
Advanced Logic
http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2022/AL/

Martin Avanzini (martin.avanzini@inria.fr)
Etienne Lozes (etienne.lozes@univ-cotedazur.fr)

2nd Semester M1, 2022

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2022/AL/
martin.avanzini@inria.fr
etienne.lozes@univ-cotedazur.fr

Last Lecture

1. the set of WMSO formulas over V1,V2 is given by the following grammar:

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ x < y ∣ X(x) ∣ 𝜙 ∨ 𝜓 ∣ ¬𝜙 ∣ ∃x.𝜙 ∣ ∃X.𝜙

– first-order variables V1 range over N and second-order variables V2 range over finite sets over
N

2. a WMSO formula 𝜙 over second-order variables {Pa ∣ a ∈ Σ} defines a language

L(𝜙) ≜ {w ∈ Σ∗ ∣ w ⊧ 𝜙}
3. WMSO definable languages are regular, and vice verse

4. Satisfiability and validity decidable in 22. .
.2

c

, the height of this tower essentially depends
on quantifiers; this bound cannot be improved

– in practice, satisfiability/validity often feasible, even for bigger formulas

Today’s Lecture

⋆ Presburger arithmetic

⋆ the tool MONA

Presburger Arithmetic

Presburger Arithmetic

⋆ Presburger Arithmetic refers to the first-order theory over (N, {0,+,<})
⋆ named in honor of Mojżesz Presburger, who introduced it in 1929

⋆ formulas in this logic are derivable from the following grammar:

s, t ∶∶= 0 ∣ x ∣ s + t

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ s = t ∣ s < t ∣ 𝜙 ∧ 𝜓 ∣ ¬𝜓 ∣ ∃x.𝜙

where x is a first-order variable
⋆ valuations map first-order variables to N

Applications
Presburger Arithmetic employed — due to the balance between expressiveness and
algorithmic properties — e.g. in automated theorem proving and static program analysis

Presburger Arithmetic

⋆ Presburger Arithmetic refers to the first-order theory over (N, {0,+,<})
⋆ named in honor of Mojżesz Presburger, who introduced it in 1929

⋆ formulas in this logic are derivable from the following grammar:

s, t ∶∶= 0 ∣ x ∣ s + t

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ s = t ∣ s < t ∣ 𝜙 ∧ 𝜓 ∣ ¬𝜓 ∣ ∃x.𝜙

where x is a first-order variable
⋆ valuations map first-order variables to N

Applications
Presburger Arithmetic employed — due to the balance between expressiveness and
algorithmic properties — e.g. in automated theorem proving and static program analysis

Examples
⋆ m is even: ?

– generally, multiplication by constant c ∈ N permissible

⋆ m equals 1: ?

⋆ m = r mod 5: ?

⋆ the system of linear equations

m + n = 13
m − n = 1

has a solution: ?

Examples
⋆ m is even: ∃n.m = n + n, or shorthand ∃n.m = 2 ⋅ n

– generally, multiplication by constant c ∈ N permissible

⋆ m equals 1: ?

⋆ m = r mod 5: ?

⋆ the system of linear equations

m + n = 13
m − n = 1

has a solution: ?

Examples
⋆ m is even: ∃n.m = n + n, or shorthand ∃n.m = 2 ⋅ n

– generally, multiplication by constant c ∈ N permissible

⋆ m equals 1: ?

⋆ m = r mod 5: ?

⋆ the system of linear equations

m + n = 13
m − n = 1

has a solution: ?

Examples
⋆ m is even: ∃n.m = n + n, or shorthand ∃n.m = 2 ⋅ n

– generally, multiplication by constant c ∈ N permissible

⋆ m equals 1: ∀n.n < m → n = 0

⋆ m = r mod 5: ?

⋆ the system of linear equations

m + n = 13
m − n = 1

has a solution: ?

Examples
⋆ m is even: ∃n.m = n + n, or shorthand ∃n.m = 2 ⋅ n

– generally, multiplication by constant c ∈ N permissible

⋆ m equals 1: ∀n.n < m → n = 0

⋆ m = r mod 5: ?

⋆ the system of linear equations

m + n = 13
m − n = 1

has a solution: ?

Examples
⋆ m is even: ∃n.m = n + n, or shorthand ∃n.m = 2 ⋅ n

– generally, multiplication by constant c ∈ N permissible

⋆ m equals 1: ∀n.n < m → n = 0

⋆ m = r mod 5: ∃n.r < 5 ∧m = 5 ⋅ n + r

⋆ the system of linear equations

m + n = 13
m − n = 1

has a solution: ?

