} = (\{q_0, \ldots, q_n\}, 2^{\mathcal{P}}, q_0, \delta, F)$ where wlog. $q_0 > q_1 > \cdots > q_n$

★ note that $L_A(q_i)$ satisfies

 $\mathsf{L}_{\mathcal{A}}(q_{i}) \equiv \bigvee_{P \subseteq \mathcal{P}} \chi_{P} \wedge \mathsf{X}\left(\delta(q_{i}, P)[q_{i}/\mathsf{L}_{\mathcal{A}}(q_{i}), q_{i+1}/\mathsf{L}_{\mathcal{A}}(q_{i+1}) \dots, q_{n}/\mathsf{L}_{\mathcal{A}}(q_{n})]\right)$

★ if $q_i \notin F$ then we rewrite $L_A(q_i)$ as $\psi \lor (\rho \land X L_A(q_i))$ and set

 $\phi_i \triangleq \rho \ \mathsf{U} \ \psi$

★ if $q_i \in F$ then we rewrite $L_A(q_i)$ as $\psi \land (\rho \lor X L_A(q_i))$ and set

 $\phi_i \triangleq \mathsf{G}\psi \lor (\psi \: \mathsf{U} \: (\rho \land \psi))$

the ABA \mathcal{A}_{ϕ} for a PNF formula ϕ is given by $(Q, 2^{\mathcal{P}}, \phi, \delta, F)$ where $\star Q \triangleq \{\top, \bot\} \cup \{q_{\psi} \mid \psi \text{ occurs as sub-formula in } \phi\}$

the ABA \mathcal{A}_{ϕ} for a PNF formula ϕ is given by $(Q, 2^{\mathcal{P}}, \phi, \delta, F)$ where

- ★ $Q \triangleq \{\top, \bot\} \cup \{q_{\psi} \mid \psi \text{ occurs as sub-formula in } \phi\}$
- $\star\,$ the transition function δ : $Q\times 2^{\mathcal{P}}\to \mathbb{B}^+(Q)$ is given by

$$\delta(\top, P) \triangleq \top \quad \delta(\bot, P) \triangleq \bot \quad \delta(q_p, P) \triangleq \begin{cases} \top & \text{if } p \in P \\ \bot & \text{if } p \notin P \end{cases} \quad \delta(q_{\neg p}, P) \triangleq \begin{cases} \bot & \text{if } p \in P \\ \top & \text{if } p \notin P \end{cases}$$
$$\delta(q_{\psi_1 \land \psi_2}, P) \triangleq \delta(q_{\psi_1}, P) \land \delta(q_{\psi_2}, P) \qquad \delta(q_{\psi_1 \lor \psi_2}, P) \triangleq \delta(q_{\psi_1}, P) \lor \delta(q_{\psi_2}, P) \end{cases}$$

$$\delta(q_{X\psi}, P) \triangleq q_{\psi}$$

$$\delta(q_{\psi_1 \cup \psi_2}, P) \triangleq \delta(q_{\psi_2}, P) \lor (\delta(q_{\psi_1}, P) \land q_{\psi_1 \cup \psi_2})$$

$$\delta(q_{\psi_1 \cap \psi_2}, P) \triangleq \delta(q_{\psi_2}, P) \land (\delta(q_{\psi_1}, P) \lor q_{\psi_1 \cap \psi_2})$$

the ABA \mathcal{A}_{ϕ} for a PNF formula ϕ is given by $(Q, 2^{\mathcal{P}}, \phi, \delta, F)$ where

- ★ $Q \triangleq \{\top, \bot\} \cup \{q_{\psi} \mid \psi \text{ occurs as sub-formula in } \phi\}$
- ★ the transition function δ : $Q \times 2^{\mathcal{P}} \to \mathbb{B}^+(Q)$ is given by

$$\delta(\top, P) \triangleq \top \quad \delta(\bot, P) \triangleq \bot \quad \delta(q_p, P) \triangleq \begin{cases} \top & \text{if } p \in P \\ \bot & \text{if } p \notin P \end{cases} \quad \delta(q_{\neg p}, P) \triangleq \begin{cases} \bot & \text{if } p \in P \\ \top & \text{if } p \notin P \end{cases}$$
$$\delta(q_{\psi_1 \land \psi_2}, P) \triangleq \delta(q_{\psi_1}, P) \land \delta(q_{\psi_2}, P) \qquad \delta(q_{\psi_1 \lor \psi_2}, P) \triangleq \delta(q_{\psi_1}, P) \lor \delta(q_{\psi_2}, P) \end{cases}$$

$$\delta(q_{X\psi}, P) \triangleq q_{\psi}$$

$$\delta(q_{\psi_1 \cup \psi_2}, P) \triangleq \delta(q_{\psi_2}, P) \lor (\delta(q_{\psi_1}, P) \land q_{\psi_1 \cup \psi_2})$$

$$\delta(q_{\psi_1 \cap \psi_2}, P) \triangleq \delta(q_{\psi_2}, P) \land (\delta(q_{\psi_1}, P) \lor q_{\psi_1 \cap \psi_2})$$

