Advanced Logic
http://www-sop.inria.fr/members/Martin.Avanzini/teaching /2022 /AL /

Martin Avanzini (martin.avanziniQ@inria.fr)
Etienne Lozes (etienne.lozes@univ-cotedazur.fr)

G20 MASTER
INFORMATIQUE

UNIVERSITE COTE DAZUR ::6%:

2nd Semester M1, 2022

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2022/AL/
martin.avanzini@inria.fr
etienne.lozes@univ-cotedazur.fr

Last Lecture

1. the set of WMSO formulas over V;,), is given by the following grammar:
o, =T | 1 | x<y | X(x) | dNVY | = | dx.¢ | IX.¢

— first-order variables V; range over N and second-order variables), range over finite sets over
N

2. a WMSO formula ¢ over second-order variables {P, | a € X} defines a language

L(¢) ={wez" | wF ¢}

3. WMSO definable languages are regular, and vice verse

2C

4. Satisfiability and validity decidable in 22 the height of this tower essentially depends
on quantifiers; this bound cannot be improved

— in practice, satisfiability/validity often feasible, even for bigger formulas

Today’s Lecture

* Presburger arithmetic

* the tool MONA

Presburger Arithmetic

Presburger Arithmetic

* Presburger Arithmetic refers to the first-order theory over (N, {0, +, <})
* named in honor of Mojzesz Presburger, who introduced it in 1929
* formulas in this logic are derivable from the following grammar:
s, tii=0 | X | s+t
=T | L |s=t]|s<t|onw | -v | Ixg

where x is a first-order variable

* valuations map first-order variables to N

Presburger Arithmetic

* Presburger Arithmetic refers to the first-order theory over (N, {0, +, <})
* named in honor of Mojzesz Presburger, who introduced it in 1929
* formulas in this logic are derivable from the following grammar:
s, tii=0 | X | s+t
=T | L |s=t]|s<t|onw | -v | Ixg
where x is a first-order variable

* valuations map first-order variables to N

Applications

Presburger Arithmetic employed — due to the balance between expressiveness and
algorithmic properties — e.g. in automated theorem proving and static program analysis

Examples

* mis even: 7

Examples

* mis even: dn.m = n+ n, or shorthand In.m=2-n

— generally, multiplication by constant ¢ € N permissible

Examples

* mis even: dn.m = n+ n, or shorthand In.m=2-n

— generally, multiplication by constant ¢ € N permissible

* mequals 1: ?

Examples

* mis even: dn.m = n+ n, or shorthand In.m=2-n

— generally, multiplication by constant ¢ € N permissible

* mequals 1: Vnnn<m—-n=0

Examples

* mis even: dn.m = n+ n, or shorthand In.m=2-n

— generally, multiplication by constant ¢ € N permissible
* mequals 1: Vnnn<m—-n=0

* m=rmodb: ?

Examples

* mis even: dn.m = n+ n, or shorthand In.m=2-n

— generally, multiplication by constant ¢ € N permissible
* mequals 1: Vnnn<m—-n=0

* m=rmodb5: An.r<5Am=5-n+r

Examples

* mis even: dn.m = n+ n, or shorthand In.m=2-n

— generally, multiplication by constant ¢ € N permissible
* mequals 1: Vnnn<m—-n=0
* m=rmodb5: Anr<5Am=5-n+r

* the system of linear equations

m+n=13

m—-—n=1

has a solution: ?

Examples

* mis even: dn.m = n+ n, or shorthand In.m=2-n

— generally, multiplication by constant ¢ € N permissible
* mequals 1: Vnnn<m—-n=0
* m=rmodb5: Anr<5Am=5-n+r

* the system of linear equations

m+n=13

m—-—n=1

has a solution: Am.An.m+n=13Am=1+n

A Decision Procedure for Presburger Arithmetic

General Idea
1. encode natural numbers as binary words (Isb-first order)

— assignments @ : V — {0,...,2™} over {xi, ..., x,} become binary matrices a € {0, 1}(™"
a(x;) @
X 13 1\/0\/1\/1
X2 1 1 0

x5 3 1)\1/\o/\o

A Decision Procedure for Presburger Arithmetic

General Idea
1. encode natural numbers as binary words (Isb-first order)

— assignments @ : V — {0,...,2™} over {xi, ..., x,} become binary matrices a € {0, 1}(™"
a(x;) @
X 13 1\/0\/1\/1
o 1 1llollollo
X 3 1)1 /\o)\o

2. for formula ¢, define a DFA A recognizing precisely codings a of valuations @ making ¢
become true

Language of a Formula

let us denote by I:(¢) the language of coded valuations making ¢ true:

L(p) 2 {a|aF ¢}

Language of a Formula

let us denote by I:(cf)) the language of coded valuations making ¢ true:
L(¢) 2 {alak ¢}

Lemma

For any formula ¢ in Presburger Arithmetic, I:(¢) is regular.

