Advanced Logic

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2022/AL/

Martin Avanzini (martin.avanzini@inria.fr)
Etienne Lozes (etienne.lozes@univ-cotedazur.fr)

UNIVERSITÉ CÔTE D'AZUR

Last Lecture

1. the set of WMSO formulas over $\mathcal{V}_{1}, \mathcal{V}_{2}$ is given by the following grammar:

$$
\phi, \psi::=\top|\perp| x<y|X(x)| \phi \vee \psi|\neg \phi| \exists x \cdot \phi \mid \exists X \cdot \phi
$$

- first-order variables \mathcal{V}_{1} range over \mathbb{N} and second-order variables \mathcal{V}_{2} range over finite sets over \mathbb{N}

2. a WMSO formula ϕ over second-order variables $\left\{P_{\mathrm{a}} \mid \mathrm{a} \in \Sigma\right\}$ defines a language

$$
L(\phi) \triangleq\left\{w \in \Sigma^{*} \mid \underline{w} \vDash \phi\right\}
$$

3. WMSO definable languages are regular, and vice verse
4. Satisfiability and validity decidable in 2^{2}, the height of this tower essentially depends on quantifiers; this bound cannot be improved

- in practice, satisfiability/validity often feasible, even for bigger formulas

Today's Lecture

* Presburger arithmetic
\star the tool MONA

Presburger Arithmetic

Presburger Arithmetic \qquad

* Presburger Arithmetic refers to the first-order theory over $(\mathbb{N},\{0,+,<\})$
* named in honor of Mojżesz Presburger, who introduced it in 1929
\star formulas in this logic are derivable from the following grammar:

$$
\begin{aligned}
& s, t::=0|x| s+t \\
& \phi, \psi::=\top|\perp| s=t|s<t| \phi \wedge \psi|\neg \psi| \exists x . \phi
\end{aligned}
$$

where x is a first-order variable
\star valuations map first-order variables to \mathbb{N}

Presburger Arithmetic

\star Presburger Arithmetic refers to the first-order theory over $(\mathbb{N},\{0,+,<\})$

* named in honor of Mojżesz Presburger, who introduced it in 1929
* formulas in this logic are derivable from the following grammar:

$$
\begin{aligned}
& s, t::=0|x| s+t \\
& \phi, \psi::=\top|\perp| s=t|s<t| \phi \wedge \psi|\neg \psi| \exists x \cdot \phi
\end{aligned}
$$

where x is a first-order variable
\star valuations map first-order variables to \mathbb{N}

Applications

Presburger Arithmetic employed - due to the balance between expressiveness and algorithmic properties - e.g. in automated theorem proving and static program analysis

Examples

$\star m$ is even: ?

Examples

$\star m$ is even: $\exists n . m=n+n$, or shorthand $\exists n \cdot m=2 \cdot n$

- generally, multiplication by constant $c \in \mathbb{N}$ permissible

Examples

$\star m$ is even: $\exists n . m=n+n$, or shorthand $\exists n \cdot m=2 \cdot n$

- generally, multiplication by constant $c \in \mathbb{N}$ permissible
$\star \quad m$ equals 1 : ?

Examples

$\star m$ is even: $\exists n . m=n+n$, or shorthand $\exists n \cdot m=2 \cdot n$

- generally, multiplication by constant $c \in \mathbb{N}$ permissible
$\star m$ equals 1: $\forall n . n<m \rightarrow n=0$

Examples

$\star m$ is even: $\exists n \cdot m=n+n$, or shorthand $\exists n \cdot m=2 \cdot n$

- generally, multiplication by constant $c \in \mathbb{N}$ permissible
$\star \quad m$ equals 1: $\forall n . n<m \rightarrow n=0$
$\star m=r \bmod 5: ?$

Examples

$\star m$ is even: $\exists n \cdot m=n+n$, or shorthand $\exists n \cdot m=2 \cdot n$

- generally, multiplication by constant $c \in \mathbb{N}$ permissible
$\star \quad m$ equals 1: $\forall n . n<m \rightarrow n=0$
$\star m=r \bmod 5: \exists n . r<5 \wedge m=5 \cdot n+r$

Examples

$\star m$ is even: $\exists n . m=n+n$, or shorthand $\exists n \cdot m=2 \cdot n$

- generally, multiplication by constant $c \in \mathbb{N}$ permissible
$\star \quad m$ equals 1: $\forall n . n<m \rightarrow n=0$
$\star m=r \bmod 5: \exists n . r<5 \wedge m=5 \cdot n+r$
\star the system of linear equations

$$
\begin{aligned}
& m+n=13 \\
& m-n=1
\end{aligned}
$$

has a solution: ?