 $\star\,$ the only final states are \top and $q_{\psi_1\mathsf{R}\psi_2}\in Q$

the ABA \mathcal{A}_{ϕ} for a PNF formula ϕ is given by $(Q, 2^{\mathcal{P}}, \phi, \delta, F)$ where

- ★ $Q \triangleq \{\top, \bot\} \cup \{q_{\psi} \mid \psi \text{ occurs as sub-formula in } \phi\}$
- ★ the transition function δ : $Q \times 2^{\mathcal{P}} \to \mathbb{B}^+(Q)$ is given by

$$\delta(\top, P) \triangleq \top \quad \delta(\bot, P) \triangleq \bot \quad \delta(q_p, P) \triangleq \begin{cases} \top & \text{if } p \in P \\ \bot & \text{if } p \notin P \end{cases} \quad \delta(q_{\neg p}, P) \triangleq \begin{cases} \bot & \text{if } p \in P \\ \top & \text{if } p \notin P \end{cases}$$
$$\delta(q_{\psi_1 \land \psi_2}, P) \triangleq \delta(q_{\psi_1}, P) \land \delta(q_{\psi_2}, P) \qquad \delta(q_{\psi_1 \lor \psi_2}, P) \triangleq \delta(q_{\psi_1}, P) \lor \delta(q_{\psi_2}, P) \end{cases}$$

$$\delta(q_{X\psi}, P) \triangleq q_{\psi}$$

$$\delta(q_{\psi_1 \cup \psi_2}, P) \triangleq \delta(q_{\psi_2}, P) \lor (\delta(q_{\psi_1}, P) \land q_{\psi_1 \cup \psi_2})$$

$$\delta(q_{\psi_1 \cap \psi_2}, P) \triangleq \delta(q_{\psi_2}, P) \land (\delta(q_{\psi_1}, P) \lor q_{\psi_1 \cap \psi_2})$$

 $\star\,$ the only final states are \top and $\,q_{\psi_1 {\sf R} \psi_2} \in Q\,$

Notes

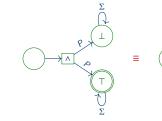
 $\star \ \mathcal{A}_{\phi}$ is linear in size in $|\phi|$

* using the construction for AFAs, this ABA can be transformed to an NBA of size $O(2^{|\phi|})$

consider $\phi = \mathsf{G} p \land \mathsf{F} q \equiv ((p \land \neg p) \mathsf{R} p) \land ((p \lor \neg p) \cup q)$

consider $\phi = G p \wedge F q \equiv ((p \wedge \neg p) R p) \wedge ((p \vee \neg p) \cup q)$ $\delta(q_p, P) = \begin{cases} \top & \text{if } p \in P \\ \bot & \text{if } p \notin P \end{cases}$ $\delta(q_{\neg p}, P) = \begin{cases} \bot & \text{if } p \in P \\ \top & \text{if } p \notin P \end{cases}$

consider $\phi = G p \wedge F q \equiv ((p \wedge \neg p) R p) \wedge ((p \vee \neg p) \cup q)$ $\delta(q_p, P) = \begin{cases} \top & \text{if } p \in P \\ \bot & \text{if } p \notin P \end{cases}$ $\delta(q_{\neg p}, P) = \begin{cases} \bot & \text{if } p \in P \\ \top & \text{if } p \notin P \end{cases}$ $\delta(q_{p \wedge \neg p}, P) = \delta(q_p, P) \wedge \delta(q_{\neg p}, P) = \top \wedge \bot \approx \bot$ $\delta(q_{p \vee \neg p}, P) = \delta(q_p, P) \vee \delta(q_{\neg p}, P) = \bot \vee \top \approx \top$



