Advanced Logic

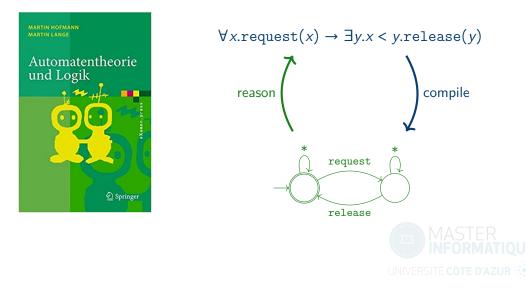
http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2022/AL/

Martin Avanzini (martin.avanzini@inria.fr) Etienne Lozes (etienne.lozes@univ-cotedazur.fr)

2nd Semester M1, 2022

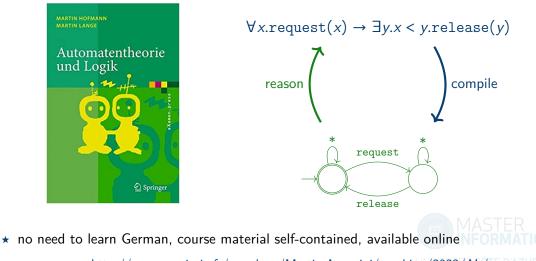
Course Overview

 $\star\,$ based on the course given in 2019 by Etienne Lozes



Course Overview

 $\star\,$ based on the course given in 2019 by Etienne Lozes



http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2022/AL/TE DAZUR

Course Overview

★ (non-)deterministic finite automata	Lecture 1
★ alternating finite automata	Lecture 2
★ (weak) monadic second order logic	Lectures 2,3
$\exists X.0 \in X \land \forall n.(n+1 \in X \leftrightarrow n \notin X)$	
★ Presburger arithmetic	Lecture 3
$\exists m. \exists n. m + n = 13 \land m = 1 + n$	
★ MONA tool	Lecture 4
★ Automata learning	Lecture 5
★ Büchi automata (infinite words)	Lecture 6
★ linear time logic	Lecture 7
$Globally(request \rightarrow Future(release)) \qquad MASTER \\ INFORMATIQUE$	
★ more stuff? just training?	UNIVERSITÉ COTE Lecture 8

Administratives

- 1. 1/3 of lecture devoted to exercise
 - approx. 2 hours of work between slots
 - solutions presented in class
 - participation in discussion counts towards final grade
- 2. two programming exercises
 - you are free to pick your programming language
 - solutions presented in class
- 3. final exam

25%

50%

Today's Lecture

Finite Word Automata Recap

- 1. regular languages and non-deterministic finite automata
- 2. closure properties, deterministic finite automata and Kleene's theorem
- 3. DFA equivalence and minimisation
- 4. decision procedures

Regular Languages and Non-Deterministic Finite Automata

Finite Words

- ★ alphabet $\Sigma = \{a, b, ...\}$ is finite set of letters
- ★ (finite) word $w = a_1, ..., a_n$ is finite sequence of letters $a_i \in \Sigma$
 - $-|w| \triangleq n$ is length of word
 - $w[i] \triangleq a_i$ denotes *i*-th letter in word w
 - ϵ is empty word of length 0
 - $v \cdot w$ (or simply vw) denotes concatenation of words v and w

$$\epsilon \cdot w = w = w \cdot \epsilon$$
 $u \cdot (v \cdot w) = (u \cdot v) \cdot w$

 $-v^n$ is the word v concatenated with itself n times

Finite Words

- ★ alphabet $\Sigma = \{a, b, ...\}$ is finite set of letters
- ★ (finite) word $w = a_1, ..., a_n$ is finite sequence of letters $a_i \in \Sigma$
 - $-|w| \triangleq n$ is length of word
 - $w[i] \triangleq a_i$ denotes *i*-th letter in word w
 - ϵ is empty word of length 0
 - $v \cdot w$ (or simply vw) denotes concatenation of words v and w

 $\epsilon \cdot w = w = w \cdot \epsilon$ $u \cdot (v \cdot w) = (u \cdot v) \cdot w$

- $-v^n$ is the word v concatenated with itself n times
- $\star \ \Sigma^{*}$ denotes set of all words over alphabet Σ
- ★ $\Sigma^+ \triangleq \Sigma^* \setminus \{\epsilon\}$ is set of non-empty words