Examples
⋆ m is even: ∃n.m = n + n, or shorthand ∃n.m = 2 ⋅ n

– generally, multiplication by constant c ∈ N permissible

⋆ m equals 1: ∀n.n < m → n = 0

⋆ m = r mod 5: ∃n.r < 5 ∧m = 5 ⋅ n + r

⋆ the system of linear equations

m + n = 13
m − n = 1

has a solution: ?

Examples
⋆ m is even: ∃n.m = n + n, or shorthand ∃n.m = 2 ⋅ n

– generally, multiplication by constant c ∈ N permissible

⋆ m equals 1: ∀n.n < m → n = 0

⋆ m = r mod 5: ∃n.r < 5 ∧m = 5 ⋅ n + r

⋆ the system of linear equations

m + n = 13
m − n = 1

has a solution: ∃m.∃n.m + n = 13 ∧m = 1 + n

A Decision Procedure for Presburger Arithmetic
General Idea
1. encode natural numbers as binary words (lsb-first order)

– assignments 𝛼 ∶ V → {0, . . . , 2m} over {x1, . . . , xn} become binary matrices 𝛼 ∈ {0, 1}(m,n)
𝛼(xi) 𝛼

x1
x2
x3

13
1
3

⎛⎜⎜⎝ 1
1
1

⎞⎟⎟⎠⎛⎜⎜⎝ 0
0
1

⎞⎟⎟⎠⎛⎜⎜⎝ 1
0
0

⎞⎟⎟⎠⎛⎜⎜⎝ 1
0
0

⎞⎟⎟⎠

2. for formula 𝜙, define a DFA A𝜙 recognizing precisely codings 𝛼 of valuations 𝛼 making 𝜙
become true

A Decision Procedure for Presburger Arithmetic
General Idea
1. encode natural numbers as binary words (lsb-first order)

– assignments 𝛼 ∶ V → {0, . . . , 2m} over {x1, . . . , xn} become binary matrices 𝛼 ∈ {0, 1}(m,n)
𝛼(xi) 𝛼

x1
x2
x3

13
1
3

⎛⎜⎜⎝ 1
1
1

⎞⎟⎟⎠⎛⎜⎜⎝ 0
0
1

⎞⎟⎟⎠⎛⎜⎜⎝ 1
0
0

⎞⎟⎟⎠⎛⎜⎜⎝ 1
0
0

⎞⎟⎟⎠
2. for formula 𝜙, define a DFA A𝜙 recognizing precisely codings 𝛼 of valuations 𝛼 making 𝜙

become true

Language of a Formula
let us denote by L̂(𝜙) the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}

Lemma
For any formula 𝜙 in Presburger Arithmetic, L̂(𝜙) is regular.

Proof Outline.
By induction on the structure of 𝜙, we construct a DFA A𝜙 recognizing L̂(𝜙).
⋆ 𝜙 = ⊤, 𝜙 = ⊥: In these cases L̂(𝜙) is easily seen to be regular.
⋆ 𝜙 = (s < t) or 𝜙 = (s = t): A corresponding automaton can be constructed (next slide).
⋆ 𝜙 = ¬𝜙 or 𝜙 = 𝜓1 ∧ 𝜓2 From the induction hypothesis, using DFA-complementation and

DFA-intersection.
⋆ 𝜙 = ∀x.𝜓: From induction hypothesis, using homomorphism application to project out x

and “repairing final states”, as in the case of WMSO.

Language of a Formula
let us denote by L̂(𝜙) the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}
Lemma
For any formula 𝜙 in Presburger Arithmetic, L̂(𝜙) is regular.

Proof Outline.
By induction on the structure of 𝜙, we construct a DFA A𝜙 recognizing L̂(𝜙).
⋆ 𝜙 = ⊤, 𝜙 = ⊥: In these cases L̂(𝜙) is easily seen to be regular.
⋆ 𝜙 = (s < t) or 𝜙 = (s = t): A corresponding automaton can be constructed (next slide).
⋆ 𝜙 = ¬𝜙 or 𝜙 = 𝜓1 ∧ 𝜓2 From the induction hypothesis, using DFA-complementation and

DFA-intersection.
⋆ 𝜙 = ∀x.𝜓: From induction hypothesis, using homomorphism application to project out x

and “repairing final states”, as in the case of WMSO.