consider $\phi = G p \wedge F q \equiv ((p \wedge \neg p) R p) \wedge ((p \vee \neg p) \cup q)$ $\delta(q_p, P) = \begin{cases} \top & \text{if } p \in P \\ \bot & \text{if } p \notin P \end{cases}$ $\delta(q_{\neg p}, P) = \begin{cases} \bot & \text{if } p \in P \\ \top & \text{if } p \notin P \end{cases}$ $\delta(q_{p \wedge \neg p}, P) = \delta(q_p, P) \wedge \delta(q_{\neg p}, P) = \top \wedge \bot \approx \bot$ $\delta(q_{p\vee\neg p}, P) = \delta(q_p, P) \vee \delta(q_{\neg p}, P) = \bot \vee \top \approx \top$ $\delta(q_{(p\wedge\neg p)\mathsf{R}p}, P) = \delta(p, P) \wedge (\delta(q_{p\wedge\neg p}, P) \vee q_{(p\wedge\neg p)\mathsf{R}p}) \approx \begin{cases} q_{(p\wedge\neg p)\mathsf{R}p} & \text{if } p \in P \\ 1 & \text{if } p \notin P \end{cases}$

consider $\phi = G p \wedge F q \equiv ((p \wedge \neg p) R p) \wedge ((p \vee \neg p) \cup q)$ $\delta(q_p, P) = \begin{cases} \top & \text{if } p \in P \\ \bot & \text{if } p \notin P \end{cases}$ $\delta(q_{\neg p}, P) = \begin{cases} \bot & \text{if } p \in P \\ \top & \text{if } p \notin P \end{cases}$ $\delta(q_{p \wedge \neg p}, P) = \delta(q_p, P) \wedge \delta(q_{\neg p}, P) = \top \wedge \bot \approx \bot$ $\delta(q_{P\vee\neg P}, P) = \delta(q_{P}, P) \vee \delta(q_{\neg P}, P) = \bot \vee \top \approx \top$ $\delta(q_{(p\wedge\neg p)\mathsf{R}p}, P) = \delta(p, P) \wedge (\delta(q_{p\wedge\neg p}, P) \vee q_{(p\wedge\neg p)\mathsf{R}p}) \approx \begin{cases} q_{(p\wedge\neg p)\mathsf{R}p} & \text{if } p \in P \\ \bot & \text{if } p \notin P \end{cases}$ $\delta(q_{(p\vee\neg p)\cup q}, P) = \delta(q, P) \vee (\delta(q_{p\vee\neg p}, P) \land q_{(p\vee\neg p)\mathsf{R}q}) \approx \begin{cases} \top & \text{if } q \in P \\ q_{(p\vee\neg p)\cup q} & \text{if } q \notin P \end{cases}$

consider $\phi = G p \wedge F q \equiv ((p \wedge \neg p) R p) \wedge ((p \vee \neg p) \cup q)$ $\delta(q_p, P) = \begin{cases} \top & \text{if } p \in P \\ \bot & \text{if } p \notin P \end{cases}$ $\delta(q_{\neg p}, P) = \begin{cases} \bot & \text{if } p \in P \\ \top & \text{if } p \notin P \end{cases}$ $\delta(q_{p \wedge \neg p}, P) = \delta(q_p, P) \wedge \delta(q_{\neg p}, P) = \top \wedge \bot \approx \bot$ $\delta(q_{p\vee \neg p}, P) = \delta(q_p, P) \vee \delta(q_{\neg p}, P) = \bot \vee \top \approx \top$ $\delta(q_{(p \wedge \neg p) \mathsf{R}p}, P) = \delta(p, P) \wedge (\delta(q_{p \wedge \neg p}, P) \vee q_{(p \wedge \neg p) \mathsf{R}p}) \approx \begin{cases} q_{(p \wedge \neg p) \mathsf{R}p} & \text{if } p \in P \\ \bot & \text{if } p \notin P \end{cases}$ $\delta(q_{(p\vee\neg p)\cup q}, P) = \delta(q, P) \vee (\delta(q_{p\vee\neg p}, P) \land q_{(p\vee\neg p)\mathsf{R}q}) \approx \begin{cases} \top & \text{if } q \in P \\ q_{(p\vee\neg p)\cup q} & \text{if } q \notin P \end{cases}$ $\delta(\phi, P) = \delta(q_{(p \land \neg p) \mathsf{R}p}, P) \land \delta(q_{(p \lor \neg p) \mathsf{U}q}, P) \approx \begin{cases} \bot & \text{if } P = \emptyset \\ q_{(p \land \neg p) \mathsf{R}p} \land q_{(p \lor \neg p) \mathsf{U}q} & \text{if } P \neq \{p\} \models \mathsf{R} \\ \bot & \text{if } P = \{q\} \\ q_{(p \land \neg p) \mathsf{R}p} & \text{UNV if } P = \{p, q\} \land \mathsf{ZUR} \end{cases}$

