Advanced Logic
http://www-sop.inria.fr/members/Martin.Avanzini/teaching /2022 /AL /

Martin Avanzini (martin.avanziniQ@inria.fr)
Etienne Lozes (etienne.lozes@univ-cotedazur.fr)

G20 MASTER
INFORMATIQUE

UNIVERSITE COTE DAZUR ::6%:

2nd Semester M1, 2022

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2022/AL/
martin.avanzini@inria.fr
etienne.lozes@univ-cotedazur.fr

Last Lecture

* alanguage L € X is w-regular if L = (., U;- Vi’ for regular languages U,, V;
(0<i<n)

* a Biichi Automaton is structurally similar to an NFA, but recognizes words w € 2% that
visit final states infinitely often

Theorem
For recognisable U € " and V. W € 2 the following are recognisable:
1. union VU W 4. w-iteration U”

2. intersection /N W/ 5. comp/ement_/

3. left-concatenation U - V/

Theorem

L € wREG(X) if and only if L = L(A) for some NBA A

Theorem
For every MSO formula ¢ there exists an NBA A, s.t. L(¢) = L(Ag).

Today’s Lecture

1. Linear temporal logic (LTL)
2. LTL model checking

Linear temporal logic

Motivation

* linear temporal logic is a logic for reasoning about events in time

— always not (¢ A) safety
— always (Request implies eventually Grant) liveness
— always (Request implies (Request until Grant)) liveness

* LTL shares algorithmic solutions with MSO

Formal Definition

* the set of LTL formulas over propositions P = {p, q, ...} is given by

O i=p | OV Y |) (Propositional Formulas)
| X¢ | pUy (Next and Until)

Formal Definition

* the set of LTL formulas over propositions P = {p, q, ...} is given by

O i=p | OV Y |) (Propositional Formulas)
| X¢ | pUy (Next and Until)

* LTL is a logic of temporal sequences, modeled as infinite words over ¥ = o7

Formal Definition

* the set of LTL formulas over propositions P = {p, q, ...} is given by

o, i=p | OV Y |) (Propositional Formulas)
| X¢ | pUy (Next and Until)

* LTL is a logic of temporal sequences, modeled as infinite words over ¥ = o7

* for a sentence ¢ and w= PyP1P,..., we define wE ¢ as w; 0 F ¢ where
L . p
w,iFp &= pep; o
wiiFoVvVy = wikFgorw iEy '
w; i E =g = wilt e
w,iEX¢ > wii+lE¢ 5 ¢
wiiFpUy = existskzist wikF ¢ g ¢ 2 M

and w;jEy forall i<j< k

Formal Definition

* the set of LTL formulas over propositions P = {p, q, ...} is given by

o, i=p | OV Y |) (Propositional Formulas)
| X¢ | pUy (Next and Until)

* LTL is a logic of temporal sequences, modeled as infinite words over ¥ = o7

* for a sentence ¢ and w= PyP1P,..., we define wE ¢ as w; 0 F ¢ where
L . p
w,iFp &= pep; o
wiiFoVvVy = wikFgorw iEy '
w; i E =g = wilt e
w,iEX¢ > wii+lE¢ 5 ¢
wiiFpUy = existskzist wikF ¢ g ¢ 2 M

and w;jEy forall i<j< k
* a LTL formula ¢ defines the language L(¢) = {w | wF ¢}

Derived Operators and Positive Normal Forms

finally: Fo = TU9

o

globally: Go i =(F=¢) gg ¢ ¢
v v

Y Y Y

release: dRY = =(-¢U-y)

Derived Operators and Positive Normal Forms

finally: Fé¢ = TUGS 4

o

(OXSS
Ay
Ay
<

globally: Go = —(F=¢)

<
<
AS
AS

release: dRY = =(-¢U-y)

* F¢, Gg and X ¢ are sometimes denoted by ¢¢, O¢ and o¢, respectively

Derived Operators and Positive Normal Forms

finally: Fé6 = TUG SN

os O
<
ASY
<
<

globally: Go = a(F-9¢)

