Advanced Logic
http://www-sop.inria.fr/members/Martin.Avanzini/teaching /2022 /AL /

Martin Avanzini (martin.avanziniQ@inria.fr)
Etienne Lozes (etienne.lozes@univ-cotedazur.fr)

G20 MASTER
INFORMATIQUE

UNIVERSITE COTE DAZUR ::6%:

2nd Semester M1, 2022


http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2022/AL/
martin.avanzini@inria.fr
etienne.lozes@univ-cotedazur.fr

Last Lecture

INFORMATION AND COMPUTATION 75, 87-106 (1987)

Learning Regular Sets from Queries
and Counterexamples*

DANA ANGLUIN

Department of Computer Science, Yale University,
P.O. Box 2158, Yale Station, New Haven, Connecticut 06520

The problem of identifying an unknown regular set from examples of its members
and nonmembers is addressed. It is assumed that the regular set is presented by a
minimally adequate Teacher, which can answer membership queries about the set
and can also test a conjecture and indicate whether it is equal to the unknown set
and provide a counterexample if not. (A counterexample is a string in the sym-
metric difference of the correct set and the conjectured set.) A learning algorithm
L* is described that correctly learns any regular set from any minimally adequate

N I i
Teacher in time polynomial in the number of states of the minimum dfa for the set & 5 i A IO
@ i i i el e 1 AN %
and the maximum length of any counterexample provided by the Teacher. It is 008 0% %° | |/8%e N8
shown that in a stochastic setting the ability of the Teacher to test conjectures may ECRAN ! \‘3%:;99/ °
be replaced by a random sampling oracle, EX( ). A polynomial-time learning Supervised learning | Unsupervised learning

algorithm is shown for a particular problem of context-free language iden-
tification.  © 1987 Academic Press, Inc.


https://en.wikipedia.org/wiki/Dana_Angluin

Today’s Lecture

* infinite words
* regular languages over infinite words
* Biichi automata

* Monadic Second-Order Logic on Infinite Words



Infinite Words



Infinite Words

* an infinite word over alphabet X is an infinite sequence of letters aga a,. ..

* X denotes the set of infinite words over X



Infinite Words

* an infinite word over alphabet X is an infinite sequence of letters aga a,. ..

* X denotes the set of infinite words over X

Notations
* |w|, denotes the number of occurrences of a € ¥ within w € =%
— note |w|, may be infinite

— in fact, |w|, = o0 holds for at least one a €



Infinite Words

* an infinite word over alphabet X is an infinite sequence of letters aga a,. ..

* X denotes the set of infinite words over X

Notations
* |w|, denotes the number of occurrences of a € ¥ within w € =%

— note |w|, may be infinite

— in fact, |w|, = o0 holds for at least one a €

* the left-concatenation of u € " and v e 2, is denoted by u-ve >«
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Languages over Infinite Words

* a language over infinite words is a set L € X

Operations on Infinite Languages
*x for US 2" and V€ 2%, the left-concatenation of U and Vis given by

U-VE{u-v|ue Uand ve V}

* The complement of VV € »“ is given by V2 3¢ \ V
* the w-iteration of U S X" is given by

U 2 {wp-wy-wy-+-+| wj€Uand w, # e for all i € N}
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Generalising the Theory of Regular Languages to Infinite Words

Recall...
For a language L € 27, the following are equivalent:

1. Lis regular
2. L is recognized by an NFA

3. L is defined through a wMSO formula
Outlook..
For a language L € %, the following are equivalent:
1. Lis w-regular
— defined next
2. L is recognized by a Biichi Automaton

— a finite automaton with a suitable acceptance condition for infinite words

3. L is defined through a MSO formula
— we drop the requirement on finite models present in wMSO
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w-Regular Languages

* alanguage L € X% is w-regular (or simply regular) if
L = U U,‘ * Vfu
O<izn
for regular languages U, V; (0 < i < n)

* with w REG(X) we denote the class of w-regular languages

Lemma

wREG(X) is closed under union and left-concatenation with regular languages.

Proof Outline.
* Union is obvious
* concerning left-concatenation U - L where L is as above

v-b=u-(Ju-v)=Juw-vy=Jw-uy v

O<isn O<isn O<isn
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Examples

Let ¥ = {a,b,c}

* Ly 2 {w| |w|, # oo} is regular L =% (buc)”
* Lo 2 {w| |w|, = oo} is regular Ly = (Z"b)” = (="p)*
* L3 ={w| |w|, # o0 or |w|, = 00} is regular Ly=Lvl,
* Ly 2 {w| |w|,# o0 and |w|, = 00} is regular Ly = 2% (bc™)*
* Ls = {w” | we x"} is regular Ls = Upesn ew”
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Biichi Automata

* A non-deterministic (deterministic) Biichi Automaton A, short NBA (DBA), is a tuple
(Q.Z, g, 6, F) identical to an NFA (DFA)

* arunon w=ajasas... is an infinite sequence
aj ag an
P qr=qo—qr —q—>
* Bichi Condition: a run is accepting if Inf(p) N F # @, where

Inf(p) = {q€ Q| Iplq = oo}
— a run is accepting if it visits a final state infinitely often

* the language recognised by A is L(A) = {w € = | w has an accepting run}

b a a,b b
a
b
— — _
b

L(A1) = {we 2| |w], = o0} L(A2) = {w € 2| |w], # oo}

Example
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Non-Determinisation

Theorem

There are NBAs without equivalent DBA.

