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Last Lecture

1. the set of WMSO formulas over V1,V2 is given by the following grammar:

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ x < y ∣ X(x) ∣ 𝜙 ∨ 𝜓 ∣ ¬𝜙 ∣ ∃x.𝜙 ∣ ∃X.𝜙

– first-order variables V1 range over N and second-order variables V2 range over finite sets over
N

2. a WMSO formula 𝜙 over second-order variables {Pa ∣ a ∈ Σ} defines a language

L(𝜙) ≜ {w ∈ Σ∗ ∣ w ⊧ 𝜙}
3. WMSO definable languages are regular, and vice verse

4. Satisfiability and validity decidable in 22. .
.2

c

, the height of this tower essentially depends
on quantifiers; this bound cannot be improved

– in practice, satisfiability/validity often feasible, even for bigger formulas



Today’s Lecture

⋆ Presburger arithmetic

⋆ the tool MONA



Presburger Arithmetic



Presburger Arithmetic

⋆ Presburger Arithmetic refers to the first-order theory over (N, {0,+,<})
⋆ named in honor of Mojżesz Presburger, who introduced it in 1929

⋆ formulas in this logic are derivable from the following grammar:

s, t ∶∶= 0 ∣ x ∣ s + t

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ s = t ∣ s < t ∣ 𝜙 ∧ 𝜓 ∣ ¬𝜓 ∣ ∃x.𝜙

where x is a first-order variable
⋆ valuations map first-order variables to N

Applications
Presburger Arithmetic employed — due to the balance between expressiveness and
algorithmic properties — e.g. in automated theorem proving and static program analysis
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Examples
⋆ m is even: ?

– generally, multiplication by constant c ∈ N permissible

⋆ m equals 1: ?

⋆ m = r mod 5: ?

⋆ the system of linear equations

m + n = 13
m − n = 1

has a solution: ?
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Examples
⋆ m is even: ∃n.m = n + n, or shorthand ∃n.m = 2 ⋅ n

– generally, multiplication by constant c ∈ N permissible

⋆ m equals 1: ∀n.n < m → n = 0

⋆ m = r mod 5: ∃n.r < 5 ∧m = 5 ⋅ n + r

⋆ the system of linear equations

m + n = 13
m − n = 1

has a solution: ∃m.∃n.m + n = 13 ∧m = 1 + n



A Decision Procedure for Presburger Arithmetic
General Idea
1. encode natural numbers as binary words (lsb-first order)

– assignments 𝛼 ∶ V → {0, . . . , 2m} over {x1, . . . , xn} become binary matrices 𝛼 ∈ {0, 1}(m,n)
𝛼(xi) 𝛼

x1
x2
x3

13
1
3

⎛⎜⎜⎝ 1
1
1

⎞⎟⎟⎠⎛⎜⎜⎝ 0
0
1

⎞⎟⎟⎠⎛⎜⎜⎝ 1
0
0

⎞⎟⎟⎠⎛⎜⎜⎝ 1
0
0

⎞⎟⎟⎠

2. for formula 𝜙, define a DFA A𝜙 recognizing precisely codings 𝛼 of valuations 𝛼 making 𝜙
become true
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Language of a Formula
let us denote by L̂(𝜙) the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}

Lemma
For any formula 𝜙 in Presburger Arithmetic, L̂(𝜙) is regular.

Proof Outline.
By induction on the structure of 𝜙, we construct a DFA A𝜙 recognizing L̂(𝜙).
⋆ 𝜙 = ⊤, 𝜙 = ⊥: In these cases L̂(𝜙) is easily seen to be regular.
⋆ 𝜙 = (s < t) or 𝜙 = (s = t): A corresponding automaton can be constructed (next slide).
⋆ 𝜙 = ¬𝜙 or 𝜙 = 𝜓1 ∧ 𝜓2 From the induction hypothesis, using DFA-complementation and

DFA-intersection.
⋆ 𝜙 = ∀x.𝜓: From induction hypothesis, using homomorphism application to project out x

and “repairing final states”, as in the case of WMSO.
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Recognizing s≤t
⋆ an inequality s≤ t can be represented as ∑i ai ⋅ xi ≤ b where ai, b ∈ Z