<
<
<
<
<

release: dRY = (=g U-y) 5 O

* F¢, Gg and X ¢ are sometimes denoted by ¢¢, O¢ and o¢, respectively

* a formula ¢ is in positive normal form (PNF) if it is derived from the following grammar:

pwi=p | wp| orw | vy | Xo | Uy | ¢Ry

— negation only in front of literals

Derived Operators and Positive Normal Forms

finally: Fé6 = TUG 5 SN
globally: G¢ = —(F-¢) g ¢ ¢ ¢ ¢ -

<
<
<
<
<

release: dRY = (=g U-y) 5 O

* F¢, Gg and X ¢ are sometimes denoted by ¢¢, O¢ and o¢, respectively
* a formula ¢ is in positive normal form (PNF) if it is derived from the following grammar:
gu=p | -p|onv|ove|Xe|euu|gry
— negation only in front of literals

Lemma

Every formula ¢ can be turned into an equivalent formula in PNF with |y| < 2|¢|

Safety Properties in LTL

Safety = something bad never happens = G —¢paq

Safety Properties in LTL

Safety = something bad never happens = G —¢paq

Example
* a ..A train is approaching
* C ..A train is crossing

| .. The light is blinking

»*

b ..The barrier is down

*

Safety Properties in LTL

Safety = something bad never happens G =¢pag

Example
* a ..A train is approaching
* C ..A train is crossing

* | .. The light is blinking

* b ..The barrier is down

* when a train is crossing, the barrier is down:

Safety Properties in LTL

Safety = something bad never happens G =¢pag

Example
* a ..A train is approaching
* C ..A train is crossing

* | .. The light is blinking

* b ..The barrier is down

* when a train is crossing, the barrier is down:

G(c—>b)=G=(cA-b)

Safety Properties in LTL

Safety = something bad never happens G =¢pag

Example
* a ..A train is approaching
* C ..A train is crossing

* | .. The light is blinking

* b ..The barrier is down

* when a train is crossing, the barrier is down:
G(C—> b) EG—|(C/\—|b)

* if a train is approaching or crossing, the light must be blinking:

Safety Properties in LTL
Safety = something bad never happens = G —¢paq

Example
* a ..A train is approaching
* C ..A train is crossing

* | .. The light is blinking

* b ..The barrier is down

* when a train is crossing, the barrier is down:
G(c—>b)=G=(cA-b)

* if a train is approaching or crossing, the light must be blinking:

G(avc—ob)=G=((ave)Aa-l)

Safety Properties in LTL

Safety = something bad never happens G =¢pag

Example
* a ..A train is approaching
* ¢ ..A train is crossing

* | ..The light is blinking

* b .. The barrier is down

* when a train is crossing, the barrier is down:
G(c—>b)=G=(cA-b)

* if a train is approaching or crossing, the light must be blinking:

G(avec—-b)=G=((avec)Aal)

* if the barrier is up and the light is off, no train is approaching or crossing:

Safety Properties in LTL

Safety = something bad never happens G =¢pag

Example
* a ..A train is approaching
* ¢ ..A train is crossing

* | ..The light is blinking

* b ..The barrier is down

* when a train is crossing, the barrier is down:
G(c—>b)=G=(cA-b)
* if a train is approaching or crossing, the light must be blinking:
G(avec—-b)=G=((avec)Aal)
* if the barrier is up and the light is off, no train is approaching or crossing:

G(—|b/\—||—>—|a/\—|c)EG—|(—|b/\—|I/\(aVc))

Liveness Properties in LTL

Liveness = something intiated eventually terminates = G (dinit = F drerm)

Liveness Properties in LTL

Liveness = something intiated eventually terminates = G (¢init = F drerm)

* approaching trains eventually cross:

Liveness Properties in LTL

Liveness = something intiated eventually terminates = G (¢init = F drerm)

* approaching trains eventually cross:

G(a—Fc)

Liveness Properties in LTL

Liveness = something intiated eventually terminates = G (dinit = F drerm)

* approaching trains eventually cross:

G(a—Fc)

* when a train is approaching, the barrier is down before it crosses:

Liveness Properties in LTL

Liveness = something intiated eventually terminates = G (dinit = F drerm)

* approaching trains eventually cross:

G(a—Fc)

* when a train is approaching, the barrier is down before it crosses:

G(a— —-cUb)

Liveness Properties in LTL

Liveness = something intiated eventually terminates = G (dinit = F drerm)

