Advanced Logic
http://www-sop.inria.fr/members/Martin.Avanzini/teaching /2022 /AL /

Martin Avanzini (martin.avanziniQ@inria.fr)
Etienne Lozes (etienne.lozes@univ-cotedazur.fr)

G20 MASTER
INFORMATIQUE

UNIVERSITE COTE DAZUR ::6%:

2nd Semester M1, 2022

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2022/AL/
martin.avanzini@inria.fr
etienne.lozes@univ-cotedazur.fr

Last Lectures

Vx.request(x) —» Jy.x < y.release(y)

We saw how it is possible to synthesize a finite state automaton <)C“"'*
from a formal specification written in WMSO logic.

BUT sometimes one does not even know how to specify the "thing”
Examples: security policy based on log analysis, program synthesis, invariant synthesis, etc

TODAY we will see how to synthesize a finite state automaton by learning it from examples
and counter-examples.

Today’s Lecture : L* Algorithm

INFORMATION AND COMPUTATION 75, 87-106 (1987)

Learning Regular Sets from Queries
and Counterexamples*

DANA ANGLUIN

Department of Computer Science, Yale University,
P.O. Box 2158, Yale Station, New Haven, Connecticut 06520

The problem of identifying an unknown regular set from examples of its members
and nonmembers is addressed. It is assumed that the regular set is presented by a
minimally adequate Teacher, which can answer membership queries about the set
and can also test a conjecture and indicate whether it is equal to the unknown set
and provide a counterexample if not. (A counterexample is a string in the sym-
metric difference of the correct set and the conjectured set.) A learning algorithm
L* is described that correctly learns any regular set from any minimally adequate

N I i
Teacher in time polynomial in the number of states of the minimum dfa for the set BN N B TAN
; - ; ; vy ¥y AN
and the maximum length of any counterexample provided by the Teacher. It is 008 0% %° | |/8%e N8
shown that in a stochastic setting the ability of the Teacher to test conjectures may ECRAN ! \‘35%5’/ °
be replaced by a random sampling oracle, EX(). A polynomial-time learning Supervised learning | Unsupervised learning

algorithm is shown for a particular problem of context-free language iden-
tification. © 1987 Academic Press, Inc.

https://en.wikipedia.org/wiki/Dana_Angluin

the Learner and the Teacher

Learner
Teacher

query

"‘Q
@ A\ \

 $¥

answer Knows L
Ignores L Answers all queries
Learns As.t. L= L(A) without mistakes

* membership query: w € L? Answer: yes/no.

* conjecture query: L = L(A)? Answer: yes/no, because w is a counter-example.

Observation Table

An observation table is a tuple (S, E, T) such that:

x S={u,...,u,} X" is a finite, prefix-closed set of words ("starters")
* E={vi,...,v,} € =% is a finite, suffix-closed set of words ("enders”)
* T:(SUSX)xE—{0,1} is the table

Intuition Example: X = {a, b}, S = {¢, a, aa}

T(u,v) = 1if and only if uv € L E={e.abb} L=2"b
H € ab b
0 1 1
Representation 0 1 1
* one column per ender, aallo 1 1
* one "upper” row per starter, b |1 0 O
* one "lower” row per ab |1 0 0
starter+letter pair aaa |0 1 1
aab||1 0 O

Row Promotion

The lower row of ux is covered by the upper row ¢ if row(ux) = row(u')

If a lower row is not covered, the learner promotes it to an upper row.
This may introduce new lower rows, and the learner performs membership queries to fill them.

|e ab b |e ab b

€ 0 1 1 € 0 1 1

a 0 1 1 a 0 1 1

aa ||0 1 1 b 1 0 O

b 1 0 O aa ||[0 1 1

ab 1 0 O ab 1 0 O

aaa||0 1 1 gaa||0 1 1

aab||1 0 O aab(|1 0 O

ba ||0 0 O

Rows b, ab, and aab are not covered bb 110 0 0

After the promotion of row b, the rows ab
and aab are covered, and the new lower rows
ba, and bb are filled by membership queries
(L=2a"b)

Closed Table

If all lower rows are covered, the table is called closed.

|e ab b | e ab b

e [|0 1 1 0 1 1

a ||0 1 1 a ||0 1 1

b |1 0 O b |1 0 O

aa |0 1 1 ba |0 0 O
ab |1 0 O aa |0 1 1
aaa ||0 1 1 ab ||1 0 O
aabj||1 0 O aaa ||0 1 1
ba||[0O 0O O aab||1 0 O
bb |0 0 O bb |0 0 O

The table is not closed because After the promotion of ba,

ba and bb are not covered the table is closed

Column Insertion

Two upper rows u, u are similar if row(u) = row(u')
Two upper rows u, u are distinguished by letter x if row(ux) # row(u'x)

When u, ' are similar but distinguishable, the learner chooses x € X and v € E such that
T(ux, v) # T(u'x, v) and inserts a column xv in the table (filling it by asking membership
queries)

Exemple: L = a(a+ b)aaa

€ daa aa a H € daa baaa aa a

e [|0 O 0 O e ||0 O 0 0 O

a0 o0 0 O a0 o0 1 0 O

aal|l0 1 0 O aa|l0 1 0 0 O

Sh o0 0 O b0 O 0 0 O

ab||0 1 0 O ab||0 1 0 0 O
é ana a e;re si}nila'r coIL;mn .baaa; has t;een ihsel:ted

but distinguished by b € and a are not similar any more

Automaton Defined by a Consistent Closed Table

A table is consistent if all similar rows are indistiguishable.

