Advanced Logic

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2022/AL/

Martin Avanzini (martin.avanzini@inria.fr) Etienne Lozes (etienne.lozes@unice.fr)

2nd Semester M1, 2022

Last Lecture

- The class REG(Σ) of regular languages is the smallest class (i.e., set of) languages s.t.
 1.1 Ø ∈ REG(Σ) and {a} ∈ REG(Σ) for every a ∈ Σ; and
 1.2 if L, M ∈ REG(Σ) then L ∪ M ∈ REG(Σ), L ⋅ M ∈ REG(Σ) and L^{*} ∈ REG(Σ).
- 2. Kleene's Theorem: The class of languages recognized by NFAs (DFAs) coincide with REG
- 3. finite automata yield decidable decision procedures

	Word	Emptyness	Universality	Inclusion	Equivalence
DFA	PTIME	PTIME	PTIME	PTIME	PTIME
NFA	PTIME	PTIME	PSPACE	PSPACE	PSPACE

- state-space explosion through determinisation cannot be avoided

Today's Lecture _____

- ★ non-determinism
- ★ alternative finite automata
- $\star\,$ relationship with regular languages

Non-Determinism

What is a non-deterministic machine (or automaton)?

- $\star\,$ a machine which admits several executions on the same input
- \star put otherwise, during processing, several choices are possible

What is a non-deterministic machine (or automaton)?

- \star a machine which admits several executions on the same input
- \star put otherwise, during processing, several choices are possible
- such choices can be resolved in favor (anglican non-determinism) or against (demonic non-determinism) a positive outcome (e.g. acceptance, termination, etc)

What is a non-deterministic machine (or automaton)?

- \star a machine which admits several executions on the same input
- \star put otherwise, during processing, several choices are possible
- such choices can be resolved in favor (anglican non-determinism) or against (demonic non-determinism) a positive outcome (e.g. acceptance, termination, etc)
 - Anglican: an angel resolves choices
 - \Rightarrow it is sufficient to have one "good" execution path, to have a positive outcome
 - Demonic: a demon resolves choices
 - \Rightarrow all execution paths must be "good", to have a positive outcome

What is a non-deterministic machine (or automaton)?

- \star a machine which admits several executions on the same input
- \star put otherwise, during processing, several choices are possible
- such choices can be resolved in favor (anglican non-determinism) or against (demonic non-determinism) a positive outcome (e.g. acceptance, termination, etc)
 - Anglican: an angel resolves choices
 - \Rightarrow it is sufficient to have one "good" execution path, to have a positive outcome
 - Demonic: a demon resolves choices
 - \Rightarrow all execution paths must be "good", to have a positive outcome

Example

- \star NFAs are based on anglican non-determinism
- ★ worst-case complexity analysis assumes demonic non-determinism

NFAs with Demonic Choice

★ NFAs incorporate angelic non-determinism because, in order for $w \in L(A)$, only one accepting run of w has to exists

NFAs with Demonic Choice

- ★ NFAs incorporate angelic non-determinism because, in order for w ∈ L(A), only one accepting run of w has to exists
- ★ demonic non-determinism introduced by re-formulating the acceptance condition

 $L^{-}(A) \triangleq \{w \mid \text{all runs on } w \text{ are accepting}\}$

NFAs with Demonic Choice

- * NFAs incorporate angelic non-determinism because, in order for $w \in L(\mathcal{A})$, only one accepting run of w has to exists
- * demonic non-determinism introduced by re-formulating the acceptance condition

 $L^{-}(A) \triangleq \{w \mid \text{all runs on } w \text{ are accepting}\}$

- $\star L^{-}(\mathcal{A}) = \epsilon \cup (b \cup c)^{*} \cdot c$

- * recall that for each NFA A, its dual \overline{A} is given by complementing final states
- ★ in general, only when A is deterministic, then $L(\overline{A}) = \overline{L(A)}$

- * recall that for each NFA A, its dual \overline{A} is given by complementing final states
- ★ in general, only when A is deterministic, then $L(\overline{A}) = \overline{L(A)}$

Proposition

$$w \in L(\mathcal{A}) \iff w \notin L^{-}(\overline{\mathcal{A}})$$

- * recall that for each NFA \mathcal{A} , its dual $\overline{\mathcal{A}}$ is given by complementing final states
- ★ in general, only when A is deterministic, then $L(\overline{A}) = \overline{L(A)}$