* approaching trains eventually cross:

G(a—Fc)

* when a train is approaching, the barrier is down before it crosses:

G(a— —-cUb)

* if a train finished crossing, the barrier will be eventually risen

Liveness Properties in LTL

Liveness = something intiated eventually terminates = G (dinit = F drerm)

* approaching trains eventually cross:
G(a—Fc)
* when a train is approaching, the barrier is down before it crosses:

G(a— —-cUb)

* if a train finished crossing, the barrier will be eventually risen

G(cAX=c— XF=b)

Characterising LTL

* LTL can be “expressed” within MSO = Biichi Automata

* MSO and Biichi Automata are strictly more expressive

LTL recognisability < w-regular

* LTL most naturally translated to alternating Biichi Automata (ABA)

* loop-free (very weak) ABA characterise precisely the class of LTL recognisable languages

Characterising LTL

* LTL can be “expressed” within MSO = Biichi Automata

* MSO and Biichi Automata are strictly more expressive

LTL recognisability < w-regular

* LTL most naturally translated to alternating Biichi Automata (ABA)

* loop-free (very weak) ABA characterise precisely the class of LTL recognisable languages

Example

the Blichi Automaton A over P = {p, q} given by
{p}
{p.q}

is not loop-free (and cannot be turned into equivalent loop-free one)
= L(A) not expressible in LTL

(Very Weak) Alternating Biichi Automata

* an alternating Biichi Automaton (ABA) is a tuple A = (Q., %, g, 6, F) identical to an AFA
* execution on words w € ¢ are now infinite tree T,,
* an execution is accepting in the sense of Biichi: every path visits F infinitely often

x L(A) 2 {we X | there exist an accepting execution T,, for w}

(Very Weak) Alternating Biichi Automata

*

*

*

*

an alternating Biichi Automaton (ABA) is a tuple A = (Q, %, gy, 6, F) identical to an AFA
execution on words w € = are now infinite tree T,
an execution is accepting in the sense of Biichi: every path visits F infinitely often

L(A) 2 {w € X | there exist an accepting execution T,, for w}

very weak ABA (VWABA) is an ABA if for every a € £, — C < for some linear order
SCRXQ

(Very Weak) Alternating Biichi Automata

*

*

*

*

*

an alternating Biichi Automaton (ABA) is a tuple A = (Q, %, gy, 6, F) identical to an AFA
execution on words w € = are now infinite tree T,
an execution is accepting in the sense of Biichi: every path visits F infinitely often

L(A) 2 {w € X | there exist an accepting execution T,, for w}

very weak ABA (VWABA) is an ABA if for every a € £, — C < for some linear order
SCEEXQ

Example

GpAFg

LTL and Automata

Theorem

Let L be a language over ¥ = 27 The following are equivalent:
* L is LTL definable.
* L is recognizable by VWABA.

From Automata to LTL

fix a VWABA A = ({qo, ..., q,,},2P, qo, 0, F) where wlog. gg > g1 > -+ > g,

From Automata to LTL

fix a VWABA A = ({qo....,9,}.2". qo. 6, F) where wlog. qo > q1 > -+~ > q,,

* since A is very weak, there are transitions from g; to g; only if i > j

From Automata to LTL

fix a VWABA A = ({qo....,9,}.2". qo. 6, F) where wlog. qo > q1 > -+~ > q,,
* since A is very weak, there are transitions from g; to g; only if i > j

* we now associate each state g; with a formula ¢; s.t.

L(¢:) = La(q;)

From Automata to LTL

fix a VWABA A = ({qo....,9,}.2". qo. 6, F) where wlog. qo > q1 > -+~ > q,,
* since A is very weak, there are transitions from g; to g; only if / > j

* we now associate each state g; with a formula ¢; s.t.
L(#;) = La(q;)

* this can be done inductively: while construction ¢;, we already have suitable formulas ¢;
fori>j

From Automata to LTL

fix a VWABA A = ({qo....,9,}.2". qo. 6, F) where wlog. qo > q1 > -+~ > q,,
* since A is very weak, there are transitions from g; to g; only if / > j

* we now associate each state g; with a formula ¢; s.t.
L(#;) = La(q;)

