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Last Lecture
1. The class REG(Σ) of regular languages is the smallest class (i.e., set of) languages s.t.

1.1 ∅ ∈ REG(Σ) and {a} ∈ REG(Σ) for every a ∈ Σ; and

1.2 if L,M ∈ REG(Σ) then L ∪ M ∈ REG(Σ), L ⋅ M ∈ REG(Σ) and L∗ ∈ REG(Σ).
2. Kleene’s Theorem: The class of languages recognized by NFAs (DFAs) coincide with REG

3. finite automata yield decidable decision procedures

Word Emptyness Universality Inclusion Equivalence
DFA PTIME PTIME PTIME PTIME PTIME
NFA PTIME PTIME PSPACE PSPACE PSPACE

– state-space explosion through determinisation cannot be avoided



Today’s Lecture

⋆ non-determinism

⋆ alternative finite automata

⋆ relationship with regular languages



Non-Determinism



Angelican vs Demonic Non-Determinism
What is a non-deterministic machine (or automaton)?
⋆ a machine which admits several executions on the same input

⋆ put otherwise, during processing, several choices are possible

⋆ such choices can be resolved in favor (anglican non-determinism) or against (demonic
non-determinism) a positive outcome (e.g. acceptance, termination, etc)

– Anglican: an angel resolves choices
⇒ it is sufficient to have one “good” execution path, to have a positive outcome

– Demonic: a demon resolves choices
⇒ all execution paths must be “good”, to have a positive outcome

Example
⋆ NFAs are based on anglican non-determinism
⋆ worst-case complexity analysis assumes demonic non-determinism
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NFAs with Demonic Choice

⋆ NFAs incorporate angelic non-determinism because, in order for w ∈ L(A), only one
accepting run of w has to exists

⋆ demonic non-determinism introduced by re-formulating the acceptance condition

L−(A) ≜ {w ∣ all runs on w are accepting}
Example

b

c

b
b

c

⋆ L(A) = (b ∪ c)∗
⋆ L−(A) = 𝜖 ∪ (b ∪ c)∗ ⋅ c
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Duality of Non-Determinism

⋆ recall that for each NFA A, its dual A is given by complementing final states

⋆ in general, only when A is deterministic, then L(A) = L(A)

Proposition
w ∈ L(A) ⇔ w /∈ L−(A)

⋆ regime to resolve non-determinism has no effect on expressiveness of NFAs

⋆ although potentially on the conciseness of the language description through NFAs

what happens if we leave regime internal to the automata?
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Alternating Finite Automata

⋆ General Idea: mix Anglican an Demonic choice on the level of individual transitions
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𝛿(0, a)= 1 ∨ 2
𝛿(1, b)= 3 ∧ 4
𝛿(2, b)= 5 ∧ 6

⋮

L(A)= a

L(1)Ì ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÐ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Î(b( L(3)Ì ÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÎa ∪ b) ∩ b( L(4)Ì ÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÎb ∪ c))
∪ a(b(a ∪ bÍ ÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÏ

L(5) ) ∩ b cÍÑÏ
L(6) )ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

L(2)
= abb ∪ ∅
= abb
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Alternating Finite Automata, Formally
Positive Boolean Formulas
⋆ let A = {a, b, . . . } be a set of atoms

⋆ the positive Boolean formulas B+(A) over atoms A are given by the following grammar:

𝜙, 𝜓 ∶∶= a ∣ 𝜙 ∧ 𝜓 ∣ 𝜙 ∨ 𝜓

– such formulas are called positive because negation is missing

⋆ a set M ⊆ A is a model of 𝜙 if M ⊧ 𝜙 where

M ⊧ a ∶⇔ a ∈ M M ⊧ 𝜙 ∧ 𝜓 ∶⇔M ⊧ 𝜙 and M ⊧ 𝜓 M ⊧ 𝜙 ∨ 𝜓 ∶⇔M ⊧ 𝜙 or M ⊧ 𝜓

Example
consider 𝜙 = a ∧ (b ∨ c), then{a, b} ⊧ 𝜙 {a, c} ⊧ 𝜙 {a}/⊧ 𝜙 {b, c}/⊧ 𝜙
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Alternating Finite Automata, Formally (II)
an alternating finite automata (AFA) is a tuple A = (Q, Σ, qI, 𝛿, F) where all components are
identical to an NFA except that

𝛿 ∶ Q × Σ → B+(Q)

Example

q0 q1 q2

a

a

b
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c

b

c

𝛿 a b c

q0 q0 ∨ q1 q⊥ q⊥
q1 q⊥ q1 ∧ q2 q1
q2 q⊥ q2 q1
q⊥ q⊥ q⊥ q⊥
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Runs in an AFA
let A = (Q, Σ, qI, 𝛿, F) be an AFA

⋆ an execution for a word w = a1 . . . an ∈ Σ∗ is a tree Tw whose nodes are labeled by states
Q s.t.:
1. the root node of Tw is labeled by the initial state qI

2. for all nodes v on the ith layer (i = 0, . . . , n − 1) with successors v1, . . . , vk on layer i + 1,
labeled by q1, . . . , qk, respectively:{q1, . . . , qk} ⊧ 𝛿(q, ai+1)

⋆ an execution is accepting if all leafs are labeled by final states

⋆ the language recognized by A is given by

L(A) ≜ {w ∣ there exists an accepting execution Tw for w}
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Example of Accepting Execution for w = abbc
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Extended Transition Function
the extended transition function

𝛿 ∶ B+(Q) × Σ∗
→ B+(Q)

is recursively defined by:

𝛿(q, 𝜖) ≜ q 𝛿(𝜙 ∨ 𝜓,w) = 𝛿(𝜙,w) ∨ 𝛿(𝜓,w)
𝛿(q, a ⋅ w) ≜ 𝛿(𝛿(q, a),w) 𝛿(𝜙 ∧ 𝜓,w) = 𝛿(𝜙,w) ∧ 𝛿(𝜓,w)

Lemma
L(A) = {w ∣ F ⊧ 𝛿(qI,w)}
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Example of Accepting Execution for w = abbc (II)
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𝛿(q0, abbc)= 𝛿(q0 ∨ q1, bbc)
= 𝛿(q0, bbc) ∨ 𝛿(q1, bbc)
= 𝛿(q⊥, bc) ∨ (𝛿(q1, bc) ∧ 𝛿(q2, bc))
= 𝛿(q⊥, c) ∨ (𝛿(q1, c) ∧ 𝛿(q2, c))
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Comparison to NFAs and DFAs
⋆ AFAs generalise NFAs

– every DFA is a NFA is an AFA

⋆ AFAs allow often more succinct encoding / automata constructions

Example
⋆ let A(m) = (Q(m)

, {a}, 𝛿(m)
, q(m)

I , F(m)) be an NFA with L(A(m)) = {w ∣ ∣w∣ = 0 mod m}
– this NFA has at least m states

⋆ consider the AFA A defined from A(m) for primes m = 7, 13, 17, 19 by

A(7) A(13) A(17) A(19)
qI

∧
a a a a

– L(A) = {w ∣ ∣w∣ = 1 mod 29393} since 29393 = 7 ⋅ 13 ⋅ 17 ⋅ 19
– AFA A has 57 = 1 + 7 + 13 + 17 + 19, whereas a corresponding NFA needs 29393 states
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Complementation
⋆ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma
For every AFA A there exists an AFA A of equal size such that L(A) = L(A)

Proof Outline.

⋆ let A = (Q, Σ, qI, 𝛿, F)
⋆ define the dual formula 𝜙 of 𝜙 ∈ B+(Q) following De Morgans rules

q ≜ q 𝜙 ∨ 𝜓 ≜ 𝜙 ∧ 𝜓 𝜙 ∧ 𝜓 ≜ 𝜙 ∨ 𝜓

– morally, q ∈ Q re-used for their “negation”; we have (i) M ⊧ 𝜙 iff Q\M /⊧ 𝜙

⋆ we now define A ≜ (Q, Σ, 𝛿, qI,Q\F) where 𝛿(q, a) ≜ 𝛿(q, a) for all q ∈ Q, a ∈ Σ

– by induction on ∣w∣ it can now be shown that (ii) 𝛿̂(qI,w) = 𝛿(q,w)
– overall, we have

w /∈ L(A) def.
⟺ F /⊧ 𝛿(qI,w) (i)

⟺ Q\F ⊧ 𝛿(qI,w) (ii)
⟺ Q\F ⊧ 𝛿̂(qI,w) def.

⟺ w ∈ L(A)
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Relationship with Regular Languages



AFAs Recognize REG
Theorem

For every AFA A there exist a DFA B with O(22∣A∣) states such that L(A) = L(B).

Proof Outline.
let A = (Q, Σ, qI, 𝛿, F)
Formally:

⋆ the equivalence ∼ on B+(Q) is given by 𝜙 ∼ 𝜓 if {M ∣ M ⊧ 𝜙} = {M ∣ M ⊧ 𝜓}
– q ∼ q ∨ q ∼ q ∧ q but q /∼ p ∨ q /∼ p ∧ q

⋆ the equivalence class [𝜙]∼ can be simply conceived as the formula 𝜙, with equivalent
formulas 𝜙 ∼ 𝜓 identified

– [q ∨ q]∼ = {q, q ∨ q, q ∧ q, . . . }
⋆ the set of all such equivalence classes B+(Q)/∼ contains O(22∣Q∣) elements
⋆ B ≜ (B+(Q)/∼, Σ, qI, 𝛿∼, {[𝜙]∼ ∣ F ⊧ 𝜙}) where 𝛿∼([𝜙]∼, a) ≜ [𝛿(𝜙, a)]∼ recognises

L(A)
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Theorem

For every AFA A there exist a DFA B with O(22∣A∣) states such that L(A) = L(B).
Proof Outline.
let A = (Q, Σ, qI, 𝛿, F)
Idea:
⋆ the states of B are formulas

⋆ 𝜙
a
−→𝜓 in B if 𝛿(𝜙, a) = 𝜓

– Example: 𝛿(p, a) = q ∧ r and 𝛿(q, a) = r ⇒ p ∨ q a
−−→ (q ∧ r) ∨ r

– a run qI
a1−−→ ⋯

an−−→ 𝜙 thus models 𝛿(qI, a1 . . . an) = 𝜙

⋆ the formula qI is the initial state

⋆ the formulas modeled by F are final

⋆ to keep the construction finite, we’ll identify equivalent formulas
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From AFAs to NFA

Theorem
For every AFA A there exist a NFA B with O(2∣A∣) states such that L(A) = L(B).
Proof Outline.

⋆ let A = (Q, Σ, qI, 𝛿, F)
⋆ idea: rather then “recording” to be validated formulas as in the DFA construction, the

corresponding NFA “records” valuations
– the construction is simpler, at the expense of non-determinism

⋆ the NFA is given by B ≜ (2Q
, Σ, {qI}, 𝛿′, {M ∣ M ⊆ F}) where

N ∈ 𝛿
′(M, a) ∶⇔ N ⊧ ⋀

q∈M
𝛿(q, a)
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