Example _____

$$\begin{aligned} \operatorname{consider} \phi &= \operatorname{G} p \wedge \operatorname{F} q \equiv \left(\left(p \wedge \neg p \right) \operatorname{R} p \right) \wedge \left(\left(p \vee \neg p \right) \operatorname{U} q \right) & & & \\ \delta(q_p, P) &= \begin{cases} T & \operatorname{if} p \in P \\ \bot & \operatorname{if} p \notin P \end{cases} \\ \delta(q_{\neg p}, P) &= \begin{cases} \bot & \operatorname{if} p \in P \\ T & \operatorname{if} p \notin P \end{cases} & & & & \\ \delta(q_{p \wedge \neg p}, P) &= \delta(q_p, P) \wedge \delta(q_{\neg p}, P) = T \wedge \bot \approx \bot \\ \delta(q_{p \wedge \neg p}, P) &= \delta(q_p, P) \wedge \delta(q_{\neg p}, P) = \bot \vee T \approx T \end{cases} \\ \delta(q_{(p \wedge \neg p) \operatorname{R} p}, P) &= \delta(p, P) \wedge \left(\delta(q_{p \wedge \neg p}, P) \vee q_{(p \wedge \neg p) \operatorname{R} p} \right) \approx \begin{cases} q_{(p \wedge \neg p) \operatorname{R} p} & \operatorname{if} p \notin P \\ \bot & \operatorname{if} p \notin P \\ \Delta(q_{(p \vee \neg p) \operatorname{U} q}, P) &= \delta(q, P) \vee \left(\delta(q_{p \vee \neg p}, P) \wedge q_{(p \vee \neg p) \operatorname{R} q} \right) \approx \begin{cases} T & \operatorname{if} q \in P \\ q_{(p \vee \neg p) \operatorname{U} q} & \operatorname{if} p \notin P \end{cases} \\ \delta(q_{(p \wedge \neg p) \operatorname{R} p}, P) &= \delta(q, P) \vee \left(\delta(q_{p \vee \neg p}, P) \wedge q_{(p \vee \neg p) \operatorname{R} q} \right) \approx \begin{cases} T & \operatorname{if} q \notin P \\ q_{(p \wedge \neg p) \operatorname{U} q} & \operatorname{if} p \notin P \end{cases} \\ \delta(q_{(p \wedge \neg p) \operatorname{R} p}, P) &= \delta(q_{(p \wedge \neg p) \operatorname{R} p}, P) \wedge q_{(p \vee \neg p) \operatorname{U} q} & \operatorname{if} P = q \end{cases} \\ \delta(\phi, P) &= \delta(q_{(p \wedge \neg p) \operatorname{R} p}, P) \wedge \delta(q_{(p \vee \neg p) \operatorname{U} q}, P) \approx \begin{cases} \bot q_{(p \wedge \neg p) \operatorname{R} p} \wedge q_{(p \vee \neg p) \operatorname{U} q} & \operatorname{if} P = q \end{cases} \\ \operatorname{UNV} & \operatorname{if} P = \{q\} \\ \operatorname{UNV} & \operatorname{if} P = \{p, q\} \land \operatorname{UN} \end{cases} \\ \end{array}$$

Model Checking

- ★ transition systems capture evolution of state based programs etc.
- \star they can be seen as finite representations of potentially infinitely many program runs

- ★ transition systems capture evolution of state based programs etc.
- ★ they can be seen as finite representations of potentially infinitely many program runs
- ★ a transition system (TR) is a tuple $S = (S, \rightarrow, s_l, \lambda)$ where
 - 1. *S* is a set of states
 - 2. $\rightarrow \subseteq S \times S$ is a transition relation
 - 3. $s_l \in S$ is an initial state
 - 4. $\lambda : S \to 2^{\mathcal{P}}$ a labeling of states by propositions \mathcal{P}

- ★ transition systems capture evolution of state based programs etc.
- ★ they can be seen as finite representations of potentially infinitely many program runs
- ★ a transition system (TR) is a tuple $S = (S, \rightarrow, s_l, \lambda)$ where
 - 1. S is a set of states
 - 2. $\rightarrow \subseteq S \times S$ is a transition relation
 - 3. $s_I \in S$ is an initial state
 - 4. $\lambda : S \to 2^{\mathcal{P}}$ a labeling of states by propositions \mathcal{P}
- ★ we assume S is total, i.e. every node has a successor: $\forall s \in S. \exists t \in S. s \rightarrow t$