* this can be done inductively: while construction ¢;, we already have suitable formulas ¢;
fori>j

* for propositions P € P, the construction uses the characteristic function

Xp = (/\pEPp) A (AP¢P_'p)

From Automata to LTL

fix a VWABA A = ({qo....,9,}.2". qo. 6, F) where wlog. qo > q1 > -+~ > q,,
* since A is very weak, there are transitions from g; to g; only if / > j

* we now associate each state g; with a formula ¢; s.t.
L(#;) = La(q;)

* this can be done inductively: while construction ¢;, we already have suitable formulas ¢;
fori>j

* for propositions P € P, the construction uses the characteristic function
XP= (/\pEPp) A (AP¢P_'p)

* the construction differs whether the state is final, we thus consider two cases

From Automata to LTL (II)

fix a VWABA A = ({qo, ..., q,,},2p, qo, 0, F) where wlog. gg > g1 > -+ > g,

* note that | (g;) satisfies

Lala) = \/ xp AX(8(qi P)Lai/La(a). Gie1/La(Gia1) - Gn/La(dn)])
pPcp

* if g; € F then we rewrite | 4(g;) as & v (p A XL 4(g;)) and set
pi=p Uy
* if g; € F then we rewrite L 4(g;) as ¥ A (p vV XL 4(g;)) and set

¢ =Gy v (U (pAry))

From LTL to Automata

the ABA A, for a PNF formula ¢ is given by (Q, 2P,¢,6, F) where
* Q= {T,L}u{qy | ¥ occurs as sub-formula in ¢}

From LTL to Automata

the ABA A, for a PNF formula ¢ is given by (Q, 2P,¢,6, F) where
* Q= {T,L}u{qy | ¥ occurs as sub-formula in ¢}

* the transition function 6 : @ x 2 — B*(Q) is given by

. . L | T ifpeP L |L ifpeP
S(T,P)2T §(L,P2L 6(gnP)= -p P) =
(T.PYET 6(LP)2L 6(gpP) L rap 0@wP) {T ap
5(CI¢1/\¢2>P) = 5(‘71//1,P) A 5(‘71//2,/3) 5(Qw1v¢2,P) 2 5(CI¢1>P) \4 5(CI¢2,P)

6(axy, P) = qy
6(ql//1Ulﬂ29 P) = 6(q(ﬂ29 P) \ (6(ql//l9 P) A ql,b]_Ul/Q)
6(ql//1Rl//2’ P) = 5(q¢29 P) A (5(‘?(//1, P) \ ql//]_Rlﬂg)

From LTL to Automata

the ABA A, for a PNF formula ¢ is given by (Q, 2P,¢,6, F) where
* Q= {T,L}u{qy | ¥ occurs as sub-formula in ¢}

* the transition function 6 : @ x 2 — B*(Q) is given by

. . L | T ifpeP L |L ifpeP
S(T,P)2T §(L,P2L 6(gnP)= -p P) =
(T.PYET 6(LP)2L 6(gpP) L rap 0@wP) {T ap
5(CI¢1/\¢2>P) = 5(‘71//1,P) A 5(‘71//2,/3) 5(Qw1v¢2,P) 2 5(CI¢1>P) \4 5(CI¢2,P)

6(axy, P) = qy
6(ql//1Ulﬂ29 P) = 6(q¢29 P) \ (5(%//1, P) A ql,b]_Ul/Q)
6(q1/11Rl//2’ P) = 6(ql//29 P) A (5(‘?(//1, P) \ ql//]_Rlﬂg)

* the only final states are T and q,,ry, € Q

From LTL to Automata

the ABA A, for a PNF formula ¢ is given by (Q, 2P,¢,(5, F) where
* Q= {T,L}u{qy | ¥ occurs as sub-formula in ¢}

* the transition function 6 : @ x 2 — B*(Q) is given by

. . L | T ifpeP L |L ifpeP
S(T,P)2T §(L,P2L 6(gnP)= -p P) =
(T.PYET 6(LP)2L 6(gpP) L rap 0@wP) {T ap
5(CI¢1/\¢2>P) = 5(‘71//1,P) A 5(Q¢2,P) 6(ql//1Vl//2’P) 2 5(CI¢1>P) \4 5(CI¢2>P)