Examples

$\star m$ is even: $\exists n . m=n+n$, or shorthand $\exists n \cdot m=2 \cdot n$

- generally, multiplication by constant $c \in \mathbb{N}$ permissible
$\star \quad m$ equals 1: $\forall n . n<m \rightarrow n=0$
$\star m=r \bmod 5: \exists n . r<5 \wedge m=5 \cdot n+r$
\star the system of linear equations

$$
\begin{aligned}
& m+n=13 \\
& m-n=1
\end{aligned}
$$

has a solution: $\exists m \cdot \exists n \cdot m+n=13 \wedge m=1+n$

A Decision Procedure for Presburger Arithmetic

General Idea

1. encode natural numbers as binary words (lsb-first order)

- assignments $\alpha: \mathcal{V} \rightarrow\left\{0, \ldots, 2^{m}\right\}$ over $\left\{x_{1}, \ldots, x_{n}\right\}$ become binary matrices $\underline{\alpha} \in\{0,1\}^{(m, n)}$

	$\alpha\left(x_{i}\right)$	$\underline{\alpha}$
x_{1}	13	
x_{2}	1	
x_{3}	3	

1

1\end{array}\right)\left($$
\begin{array}{l}0 \\
0 \\
1\end{array}
$$\right)\left($$
\begin{array}{l}1 \\
0 \\
0\end{array}
$$\right)\left($$
\begin{array}{l}1 \\
0 \\
0\end{array}
$$\right)\)

A Decision Procedure for Presburger Arithmetic

General Idea

1. encode natural numbers as binary words (Isb-first order)

- assignments $\alpha: \mathcal{V} \rightarrow\left\{0, \ldots, 2^{m}\right\}$ over $\left\{x_{1}, \ldots, x_{n}\right\}$ become binary matrices $\underline{\alpha} \in\{0,1\}^{(m, n)}$

	$\alpha\left(x_{i}\right)$	$\underline{\alpha}$
x_{1}	13	
x_{2}	1	
x_{3}	3	

1

1\end{array}\right)\left($$
\begin{array}{l}0 \\
0 \\
1\end{array}
$$\right)\left($$
\begin{array}{l}1 \\
0 \\
0\end{array}
$$\right)\left($$
\begin{array}{l}1 \\
0 \\
0\end{array}
$$\right)\)
2. for formula ϕ, define a DFA \mathcal{A}_{ϕ} recognizing precisely codings $\underline{\alpha}$ of valuations α making ϕ become true

Language of a Formula

let us denote by $\hat{\mathrm{L}}(\phi)$ the language of coded valuations making ϕ true:

$$
\hat{\mathrm{L}}(\phi) \triangleq\{\underline{\alpha} \mid \alpha \vDash \phi\}
$$

Language of a Formula

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

$$
\hat{\mathrm{L}}(\phi) \triangleq\{\underline{\alpha} \mid \alpha \vDash \phi\}
$$

Lemma

For any formula ϕ in Presburger Arithmetic, $\hat{\mathrm{L}}(\phi)$ is regular.

Language of a Formula

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

$$
\hat{\mathrm{L}}(\phi) \triangleq\{\underline{\alpha} \mid \alpha \vDash \phi\}
$$

Lemma

For any formula ϕ in Presburger Arithmetic, $\hat{\mathrm{L}}(\phi)$ is regular.

Proof Outline.

By induction on the structure of ϕ, we construct a DFA \mathcal{A}_{ϕ} recognizing $\hat{L}(\phi)$.