Proposition

$$w \in L(\mathcal{A}) \iff w \notin L^{-}(\overline{\mathcal{A}})$$

- ★ regime to resolve non-determinism has no effect on expressiveness of NFAs
- \star although potentially on the conciseness of the language description through NFAs

- \star recall that for each NFA \mathcal{A} , its dual $\overline{\mathcal{A}}$ is given by complementing final states
- ★ in general, only when A is deterministic, then $L(\overline{A}) = \overline{L(A)}$

Proposition

$$w \in L(\mathcal{A}) \iff w \notin L^{-}(\overline{\mathcal{A}})$$

- ★ regime to resolve non-determinism has no effect on expressiveness of NFAs
- \star although potentially on the conciseness of the language description through NFAs

what happens if we leave regime internal to the automata?

Alternating Finite Automata

Alternating Finite Automata

 \star General Idea: mix Anglican an Demonic choice on the level of individual transitions

$$\delta(0, a) = 1 \lor 2$$

$$\delta(1, b) = 3 \land 4$$

$$\delta(2, b) = 5 \land 6$$

:

Alternating Finite Automata

 \star General Idea: mix Anglican an Demonic choice on the level of individual transitions

Alternating Finite Automata, Formally

Positive Boolean Formulas

- ★ let $A = \{a, b, ...\}$ be a set of atoms
- * the positive Boolean formulas $\mathbb{B}^+(A)$ over atoms A are given by the following grammar:

$$\phi,\psi ::= a \ \left| \ \phi \land \psi \ \right| \ \phi \lor \psi$$

- such formulas are called positive because negation is missing

Alternating Finite Automata, Formally

Positive Boolean Formulas

- ★ let $A = \{a, b, ...\}$ be a set of atoms
- * the positive Boolean formulas $\mathbb{B}^+(A)$ over atoms A are given by the following grammar:

$$\phi,\psi ::= a \ \left| \ \phi \land \psi \ \right| \ \phi \lor \psi$$

- such formulas are called positive because negation is missing

★ a set $M \subseteq A$ is a model of ϕ if $M \models \phi$ where

 $M \models a : \Leftrightarrow a \in M$ $M \models \phi \land \psi : \Leftrightarrow M \models \phi$ and $M \models \psi$ $M \models \phi \lor \psi : \Leftrightarrow M \models \phi$ or $M \models \psi$

Alternating Finite Automata, Formally

Positive Boolean Formulas

- ★ let $A = \{a, b, ...\}$ be a set of atoms
- * the positive Boolean formulas $\mathbb{B}^+(A)$ over atoms A are given by the following grammar:

$$\phi,\psi ::= a \ \left| \ \phi \land \psi \ \right| \ \phi \lor \psi$$

- such formulas are called positive because negation is missing

★ a set $M \subseteq A$ is a model of ϕ if $M \models \phi$ where

 $M \models a : \Leftrightarrow a \in M$ $M \models \phi \land \psi : \Leftrightarrow M \models \phi$ and $M \models \psi$ $M \models \phi \lor \psi : \Leftrightarrow M \models \phi$ or $M \models \psi$

Example

consider $\phi = a \land (b \lor c)$, then

 $\{a,b\} \vDash \phi \qquad \qquad \{a,c\} \vDash \phi$

 $\{a\}
ot = \phi$

Alternating Finite Automata, Formally (II)

an alternating finite automata (AFA) is a tuple $\mathcal{A} = (Q, \Sigma, q_l, \delta, F)$ where all components are identical to an NFA except that

 $\delta: Q \times \Sigma \to \mathbb{B}^+(Q)$

Alternating Finite Automata, Formally (II)

an alternating finite automata (AFA) is a tuple $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ where all components are identical to an NFA except that

 $\delta: Q \times \Sigma \to \mathbb{B}^+(Q)$

Example

δ	a	b	С
q 0	$q_0 \vee q_1$	q_{\perp}	q_{\perp}
q_1	q_{\perp}	$q_1 \wedge q_2$	q_1
q ₂	q_{\perp}	q ₂	q_1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

