
Advanced Logic
http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2022/AL/

Martin Avanzini (martin.avanzini@inria.fr)
Etienne Lozes (etienne.lozes@univ-cotedazur.fr)

2nd Semester M1, 2022

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2022/AL/
martin.avanzini@inria.fr
etienne.lozes@univ-cotedazur.fr


Last Lectures

We saw how it is possible to synthesize a finite state automaton
from a formal specification written in WMSO logic.

BUT sometimes one does not even know how to specify the ”thing”

Examples: security policy based on log analysis, program synthesis, invariant synthesis, etc

TODAY we will see how to synthesize a finite state automaton by learning it from examples
and counter-examples.



Today’s Lecture : L∗ Algorithm

Dana Angluin

https://en.wikipedia.org/wiki/Dana_Angluin


the Learner and the Teacher

Learner

Ignores L
Learns A s.t. L = L(A)

query

answer

Teacher

Knows L
Answers all queries
without mistakes

⋆ membership query: w ∈ L? Answer: yes/no.
⋆ conjecture query: L = L(A)? Answer: yes/no, because w is a counter-example.



Observation Table
An observation table is a tuple (S,E,T) such that:
⋆ S = {u1, . . . , un} ⊆ Σ∗ is a finite, prefix-closed set of words (”starters”)
⋆ E = {v1, . . . , vm} ⊆ Σ∗ is a finite, suffix-closed set of words (”enders”)
⋆ T ∶ (S ∪ S.Σ) × E → {0, 1} is the table

Intuition
T(u, v) = 1 if and only if uv ∈ L

Representation
⋆ one column per ender,
⋆ one ”upper” row per starter,
⋆ one ”lower” row per

starter+letter pair

Example: Σ = {a, b}, S = {𝜖, a, aa}
E = {𝜖, ab, b}, L = a∗b

𝜖 ab b
𝜖 0 1 1
a 0 1 1
aa 0 1 1
b 1 0 0
ab 1 0 0
aaa 0 1 1
aab 1 0 0



Row Promotion
The lower row of ux is covered by the upper row u′ if row(ux) = row(u′)
If a lower row is not covered, the learner promotes it to an upper row.
This may introduce new lower rows, and the learner performs membership queries to fill them.

𝜖 ab b
𝜖 0 1 1
a 0 1 1
aa 0 1 1
b 1 0 0
ab 1 0 0
aaa 0 1 1
aab 1 0 0

Rows b, ab, and aab are not covered

𝜖 ab b
𝜖 0 1 1
a 0 1 1
b 1 0 0
aa 0 1 1
ab 1 0 0
aaa 0 1 1
aab 1 0 0
ba 0 0 0
bb 0 0 0

After the promotion of row b, the rows ab
and aab are covered, and the new lower rows
ba, and bb are filled by membership queries
(L = a∗b)



Closed Table
If all lower rows are covered, the table is called closed.

𝜖 ab b
𝜖 0 1 1
a 0 1 1
b 1 0 0
aa 0 1 1
ab 1 0 0
aaa 0 1 1
aab 1 0 0
ba 0 0 0
bb 0 0 0

The table is not closed because
ba and bb are not covered

𝜖 ab b
𝜖 0 1 1
a 0 1 1
b 1 0 0
ba 0 0 0
aa 0 1 1
ab 1 0 0
aaa 0 1 1
aab 1 0 0
bb 0 0 0

After the promotion of ba,
the table is closed



Column Insertion
Two upper rows u, u′ are similar if row(u) = row(u′)
Two upper rows u, u′ are distinguished by letter x if row(ux) ≠ row(u′x)
When u, u′ are similar but distinguishable, the learner chooses x ∈ Σ and v ∈ E such that
T(ux, v) ≠ T(u′x, v) and inserts a column xv in the table (filling it by asking membership
queries)

Exemple: L = a(a + b)aaa

𝜖 aaa aa a
𝜖 0 0 0 0
a 0 0 0 0
aa 0 1 0 0
b 0 0 0 0
ab 0 1 0 0
⋮ ⋮ ⋮ ⋮ ⋮
𝜖 and a are similar

but distinguished by b

𝜖 aaa baaa aa a
𝜖 0 0 0 0 0
a 0 0 1 0 0
aa 0 1 0 0 0
b 0 0 0 0 0
ab 0 1 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

column baaa has been inserted
𝜖 and a are not similar any more



Automaton Defined by a Consistent Closed Table
A table is consistent if all similar rows are indistiguishable.