5(CIX¢, P) = Qy
5(quluwz, P) £ 5(%/2, P) v (5(%/1, P) A ql/l1Ul[/2)
5(qy,Rys> P) = 6(qyy, P) A (6(qy,» P) V qy,ry,)
* the only final states are T and q,,ry, € Q

Notes
*x Ay is linear in size in ||

* using the construction for AFAs, this ABA can be transformed to an NBA of size O(2|¢|)

Example

consider = GpAFqg=((pA-p)Rp)A((pV-p)Uq)

Example

consider = GpAFqg=((pA-p)Rp)A((pV-p)Uq)

T
L

L
T

6(qp’ P) = {

6(q—|p’ P) = {

ifpeP
if pg P
ifpeP
ifp¢ P

Example

consider =GpAFqg=((pA=p)Rp)A((pV =p)Uq)
T ifpeP
1L ifpgeP

1L ifpeP
5(q_,,P) =
(@5 P) {T ifpé P
5(gpn-p> P) = 6(qp, P) A 6(q-p, P) = T AL~ L
8(qpv-p, P) =6(qp, P)V(q-p, P)= LVT =T

6(qp’ P) = {

Example

consider =GpAFqg=((pA=p)Rp)A((pV =p)Uq)
T ifpeP
1L ifpgeP

1l ifpeP P
5(q_,,P) =
(@5 P) {T ifpé P
5(gpn-p> P) = 6(qp, P) A 6(q-p, P) = T AL~ L
8(qpv-p, P) =6(qp, P)V(q-p, P)= LVT =T

6(qp’ P) = {

_ _J9pn-pRp IfPEP
6(q(p/\—|p)Rpa P) - 6(,0’ 'D) A (6(qp/\—|p7 P) \ q(pAﬂp)Rp) ~ {J_ if P ¢ P >

Example

consider =GpAFqg=((pA=p)Rp)A((pV =p)Uq)
T ifpeP
1L ifpgeP

1L ifpeP
5(q_,, P) =
(@5 P) {T ifpé P
6(qp/\—|p’P)=6(qp7P)A6(qﬂp7P)=TAJ‘zJ‘
8(qpv-p, P) =6(qp, P)V(q-p, P)= LVT =T

6(qp’ P) = {

6(q(p/\—|p)Rpa P) = 6(,0’ 'D) A (6(qp/\—|pv P) \ q(pAﬂp)Rp) = L if P ¢ P >

T ifge P
dpv-pug IfqEP

{q(pAﬂp)Rp

6(q(p\/—\p)Uq’ 'D) = 5((], 'D) v (6(CIpv—.p7 P) A Q(p\/—\p)Rq) =~ {

Example

consider = GpAFqg=((pA-p)Rp)A((pV-p)Uq)

T ifpeP
6(qp’P)= .
L ifpeP
1l ifpeP P
5(qups P) =
(-p P) {T ifpe P
6(qp/\—|p’P)=6(qp7P)A6(qﬂp7P)=TAJ‘zJ‘
8(qpv-p P) =(qp, P)V(q-p, P)= LV T > T

. ifpeP

6(q(p/\—|p)Rpa P) = 6(,0’ 'D) A (6(qp/\—|pv P) \ Q(pAﬂp)Rp { (pA-p)R i P ¢ P 5
T ifge P

5(q - ,P)—é(q,P)V(é(q —|7P)Aq -)"' .
(pv-p)Uq pV-p (pv-p)Rq Upv-p)Uqg fq¢& P
1 ifP=g
_ _] 9(pr-p)Rp N A(pv-p)U if P={p}
5(¢’ 'D) = 5(q(p/\—|p)Rp’ 'D) A 6(q(pv—|p)Uq, 'D) ~ J_p e PP i g {q}

A(pr-p)Rp if P= {P, q}

Example

consider = GpAFqg=((pA-p)Rp)A((pV-p)Uq)

T ifpeP
6(qP’P)={¢ ifpg¢ P
1L ifpeP
&%sz{T if pg P

6(qp/\—|p’ P) = 6(qp7 P) A 6(q—|p7 P) = T A J‘ = J‘
8(qpv-p P) =(qp, P)V(q-p, P)= LV T > T