Runs in an AFA

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ be an AFA

- ★ an execution for a word $w = a_1 ... a_n \in \Sigma^*$ is a tree T_w whose nodes are labeled by states Q s.t.:
 - 1. the root node of T_w is labeled by the initial state q_I
 - 2. for all nodes v on the *i*th layer (i = 0, ..., n 1) with successors $v_1, ..., v_k$ on layer i + 1, labeled by $q_1, ..., q_k$, respectively:

$$\{q_1,\ldots,q_k\} \models \delta(q,\mathtt{a}_{\mathtt{i}+\mathtt{1}})$$

Runs in an AFA

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ be an AFA

- ★ an execution for a word $w = a_1 ... a_n \in \Sigma^*$ is a tree T_w whose nodes are labeled by states Q s.t.:
 - 1. the root node of T_w is labeled by the initial state q_I
 - 2. for all nodes v on the *i*th layer (i = 0, ..., n 1) with successors $v_1, ..., v_k$ on layer i + 1, labeled by $q_1, ..., q_k$, respectively:

 $\{q_1,\ldots,q_k\} \models \delta(q,\mathtt{a}_{\mathtt{i}+\mathtt{1}})$

 $\star\,$ an execution is accepting if all leafs are labeled by final states

Runs in an AFA

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ be an AFA

- ★ an execution for a word $w = a_1 ... a_n \in \Sigma^*$ is a tree T_w whose nodes are labeled by states Q s.t.:
 - 1. the root node of T_w is labeled by the initial state q_I
 - 2. for all nodes v on the *i*th layer (i = 0, ..., n 1) with successors $v_1, ..., v_k$ on layer i + 1, labeled by $q_1, ..., q_k$, respectively:

 $\{q_1,\ldots,q_k\} \models \delta(q,\mathtt{a}_{\mathtt{i}+\mathtt{1}})$

- \star an execution is accepting if all leafs are labeled by final states
- \star the language recognized by \mathcal{A} is given by

 $L(A) \triangleq \{w \mid \text{there exists an accepting execution } T_w \text{ for } w\}$

δ	а	Ь	С
q 0	$q_0 \lor q_1$	q_{\perp}	q_{\perp}
q_1	q_{\perp}	$q_1 \wedge q_2$	q_1
q ₂	q_{\perp}	q ₂	q_1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

δ	а	Ь	С
q 0	$q_0 \vee q_1$	q_{\perp}	q_{\perp}
q_1	q_{\perp}	$q_1 \wedge q_2$	q_1
q ₂	q_{\perp}	q ₂	q_1
q_{\perp}	q_\perp	q_{\perp}	q_{\perp}

δ	а	b	С
q 0	$q_0 \lor q_1$	q_{\perp}	q_{\perp}
q_1	q_{\perp}	$q_1 \wedge q_2$	q_1
q ₂	q_{\perp}	q ₂	q_1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

$$\{q_1,q_2\} \vDash q_1 \land q_2$$

δ	а	b	С
q 0	$q_0 \lor q_1$	q_{\perp}	q_{\perp}
q_1	q_{\perp}	$q_1 \wedge q_2$	q_1
q ₂	q_{\perp}	q ₂	q_1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

δ	а	b	С
q 0	$q_0 \lor q_1$	q_{\perp}	q_{\perp}
q_1	q_{\perp}	$q_1 \wedge q_2$	q_1
q ₂	q_{\perp}	<i>q</i> ₂	q_1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

 $\{q_2\} \vDash q_2$

δ	а	Ь	С
q 0	$q_0 \lor q_1$	q_{\perp}	q_{\perp}
q_1	q_{\perp}	$q_1 \wedge q_2$	q_1
q ₂	q_{\perp}	<i>q</i> ₂	q_1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

 $\{q_1\} Dash q_1$

δ	а	b	С
<i>q</i> 0	$q_0 \lor q_1$	q_{\perp}	q_{\perp}
q_1	q_{\perp}	$q_1 \wedge q_2$	q_1
q ₂	q_{\perp}	q ₂	q_1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

 $\{q_1, q_1, q_1\} \subseteq F$

Extended Transition Function

the extended transition function

 $\hat{\delta}: \mathbb{B}^+(Q) \times \Sigma^* \to \mathbb{B}^+(Q)$

is recursively defined by:

$$\hat{\delta}(q,\epsilon) \triangleq q$$

 $\hat{\delta}(q, \mathbf{a} \cdot w) \triangleq \hat{\delta}(\delta(q, \mathbf{a}), w)$

$$\begin{split} \hat{\delta}(\phi \lor \psi, w) &= \hat{\delta}(\phi, w) \lor \hat{\delta}(\psi, w) \\ \hat{\delta}(\phi \land \psi, w) &= \hat{\delta}(\phi, w) \land \hat{\delta}(\psi, w) \end{split}$$