- ★ a language $L \subseteq \Sigma^*$ is a set of words
 - for instance, \emptyset , $\{\epsilon\}$, $\{aba\}$, $\{a, ab, abb, abbb, \dots\} = \{ab^n \mid n \in \mathbb{N}\}$, Σ^* are all language

- ★ a language $L \subseteq \Sigma^*$ is a set of words
 - for instance, \emptyset , $\{\epsilon\}$, $\{aba\}$, $\{a, ab, abb, abbb, \dots\} = \{ab^n \mid n \in \mathbb{N}\}$, Σ^* are all language
- ★ new language definable from existing ones via set operations, e.g., if $L, M \subseteq \Sigma^*$:
 - union $L \cup M$, intersection $L \cap M$ and difference $L \setminus M$ are languages;

- ★ a language $L \subseteq \Sigma^*$ is a set of words
 - for instance, \emptyset , $\{\epsilon\}$, $\{aba\}$, $\{a, ab, abb, abbb, \dots\} = \{ab^n \mid n \in \mathbb{N}\}$, Σ^* are all language
- ★ new language definable from existing ones via set operations, e.g., if $L, M \subseteq \Sigma^*$:
 - union $L \cup M$, intersection $L \cap M$ and difference $L \setminus M$ are languages;
 - complement $\overline{L} \triangleq \Sigma^* \setminus L$ forms a language

- ★ a language $L \subseteq \Sigma^*$ is a set of words
 - for instance, \emptyset , $\{\epsilon\}$, $\{aba\}$, $\{a, ab, abb, abbb, \dots\} = \{ab^n \mid n \in \mathbb{N}\}$, Σ^* are all language
- ★ new language definable from existing ones via set operations, e.g., if $L, M \subseteq \Sigma^*$:
 - union $L \cup M$, intersection $L \cap M$ and difference $L \setminus M$ are languages;
 - complement $\overline{L} \triangleq \Sigma^* \setminus L$ forms a language
 - concatenation $L \cdot M$ yields a language, defined by concatenating all words in L with those in M:

 $L \cdot M \triangleq \{ v \cdot w \mid v \in L \text{ and } w \in M \}$

- ★ a language $L \subseteq \Sigma^*$ is a set of words
 - for instance, \emptyset , $\{\epsilon\}$, $\{aba\}$, $\{a, ab, abb, abbb, \dots\} = \{ab^n \mid n \in \mathbb{N}\}$, Σ^* are all language
- ★ new language definable from existing ones via set operations, e.g., if $L, M \subseteq \Sigma^*$:
 - union $L \cup M$, intersection $L \cap M$ and difference $L \setminus M$ are languages;
 - complement $\overline{L} \triangleq \Sigma^* \setminus L$ forms a language
 - concatenation $L \cdot M$ yields a language, defined by concatenating all words in L with those in M:

 $L \cdot M \triangleq \{v \cdot w \mid v \in L \text{ and } w \in M\}$

- Kleene Star L^* yields a language, defined as

$$L^* \triangleq \bigcup_{n \in \mathbb{N}} L^n$$
 where $L^0 \triangleq \{\epsilon\}$ and $L^{n+1} = L \cdot L^n$

for instance

 $\{ab, c\}^* = \{\epsilon, ab, c, abab, abc, cab, cc, quad...\}$

Regular Languages

The class $REG(\Sigma)$ of regular languages is the smallest class (i.e., set of) languages s.t.

1. $\emptyset \in REG(\Sigma)$ and $\{a\} \in REG(\Sigma)$ for every $a \in \Sigma$; and

2. if $L, M \in REG(\Sigma)$ then $L \cup M \in REG(\Sigma)$, $L \cdot M \in REG(\Sigma)$ and $L^* \in REG(\Sigma)$.

Regular Languages

The class $REG(\Sigma)$ of regular languages is the smallest class (i.e., set of) languages s.t.

- 1. $\emptyset \in REG(\Sigma)$ and $\{a\} \in REG(\Sigma)$ for every $a \in \Sigma$; and
- 2. if $L, M \in REG(\Sigma)$ then $L \cup M \in REG(\Sigma)$, $L \cdot M \in REG(\Sigma)$ and $L^* \in REG(\Sigma)$.

