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Last Lecture

1. the set of WMSO formulas over V;, ), is given by the following grammar:
o, =T | 1 | x<y | X(x) | dNVY | = | dx.¢ | IX.¢

— first-order variables V; range over N and second-order variables ), range over finite sets over
N

2. a WMSO formula ¢ over second-order variables {P, | a € X} defines a language

L(¢) ={wez" | wF ¢}

3. WMSO definable languages are regular, and vice verse

2C

4. Satisfiability and validity decidable in 22 the height of this tower essentially depends
on quantifiers; this bound cannot be improved

— in practice, satisfiability/validity often feasible, even for bigger formulas



Today’s Lecture

* Presburger arithmetic

* the tool MONA
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Presburger Arithmetic

* Presburger Arithmetic refers to the first-order theory over (N, {0, +, <})
* named in honor of Mojzesz Presburger, who introduced it in 1929
* formulas in this logic are derivable from the following grammar:
s, tii=0 | X | s+t
=T | L |s=t]|s<t|onw | -v | Ixg
where x is a first-order variable

* valuations map first-order variables to N

Applications

Presburger Arithmetic employed — due to the balance between expressiveness and
algorithmic properties — e.g. in automated theorem proving and static program analysis
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Examples

* mis even: dn.m = n+ n, or shorthand In.m=2-n

— generally, multiplication by constant ¢ € N permissible
* mequals 1: Vnnn<m—-n=0
* m=rmodb5: Anr<5Am=5-n+r

* the system of linear equations

m+n=13

m—-—n=1

has a solution: Am.An.m+n=13Am=1+n



A Decision Procedure for Presburger Arithmetic

General Idea
1. encode natural numbers as binary words (Isb-first order)

— assignments @ : V — {0,...,2™} over {xi, ..., x,} become binary matrices a € {0, 1}(™"
a(x;) @
X 13 1\/0\/1\/1
X2 1 1 0
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A Decision Procedure for Presburger Arithmetic

General Idea
1. encode natural numbers as binary words (Isb-first order)

— assignments @ : V — {0,...,2™} over {xi, ..., x,} become binary matrices a € {0, 1}(™"
a(x;) @
X 13 1\/0\/1\/1
o 1 1llollollo
X 3 1)1 /\o)\o

2. for formula ¢, define a DFA A recognizing precisely codings a of valuations @ making ¢
become true
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Language of a Formula

let us denote by L(¢) the language of coded valuations making ¢ true:
L(¢) 2 {a|aF ¢}

Lemma

For any formula ¢ in Presburger Arithmetic, I:(¢) is regular.

Proof Outline.
By induction on the structure of ¢, we construct a DFA A, recognizing L(a).
* ¢=T,¢=L: In these cases L(¢) is easily seen to be regular.

* ¢ =(s<t)or¢=(s=1t) A corresponding automaton can be constructed (next slide).

* ¢ = —=¢p or ¢ =i Ay From the induction hypothesis, using DFA-complementation and
DFA-intersection.

* ¢ = Yx.: From induction hypothesis, using homomorphism application to project out x
and “repairing final states”, as in the case of WMSO.
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* an inequality s< t can be represented as ) ;a;- x; < b where a, b € Z
2:x1<x0+2 = 2-x3—1:-x<2

* the automaton A, . ; recognizing s< t is defined as follows

states @ are inequalities of the form Zia,- xp<d
Intuition: L() ;a;-xi<d As< ) ={a|aF ), a x<d}

the initial state g, is given by the representation of s< t

the transition function ¢ is given by
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Recognizing s=t

* an inequality s=t can be represented as ) ;a;- x;= b where a, b € Z
2’X1=X2+2 B 2'X]_—1’X2=2

* the automaton A, - ; recognizing s=t is defined as follows
— states Q are inequalities of the form ) . a; - x; = d plus trap-state gy
Intuition: L() ;a;-xi=d As- ) ={a|aF ), a x=d}
— the initial state g, is given by the representation of s=t

— the transition function ¢ is given by

b o =2 (AN a..b) iFd=S.5..5h
5(23;'X;=d,(51))é{2ia1 xp=5(d=);ai-b;) ifd=Y a; b;even,

i by, 9tail otherwise.

since Y, a; (bi+2-x)=d = Z,.a,--x:-=%~(d—zia,-~b,-)

— final states are all those states Z,a,- -x;=dwith0=d

* finiteness: from initial state ) . a;- x;=d, only ) ;a; + d states reachable, hence the
overall construction is finite
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Decision Problems for Presburger Arithmetic

The Satisfiability Problem The Validity Problem

* Given: formula ¢ * Given: formula ¢

* Question: is there @ s.t a F ¢7? * Question: a F ¢ for all assignments a?
Theorem

Satisfiability and Validity are decidable for Presburger Arithmetic.

Theorem

For any formula ¢, the constructed DFA recognizing L(¢) has size O(22n).
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Peano Arithmetic

* Peano’s arithmetic is the first-order theory natural integers with vocabulary {+, X, <}

* its existential fragment corresponds to the Diophantine equations, i.e., polynomial
equations on integers

* Hilbert's 10th problem was to solve Diophantine equations

* Youri Matiassevitch, drawing on the work of Julia Robinson, demonstrated that this was
an undecidable problem
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Skolem Arithmetic

* Skolem's arithmetic is the first order theory of natural integers with the vocabulary

{x,=}
* Skolem's arithmetic is also decidable

* proof goes via reduction to tree automata, closely resembling the proof we have just seen
for Presburger’s arithmetic
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The MONA Project

https://www.brics.dk/mona/index.html FQELW

Free as in Freedom

* MONA is a WMSO (and more) model checker

— determines validity of formula

— or prints counter example

* implemented through the outlined translation to finite automata


https://www.brics.dk/mona/index.html