Language of a Formula

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

$$
\hat{\mathrm{L}}(\phi) \triangleq\{\underline{\alpha} \mid \alpha \vDash \phi\}
$$

Lemma

For any formula ϕ in Presburger Arithmetic, $\hat{\mathrm{L}}(\phi)$ is regular.

Proof Outline.

By induction on the structure of ϕ, we construct a DFA \mathcal{A}_{ϕ} recognizing $\hat{L}(\phi)$.
$\star \phi=\mathrm{T}, \phi=\perp$: In these cases $\hat{\mathrm{L}}(\phi)$ is easily seen to be regular.
$\star \phi=(s<t)$ or $\phi=(s=t)$: A corresponding automaton can be constructed (next slide).

Language of a Formula

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

$$
\hat{\mathrm{L}}(\phi) \triangleq\{\underline{\alpha} \mid \alpha \vDash \phi\}
$$

Lemma

For any formula ϕ in Presburger Arithmetic, $\hat{\mathrm{L}}(\phi)$ is regular.

Proof Outline.

By induction on the structure of ϕ, we construct a DFA \mathcal{A}_{ϕ} recognizing $\hat{L}(\phi)$.
$\star \phi=\mathrm{T}, \phi=\perp$: In these cases $\hat{\mathrm{L}}(\phi)$ is easily seen to be regular.
$\star \phi=(s<t)$ or $\phi=(s=t)$: A corresponding automaton can be constructed (next slide).
$\star \phi=\neg \phi$ or $\phi=\psi_{1} \wedge \psi_{2}$ From the induction hypothesis, using DFA-complementation and DFA-intersection.

Language of a Formula

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

$$
\hat{\mathrm{L}}(\phi) \triangleq\{\underline{\alpha} \mid \alpha \vDash \phi\}
$$

Lemma

For any formula ϕ in Presburger Arithmetic, $\hat{\mathrm{L}}(\phi)$ is regular.

Proof Outline.

By induction on the structure of ϕ, we construct a DFA \mathcal{A}_{ϕ} recognizing $\hat{L}(\phi)$.
$\star \phi=\mathrm{T}, \phi=\perp$: In these cases $\hat{\mathrm{L}}(\phi)$ is easily seen to be regular.
$\star \phi=(s<t)$ or $\phi=(s=t)$: A corresponding automaton can be constructed (next slide).
$\star \phi=\neg \phi$ or $\phi=\psi_{1} \wedge \psi_{2}$ From the induction hypothesis, using DFA-complementation and DFA-intersection.
$\star \phi=\forall x . \psi$: From induction hypothesis, using homomorphism application to project out x and "repairing final states", as in the case of WMSO.

Recognizing $s \leq t$

\star an inequality $s \leq t$ can be represented as $\sum_{i} a_{i} \cdot x_{i} \leq b$ where $a_{i}, b \in \mathbb{Z}$

$$
2 \cdot x_{1} \leq x_{2}+2 \quad \Longrightarrow \quad 2 \cdot x_{1}-1 \cdot x_{2} \leq 2
$$

Recognizing $s \leq t$

\star an inequality $s \leq t$ can be represented as $\sum_{i} a_{i} \cdot x_{i} \leq b$ where $a_{i}, b \in \mathbb{Z}$

$$
2 \cdot x_{1} \leq x_{2}+2 \quad \Longrightarrow \quad 2 \cdot x_{1}-1 \cdot x_{2} \leq 2
$$

\star the automaton $\mathcal{A}_{s \leq t}$ recognizing $s \leq t$ is defined as follows

- states Q are inequalities of the form $\sum_{i} a_{i} \cdot x_{i} \leq d$ Intuition: $\mathrm{L}\left(\sum_{i} a_{i} \cdot x_{i} \leq d, \mathcal{A}_{s \leq t}\right)=\left\{\underline{\alpha} \mid \alpha \vDash \sum_{i} a_{i} \cdot x_{i} \leq d\right\}$

Recognizing $s \leq t$

\star an inequality $s \leq t$ can be represented as $\sum_{i} a_{i} \cdot x_{i} \leq b$ where $a_{i}, b \in \mathbb{Z}$

$$
2 \cdot x_{1} \leq x_{2}+2 \quad \Longrightarrow \quad 2 \cdot x_{1}-1 \cdot x_{2} \leq 2
$$