Language of a Formula
let us denote by L̂(𝜙) the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}
Lemma
For any formula 𝜙 in Presburger Arithmetic, L̂(𝜙) is regular.

Proof Outline.
By induction on the structure of 𝜙, we construct a DFA A𝜙 recognizing L̂(𝜙).

⋆ 𝜙 = ⊤, 𝜙 = ⊥: In these cases L̂(𝜙) is easily seen to be regular.
⋆ 𝜙 = (s < t) or 𝜙 = (s = t): A corresponding automaton can be constructed (next slide).
⋆ 𝜙 = ¬𝜙 or 𝜙 = 𝜓1 ∧ 𝜓2 From the induction hypothesis, using DFA-complementation and

DFA-intersection.
⋆ 𝜙 = ∀x.𝜓: From induction hypothesis, using homomorphism application to project out x

and “repairing final states”, as in the case of WMSO.

Language of a Formula
let us denote by L̂(𝜙) the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}
Lemma
For any formula 𝜙 in Presburger Arithmetic, L̂(𝜙) is regular.

Proof Outline.
By induction on the structure of 𝜙, we construct a DFA A𝜙 recognizing L̂(𝜙).
⋆ 𝜙 = ⊤, 𝜙 = ⊥: In these cases L̂(𝜙) is easily seen to be regular.
⋆ 𝜙 = (s < t) or 𝜙 = (s = t): A corresponding automaton can be constructed (next slide).

⋆ 𝜙 = ¬𝜙 or 𝜙 = 𝜓1 ∧ 𝜓2 From the induction hypothesis, using DFA-complementation and
DFA-intersection.

⋆ 𝜙 = ∀x.𝜓: From induction hypothesis, using homomorphism application to project out x
and “repairing final states”, as in the case of WMSO.

Language of a Formula
let us denote by L̂(𝜙) the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}
Lemma
For any formula 𝜙 in Presburger Arithmetic, L̂(𝜙) is regular.

Proof Outline.
By induction on the structure of 𝜙, we construct a DFA A𝜙 recognizing L̂(𝜙).
⋆ 𝜙 = ⊤, 𝜙 = ⊥: In these cases L̂(𝜙) is easily seen to be regular.
⋆ 𝜙 = (s < t) or 𝜙 = (s = t): A corresponding automaton can be constructed (next slide).
⋆ 𝜙 = ¬𝜙 or 𝜙 = 𝜓1 ∧ 𝜓2 From the induction hypothesis, using DFA-complementation and

DFA-intersection.

⋆ 𝜙 = ∀x.𝜓: From induction hypothesis, using homomorphism application to project out x
and “repairing final states”, as in the case of WMSO.

Language of a Formula
let us denote by L̂(𝜙) the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}
Lemma
For any formula 𝜙 in Presburger Arithmetic, L̂(𝜙) is regular.

Proof Outline.
By induction on the structure of 𝜙, we construct a DFA A𝜙 recognizing L̂(𝜙).
⋆ 𝜙 = ⊤, 𝜙 = ⊥: In these cases L̂(𝜙) is easily seen to be regular.
⋆ 𝜙 = (s < t) or 𝜙 = (s = t): A corresponding automaton can be constructed (next slide).
⋆ 𝜙 = ¬𝜙 or 𝜙 = 𝜓1 ∧ 𝜓2 From the induction hypothesis, using DFA-complementation and

DFA-intersection.
⋆ 𝜙 = ∀x.𝜓: From induction hypothesis, using homomorphism application to project out x

and “repairing final states”, as in the case of WMSO.

Recognizing s≤t
⋆ an inequality s≤ t can be represented as ∑i ai ⋅ xi ≤ b where ai, b ∈ Z

2 ⋅ x1 ≤ x2 + 2 ⟹ 2 ⋅ x1 − 1 ⋅ x2 ≤ 2

⋆ the automaton As ≤ t recognizing s≤ t is defined as follows
– states Q are inequalities of the form ∑i ai ⋅ xi ≤ d

plus trap-state qfail

Intuition: L(∑i ai ⋅ xi ≤ d,As ≤ t) = {𝛼 ∣ 𝛼 ⊧ ∑i ai ⋅ xi ≤ d}
– the initial state qI is given by the representation of s ≤ t
– the transition function 𝛿 is given by