Examples

- ★ $\{\epsilon\} = \emptyset^*$ is regular
- * $\{\epsilon\} \cup ((\{a\} \cup \{b\})^* \cdot \{b\})$, or $\epsilon \cup (a \cup b)^* b$ for short, is regular
- ★ every finite language $L = \{w_1, ..., w_n\}$ is regular

Regular Languages

The class $REG(\Sigma)$ of regular languages is the smallest class (i.e., set of) languages s.t.

- 1. $\emptyset \in REG(\Sigma)$ and $\{a\} \in REG(\Sigma)$ for every $a \in \Sigma$; and
- 2. if $L, M \in REG(\Sigma)$ then $L \cup M \in REG(\Sigma)$, $L \cdot M \in REG(\Sigma)$ and $L^* \in REG(\Sigma)$.

Examples

- ★ $\{\epsilon\} = \emptyset^*$ is regular
- * $\{\epsilon\} \cup ((\{a\} \cup \{b\})^* \cdot \{b\})$, or $\epsilon \cup (a \cup b)^* b$ for short, is regular
- ★ every finite language $L = \{w_1, ..., w_n\}$ is regular

Note

- * apart from those named in (2), $REG(\Sigma)$ is closed under many more operations (particularly: intersection, complement)
- ★ to show such closure properties, it is convenient to have a suitable characterisation

Non-deterministic Finite Automata

A non-deterministic finite automata (NFA) A is a tuple ($Q, \Sigma, q_I, \delta, F$) consisting of

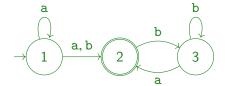
- \star a finite set of states Q
- \star an alphabet Σ
- ★ an initial state $q_I \in Q$
- ★ a transition function δ : $Q \times \Sigma \rightarrow 2^Q$
- ★ a set of final states $F \subseteq Q$

Non-deterministic Finite Automata

A non-deterministic finite automata (NFA) A is a tuple ($Q, \Sigma, q_I, \delta, F$) consisting of

- \star a finite set of states Q
- \star an alphabet Σ
- ★ an initial state $q_I \in Q$
- ★ a transition function δ : $Q \times \Sigma \rightarrow 2^Q$
- ★ a set of final states $F \subseteq Q$

Represented often as graph:

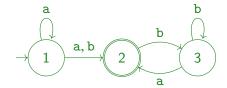


Non-deterministic Finite Automata

A non-deterministic finite automata (NFA) A is a tuple ($Q, \Sigma, q_I, \delta, F$) consisting of

- \star a finite set of states Q
- \star an alphabet Σ
- ★ an initial state $q_I \in Q$
- ★ a transition function δ : $Q \times \Sigma \rightarrow 2^Q$
- ★ a set of final states $F \subseteq Q$

Represented often as graph:



Notation:
$$p \xrightarrow{a} q$$
 if $q \in \delta(p, a)$

 δ
 a
 b

 1
 {1,2}
 {2}

 2
 Ø
 {3}

 3
 {2}
 {3}/ASTER

 UNIVERSITE COTE D'AZUR

Consider NFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

* if q_0 is initial state q_1 then $q_1 = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} q_n$ is called run on $w = a_1 \dots a_n$

Consider NFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

* if q_0 is initial state q_l then $q_l = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} q_n$ is called run on $w = a_1 \dots a_n$

★ run is accepting if $q_n \in F$ is final

Consider NFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

* if q_0 is initial state q_l then $q_l = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} q_n$ is called run on $w = a_1 \dots a_n$

- ★ run is accepting if $q_n \in F$ is final
- * language L(A) recognized by A consists of all words that have accepting run

 $\mathsf{L}(\mathcal{A}) \triangleq \{ w \mid \delta^*(q_I, w) \cap F \neq \emptyset \}$

where extended transition function $\delta^* : Q \times \Sigma^* \to 2^Q$ defined such that

 $q \in \delta^*(p, a_1 \dots a_n)$ iff $p = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} q_n = q$

Consider NFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

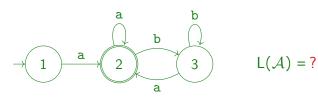
* if q_0 is initial state q_I then $q_I = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} q_n$ is called run on $w = a_1 \dots a_n$

