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Course Overview

⋆ (non-)deterministic finite automata Lecture 1
⋆ alternating finite automata Lecture 2
⋆ (weak) monadic second order logic Lectures 2,3

∃X.0 ∈ X ∧∀n.(n + 1 ∈ X ↔ n /∈ X)
⋆ Presburger arithmetic Lecture 3

∃m.∃n.m + n = 13 ∧ m = 1 + n

⋆ MONA tool Lecture 4
⋆ Automata learning Lecture 5
⋆ Büchi automata (infinite words) Lecture 6
⋆ linear time logic Lecture 7

Globally(request → Future(release))
⋆ more stuff? just training? Lecture 8



Administratives
1. 1/3 of lecture devoted to exercise 25%

– approx. 2 hours of work between slots
– solutions presented in class
– participation in discussion counts towards final grade

2. two programming exercises 25%
– you are free to pick your programming language
– solutions presented in class

3. final exam 50%



Today’s Lecture
Finite Word Automata Recap
1. regular languages and non-deterministic finite automata
2. closure properties, deterministic finite automata and Kleene’s theorem
3. DFA equivalence and minimisation
4. decision procedures



Regular Languages and
Non-Deterministic Finite Automata



Finite Words

⋆ alphabet Σ = {a, b, . . . } is finite set of letters

⋆ (finite) word w = a1, . . . , an is finite sequence of letters ai ∈ Σ

– ∣w∣ ≜ n is length of word
– w[i] ≜ ai denotes i-th letter in word w
– 𝜖 is empty word of length 0
– v ⋅ w (or simply vw) denotes concatenation of words v and w

𝜖 ⋅ w = w = w ⋅ 𝜖 u ⋅ (v ⋅ w) = (u ⋅ v) ⋅ w

– vn is the word v concatenated with itself n times

⋆ Σ∗ denotes set of all words over alphabet Σ

⋆ Σ+ ≜ Σ∗ \ {𝜖} is set of non-empty words
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Languages
⋆ a language L ⊆ Σ∗ is a set of words

– for instance, ∅, {𝜖}, {aba}, {a, ab, abb, abbb, . . . } = {abn ∣ n ∈ N}, Σ∗ are all language

⋆ new language definable from existing ones via set operations, e.g., if L,M ⊆ Σ∗:
– union L ∪ M, intersection L ∩ M and difference L \ M are languages;
– complement L ≜ Σ∗ \ L forms a language
– concatenation L ⋅M yields a language, defined by concatenating all words in L with those in M:

L ⋅ M ≜ {v ⋅ w ∣ v ∈ L and w ∈ M}
– Kleene Star L∗ yields a language, defined as

L∗ ≜ ⋃
n∈N

Ln where L0 ≜ {𝜖} and Ln+1 = L ⋅ Ln

for instance {ab, c}∗ = {𝜖, ab, c, abab, abc, cab, cc, quad . . . }
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Regular Languages
The class REG(Σ) of regular languages is the smallest class (i.e., set of) languages s.t.

1. ∅ ∈ REG(Σ) and {a} ∈ REG(Σ) for every a ∈ Σ; and

2. if L,M ∈ REG(Σ) then L ∪ M ∈ REG(Σ), L ⋅ M ∈ REG(Σ) and L∗ ∈ REG(Σ).

Examples
⋆ {𝜖} = ∅∗ is regular
⋆ {𝜖} ∪ (({a} ∪ {b})∗ ⋅ {b}), or 𝜖 ∪ (a ∪ b)∗b for short, is regular
⋆ every finite language L = {w1, . . . ,wn} is regular

Note
⋆ apart from those named in (2), REG(Σ) is closed under many more operations

(particularly: intersection, complement)

⋆ to show such closure properties, it is convenient to have a suitable characterisation
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Non-deterministic Finite Automata
A non-deterministic finite automata (NFA) A is a tuple (Q, Σ, qI, 𝛿, F) consisting of
⋆ a finite set of states Q
⋆ an alphabet Σ

⋆ an initial state qI ∈ Q
⋆ a transition function 𝛿 ∶ Q × Σ → 2Q

⋆ a set of final states F ⊆ Q

Represented often as graph:

1 2 3

a

a, b
b

b

a

𝛿 a b
1 {1, 2} {2}
2 ∅ {3}
3 {2} {3}

Notation: p a
−→ q if q ∈ 𝛿(p, a)
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Language Recognized by NFA
Consider NFA A = (Q, Σ, qI, 𝛿, F)
⋆ if q0 is initial state qI then qI = q0

a1−→ q1
a2−→ ⋯

an−→ qn is called run on w = a1 . . . an

⋆ run is accepting if qn ∈ F is final

⋆ language L(A) recognized by A consists of all words that have accepting run

L(A) ≜ {w ∣ 𝛿∗(qI,w) ∩ F /= ∅}
where extended transition function 𝛿

∗ ∶ Q × Σ∗ → 2Q defined such that

q ∈ 𝛿
∗(p, a1 . . . an) iff p = q0

a1−→ q1
a2−→ . . .