Proof Outline.
* the NBA A, with L(A,) = {we >« | |w|, £ oo}

* it can be shown that L(.A;) is not recognized by a DBA (exercise)
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Closure Properties on NBAs

Theorem
For recognisable U € * and V. W € 2 the following are recognisable:
1. union VU W 4. w-iteration U”

2. intersection VN W/ 5. complement \/

3. left-concatenation U - V/

Proof Outline.
* (1) and (3). Identical to NFA construction

* (2) Similar to NFA case. For Biichi condition, keep additional counter mod 2

O aj o Aig o Aig O Qig+1
P 1 O — ¢l O — e O| > | O | — -
0 1 2 0
—

* (4) exercise il

* (5) non-trivial, see next
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NBAs Characterise wREG(X)

Theorem

L € wREG(X) if and only if L = L(A) for some NBA A

Proof Outline.

* = consequence of closure properties

*x &

for finite word w = a4, ..., a, define
p-5qies p— - gand Lyg 2 {w]p-— g}

— L, 4 is regular: the sub-automaton of A with initial state p and final state g recognises it

w € L(A) if and only if a run on w traverses some g € F infinitely often
weL(A) = Ige F. w=u-v" forsome u€ Ly ,and ve Ly,
— hence

L(A) = [ Lguq - Liq € 0REG(Z)
qeF
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Complementation of NBA (1)

even for DBAs, unlike for NFAs, complementation is non-trivial

@ﬁ@:@

(a"b)” (b*a)
Idea E] ababa S ababa--

» find a finite partition P of " of regular languages such that

(i) either U- V¥ € L(A) or U- V¥ € L(A) for U,Ve P (i) % = U u- v
U,veP
* hence

L v-vnww 2 Ju- v
U,veP U ver
U-V’nL(A) =0
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Complementation of NBAs (1)

* define piﬁn q:= pi> qu q for some gr€ Fand u-v=w
* u~vie VpgeQ (p—q = p—q)and (p—fn g &= p—qn, q) defines an
equivalence on 2*

* if u~ vthen uand v are “indistinguishable” by the considered NBA

Lemma

For every w € 3%, [w]. is regular.

Proof Outline.

Reformulating the definition, [w]. = () l,q{“ | p— qt)n (N N q{u | p—fin q})

p p

Lemma

The set of equivalence classes ¥ [~ = {[w]. | w € *} is finite.



Complementation of NBAs (1)

* define piﬁn q:= pi> qu q for some gr€ Fand u-v=w
* u~vie VpgeQ (p—q & p—q)and (p—fn g &= p—qn, q) defines an
equivalence on 2*

* if u~ vthen uand v are “indistinguishable” by the considered NBA

Lemma

For every w € 3%, [w]. is regular.

Proof Outline.

Reformulating the definition, [w]. = () l,q{“ | p— qt)n (N N q{u | p—>6in q})

p p

Lemma

The set of equivalence classes ¥ [~ = {[w]. | w € *} is finite.

Proof Outline.

2
Every class [w]. is described through two sets of state-pairs (at most O(22" ) many)
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Complementation of NBAs (ll1)

Lemma
1. For any two U,V € =%/ ~, either (i) U- V* c L(A) or (i) U- V* c L(A).
2. 20.) = UU,VEZ*/~ U‘ \/D

Theorem

For any NBA A, there is an NBA B such that L(B) = L(A).

Proof Outline.

* the auxiliary lemmas yield that

L(A) = | {u-V* | U.Ves [~ U -V’ nL(A) = o}

x as U,V e X"/~ is regular, L(A) language is regular, and thus described by an NBA



Complementation of NBAs (111)

Lemma
1. For any two U,V € =%/ ~, either (i) U- V* c L(A) or (i) U- V* c L(A).
2. 20.) = UU,VEZ*/~ U‘ \/‘)

Theorem

For any NBA A, there is an NBA B such that L(B) = L(A).

Proof Outline.

* the auxiliary lemmas yield that
L(A) = | J{u- v’ | u.vex"/~ U - V' nL(A) = o}

* as U,V e X"/~ is regular, L(A) language is regular, and thus described by an NBA

Notes
* the above equation directly yield a recipe for building B

2
* the size of the constructed NBA is proportional to the cardinality of ™/~ (0(22” )
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aF3IX¢ &= a[x— M]E ¢ forsome MS N



MSO on Infinite Words

* the set of MSO formulas over V;, V> coincides with that of weak MSO formulas:
p=T | L | x<y | X | vy |-¢ | 3x¢ | IX6

* the satisfiability relation a F ¢ is defined equivalently, but allows infinite valuations of
second order variables

aF3IX¢ &= a[x— M]E ¢ forsome MS N

Example
AXVy.X(y) & X(y+2)

* not satisfiable in WMSO
* valid in MSO
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* consider MSO formula ¢ over Vo = {X1,..., X} and Vi = {yi1, .oy Viment
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— n € a(X;) iff the i-th entry in n-th letter of a is 1
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MSO Decidability

* consider MSO formula ¢ over Vo = {X1,..., X} and Vi = {yi1, .oy Viment

* as in the case of WMSO, the alphabet 24 is given by m + n bit-vectors, i.e.,
Z¢ A {O, 1}n+m

* MSO assignment « can be coded as infinite words o € 2(‘7‘;

— n € a(X;) iff the i-th entry in n-th letter of a is 1
— a(y;) = n iff the ith entry in n-th letter of @ is 1

the language IA_(¢) c ZZ of coded valuations making ¢ true is given by:

L(¢) 2 {a|aF ¢}

Theorem

For every MSO formula ¢ there exists an NBA A s.t. L(¢) = L(Ag).

Proof Outline.

construction analoguous to the case of WMSO