\star the automaton $\mathcal{A}_{s \leq t}$ recognizing $s \leq t$ is defined as follows

- states Q are inequalities of the form $\sum_{i} a_{i} \cdot x_{i} \leq d$ Intuition: $\mathrm{L}\left(\sum_{i} a_{i} \cdot x_{i} \leq d, \mathcal{A}_{s} \leq t\right)=\left\{\underline{\alpha} \mid \alpha \vDash \sum_{i} a_{i} \cdot x_{i} \leq d\right\}$
- the initial state q_{l} is given by the representation of $s \leq t$

Recognizing $s \leq t$

\star an inequality $s \leq t$ can be represented as $\sum_{i} a_{i} \cdot x_{i} \leq b$ where $a_{i}, b \in \mathbb{Z}$

$$
2 \cdot x_{1} \leq x_{2}+2 \quad \Longrightarrow \quad 2 \cdot x_{1}-1 \cdot x_{2} \leq 2
$$

\star the automaton $\mathcal{A}_{s \leq t}$ recognizing $s \leq t$ is defined as follows

- states Q are inequalities of the form $\sum_{i} a_{i} \cdot x_{i} \leq d$ Intuition: $\mathrm{L}\left(\sum_{i} a_{i} \cdot x_{i} \leq d, \mathcal{A}_{s} \leq t\right)=\left\{\underline{\alpha} \mid \alpha \vDash \sum_{i} a_{i} \cdot x_{i} \leq d\right\}$
- the initial state q_{l} is given by the representation of $s \leq t$
- the transition function δ is given by

$$
\delta\left(\sum_{i} a_{i} \cdot x_{i} \leq d,\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)\right) \triangleq \sum_{i} a_{i} \cdot x_{i} \leq\left\lfloor\frac{1}{2}\left(d-\sum_{i} a_{i} \cdot b_{i}\right)\right\rfloor
$$

$$
\text { since } \sum_{i} a_{i} \cdot\left(b_{i}+2 \cdot x_{i}^{\prime}\right) \leq d \Leftrightarrow \sum_{i} a_{i} \cdot x_{i}^{\prime} \leq \frac{1}{2} \cdot\left(d-\sum_{i} a_{i} \cdot b_{i}\right)
$$

Recognizing $s \leq t$

\star an inequality $s \leq t$ can be represented as $\sum_{i} a_{i} \cdot x_{i} \leq b$ where $a_{i}, b \in \mathbb{Z}$

$$
2 \cdot x_{1} \leq x_{2}+2 \quad \Longrightarrow \quad 2 \cdot x_{1}-1 \cdot x_{2} \leq 2
$$

\star the automaton $\mathcal{A}_{s \leq t}$ recognizing $s \leq t$ is defined as follows

- states Q are inequalities of the form $\sum_{i} a_{i} \cdot x_{i} \leq d$ Intuition: $\mathrm{L}\left(\sum_{i} a_{i} \cdot x_{i} \leq d, \mathcal{A}_{s} \leq t\right)=\left\{\underline{\alpha} \mid \alpha \vDash \sum_{i} a_{i} \cdot x_{i} \leq d\right\}$
- the initial state q_{l} is given by the representation of $s \leq t$
- the transition function δ is given by

$$
\delta\left(\sum_{i} a_{i} \cdot x_{i} \leq d,\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)\right) \triangleq \sum_{i} a_{i} \cdot x_{i} \leq\left\lfloor\frac{1}{2}\left(d-\sum_{i} a_{i} \cdot b_{i}\right)\right\rfloor
$$

$$
\text { since } \sum_{i} a_{i} \cdot\left(b_{i}+2 \cdot x_{i}^{\prime}\right) \leq d \Leftrightarrow \sum_{i} a_{i} \cdot x_{i}^{\prime} \leq \frac{1}{2} \cdot\left(d-\sum_{i} a_{i} \cdot b_{i}\right)
$$