𝛿 (∑
i

ai ⋅ xi ≤ d, (b1
⋮

bn
)) ≜ ∑

i
ai ⋅ xi ≤ ⌊1

2 (d −∑
i

ai ⋅ bi)⌋
,since ∑i ai ⋅ (bi + 2 ⋅ x′i) ≤ d ⇔ ∑i ai ⋅ x′i ≤ 1

2 ⋅ (d −∑i ai ⋅ bi)
– final states are all those states ∑i ai ⋅ xi ≤ d with 0 ≤ d

⋆ finiteness: from initial state ∑i ai ⋅ xi ≤ d, only ∑i ai + d states reachable, hence the
overall construction is finite

Recognizing s≤t
⋆ an inequality s≤ t can be represented as ∑i ai ⋅ xi ≤ b where ai, b ∈ Z

2 ⋅ x1 ≤ x2 + 2 ⟹ 2 ⋅ x1 − 1 ⋅ x2 ≤ 2

⋆ the automaton As ≤ t recognizing s≤ t is defined as follows
– states Q are inequalities of the form ∑i ai ⋅ xi ≤ d

plus trap-state qfail

Intuition: L(∑i ai ⋅ xi ≤ d,As ≤ t) = {𝛼 ∣ 𝛼 ⊧ ∑i ai ⋅ xi ≤ d}

– the initial state qI is given by the representation of s ≤ t
– the transition function 𝛿 is given by

𝛿 (∑
i

ai ⋅ xi ≤ d, (b1
⋮

bn
)) ≜ ∑

i
ai ⋅ xi ≤ ⌊1

2 (d −∑
i

ai ⋅ bi)⌋
,since ∑i ai ⋅ (bi + 2 ⋅ x′i) ≤ d ⇔ ∑i ai ⋅ x′i ≤ 1

2 ⋅ (d −∑i ai ⋅ bi)
– final states are all those states ∑i ai ⋅ xi ≤ d with 0 ≤ d

⋆ finiteness: from initial state ∑i ai ⋅ xi ≤ d, only ∑i ai + d states reachable, hence the
overall construction is finite

Recognizing s≤t
⋆ an inequality s≤ t can be represented as ∑i ai ⋅ xi ≤ b where ai, b ∈ Z

2 ⋅ x1 ≤ x2 + 2 ⟹ 2 ⋅ x1 − 1 ⋅ x2 ≤ 2

⋆ the automaton As ≤ t recognizing s≤ t is defined as follows
– states Q are inequalities of the form ∑i ai ⋅ xi ≤ d

plus trap-state qfail

Intuition: L(∑i ai ⋅ xi ≤ d,As ≤ t) = {𝛼 ∣ 𝛼 ⊧ ∑i ai ⋅ xi ≤ d}
– the initial state qI is given by the representation of s ≤ t

– the transition function 𝛿 is given by

𝛿 (∑
i

ai ⋅ xi ≤ d, (b1
⋮

bn
)) ≜ ∑

i
ai ⋅ xi ≤ ⌊1

2 (d −∑
i

ai ⋅ bi)⌋
,since ∑i ai ⋅ (bi + 2 ⋅ x′i) ≤ d ⇔ ∑i ai ⋅ x′i ≤ 1

2 ⋅ (d −∑i ai ⋅ bi)
– final states are all those states ∑i ai ⋅ xi ≤ d with 0 ≤ d

⋆ finiteness: from initial state ∑i ai ⋅ xi ≤ d, only ∑i ai + d states reachable, hence the
overall construction is finite

Recognizing s≤t
⋆ an inequality s≤ t can be represented as ∑i ai ⋅ xi ≤ b where ai, b ∈ Z

2 ⋅ x1 ≤ x2 + 2 ⟹ 2 ⋅ x1 − 1 ⋅ x2 ≤ 2

⋆ the automaton As ≤ t recognizing s≤ t is defined as follows
– states Q are inequalities of the form ∑i ai ⋅ xi ≤ d

plus trap-state qfail

Intuition: L(∑i ai ⋅ xi ≤ d,As ≤ t) = {𝛼 ∣ 𝛼 ⊧ ∑i ai ⋅ xi ≤ d}
– the initial state qI is given by the representation of s ≤ t
– the transition function 𝛿 is given by

𝛿 (∑
i

ai ⋅ xi ≤ d, (b1
⋮

bn
)) ≜ ∑

i
ai ⋅ xi ≤ ⌊1

2 (d −∑
i

ai ⋅ bi)⌋
,since ∑i ai ⋅ (bi + 2 ⋅ x′i) ≤ d ⇔ ∑i ai ⋅ x′i ≤ 1

2 ⋅ (d −∑i ai ⋅ bi)