A consistent, closed table (S,E,T) defines a DFA (Q, 𝛿, qI, F):
⋆ Q = {row(u) ∣ u ∈ S}

the states are the bitvectors appearing on the upper rows

⋆ 𝛿(row(u), x) = row(ux)
well-defined only when the table is consistent and closed
WHY?

𝜖 a
𝜖 0 1
a 1 1
b 0 1
aa 1 1
ab 0 1
ba 1 1
bb 0 1

⋆ qI = row(𝜖)
⋆ F = {row(u) ∣ T(u, 𝜖) = 1} 01start 11

b
a

b

a



L∗ Algorithm

1. Start with S = E = {𝜖}
2. repeat row promotion/column insertion until T is consistent and closed

3. submit A computed from T to the teacher

4. if the teacher gives w ∈ LΔL(A), add w and its prefixes to S, and go to 2.

5. otherwise, return A
Demo: see https://fissored.github.io/TER-M1-S2/

https://fissored.github.io/TER-M1-S2/


Properties of the Algorithm
Correctness: if A is returned, then L = L(A)
proof: the teacher does not make any error!

Termination: if L is a regular language, then an automaton A is eventually returned

proof: next slides

Minimality: any A submitted to the teacher is a minimal DFA

proof (sketched): if two rows r1, r2 differ in column u, then u is accepted by A either starting
from state r1, or state r2, but not both, so the two states r1 and r2 cannot be merged
reminder: the mininal DFA is obtained from any DFA through quotienting by bisimilarity



Towards Proving Termination : Notion of Residual
Given a language L and a word u, we write u−1L to denote the language of words that are
obtained from the words of L starting with u by erasing their prefix u

u−1L def= {v ∣ uv ∈ L}
Example: take L = (a + bb)∗, then (ab)−1L = b(a + bb)∗
u−1L is called a residual of L.
We will write Res(L) to denote the set of residuals of L, i.e. Res(L) = {u−1L ∣ u ∈ Σ∗}.
Example: Res(L) = {L, b(a + bb)∗,∅}. Indeed:

𝜖
−1L = L a−1L = L

b−1L = b(a + bb)∗
(aa)−1L = L(ab)−1L = b(a + bb)∗(ba)−1L = ∅(bb)−1L = L

. . .



Towards Proving Termination : Recognizability and Residuals
Theorem a language L is DFA-recognizable if and only if Res(L) is finite.

proof of left to right implication
Assume L = L(A) for some DFA A = (Q, 𝛿, qI, F). Let q(u) = 𝛿

∗(qI, u) be the state reached
after reading u. Then u−1L is the language accepted by A[q(u)] (starting from q(u) instead
of qI). So Res(L) = {L(A[q]) ∣ q reachable from qI}, therefore ♯Res(L) ≤ ♯Q < ∞.

proof of right to left implication
Assume Res(L) = {L1, . . . , Ln}. Take Q = Res(L), 𝛿(Li, x) = x−1Li (wich is a residual),
qI = L, and F = {Li ∣ 𝜖 ∈ Li}. Then A = (Q, 𝛿, qI, F) recognizes L.

Example: L = (a + bb)∗, Res(L) = {L, bL,∅}, A = L bL ∅

a a,b
b

b
a



Towards Proving Termination : Residuals and Tables
Let a table (S,E,T) be fixed, and let ∼T be the equivalence of residuals defined by

L1 ∼T L2 if L1 ∩ E = L2 ∩ E

Lemma 1: row(u) = row(v) if and only if u−1L ∼T v−1L

proof: by definition, row(s) contains 1 in column e if and only if e ∈ s−1L.

Lemma 2: Let AL denote the minimal DFA accepting L, i.e. the automaton of residuals.
Then

AT = AL/ ∼T



Proof of Termination of L∗

Let A1, A2, . . . denote the sequence of conjectures made by L∗. When a conjecture is
rejected, at least one new row is added to the table, therefore

♯A1 < ♯A2 < . . .

Since all of these are bounded by ♯AL, the sequence of conjectures is finite.
To end the proof, observe that the ”table completion” procedure also terminates for any
table. Indeed, if (S,E,T) → (S′

,E′
,T′) corresponds to a row promotion or column insertion,

then the number of disimilar rows strictly increases. But row(u) ≠ row(v) implies
u−1L ≠ v−1L, therefore the number of disimilar rows is bounded by the ♯AL, which ends the
proof.



Some final remarks
Complexity L∗ learns AL in time O(mn2), where n is ♯AL and m is the maximal length of a
counter-example given by the teacher (details in the article)

In practice the teacher may not know AL either, and answering the conjecture queries may
be based on some heuristics (like sampling)

Programming Assignment 2 use L∗ to define a function that learns an automaton A from
a WMSO specification