- ★ transition systems capture evolution of state based programs etc.
- ★ they can be seen as finite representations of potentially infinitely many program runs
- ★ a transition system (TR) is a tuple $S = (S, \rightarrow, s_l, \lambda)$ where
 - 1. *S* is a set of states
 - 2. $\rightarrow \subseteq S \times S$ is a transition relation
 - 3. $s_I \in S$ is an initial state
 - 4. $\lambda : S \to 2^{\mathcal{P}}$ a labeling of states by propositions \mathcal{P}
- ★ we assume S is total, i.e. every node has a successor: $\forall s \in S. \exists t \in S. s \rightarrow t$
- * a run in a total TS is an infinite word $w = P_0 P_1 P_2 \dots$ such that $\lambda(s_i) = P_i$ for an infinite path

$$s_1 = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots$$

- ★ transition systems capture evolution of state based programs etc.
- ★ they can be seen as finite representations of potentially infinitely many program runs
- ★ a transition system (TR) is a tuple $S = (S, \rightarrow, s_l, \lambda)$ where
 - 1. S is a set of states
 - 2. $\rightarrow \subseteq S \times S$ is a transition relation
 - 3. $s_I \in S$ is an initial state
 - 4. $\lambda : S \to 2^{\mathcal{P}}$ a labeling of states by propositions \mathcal{P}
- ★ we assume S is total, i.e. every node has a successor: $\forall s \in S. \exists t \in S. s \rightarrow t$
- * a run in a total TS is an infinite word $w = P_0 P_1 P_2 \dots$ such that $\lambda(s_i) = P_i$ for an infinite path

 $s_1 = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots$

★ $L(S) \triangleq \{w \mid w \text{ is a run in } S\}$ is the set of all runs

We are interested in the following decision problem:

- ★ Given: An TS $S = (S, \rightarrow, s_l, \lambda)$ and specification as LTL formula ϕ
- ★ Question: $L(S) \subseteq L(\phi)$?

We are interested in the following decision problem:

- ★ Given: An TS $S = (S, \rightarrow, s_l, \lambda)$ and specification as LTL formula ϕ
- ★ Question: $L(S) \subseteq L(\phi)$?

Theorem

The above model checking problem is decidable in time $O(|S|^2) \cdot 2^{O(|\phi|)}$

Proof Outline.

We are interested in the following decision problem:

- ★ Given: An TS $S = (S, \rightarrow, s_l, \lambda)$ and specification as LTL formula ϕ
- ★ Question: $L(S) \subseteq L(\phi)$?

Theorem

The above model checking problem is decidable in time $O(|S|^2) \cdot 2^{O(|\phi|)}$

Proof Outline.

* let $\mathcal{A}_{\neg\phi} = (Q, 2^{\mathcal{P}}, q_I, \delta, F)$ be the NBA with $L(\neg\phi) = L(\mathcal{A}_{\neg\phi})$ of size $2^{O(|\phi|)}$

We are interested in the following decision problem:

- ★ Given: An TS $S = (S, \rightarrow, s_l, \lambda)$ and specification as LTL formula ϕ
- ★ Question: $L(S) \subseteq L(\phi)$?

Theorem

The above model checking problem is decidable in time $O(|S|^2) \cdot 2^{O(|\phi|)}$

Proof Outline.

- * let $\mathcal{A}_{\neg\phi} = (Q, 2^{\mathcal{P}}, q_I, \delta, F)$ be the NBA with $L(\neg\phi) = L(\mathcal{A}_{\neg\phi})$ of size $2^{O(|\phi|)}$
- ★ define the NBA $S \otimes A_{\neg \phi} \triangleq (S \times Q, \{\bullet\}, (s_l, q_l), \Delta, S \times F)$ where

$$\Delta((s,q),\bullet) \triangleq \{(s',q') \mid s \to s' \text{ and } q' \in \delta(q,\lambda(s))\}$$

We are interested in the following decision problem:

- ★ Given: An TS $S = (S, \rightarrow, s_l, \lambda)$ and specification as LTL formula ϕ
- ★ Question: $L(S) \subseteq L(\phi)$?

Theorem

The above model checking problem is decidable in time $O(|S|^2) \cdot 2^{O(|\phi|)}$

Proof Outline.