A consistent, closed table (S, E, T) defines a DFA (Q, 6, q), F):

€ a
* Q= {row(v) | ue S} €101
the states are the bitvectors appearing on the upper rows Z (l) i
aa || 1 1
* O(row(u), x) = row(ux) bllo 1
well-defined only when the table is consistent and closed palll 1
WHY? bb |0 1

b a

* q; = row(e) a

« F= {row(u) | T(u.e) =1} start @‘

L* Algorithm

1. Start with S = E = {¢}

2. repeat row promotion/column insertion until T is consistent and closed

3. submit A computed from T to the teacher

4. if the teacher gives w € LAL(A), add w and its prefixes to S, and go to 2.

5. otherwise, return A

Demo: see https://fissored.github.io/TER-M1-S2/

https://fissored.github.io/TER-M1-S2/

Properties of the Algorithm

Correctness: if A is returned, then L = L(A)

proof: the teacher does not make any error!

Termination: if L is a regular language, then an automaton A is eventually returned

proof: next slides

Minimality: any A submitted to the teacher is a minimal DFA

proof (sketched): if two rows ry, rp differ in column v, then v is accepted by A either starting
from state r1, or state ry, but not both, so the two states r; and r, cannot be merged
reminder: the mininal DFA is obtained from any DFA through quotienting by bisimilarity

Towards Proving Termination : Notion of Residual

Given a language L and a word u, we write u'L to denote the language of words that are
obtained from the words of L starting with u by erasing their prefix u

u i & {v|uve L}

Example: take L = (a+ bb)*, then (ab) 'L = b(a + bb)*

u "L is called a residual of L.
We will write Res(L) to denote the set of residuals of L, i.e. Res(L) = {u""L | ue *}.

Example: Res(L) = {L, b(a+ bb)*, @}. Indeed:

(aa) 'L =1
T alL=1L (ab) 'L = b(a+ bb)*
b'L = b(a+ bb)* (ba) 'L=g

(bb) 'L =1L

Towards Proving Termination : Recognizability and Residuals

Theorem a language L is DFA-recognizable if and only if Res(L) is finite.

proof of left to right implication

Assume L = L(A) for some DFA A = (Q,6, q;, F). Let q(u) = 6" (g, u) be the state reached
after reading u. Then u 'L is the language accepted by A[g(u)] (starting from g(u) instead
of q;). So Res(L) = {L(A[q]) | g reachable from g;}, therefore Res(L) < #Q < co.

proof of right to left implication

Assume Res(L) = {Ly,...,L,}. Take @ = Res(L), 6(L;,x) = x_lL,- (wich is a residual),
g =1L and F={L;| e € L;}. Then A= (Q,6,qy, F) recognizes L.

a a,b

() b ()

o w0 b R

Towards Proving Termination : Residuals and Tables

Let a table (S, E, T) be fixed, and let ~1 be the equivalence of residuals defined by

Li ~1 Ly if LinE=L,nNnE

Lemma 1: row(u) = row(v) if and only if v 'L ~7 v 'L
proof: by definition, row(s) contains 1 in column e if and only if e € s

Lemma 2: Let A; denote the minimal DFA accepting L, i.e. the automaton of residuals.
Then

Ar=All ~1

Proof of Termination of L*

Let A;, Ay, ... denote the sequence of conjectures made by L*. When a conjecture is
rejected, at least one new row is added to the table, therefore

#A1<#A2<...

Since all of these are bounded by #A,, the sequence of conjectures is finite.

To end the proof, observe that the "table completion” procedure also terminates for any
table. Indeed, if (S,E, T) — (S, E, T') corresponds to a row promotion or column insertion,
then the number of disimilar rows strictly increases. But row(u) # row(v) implies

u 'L # v 'L, therefore the number of disimilar rows is bounded by the #A,, which ends the
proof.

Some final remarks

Complexity L™ learns A; in time O(mnz), where nis #A; and m is the maximal length of a
counter-example given by the teacher (details in the article)

In practice the teacher may not know A; either, and answering the conjecture queries may
be based on some heuristics (like sampling)

Programming Assignment 2 use L* to define a function that learns an automaton A from
a WMSO specification