(P/_'P |fp€ P
ifpg P
ifge P
d(pv-puqg fq&EP

6(q(p/\—|p)Rpa P) = 6(,0’ 'D) A (6(qp/\—|pv P) \ Q(pAﬂp)Rp

_|

5(q (pv-p)Ug> 'D) = 5((], 'D) v (6(CIpv—.p7 P) Nq p\/—\p)Rq) =~ {
L

d(pr-p)Rp N d(pv-p)U
5(¢, P) = 6(q(pr-p)Rps P) A 6(q(pv-p)ug P) = J_(p/\ p)Rp N d(pv-p)Uq

q(pr-p)Rp

ifP=go

if P={p}
if P={q}
if P={p,q}

Model Checking

Transition Systems (TSs)

* transition systems capture evolution of state based programs etc.

* they can be seen as finite representations of potentially infinitely many program runs

Transition Systems (TSs)

* transition systems capture evolution of state based programs etc.

* they can be seen as finite representations of potentially infinitely many program runs

* a transition system (TR) is a tuple S = (S, =, s;,4) where
1. Sis a set of states
2. = € Sx Sis a transition relation
3. s; € Sis an initial state
4. 1:5-2"a labeling of states by propositions P

Transition Systems (TSs)

* transition systems capture evolution of state based programs etc.

* they can be seen as finite representations of potentially infinitely many program runs

* a transition system (TR) is a tuple S = (S, =, s;,4) where
1. Sis a set of states
2. = € Sx Sis a transition relation
3. s; € Sis an initial state
4. 1:5-2"a labeling of states by propositions P

* we assume S is total, i.e. every node has a successor: Vse€ S.te€ 5. s—> t

Transition Systems (TSs)

* transition systems capture evolution of state based programs etc.

*

they can be seen as finite representations of potentially infinitely many program runs

»*

a transition system (TR) is a tuple S = (S, —, s, 1) where
1. Sis a set of states

2. —» € SX Sis a transition relation

3. s; € Sis an initial state

4. 1:5-2"a labeling of states by propositions P

*

we assume S is total, i.e. every node has a successor: Vse S.te€ 5. s—> t

* a run in a total TS is an infinite word w = PyP; P, ... such that A(s;) = P; for an infinite
path
Si=S >S5 >SS ...

Transition Systems (TSs)

* transition systems capture evolution of state based programs etc.

*

they can be seen as finite representations of potentially infinitely many program runs

»*

a transition system (TR) is a tuple S = (S, —, s, 1) where
1. Sis a set of states

2. —» € SX Sis a transition relation

3. s; € Sis an initial state

4. 1:5-2"a labeling of states by propositions P

*

we assume S is total, i.e. every node has a successor: Vse S.te€ 5. s—> t

* a run in a total TS is an infinite word w = PyP; P, ... such that A(s;) = P; for an infinite
path
Si=S >S5 >SS ...

*

L(S) =2 {w| wis a run in S} is the set of all runs

LTL Model Checking

We are interested in the following decision problem:
* Given: An TS S = (S, —, s, 1) and specification as LTL formula ¢
* Question: L(S) € L(¢)?

LTL Model Checking

We are interested in the following decision problem:
* Given: An TS S = (S, —, s, 1) and specification as LTL formula ¢
* Question: L(S) € L(¢)?

Theorem

The above model checking problem is decidable in time O(|S|?) - 20D

Proof Outline.

LTL Model Checking

We are interested in the following decision problem:
* Given: An TS S = (S, —, s, 1) and specification as LTL formula ¢
* Question: L(S) € L(¢)?

Theorem

The above model checking problem is decidable in time O(|5|2) . 20UeD

Proof Outline.
* let AL, = (Q, 2P,q,, d, F) be the NBA with L(=¢) = L(A_,) of size 20D

LTL Model Checking

We are interested in the following decision problem:
* Given: An TS S = (S, —, s, 1) and specification as LTL formula ¢
* Question: L(S) € L(¢)?