Extended Transition Function

the extended transition function

 $\hat{\delta}: \mathbb{B}^+(Q) \times \Sigma^* \to \mathbb{B}^+(Q)$

is recursively defined by:

 $\hat{\delta}(q,\epsilon) \triangleq q$ $\hat{\delta}(q,\mathbf{a}\cdot w) \triangleq \hat{\delta}(\delta(q,\mathbf{a}),w)$

$$\begin{split} \hat{\delta}(\phi \lor \psi, w) &= \hat{\delta}(\phi, w) \lor \hat{\delta}(\psi, w) \\ \hat{\delta}(\phi \land \psi, w) &= \hat{\delta}(\phi, w) \land \hat{\delta}(\psi, w) \end{split}$$

Lemma

 $\mathsf{L}(\mathcal{A}) = \{ w \mid F \vDash \hat{\delta}(q_l, w) \}$

δ	а	Ь	С
q_0	$q_0 \lor q_1$	q_{\perp}	q_{\perp}
q_1	q_{\perp}	$q_1 \wedge q_2$	q_1
q ₂	q_{\perp}	q ₂	q_1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

$$\begin{split} \hat{\delta}(q_0, \mathsf{abbc}) &= \hat{\delta}(q_0 \lor q_1, \mathsf{bbc}) \\ &= \hat{\delta}(q_0, \mathsf{bbc}) \lor \hat{\delta}(q_1, \mathsf{bbc}) \\ &= \hat{\delta}(q_{\perp}, \mathsf{bc}) \lor (\hat{\delta}(q_1, \mathsf{bc}) \land \hat{\delta}(q_2, \mathsf{bc})) \\ &= \hat{\delta}(q_{\perp}, \mathsf{c}) \lor (\hat{\delta}(q_1, \mathsf{c}) \land \hat{\delta}(q_2, \mathsf{c})) \\ &= \hat{\delta}(q_{\perp}, \epsilon) \lor \hat{\delta}(q_1, \epsilon) \\ &= q_{\perp} \lor q_1 \\ \{q_1\} \vDash q_{\perp} \lor q_1 \end{split}$$

- ★ AFAs generalise NFAs
 - every DFA is a NFA is an AFA

- ★ AFAs generalise NFAs
 - $-\,$ every DFA is a NFA is an AFA
- \star AFAs allow often more succinct encoding / automata constructions

- ★ AFAs generalise NFAs
 - $-\,$ every DFA is a NFA is an AFA
- \star AFAs allow often more succinct encoding / automata constructions

Example

★ let $\mathcal{A}^{(m)} = (Q^{(m)}, \{a\}, \delta^{(m)}, q_I^{(m)}, F^{(m)})$ be an NFA with $L(\mathcal{A}^{(m)}) = \{w \mid |w| = 0 \mod m\}$

- this NFA has at least *m* states

- ★ AFAs generalise NFAs
 - every DFA is a NFA is an AFA
- \star AFAs allow often more succinct encoding / automata constructions

Example

- * let $\mathcal{A}^{(m)} = (Q^{(m)}, \{a\}, \delta^{(m)}, q_I^{(m)}, F^{(m)})$ be an NFA with $L(\mathcal{A}^{(m)}) = \{w \mid |w| = 0 \mod m\}$
 - this NFA has at least m states
- ★ consider the AFA A defined from $A^{(m)}$ for primes m = 7, 13, 17, 19 by

- ★ AFAs generalise NFAs
 - every DFA is a NFA is an AFA
- \star AFAs allow often more succinct encoding / automata constructions

Example

- * let $\mathcal{A}^{(m)} = (Q^{(m)}, \{a\}, \delta^{(m)}, q_I^{(m)}, F^{(m)})$ be an NFA with $L(\mathcal{A}^{(m)}) = \{w \mid |w| = 0 \mod m\}$
 - this NFA has at least m states
- ★ consider the AFA A defined from $A^{(m)}$ for primes m = 7, 13, 17, 19 by