an−→ qn = q

Example

1 2 3

a

a
b

b

a
L(A) = ?
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Language Recognized by NFA
Consider NFA A = (Q, Σ, qI, 𝛿, F)
⋆ if q0 is initial state qI then qI = q0

a1−→ q1
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1 2 3

a

a
b

b

a
L(A) = {w ∈ Σ+ ∣ w starts and ends with a}



Closure Properties, Deterministic Finite
Automata and Kleene’s Theorem



Closure Properties
A language L is recognizable if there is an NFA A with L(A) = L

Theorem (Closure Properties of NFAs)

For recognizable L, M, the following are recognizable:
1. union L ∪ M
2. concatenation L ⋅ M
3. Kleene’s star L∗

4. intersection L ∩ M
5. complement L

Proof Outline.

⋆ (1)–(4) follow from a construction (see exercise, next slide)
⋆ (5) translate to deterministic automaton (why can’t we simply invert final states?)

Note
⋆ the class of recognized languages forms a Boolean Algebra
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Closure Properties
Kleene’s Star

Lemma
If L is recognizable, then so is L∗.

Proof Outline.
For NFA A = (Q, Σ, qI, 𝛿, F) recognizing L, define A∗ ≜ (Q ⊎ {q′}, Σ, q′, 𝛿′, F ∪ {q′}) where

𝛿
′(q′, a) ≜ 𝛿(qI, a) 𝛿

′(q, a) ≜ {𝛿(q, a) ∪ 𝛿(qI, a) if q ∈ F;
𝛿(q, a) if q ∈ Q \ F.



Characterisation of REG

Theorem
NFAs recognize precisely the regular languages REG(Σ).

Proof Outline.

⇐ By induction on REG(Σ), using closure properties. (how, why?)

⇒ Fix NFA A = (Q, Σ, qI, 𝛿, F).
– For p ∈ Q, start with equations

L(p) = ⋃p
a

−−→q a ⋅ L(q) ∪ {{𝜖} if p final;
∅ otherwise.

– (intuition?)
– pick p ∈ Q and apply Arden’s Equality

L(p) = M ⋅ L(p) ∪ N ⇒ L(p) = M∗ ⋅ N (1)

– simplify; substitute and repeat until (1) not applicable
– L(qI) = L(A) eventually in REG(Σ)
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Example

1 2 3

a

a
b

a b

a

L(1) = aL(1) ∪ aL(2) L(2) = aL(2) ∪ bL(3) ∪ 𝜖 L(3) = aL(2) ∪ bL(3)
⇒ L(1) = a∗aL(2)

L(2) = a∗(bL(3) ∪ 𝜖) L(3) = b∗aL(2)
⇒ L(1) = a∗aL(2) L(2) = a∗(bb∗aL(2) ∪ 𝜖)
⇒ L(1) = a∗aL(2) L(2) = a∗bb∗aL(2) ∪ a∗

⇒ L(1) = a∗aL(2) L(2) = (a∗bb∗a)∗a∗
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Deterministic Finite Automata
A deterministic finite automata (DFA) A is a NFA where each state has precisely one
successor state:

𝛿 ∶ Q × Σ → Q

Theorem (Determinisation)

A language is recognizable by an NFA if and only if it is recognizable by a DFA.
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Deterministic Finite Automata
A deterministic finite automata (DFA) A is a NFA where each state has precisely one
successor state:

𝛿 ∶ Q × Σ → Q

Theorem (Determinisation)

A language is recognizable by an NFA if and only if it is recognizable by a DFA.

Proof Outline.
⇐ Every DFA is an NFA.

⇒ Given NFA A = (Q, Σ, qI, 𝛿, F) recognizing L, define DFA Ad(2Q
, Σ, {qI}, 𝛿d, Fd) s.t.:

– 𝛿d({q1, . . . , qn}, a) ≜ 𝛿(q1, a) ∪ ⋅ ⋅ ⋅ ∪ 𝛿(qn, a)
– Fd ≜ {S ⊆ Q ∣ F ∩ S /= ∅}, i.e., {q1, . . . , qn} final in Ad if one of the qi final in A

Then Ad recognizes L:

run in new Ad on word w ≡ all runs on w in A
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Deterministic Finite Automata
A deterministic finite automata (DFA) A is a NFA where each state has precisely one
successor state:

𝛿 ∶ Q × Σ → Q

Theorem (Determinisation)

A language is recognizable by an NFA if and only if it is recognizable by a DFA.