– final states are all those states ∑i ai ⋅ xi ≤ d with 0 ≤ d

⋆ finiteness: from initial state ∑i ai ⋅ xi ≤ d, only ∑i ai + d states reachable, hence the
overall construction is finite

Recognizing s≤t
⋆ an inequality s≤ t can be represented as ∑i ai ⋅ xi ≤ b where ai, b ∈ Z

2 ⋅ x1 ≤ x2 + 2 ⟹ 2 ⋅ x1 − 1 ⋅ x2 ≤ 2

⋆ the automaton As ≤ t recognizing s≤ t is defined as follows
– states Q are inequalities of the form ∑i ai ⋅ xi ≤ d

plus trap-state qfail

Intuition: L(∑i ai ⋅ xi ≤ d,As ≤ t) = {𝛼 ∣ 𝛼 ⊧ ∑i ai ⋅ xi ≤ d}
– the initial state qI is given by the representation of s ≤ t
– the transition function 𝛿 is given by

𝛿 (∑
i

ai ⋅ xi ≤ d, (b1
⋮

bn
)) ≜ ∑

i
ai ⋅ xi ≤ ⌊1

2 (d −∑
i

ai ⋅ bi)⌋
,since ∑i ai ⋅ (bi + 2 ⋅ x′i) ≤ d ⇔ ∑i ai ⋅ x′i ≤ 1

2 ⋅ (d −∑i ai ⋅ bi)
– final states are all those states ∑i ai ⋅ xi ≤ d with 0 ≤ d

⋆ finiteness: from initial state ∑i ai ⋅ xi ≤ d, only ∑i ai + d states reachable, hence the
overall construction is finite

Recognizing s≤t
⋆ an inequality s≤ t can be represented as ∑i ai ⋅ xi ≤ b where ai, b ∈ Z

2 ⋅ x1 ≤ x2 + 2 ⟹ 2 ⋅ x1 − 1 ⋅ x2 ≤ 2

⋆ the automaton As ≤ t recognizing s≤ t is defined as follows
– states Q are inequalities of the form ∑i ai ⋅ xi ≤ d

plus trap-state qfail

Intuition: L(∑i ai ⋅ xi ≤ d,As ≤ t) = {𝛼 ∣ 𝛼 ⊧ ∑i ai ⋅ xi ≤ d}
– the initial state qI is given by the representation of s ≤ t
– the transition function 𝛿 is given by

𝛿 (∑
i

ai ⋅ xi ≤ d, (b1
⋮

bn
)) ≜ ∑

i
ai ⋅ xi ≤ ⌊1

2 (d −∑
i

ai ⋅ bi)⌋
,since ∑i ai ⋅ (bi + 2 ⋅ x′i) ≤ d ⇔ ∑i ai ⋅ x′i ≤ 1

2 ⋅ (d −∑i ai ⋅ bi)
– final states are all those states ∑i ai ⋅ xi ≤ d with 0 ≤ d

⋆ finiteness: from initial state ∑i ai ⋅ xi ≤ d, only ∑i ai + d states reachable, hence the
overall construction is finite

Recognizing s<t
⋆ an inequality s< t can be represented as ∑i ai ⋅ xi < b where ai, b ∈ Z

2 ⋅ x1 < x2 + 2 ⟹ 2 ⋅ x1 − 1 ⋅ x2 < 2

⋆ the automaton As < t recognizing s< t is defined as follows
– states Q are inequalities of the form ∑i ai ⋅ xi < d

plus trap-state qfail

Intuition: L(∑i ai ⋅ xi < d,As < t) = {𝛼 ∣ 𝛼 ⊧ ∑i ai ⋅ xi < d}
– the initial state qI is given by the representation of s < t
– the transition function 𝛿 is given by

𝛿 (∑
i

ai ⋅ xi < d, (b1
⋮

bn
)) ≜ ∑

i
ai ⋅ xi < ⌈1

2 (d −∑
i

ai ⋅ bi)⌉
,since ∑i ai ⋅ (bi + 2 ⋅ x′i) < d ⇔ ∑i ai ⋅ x′i < 1

2 ⋅ (d −∑i ai ⋅ bi)
– final states are all those states ∑i ai ⋅ xi < d with 0 < d

⋆ finiteness: from initial state ∑i ai ⋅ xi < d, only ∑i ai + d states reachable, hence the
overall construction is finite