- $L(A) = \{w \mid |w| = 1 \mod 29393\}$ since $29393 = 7 \cdot 13 \cdot 17 \cdot 19$

- ★ AFAs generalise NFAs
 - $-\,$ every DFA is a NFA is an AFA
- \star AFAs allow often more succinct encoding / automata constructions

Example

- * let $\mathcal{A}^{(m)} = (Q^{(m)}, \{a\}, \delta^{(m)}, q_I^{(m)}, F^{(m)})$ be an NFA with $L(\mathcal{A}^{(m)}) = \{w \mid |w| = 0 \mod m\}$
 - this NFA has at least m states
- ★ consider the AFA A defined from $A^{(m)}$ for primes m = 7, 13, 17, 19 by

- $L(A) = \{w \mid |w| = 1 \mod 29393\}$ since $29393 = 7 \cdot 13 \cdot 17 \cdot 19$

- AFA A has 57 = 1 + 7 + 13 + 17 + 19, whereas a corresponding NFA needs 29393 states

* recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFA A there exists an AFA \overline{A} of equal size such that $L(\overline{A}) = \overline{L(A)}$

* recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFA A there exists an AFA \overline{A} of equal size such that $L(\overline{A}) = \overline{L(A)}$

Proof Outline.

- * let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- \star define the dual formula $\overline{\phi}$ of $\phi \in \mathbb{B}^+(Q)$ following De Morgans rules

 $\overline{q} \triangleq q \qquad \overline{\phi \lor \psi} \triangleq \overline{\phi} \land \overline{\psi} \qquad \overline{\phi \land \psi} \triangleq \overline{\phi} \lor \overline{\psi}$

- morally, $q \in Q$ re-used for their "negation"; we have (i) $M \vDash \phi$ iff $Q \setminus M \notin \overline{\phi}$

* recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFA A there exists an AFA \overline{A} of equal size such that $L(\overline{A}) = \overline{L(A)}$

Proof Outline.

- * let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- ★ define the dual formula $\overline{\phi}$ of $\phi \in \mathbb{B}^+(Q)$ following De Morgans rules $\overline{q} \triangleq q$ $\overline{\phi \lor \psi} \triangleq \overline{\phi} \land \overline{\psi}$ $\overline{\phi \land \psi} \triangleq \overline{\phi} \lor \overline{\psi}$

- morally, $q \in Q$ re-used for their "negation"; we have (i) $M \vDash \phi$ iff $Q \setminus M \notin \overline{\phi}$

* we now define $\overline{\mathcal{A}} \triangleq (Q, \Sigma, \overline{\delta}, q_I, Q \setminus F)$ where $\overline{\delta}(q, \mathbf{a}) \triangleq \overline{\delta}(q, \mathbf{a})$ for all $q \in Q$, $\mathbf{a} \in \Sigma$

* recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFA A there exists an AFA \overline{A} of equal size such that $L(\overline{A}) = \overline{L(A)}$

Proof Outline.

- * let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- ★ define the dual formula $\overline{\phi}$ of $\phi \in \mathbb{B}^+(Q)$ following De Morgans rules $\overline{q} \triangleq q$ $\overline{\phi \lor \psi} \triangleq \overline{\phi} \land \overline{\psi}$ $\overline{\phi \land \psi} \triangleq \overline{\phi} \lor \overline{\psi}$

- morally, $q \in Q$ re-used for their "negation"; we have (i) $M \vDash \phi$ iff $Q \setminus M \notin \overline{\phi}$

* we now define $\overline{\mathcal{A}} \triangleq (Q, \Sigma, \overline{\delta}, q_I, Q \setminus F)$ where $\overline{\delta}(q, \mathbf{a}) \triangleq \overline{\delta}(q, \mathbf{a})$ for all $q \in Q$, $\mathbf{a} \in \Sigma$

- by induction on |w| it can now be shown that (ii) $\hat{\overline{\delta}}(q_l, w) = \overline{\hat{\delta}(q, w)}$

* recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFA A there exists an AFA \overline{A} of equal size such that $L(\overline{A}) = \overline{L(A)}$

Proof Outline.