Lemma
If L is regular, then so its complement L = Σ∗ \ L.

Proof Outline.
ideas?



Deterministic Finite Automata
A deterministic finite automata (DFA) A is a NFA where each state has precisely one
successor state:

𝛿 ∶ Q × Σ → Q

Theorem (Determinisation)

A language is recognizable by an NFA if and only if it is recognizable by a DFA.

Lemma
If L is regular, then so its complement L = Σ∗ \ L.

Proof Outline.
⋆ Since L is regular, there is a DFA A with L(A) = L
⋆ flipping the set of final states in A results in DFA A with L(A) = L



Kleene’s Theorem

Theorem
The following are equivalent:
1. The class of regular languages REG(Σ)
2. The class of languages recognized by NFAs over Σ
3. The class of languages recognized by DFAs over Σ



An Unpleasant Theorem

Theorem
For every number n ∈ N there exists an NFA A with n + 1 states such that every equivalent
DFA has at least 2n states.

⇒ NFAs can be exponentially more succinct than DFAs



An Unpleasant Theorem

Theorem
For every number n ∈ N there exists an NFA A with n + 1 states such that every equivalent
DFA has at least 2n states.

Proof Outline.

⋆ consider the NFA 0 1 2 ⋯ n

a, b

a a, b a, b a, b

⋆ for a proof by contradiction, suppose equivalent DFA A has strictly less than 2n states:

– since there are 2n words of length n, there must be two such distinct words u, v ∈ Σn ending
up in the same state, i.e. 𝛿

∗(qI, u) = 𝛿
∗(qI, v)

– suppose they differ at position i, e.g., u[i] = a and v[i] = b, hence

u a⋯aÍ ÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÏ
i − 1 times

∈ L(A) but v a⋯aÍ ÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÏ
i − 1 times

/∈ L(A)

– the DFA now either accepts or rejects both extended words; contradicting that A is
equivalent to the NFA
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DFA Equivalence and Minimisation
Two NFAs (DFAs) A1 and A2 are equivalent if L(A1) = L(A2).

Theorem
For every DFA there exists a unique (up to renaming of states) minimal DFA.

Example

1 2 3 4

5

a b

ab

a

b
b

a, b

a

1 2 3

5

a
b

a

b
b

a, b

a

≡

⋆ let L(p,A) ≜ {w ∣ 𝛿∗(p,w) ∈ F}, hence in particular, L(A) = L(qI,A)
⋆ two states p, q are equivalent in A if accepting runs coincide:

p ≡A q ∶⇔ L(p,A) = L(q,A)
⋆ merging equivalent states (e.g. 2 ≡A 4) does not change L(A); results in minimal DFA
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Table Filling Algorithm

Definition (Computing Distinguished States)

1. initially, we distinguish pairs D ≜ {(p, q) ∣ p ∈ F and q /∈ F}
2. As long as new pairs are added, repeat:

D ∶= D ∪ {(p, q) ∣ ∃a ∈ Σ. (𝛿(p, a), 𝛿(q, a)) ∈ D}
3. Return D

Example

1 2 3 4

5

a b

ab

a

b
b

a, b

a

D 1 2 3 4 5

1 — — — — —
2

◦

— — — —
3

◦ ◦

— — —
4

◦ ≡A ◦

— —
5

◦ ◦ ◦ ◦

—

Lemma (Correctness)

If two states are not distinguished, then they are equivalent.
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Minimisation

⋆ let A = (Q, Σ, qI, 𝛿, F) without non-reachable states (otherwise, remove them)
⋆ note ≡A is an equivalence relation
⋆ let [q] denote the equivalence class of q ∈ Q
⋆ define the quotient automata A≡ ≜ (Q≡, Σ, [qI], 𝛿≡, F≡) where:

– Q≡ ≜ {[q] ∣ q ∈ Q}
– 𝛿≡([q], a) ≜ [𝛿(q, a)] for all a ∈ Σ

– F≡ ≜ {[q] ∣ q ∈ F}

Theorem
The quotient automata A≡ is the minimal and unique DFA equivalent to A
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⋆ note ≡A is an equivalence relation
⋆ let [q] denote the equivalence class of q ∈ Q
⋆ define the quotient automata A≡ ≜ (Q≡, Σ, [qI], 𝛿≡, F≡) where:

– Q≡ ≜ {[q] ∣ q ∈ Q}
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Discussion
How computationally difficult is it to …
1. check L(A) = ∅ for given A

2. check w ∈ L(A) for given w ∈ A

3. check L(A) = Σ∗ for given w ∈ A



Decision Procedures



Decision Problems
⋆ A decision problem presents itself as a question to which must be answered yes or no.

– Is the list sorted? Is the automaton minimal? etc.

⋆ A decision problem depends on a given input, which has a certain size n
– the list of length n, the automaton with n states, etc.