2 ⋅ x1 ≤ x2 + 2 ⟹ 2 ⋅ x1 − 1 ⋅ x2 ≤ 2

⋆ the automaton As ≤ t recognizing s≤ t is defined as follows
– states Q are inequalities of the form ∑i ai ⋅ xi ≤ d

plus trap-state qfail

Intuition: L(∑i ai ⋅ xi ≤ d,As ≤ t) = {𝛼 ∣ 𝛼 ⊧ ∑i ai ⋅ xi ≤ d}
– the initial state qI is given by the representation of s ≤ t
– the transition function 𝛿 is given by

𝛿 (∑
i

ai ⋅ xi ≤ d, ( b1
⋮

bn
)) ≜ ∑

i
ai ⋅ xi ≤ ⌊1

2 (d −∑
i

ai ⋅ bi)⌋
,since ∑i ai ⋅ (bi + 2 ⋅ x′i) ≤ d ⇔ ∑i ai ⋅ x′i ≤ 1

2 ⋅ (d −∑i ai ⋅ bi)
– final states are all those states ∑i ai ⋅ xi ≤ d with 0 ≤ d

⋆ finiteness: from initial state ∑i ai ⋅ xi ≤ d, only ∑i ai + d states reachable, hence the
overall construction is finite
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⋆ an inequality s< t can be represented as ∑i ai ⋅ xi < b where ai, b ∈ Z
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Recognizing s=t
⋆ an inequality s= t can be represented as ∑i ai ⋅ xi = b where ai, b ∈ Z

2 ⋅ x1 = x2 + 2 ⟹ 2 ⋅ x1 − 1 ⋅ x2 = 2

⋆ the automaton As = t recognizing s= t is defined as follows
– states Q are inequalities of the form ∑i ai ⋅ xi = d plus trap-state qfail

Intuition: L(∑i ai ⋅ xi = d,As = t) = {𝛼 ∣ 𝛼 ⊧ ∑i ai ⋅ xi = d}
– the initial state qI is given by the representation of s = t
– the transition function 𝛿 is given by

𝛿 (∑
i

ai ⋅ xi = d, ( b1
⋮

bn
)) ≜ {∑i ai ⋅ xi = 1

2 (d −∑i ai ⋅ bi) if d −∑i ai ⋅ bi even,
qfail otherwise.

,since ∑i ai ⋅ (bi + 2 ⋅ x′i) = d ⇔ ∑i ai ⋅ x′i = 1
2 ⋅ (d −∑i ai ⋅ bi)

– final states are all those states ∑i ai ⋅ xi = d with 0 = d

⋆ finiteness: from initial state ∑i ai ⋅ xi = d, only ∑i ai + d states reachable, hence the
overall construction is finite



Decision Problems for Presburger Arithmetic
The Satisfiability Problem
⋆ Given: formula 𝜙

⋆ Question: is there 𝛼 s.t 𝛼 ⊧ 𝜙?

The Validity Problem
⋆ Given: formula 𝜙

⋆ Question: 𝛼 ⊧ 𝜙 for all assignments 𝛼?

Theorem
Satisfiability and Validity are decidable for Presburger Arithmetic.

Theorem
For any formula 𝜙, the constructed DFA recognizing L̂(𝜙) has size O(22n).
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Peano Arithmetic

⋆ Peano’s arithmetic is the first-order theory natural integers with vocabulary {+,×,<}

⋆ its existential fragment corresponds to the Diophantine equations, i.e., polynomial
equations on integers

⋆ Hilbert’s 10th problem was to solve Diophantine equations

⋆ Youri Matiassevitch, drawing on the work of Julia Robinson, demonstrated that this was
an undecidable problem
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Skolem Arithmetic

⋆ Skolem’s arithmetic is the first order theory of natural integers with the vocabulary{×,=}

⋆ Skolem’s arithmetic is also decidable

⋆ proof goes via reduction to tree automata, closely resembling the proof we have just seen
for Presburger’s arithmetic
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The tool MONA



The MONA Project

https://www.brics.dk/mona/index.html

⋆ MONA is a WMSO (and more) model checker
– determines validity of formula
– or prints counter example

⋆ implemented through the outlined translation to finite automata

https://www.brics.dk/mona/index.html