- * let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- ★ define the dual formula $\overline{\phi}$ of $\phi \in \mathbb{B}^+(Q)$ following De Morgans rules

$$\overline{q} \triangleq q \qquad \overline{\phi \lor \psi} \triangleq \overline{\phi} \land \overline{\psi} \qquad \overline{\phi \land \psi} \triangleq \overline{\phi} \lor \overline{\psi}$$

- morally, $q \in Q$ re-used for their "negation"; we have (i) $M \vDash \phi$ iff $Q \setminus M \notin \overline{\phi}$
- * we now define $\overline{\mathcal{A}} \triangleq (Q, \Sigma, \overline{\delta}, q_I, Q \setminus F)$ where $\overline{\delta}(q, \mathbf{a}) \triangleq \overline{\delta}(q, \mathbf{a})$ for all $q \in Q$, $\mathbf{a} \in \Sigma$
 - by induction on |w| it can now be shown that (ii) $\hat{\overline{\delta}}(q_l, w) = \overline{\hat{\delta}(q, w)}$
 - overall, we have

 $w \notin \mathsf{L}(\mathcal{A}) \stackrel{\text{def.}}{\longleftrightarrow} F \notin \hat{\delta}(q_l, w) \stackrel{(i)}{\longleftrightarrow} Q \backslash F \models \overline{\hat{\delta}(q_l, w)} \stackrel{(ii)}{\longleftrightarrow} Q \backslash F \models \overline{\hat{\delta}}(q_l, w) \stackrel{\text{def.}}{\longleftrightarrow} w \in \mathsf{L}(\overline{\mathcal{A}})$

Example

complement

Relationship with Regular Languages

Theorem

For every AFA \mathcal{A} there exist a DFA \mathcal{B} with $O(2^{2^{|\mathcal{A}|}})$ states such that $L(\mathcal{A}) = L(\mathcal{B})$.

Theorem

For every AFA \mathcal{A} there exist a DFA \mathcal{B} with $O(2^{2^{|\mathcal{A}|}})$ states such that $L(\mathcal{A}) = L(\mathcal{B})$.

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Idea:

- \star the states of ${\cal B}$ are formulas
- $\star \phi \xrightarrow{\mathbf{a}} \psi \text{ in } \mathcal{B} \text{ if } \hat{\delta}(\phi, \mathbf{a}) = \psi$
 - Example: $\delta(p, \mathbf{a}) = q \wedge r$ and $\delta(q, \mathbf{a}) = r \implies p \lor q \xrightarrow{\mathbf{a}} (q \wedge r) \lor r$
 - $\text{ a run } q_{l} \xrightarrow{a_{1}} \cdots \xrightarrow{a_{n}} \phi \text{ thus models } \hat{\delta}(q_{l}, a_{1} \dots a_{n}) = \phi$
- **\star** the formula q_l is the initial state
- \star the formulas modeled by F are final

b а (3∧ $1 \vee 2$ 0 (5 A

the translated DFA

the initial AFA

Theorem

For every AFA \mathcal{A} there exist a DFA \mathcal{B} with $O(2^{2^{|\mathcal{A}|}})$ states such that $L(\mathcal{A}) = L(\mathcal{B})$.

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Idea:

- \star the states of ${\cal B}$ are formulas
- $\star \ \phi \xrightarrow{\mathbf{a}} \psi \text{ in } \mathcal{B} \text{ if } \hat{\delta}(\phi, \mathbf{a}) = \psi$
 - Example: $\delta(p, \mathbf{a}) = q \wedge r$ and $\delta(q, \mathbf{a}) = r \implies p \lor q \xrightarrow{\mathbf{a}} (q \wedge r) \lor r$
 - $\text{ a run } q_{l} \xrightarrow{a_{1}} \cdots \xrightarrow{a_{n}} \phi \text{ thus models } \hat{\delta}(q_{l}, a_{1} \dots a_{n}) = \phi$
- **\star** the formula q_l is the initial state
- \star the formulas modeled by *F* are final
- \star to keep the construction finite, we'll identify equivalent formulas

Theorem

For every AFA \mathcal{A} there exist a DFA \mathcal{B} with $O(2^{2^{|\mathcal{A}|}})$ states such that $L(\mathcal{A}) = L(\mathcal{B})$.