⋆ Often, a problem admits several algorithmic solutions, whose effectiveness varies.
⋆ For some problems, no algorithmic solution exists

– halting problem, Hilberts 10th problem, etc.

⋆ To compare them, from a theoretical point of view, we usually assess their worst case
complexity wrt. some notion of cost

– e.g. time or space

⋆ The complexity is generally described by a function in the input size n.
⋆ Usually, we are interested in an asymptotic analysis.

– O(n), O(n2), O(2n), …
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Complexity Classes

⋆ The complexity of a problem can be thought of as the complexity of the best algorithm
that solves it.

⋆ this allows us to classify problems based on their inherent difficulty
– polynomial time (P or PTIME), non-deterministic polynomial time (NP), exponential time

(EXPTIME), etc.
– polynomial space (PSPACE), etc.

⋆ complexity theory is concerned with the classification and relationships among classes

PTIME ⊆ NP ⊆ PSPACE ⊆ EXPTIME

– we know PTIME ⊊ EXPTIME, but we do not know the status of individual inclusions

– solving PTIME
?
⊊ NP is worth 1.000.000$: a strict inclusion would separate, what we assume

to be, feasible from unfeasible problems
– nowadays, some pretty good algorithms exists that can tackle unfeasible problems on average

cases (e.g. SAT solvers)
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The Word Problem

⋆ Given: An NFA A with n states and word w of length ∣w∣
⋆ Question: w ∈ L(A)?

Theorem
The word problem for NFAs is in PTIME.

Proof Outline.
⋆ the following depth-first search solves the problem in exponential time

def explore(q, w)
if w is 𝜖 : return q ∈ F
for p in 𝛿(q, w[0]) :

if explore(p, w[1:]) : return True
return False

def member(w) : return explore(qI, w)
⋆ redundant calls can be eliminated via memoisation (i.e., tabulate calls explore(q,w))
⋆ table bounded in size O(n ⋅ ∣w∣2)
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⋆ Given: An NFA A
⋆ Question: L(A) = ∅?

Theorem
The emptiness problem for NFAs is in PTIME.

Proof Outline.

⋆ essentially a graph reachability problem (why?)

⋆ solvable by depth-first or breath-first search in time O(n2)
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⋆ Given: An NFA A
⋆ Question: L(A) = Σ∗?

Theorem
The universal language problem for NFAs is in PSPACE ⊆ EXPTIME.

⋆ result non-trivial, because an infinity of words Σ∗ should be accepting

⋆ however, the problem is equivalent to L(A) = ∅

⋆ for DFAs, this amounts to checking L(A) = ∅, thus is in PTIME

⋆ translating NFAs to equivalent DFAs results in EXPTIME algorithm
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Proof Outline.

⋆ we check L(A) = Σ∗ in PSPACE for A = (Q, Σ, qI, 𝛿, F)

⋆ as we saw, this amount to translating A into an equivalent DFA B and checking B = ∅

⋆ constructing B on-the-fly, this can be done non-deterministically in polynomial space
⋆ by Savich’s theorem, any such algorithm can be turned into a deterministic one in

PSPACE
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Further Consequences
The Inclusion Problem
⋆ Given: two NFA A and B
⋆ Question: L(A) ⊆ L(B)?

The Equivalence Problem
⋆ Given: two NFA A and B
⋆ Question: L(A) = L(B)?

Theorem
Both problem are PSPACE complete.

⋆ model checking, i.e., checking an implementation against high-level specifications, usually
expressed as language inclusion.



Summary

Word Emptiness Universality Inclusion Equivalence
DFA PTIME PTIME PTIME PTIME PTIME
NFA PTIME PTIME PSPACE PSPACE PSPACE

⋆ Michael Rabin and Dana Scott received their Turing Award for their work “Finite
Automat and Their Decision Problems”

Applications
⋆ finite state machines (and its extensions) used in many disciplines
⋆ efficient string search (Knuth-Morris-Pratt algorithm), e.g., in grep, sed, awk, Java, C#…
⋆ Antivirus software
⋆ DNA/protein analysis
⋆ …
⋆ effectively satisiability/validity decision procedures for certain logics (see next lecture)
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Programming Project (I)

Program a function match(w, e) that matches a word w over alphabet Σ = {a, . . . , z} against
a regular expression e

⋆ regular expressions should encompass letters, union e ∣ f, concatenation e.f and e∗

– bonus: complement, intersection, etc.

⋆ test your implementation against Exercise 1

⋆ concrete method and programming language up to you
⋆ parser and stand-alone executable nice to have, but not a must

⋆ send solutions including instructions to martin.avanzini@inria.fr
⋆ deadline Friday 23/04 08:00, exercise will be discussed in lecture 4

martin.avanzini@inria.fr
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