- * let $\mathcal{A}_{\neg\phi} = (Q, 2^{\mathcal{P}}, q_I, \delta, F)$ be the NBA with $L(\neg\phi) = L(\mathcal{A}_{\neg\phi})$ of size $2^{O(|\phi|)}$
- ★ define the NBA $S \otimes A_{\neg \phi} \triangleq (S \times Q, \{\bullet\}, (s_l, q_l), \Delta, S \times F)$ where

$$\Delta((s,q),\bullet) \triangleq \{(s',q') \mid s \to s' \text{ and } q' \in \delta(q,\lambda(s))\}$$

 $\star \text{ then } \mathsf{L}(\mathcal{S}) \subseteq \mathsf{L}(\phi) \quad \Longleftrightarrow \quad \mathsf{L}(\mathcal{S}) \cap \mathsf{L}(\neg \phi) = \emptyset \quad \Leftrightarrow \quad \mathsf{L}(\mathcal{S} \otimes \mathcal{A}_{\neg \phi}) = \emptyset$

We are interested in the following decision problem:

- ★ Given: An TS $S = (S, \rightarrow, s_l, \lambda)$ and specification as LTL formula ϕ
- ★ Question: $L(S) \subseteq L(\phi)$?

Theorem

The above model checking problem is decidable in time $O(|S|^2) \cdot 2^{O(|\phi|)}$

Proof Outline.

- * let $\mathcal{A}_{\neg\phi} = (Q, 2^{\mathcal{P}}, q_I, \delta, F)$ be the NBA with $L(\neg\phi) = L(\mathcal{A}_{\neg\phi})$ of size $2^{O(|\phi|)}$
- ★ define the NBA $S \otimes A_{\neg \phi} \triangleq (S \times Q, \{\bullet\}, (s_l, q_l), \Delta, S \times F)$ where

$$\Delta((s,q),\bullet) \triangleq \{(s',q') \mid s \to s' \text{ and } q' \in \delta(q,\lambda(s))\}$$

 $\star \text{ then } \mathsf{L}(\mathcal{S}) \subseteq \mathsf{L}(\phi) \quad \Longleftrightarrow \quad \mathsf{L}(\mathcal{S}) \cap \mathsf{L}(\neg \phi) = \emptyset \quad \Leftrightarrow \quad \mathsf{L}(\mathcal{S} \otimes \mathcal{A}_{\neg \phi}) = \emptyset$

★ emptyness of $S \otimes A_{\neg \phi}$ is decidable in time linear in $|S \otimes A_{\neg \phi}| \in O(|S|^2) \cdot 2^{O(|\phi|)}$

Explicit Model Checking: each automaton node is an individual state

★ SPIN model checker: http://spinroot.com/

Symbolic Model Checking: each automaton node represents a set of state, symbolically

* SMV model checker: http://www.cs.cmu.edu/~modelcheck/smv.html

Explicit Model Checking: each automaton node is an individual state

★ SPIN model checker: http://spinroot.com/

Symbolic Model Checking: each automaton node represents a set of state, symbolically

* SMV model checker: http://www.cs.cmu.edu/~modelcheck/smv.html

they have been successfully applied in industrial contexts (see e.g. http://spinroot.com/spin/success.html)

Explicit Model Checking: each automaton node is an individual state

* SPIN model checker: http://spinroot.com/

Symbolic Model Checking: each automaton node represents a set of state, symbolically

* SMV model checker: http://www.cs.cmu.edu/~modelcheck/smv.html

they have been successfully applied in industrial contexts (see e.g. http://spinroot.com/spin/success.html)

Main Challenge

★ while real problems have a finite number of states, we deal with an astronmoical number of cases

Explicit Model Checking: each automaton node is an individual state

* SPIN model checker: http://spinroot.com/

Symbolic Model Checking: each automaton node represents a set of state, symbolically

* SMV model checker: http://www.cs.cmu.edu/~modelcheck/smv.html

they have been successfully applied in industrial contexts (see e.g. http://spinroot.com/spin/success.html)

Main Challenge

- while real problems have a finite number of states, we deal with an astronmoical number of cases
- ★ industrial-strength tools such as the ones above generate $S \otimes A_{\neg \phi}$ on-the-fly and implement several techniques to combat state-space explosion
 - partial order reduction: detects when an ordering of interleavings is irrelevant. E.g., the n! transitions of n concurrently executing processes is reduced to 1 representative transition, when ordering irrelevant for property under investigation
 - Bounded Model Checking: check that ϕ is violated in $\leq k$ steps

Thanks!