- final states are all those states $\sum_{i} a_{i} \cdot x_{i} \leq d$ with $0 \leq d$

Recognizing $s \leq t$

\star an inequality $s \leq t$ can be represented as $\sum_{i} a_{i} \cdot x_{i} \leq b$ where $a_{i}, b \in \mathbb{Z}$

$$
2 \cdot x_{1} \leq x_{2}+2 \quad \Longrightarrow \quad 2 \cdot x_{1}-1 \cdot x_{2} \leq 2
$$

\star the automaton $\mathcal{A}_{s \leq t}$ recognizing $s \leq t$ is defined as follows

- states Q are inequalities of the form $\sum_{i} a_{i} \cdot x_{i} \leq d$

$$
\text { Intuition: } \mathrm{L}\left(\sum_{i} a_{i} \cdot x_{i} \leq d, \mathcal{A}_{s \leq t}\right)=\left\{\underline{\alpha} \mid \alpha \vDash \sum_{i} a_{i} \cdot x_{i} \leq d\right\}
$$

- the initial state q_{l} is given by the representation of $s \leq t$
- the transition function δ is given by

$$
\delta\left(\sum_{i} a_{i} \cdot x_{i} \leq d,\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)\right) \triangleq \sum_{i} a_{i} \cdot x_{i} \leq\left\lfloor\frac{1}{2}\left(d-\sum_{i} a_{i} \cdot b_{i}\right)\right\rfloor
$$

$$
\text { since } \sum_{i} a_{i} \cdot\left(b_{i}+2 \cdot x_{i}^{\prime}\right) \leq d \Leftrightarrow \sum_{i} a_{i} \cdot x_{i}^{\prime} \leq \frac{1}{2} \cdot\left(d-\sum_{i} a_{i} \cdot b_{i}\right)
$$

- final states are all those states $\sum_{i} a_{i} \cdot x_{i} \leq d$ with $0 \leq d$
\star finiteness: from initial state $\sum_{i} a_{i} \cdot x_{i} \leq d$, only $\sum_{i} a_{i}+d$ states reachable, hence the overall construction is finite

Recognizing $s<t$

\star an inequality $s<t$ can be represented as $\sum_{i} a_{i} \cdot x_{i}<b$ where $a_{i}, b \in \mathbb{Z}$

$$
2 \cdot x_{1}<x_{2}+2 \Longrightarrow 2 \cdot x_{1}-1 \cdot x_{2}<2
$$

* the automaton $\mathcal{A}_{s<t}$ recognizing $s<t$ is defined as follows
- states Q are inequalities of the form $\sum_{i} a_{i} \cdot x_{i}<d$ Intuition: $\mathrm{L}\left(\sum_{i} a_{i} \cdot x_{i}<d, \mathcal{A}_{s}<t\right)=\left\{\underline{\alpha} \mid \alpha \vDash \sum_{i} a_{i} \cdot x_{i}<d\right\}$
- the initial state q_{l} is given by the representation of $s<t$
- the transition function δ is given by

$$
\delta\left(\sum_{i} a_{i} \cdot x_{i}<d,\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)\right) \triangleq \sum_{i} a_{i} \cdot x_{i}<\left\lceil\frac{1}{2}\left(d-\sum_{i} a_{i} \cdot b_{i}\right)\right\rceil
$$

$$
\text { since } \sum_{i} a_{i} \cdot\left(b_{i}+2 \cdot x_{i}^{\prime}\right)<d \Leftrightarrow \sum_{i} a_{i} \cdot x_{i}^{\prime}<\frac{1}{2} \cdot\left(d-\sum_{i} a_{i} \cdot b_{i}\right)
$$

- final states are all those states $\sum_{i} a_{i} \cdot x_{i}<d$ with $0<d$
\star finiteness: from initial state $\sum_{i} a_{i} \cdot x_{i}<d$, only $\sum_{i} a_{i}+d$ states reachable, hence the overall construction is finite

Recognizing $s=t$

\star an inequality $s=t$ can be represented as $\sum_{i} a_{i} \cdot x_{i}=b$ where $a_{i}, b \in \mathbb{Z}$

$$
2 \cdot x_{1}=x_{2}+2 \quad \Longrightarrow \quad 2 \cdot x_{1}-1 \cdot x_{2}=2
$$