Language of a Formula

let us denote by L(¢) the language of coded valuations making ¢ true:
L(¢) 2 {a|aF ¢}

Lemma

For any formula ¢ in Presburger Arithmetic, I:(¢) is regular.

Proof Outline.
By induction on the structure of ¢, we construct a DFA A, recognizing L(a).

Language of a Formula

let us denote by L(¢) the language of coded valuations making ¢ true:
L(¢) 2 {a|aF ¢}

Lemma

For any formula ¢ in Presburger Arithmetic, I:(¢) is regular.

Proof Outline.
By induction on the structure of ¢, we construct a DFA A, recognizing L(a).

* ¢=T,¢=L: In these cases L(¢) is easily seen to be regular.

* ¢ =(s<t)or¢=(s=1t) A corresponding automaton can be constructed (next slide).

Language of a Formula

let us denote by L(¢) the language of coded valuations making ¢ true:
L(¢) 2 {a|aF ¢}

Lemma

For any formula ¢ in Presburger Arithmetic, I:(¢) is regular.

Proof Outline.

By induction on the structure of ¢, we construct a DFA A, recognizing L(a).

* ¢=T,¢=L: In these cases L(¢) is easily seen to be regular.

* ¢ =(s<t)or¢=(s=1t) A corresponding automaton can be constructed (next slide).

* ¢ = —=¢p or ¢ =i Ay From the induction hypothesis, using DFA-complementation and
DFA-intersection.

Language of a Formula

let us denote by L(¢) the language of coded valuations making ¢ true:
L(¢) 2 {a|aF ¢}

Lemma

For any formula ¢ in Presburger Arithmetic, I:(¢) is regular.

Proof Outline.
By induction on the structure of ¢, we construct a DFA A, recognizing L(a).
* ¢=T,¢=L: In these cases L(¢) is easily seen to be regular.

* ¢ =(s<t)or¢=(s=1t) A corresponding automaton can be constructed (next slide).

* ¢ = —=¢p or ¢ =i Ay From the induction hypothesis, using DFA-complementation and
DFA-intersection.

* ¢ = Yx.: From induction hypothesis, using homomorphism application to project out x
and “repairing final states”, as in the case of WMSO.

Recognizing s<t

* an inequality s <t can be represented as) ;a;- x;< b where a, b € Z

2:x15x%+2 = 2:-xq—1-x=<2

Recognizing s<t
* an inequality s <t can be represented as) ;a;- x;< b where a, b € Z
2:x15x%+2 = 2:-xq—1-x=<2

* the automaton A, < ; recognizing s< t is defined as follows

— states @ are inequalities of the form Zia,- x;<d
Intuition: L() ;ai-xisd As<¢) ={a|aF), a x=<d}

Recognizing s<t
* an inequality s <t can be represented as) ;a;- x;< b where a, b € Z
2:x15x%+2 = 2:-xq—1-x=<2

* the automaton A, < ; recognizing s< t is defined as follows
— states @ are inequalities of the form Zia,- xp<d

Intuition: L() ;ai-xisd As<¢) ={a|aF), a x=<d}

— the initial state g, is given by the representation of s< t

Recognizing s<t
* an inequality s <t can be represented as) ;a;- x;< b where a, b € Z
2:x15x%+2 = 2:-xq—1-x=<2

* the automaton A, < ; recognizing s< t is defined as follows
— states @ are inequalities of the form Zia,- xp<d
Intuition: L() ;ai-xisd As<¢) ={a|aF), a x=<d}
— the initial state g, is given by the representation of s< t

— the transition function ¢ is given by

5(23,--x,-sd,(2>)éza,-x,s E(d—za,--b,”

i i i

since Y, (bi+2-x)<d e Z,-a,--x:-s%~(d—zia,-~b,-)

Recognizing s<t
* an inequality s <t can be represented as) ;a;- x;< b where a, b € Z

2:x15x%+2 = 2:-xq—1-x=<2

* the automaton A, < ; recognizing s< t is defined as follows
— states @ are inequalities of the form Zia,- xp<d
Intuition: L() ;ai-xisd As<¢) ={a|aF), a x=<d}
— the initial state g, is given by the representation of s< t

— the transition function ¢ is given by

5(23,--x,-sd,(2>)éza,-x,s E(d—za,--b,”

i i i

since Y, (bi+2-x)<d e Z,-a,--x:-s%~(d—zia,-~b,-)