Recognizing s=t
⋆ an inequality s= t can be represented as ∑i ai ⋅ xi = b where ai, b ∈ Z

2 ⋅ x1 = x2 + 2 ⟹ 2 ⋅ x1 − 1 ⋅ x2 = 2

⋆ the automaton As = t recognizing s= t is defined as follows
– states Q are inequalities of the form ∑i ai ⋅ xi = d plus trap-state qfail

Intuition: L(∑i ai ⋅ xi = d,As = t) = {𝛼 ∣ 𝛼 ⊧ ∑i ai ⋅ xi = d}
– the initial state qI is given by the representation of s = t
– the transition function 𝛿 is given by

𝛿 (∑
i

ai ⋅ xi = d, (b1
⋮

bn
)) ≜ {∑i ai ⋅ xi = 1

2 (d −∑i ai ⋅ bi) if d −∑i ai ⋅ bi even,
qfail otherwise.

,since ∑i ai ⋅ (bi + 2 ⋅ x′i) = d ⇔ ∑i ai ⋅ x′i = 1
2 ⋅ (d −∑i ai ⋅ bi)

– final states are all those states ∑i ai ⋅ xi = d with 0 = d

⋆ finiteness: from initial state ∑i ai ⋅ xi = d, only ∑i ai + d states reachable, hence the
overall construction is finite

Decision Problems for Presburger Arithmetic
The Satisfiability Problem
⋆ Given: formula 𝜙

⋆ Question: is there 𝛼 s.t 𝛼 ⊧ 𝜙?

The Validity Problem
⋆ Given: formula 𝜙

⋆ Question: 𝛼 ⊧ 𝜙 for all assignments 𝛼?

Theorem
Satisfiability and Validity are decidable for Presburger Arithmetic.

Theorem
For any formula 𝜙, the constructed DFA recognizing L̂(𝜙) has size O(22n).

Decision Problems for Presburger Arithmetic
The Satisfiability Problem
⋆ Given: formula 𝜙

⋆ Question: is there 𝛼 s.t 𝛼 ⊧ 𝜙?

The Validity Problem
⋆ Given: formula 𝜙

⋆ Question: 𝛼 ⊧ 𝜙 for all assignments 𝛼?

Theorem
Satisfiability and Validity are decidable for Presburger Arithmetic.

Theorem
For any formula 𝜙, the constructed DFA recognizing L̂(𝜙) has size O(22n).

Peano Arithmetic

⋆ Peano’s arithmetic is the first-order theory natural integers with vocabulary {+,×,<}

⋆ its existential fragment corresponds to the Diophantine equations, i.e., polynomial
equations on integers

⋆ Hilbert’s 10th problem was to solve Diophantine equations

⋆ Youri Matiassevitch, drawing on the work of Julia Robinson, demonstrated that this was
an undecidable problem

Peano Arithmetic

⋆ Peano’s arithmetic is the first-order theory natural integers with vocabulary {+,×,<}
⋆ its existential fragment corresponds to the Diophantine equations, i.e., polynomial

equations on integers

⋆ Hilbert’s 10th problem was to solve Diophantine equations

⋆ Youri Matiassevitch, drawing on the work of Julia Robinson, demonstrated that this was
an undecidable problem

Peano Arithmetic

⋆ Peano’s arithmetic is the first-order theory natural integers with vocabulary {+,×,<}
⋆ its existential fragment corresponds to the Diophantine equations, i.e., polynomial

equations on integers

⋆ Hilbert’s 10th problem was to solve Diophantine equations

⋆ Youri Matiassevitch, drawing on the work of Julia Robinson, demonstrated that this was
an undecidable problem

Skolem Arithmetic

⋆ Skolem’s arithmetic is the first order theory of natural integers with the vocabulary{×,=}

⋆ Skolem’s arithmetic is also decidable

⋆ proof goes via reduction to tree automata, closely resembling the proof we have just seen
for Presburger’s arithmetic

Skolem Arithmetic

⋆ Skolem’s arithmetic is the first order theory of natural integers with the vocabulary{×,=}
⋆ Skolem’s arithmetic is also decidable

⋆ proof goes via reduction to tree automata, closely resembling the proof we have just seen
for Presburger’s arithmetic

The tool MONA

The MONA Project

https://www.brics.dk/mona/index.html

⋆ MONA is a WMSO (and more) model checker
– determines validity of formula
– or prints counter example

⋆ implemented through the outlined translation to finite automata

https://www.brics.dk/mona/index.html