* the automaton $\mathcal{A}_{s=t}$ recognizing $s=t$ is defined as follows
- states Q are inequalities of the form $\sum_{i} a_{i} \cdot x_{i}=d$ plus trap-state $q_{\text {fail }}$ Intuition: $\mathrm{L}\left(\sum_{i} a_{i} \cdot x_{i}=d, \mathcal{A}_{s}=t\right)=\left\{\underline{\alpha} \mid \alpha \vDash \sum_{i} a_{i} \cdot x_{i}=d\right\}$
- the initial state q_{l} is given by the representation of $s=t$
- the transition function δ is given by

$$
\delta\left(\sum_{i} a_{i} \cdot x_{i}=d,\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)\right) \triangleq \begin{cases}\sum_{i} a_{i} \cdot x_{i}=\frac{1}{2}\left(d-\sum_{i} a_{i} \cdot b_{i}\right) & \text { if } d-\sum_{i} a_{i} \cdot b_{i} \text { even } \\
q_{f a i l} & \text { otherwise. }\end{cases}
$$

$$
\text { s.ince } \sum_{i} a_{i} \cdot\left(b_{i}+2 \cdot x_{i}^{\prime}\right)=d \Leftrightarrow \sum_{i} a_{i} \cdot x_{i}^{\prime}=\frac{1}{2} \cdot\left(d-\sum_{i} a_{i} \cdot b_{i}\right)
$$

- final states are all those states $\sum_{i} a_{i} \cdot x_{i}=d$ with $0=d$
\star finiteness: from initial state $\sum_{i} a_{i} \cdot x_{i}=d$, only $\sum_{i} a_{i}+d$ states reachable, hence the overall construction is finite

Decision Problems for Presburger Arithmetic

The Satisfiability Problem
\star Given: formula ϕ
\star Question: is there α s.t $\alpha \vDash \phi$?

The Validity Problem
\star Given: formula ϕ
\star Question: $\alpha \vDash \phi$ for all assignments α ?

Decision Problems for Presburger Arithmetic

The Satisfiability Problem
\star Given: formula ϕ
\star Question: is there α s.t $\alpha \vDash \phi$?

The Validity Problem
\star Given: formula ϕ
\star Question: $\alpha \vDash \phi$ for all assignments α ?

Theorem
Satisfiability and Validity are decidable for Presburger Arithmetic.

Theorem
For any formula ϕ, the constructed DFA recognizing $\hat{L}(\phi)$ has size $\mathrm{O}\left(2^{2^{n}}\right)$.

Peano Arithmetic

\star Peano's arithmetic is the first-order theory natural integers with vocabulary $\{+, \times,<\}$

Peano Arithmetic

\star Peano's arithmetic is the first-order theory natural integers with vocabulary $\{+, \times,<\}$
» its existential fragment corresponds to the Diophantine equations, i.e., polynomial equations on integers

* Hilbert's 10th problem was to solve Diophantine equations

Peano Arithmetic

\star Peano's arithmetic is the first-order theory natural integers with vocabulary $\{+, \times,<\}$

* its existential fragment corresponds to the Diophantine equations, i.e., polynomial equations on integers
* Hilbert's 10th problem was to solve Diophantine equations
» Youri Matiassevitch, drawing on the work of Julia Robinson, demonstrated that this was an undecidable problem

Skolem Arithmetic

« Skolem's arithmetic is the first order theory of natural integers with the vocabulary $\{\times,=\}$

Skolem Arithmetic

« Skolem's arithmetic is the first order theory of natural integers with the vocabulary $\{\times,=\}$

* Skolem's arithmetic is also decidable
« proof goes via reduction to tree automata, closely resembling the proof we have just seen for Presburger's arithmetic

The tool MONA

The mONA Project

> https://www.brics.dk/mona/index.html
^ MONA is a WMSO (and more) model checker

- determines validity of formula
- or prints counter example
\star implemented through the outlined translation to finite automata