— final states are all those states Z,a,- -x;<dwith0<d

Recognizing s<t
* an inequality s <t can be represented as) ;a;- x;< b where a, b € Z
2:x15x%+2 = 2:-xq—1-x=<2

* the automaton A, < ; recognizing s< t is defined as follows

states @ are inequalities of the form Zia,- xp<d
Intuition: L() ;ai-xisd As<¢) ={a|aF), a x=<d}

the initial state g, is given by the representation of s< t

the transition function ¢ is given by

o(Feresa(2))egecas o3

since Y- (bi+2-x)<de Y, a-x < %(d Y iai-b)

final states are all those states Z,a,- -x;<dwith0<d

* finiteness: from initial state) . a;- x; < d, only) ;a; + d states reachable, hence the
overall construction is finite

Recognizing s<t
* an inequality s< t can be represented as) ;a;- x; < b where a, b € Z
2:x1<x0+2 = 2-x3—1:-x<2

* the automaton A, . ; recognizing s< t is defined as follows

states @ are inequalities of the form Zia,- xp<d
Intuition: L() ;a;-xi<d As<) ={a|aF), a x<d}

the initial state g, is given by the representation of s< t

the transition function ¢ is given by

5(23,--x,<d,(::))éza,-x,< {%(d—z‘apb,-)—‘

since Y, a; (bi+2-x) <d e Z,-a,--x:-<%~(d—zia,-~b,-)

final states are all those states Z,a,- -x;<dwith0<d

* finiteness: from initial state) . a;- x; < d, only) ;a; + d states reachable, hence the
overall construction is finite

Recognizing s=t

* an inequality s=t can be represented as) ;a;- x;= b where a, b € Z
2’X1=X2+2 B 2'X]_—1’X2=2

* the automaton A, - ; recognizing s=t is defined as follows
— states Q are inequalities of the form) . a; - x; = d plus trap-state gy
Intuition: L() ;a;-xi=d As-) ={a|aF), a x=d}
— the initial state g, is given by the representation of s=t

— the transition function ¢ is given by

b o =2 (AN a..b) iFd=S.5..5h
5(23;'X;=d,(51))é{2ia1 xp=5(d=);ai-b;) ifd=Y a; b;even,

i by, 9tail otherwise.

since Y, a; (bi+2-x)=d = Z,.a,--x:-=%~(d—zia,-~b,-)

— final states are all those states Z,a,- -x;=dwith0=d

* finiteness: from initial state) . a;- x;=d, only) ;a; + d states reachable, hence the
overall construction is finite

Decision Problems for Presburger Arithmetic

The Satisfiability Problem The Validity Problem
* Given: formula ¢ * Given: formula ¢

* Question: is there @ s.t a F ¢? * Question: a F ¢ for all assignments a?

Decision Problems for Presburger Arithmetic

The Satisfiability Problem The Validity Problem

* Given: formula ¢ * Given: formula ¢

* Question: is there @ s.t a F ¢7? * Question: a F ¢ for all assignments a?
Theorem

Satisfiability and Validity are decidable for Presburger Arithmetic.

Theorem

For any formula ¢, the constructed DFA recognizing L(¢) has size O(22n).

Peano Arithmetic

* Peano’s arithmetic is the first-order theory natural integers with vocabulary {+, X, <}

Peano Arithmetic

* Peano’s arithmetic is the first-order theory natural integers with vocabulary {+, X, <}

* its existential fragment corresponds to the Diophantine equations, i.e., polynomial
equations on integers

* Hilbert's 10th problem was to solve Diophantine equations

Peano Arithmetic

* Peano’s arithmetic is the first-order theory natural integers with vocabulary {+, X, <}

* its existential fragment corresponds to the Diophantine equations, i.e., polynomial
equations on integers

* Hilbert's 10th problem was to solve Diophantine equations

* Youri Matiassevitch, drawing on the work of Julia Robinson, demonstrated that this was
an undecidable problem

Skolem Arithmetic

* Skolem's arithmetic is the first order theory of natural integers with the vocabulary

{x.=}

Skolem Arithmetic

* Skolem's arithmetic is the first order theory of natural integers with the vocabulary

{x,=}
* Skolem's arithmetic is also decidable

* proof goes via reduction to tree automata, closely resembling the proof we have just seen
for Presburger’s arithmetic

The tool MONA

The MONA Project

https://www.brics.dk/mona/index.html FQELW

Free as in Freedom

* MONA is a WMSO (and more) model checker

— determines validity of formula

— or prints counter example

* implemented through the outlined translation to finite automata

https://www.brics.dk/mona/index.html