Theorem

The above model checking problem is decidable in time O(|S|?) - 20D

Proof Outline.
* let AL, = (Q, 2P,q,, d, F) be the NBA with L(=¢) = L(A_,) of size 20(el)
* deﬁne the NBA S ® ./4_|¢ é (SX Q, {.}, (Sl’ q’)9A7 5)(F) Where

A((s5,9),#) 2 {(s,q) | s— s and ¢ € 6(q,1(s))}

LTL Model Checking

We are interested in the following decision problem:
* Given: An TS S = (S, —, s, 1) and specification as LTL formula ¢
* Question: L(S) € L(¢)?

Theorem
The above model checking problem is decidable in time O(|S|?) - 20D

Proof Outline.
* let AL, = (Q, 2P,q,, d, F) be the NBA with L(=¢) = L(A_,) of size 20(el)
* deﬁne the NBA S ® ./4_|¢ é (SX Q, {.}, (Sl’ q’)9A7 5)(F) Where

A((s5,9),#) 2 {(s,q) | s— s and ¢ € 6(q,1(s))}

*x then L(S)cL(¢p) <= LS)NL(-¢)=0 <= LE®A,)=02

LTL Model Checking

We are interested in the following decision problem:
* Given: An TS S = (S, —, s, 1) and specification as LTL formula ¢
* Question: L(S) € L(¢)?

Theorem

The above model checking problem is decidable in time O(|S|?) - 200D

Proof Outline.
* let AL, = (Q, 27),671, d, F) be the NBA with L(=¢) = L(A_,) of size 20(el)
* define the NBA S ® A_4 = (Sx Q, {®}, (s, q/),A, S x F) where

A((s.q).#) 2{(s.q) | s— s and q € 5(q.A(5))}

*x then L(S)cL(¢p) <= LS)NL(-¢)=0 <= LE®A,)=02

* emptyness of S ® A_, is decidable in time linear in |S ® A_,| € o(|S?) - 20D

LTL Model Checking In Practice

Explicit Model Checking: each automaton node is an individual state

* SPIN model checker: http://spinroot.com/

Symbolic Model Checking: each automaton node represents a set of state, symbolically
* SMV model checker: http://www.cs.cmu.edu/~modelcheck/smv.html

http://spinroot.com/
http://www.cs.cmu.edu/~modelcheck/smv.html
http://spinroot.com/spin/success.html

LTL Model Checking In Practice

Explicit Model Checking: each automaton node is an individual state
* SPIN model checker: http://spinroot.com/
Symbolic Model Checking: each automaton node represents a set of state, symbolically

* SMV model checker: http://www.cs.cmu.edu/~modelcheck/smv.html

they have been successfully applied in industrial contexts (see e.g.
http://spinroot.com/spin/success.html)

http://spinroot.com/
http://www.cs.cmu.edu/~modelcheck/smv.html
http://spinroot.com/spin/success.html

LTL Model Checking In Practice

Explicit Model Checking: each automaton node is an individual state
* SPIN model checker: http://spinroot.com/
Symbolic Model Checking: each automaton node represents a set of state, symbolically

* SMV model checker: http://www.cs.cmu.edu/~modelcheck/smv.html

they have been successfully applied in industrial contexts (see e.g.
http://spinroot.com/spin/success.html)

Main Challenge
* while real problems have a finite number of states, we deal with an astronmoical number

of cases

http://spinroot.com/
http://www.cs.cmu.edu/~modelcheck/smv.html
http://spinroot.com/spin/success.html

LTL Model Checking In Practice

Explicit Model Checking: each automaton node is an individual state
* SPIN model checker: http://spinroot.com/
Symbolic Model Checking: each automaton node represents a set of state, symbolically

* SMV model checker: http://www.cs.cmu.edu/~modelcheck/smv.html

they have been successfully applied in industrial contexts (see e.g.
http://spinroot.com/spin/success.html)

Main Challenge
* while real problems have a finite number of states, we deal with an astronmoical number
of cases
* industrial-strength tools such as the ones above generate S ® A_ 4 on-the-fly and
implement several techniques to combat state-space explosion

— partial order reduction: detects when an ordering of interleavings is irrelevant. E.g., the n!
transitions of n concurrently executing processes is reduced to 1 representative transition,
when ordering irrelevant for property under investigation

— Bounded Model Checking: check that ¢ is violated in < k steps

http://spinroot.com/
http://www.cs.cmu.edu/~modelcheck/smv.html
http://spinroot.com/spin/success.html

Thanks!