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Formally:

* the equivalence ~ on $\mathbb{B}^+(Q)$ is given by $\phi \sim \psi$ if $\{M \mid M \vDash \phi\} = \{M \mid M \vDash \psi\}$

 $- q \sim q \lor q \sim q \land q \text{ but } q \neq p \lor q \neq p \land q$

Theorem

For every AFA \mathcal{A} there exist a DFA \mathcal{B} with $O(2^{2^{|\mathcal{A}|}})$ states such that $L(\mathcal{A}) = L(\mathcal{B})$.

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Formally:

★ the equivalence ~ on $\mathbb{B}^+(Q)$ is given by $\phi \sim \psi$ if $\{M \mid M \vDash \phi\} = \{M \mid M \vDash \psi\}$

 $- q \sim q \lor q \sim q \land q \text{ but } q \neq p \lor q \neq p \land q$

★ the equivalence class $[\phi]_{\sim}$ can be simply conceived as the formula ϕ , with equivalent formulas $\phi \sim \psi$ identified

 $- [q \lor q]_{\sim} = \{q, q \lor q, q \land q, \dots\}$

Theorem

For every AFA \mathcal{A} there exist a DFA \mathcal{B} with $O(2^{2^{|\mathcal{A}|}})$ states such that $L(\mathcal{A}) = L(\mathcal{B})$.

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Formally:

* the equivalence ~ on $\mathbb{B}^+(Q)$ is given by $\phi \sim \psi$ if $\{M \mid M \vDash \phi\} = \{M \mid M \vDash \psi\}$

 $- q \sim q \lor q \sim q \land q \text{ but } q \neq p \lor q \neq p \land q$

★ the equivalence class $[\phi]_{\sim}$ can be simply conceived as the formula ϕ , with equivalent formulas $\phi \sim \psi$ identified

 $- [q \lor q]_{\sim} = \{q, q \lor q, q \land q, \ldots\}$

* the set of all such equivalence classes $\mathbb{B}^+(Q)/\sim \text{contains O}(2^{2^{|Q|}})$ elements

Theorem

For every AFA \mathcal{A} there exist a DFA \mathcal{B} with $O(2^{2^{|\mathcal{A}|}})$ states such that $L(\mathcal{A}) = L(\mathcal{B})$.

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Formally:

★ the equivalence ~ on $\mathbb{B}^+(Q)$ is given by $\phi \sim \psi$ if $\{M \mid M \vDash \phi\} = \{M \mid M \vDash \psi\}$

 $- q \sim q \lor q \sim q \land q \text{ but } q \neq p \lor q \neq p \land q$

★ the equivalence class $[\phi]_{\sim}$ can be simply conceived as the formula ϕ , with equivalent formulas $\phi \sim \psi$ identified

 $- [q \lor q]_{\sim} = \{q, q \lor q, q \land q, \dots\}$

- * the set of all such equivalence classes $\mathbb{B}^+(Q)/\sim \text{contains O}(2^{2^{|Q|}})$ elements
- * $\mathcal{B} \triangleq (\mathbb{B}^+(Q)/\sim, \Sigma, q_l, \delta_\sim, \{[\phi]_\sim \mid F \vDash \phi\})$ where $\delta_\sim([\phi]_\sim, a) \triangleq [\hat{\delta}(\phi, a)]_\sim$ recognises $L(\mathcal{A})$

From AFAs to NFA

Theorem

For every AFA \mathcal{A} there exist a NFA \mathcal{B} with $O(2^{|\mathcal{A}|})$ states such that $L(\mathcal{A}) = L(\mathcal{B})$.

Proof Outline.

- * let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- ★ idea: rather then "recording" to be validated formulas as in the DFA construction, the corresponding NFA "records" valuations
 - the construction is simpler, at the expense of non-determinism

From AFAs to NFA

Theorem

For every AFA \mathcal{A} there exist a NFA \mathcal{B} with $O(2^{|\mathcal{A}|})$ states such that $L(\mathcal{A}) = L(\mathcal{B})$.

Proof Outline.

- * let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- ★ idea: rather then "recording" to be validated formulas as in the DFA construction, the corresponding NFA "records" valuations
 - the construction is simpler, at the expense of non-determinism
- ★ the NFA is given by $\mathcal{B} \triangleq (2^Q, \Sigma, \{q_I\}, \delta', \{M \mid M \subseteq F\})$ where

$$N \in \delta'(M, \mathbf{a}) : \iff N \models \bigwedge_{q \in M} \delta(q, \mathbf{a})$$

Example (II)

the initial AFA

the translated DFA