- ★ run is accepting if $q_n \in F$ is final
- ★ language L(A) recognized by A consists of all words that have accepting run $L(A) \triangleq \{w \mid \delta^*(q_i, w) \cap F \neq \emptyset\}$

where extended transition function $\delta^* : Q \times \Sigma^* \to 2^Q$ defined such that

$$q \in \delta^*(p, a_1 \dots a_n)$$
 iff $p = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} q_n = q$

Example



Consider NFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

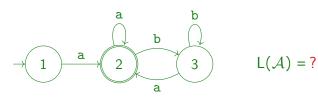
* if q_0 is initial state q_I then $q_I = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} q_n$ is called run on $w = a_1 \dots a_n$

- ★ run is accepting if $q_n \in F$ is final
- ★ language L(A) recognized by A consists of all words that have accepting run $L(A) \triangleq \{w \mid \delta^*(q_i, w) \cap F \neq \emptyset\}$

where extended transition function $\delta^* : Q \times \Sigma^* \to 2^Q$ defined such that

$$q \in \delta^*(p, a_1 \dots a_n)$$
 iff $p = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} q_n = q$

Example



Consider NFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

* if q_0 is initial state q_l then $q_l = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} q_n$ is called run on $w = a_1 \dots a_n$

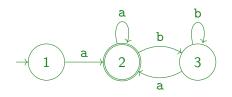
- ★ run is accepting if $q_n \in F$ is final
- ★ language L(A) recognized by A consists of all words that have accepting run $L(A) \triangleq \{w \mid \delta^*(q_l, w) \cap F \neq \emptyset\}$

where extended transition function $\delta^* : Q \times \Sigma^* \to 2^Q$ defined such that

$$q \in \delta^*(p, a_1 \dots a_n)$$
 iff $p = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} q_n = q$

 $L(\mathcal{A}) = \{ w \in \Sigma^+ \mid w \text{ starts and ends with a} \}$

Example



Closure Properties, Deterministic Finite Automata and Kleene's Theorem

Closure Properties

A language L is recognizable if there is an NFA A with L(A) = L

Theorem (Closure Properties of NFAs)

For recognizable L, M, the following are recognizable:

- 1. union $L \cup M$
- 2. concatenation $L \cdot M$
- 3. Kleene's star L*
- 4. intersection $L \cap M$
- 5. complement \overline{L}

Closure Properties

A language L is recognizable if there is an NFA A with L(A) = L

Theorem (Closure Properties of NFAs)

For recognizable L, M, the following are recognizable:

- 1. union $L \cup M$
- 2. concatenation $L \cdot M$
- 3. Kleene's star L*
- 4. intersection $L \cap M$
- 5. complement \overline{L}

Proof Outline.

- \star (1)–(4) follow from a construction (see exercise, next slide)
- * (5) translate to deterministic automaton (why can't we simply invert final states?)

Closure Properties

A language L is recognizable if there is an NFA A with L(A) = L

Theorem (Closure Properties of NFAs)

For recognizable L, M, the following are recognizable:

- 1. union $L \cup M$
- 2. concatenation $L \cdot M$
- 3. Kleene's star L*
- 4. intersection $L \cap M$
- 5. complement \overline{L}

Proof Outline.

- \star (1)–(4) follow from a construction (see exercise, next slide)
- * (5) translate to deterministic automaton (why can't we simply invert final states?)

Note

 $\star\,$ the class of recognized languages forms a Boolean Algebra

Closure Properties Kleene's Star

Lemma

If L is recognizable, then so is L^* .

Proof Outline. For NFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ recognizing L, define $\mathcal{A}^* \triangleq (Q \uplus \{q'\}, \Sigma, q', \delta', F \cup \{q'\})$ where

$$\delta'(q', \mathbf{a}) \triangleq \delta(q_l, \mathbf{a}) \qquad \qquad \delta'(q, \mathbf{a}) \triangleq \begin{cases} \delta(q, \mathbf{a}) \cup \delta(q_l, \mathbf{a}) & \text{if } q \in F; \\ \delta(q, \mathbf{a}) & \text{if } q \in Q \setminus F. \end{cases}$$

Theorem

NFAs recognize precisely the regular languages $REG(\Sigma)$.

Theorem

NFAs recognize precisely the regular languages $REG(\Sigma)$.

Proof Outline.

 \leftarrow By induction on *REG*(Σ), using closure properties. (how, why?)

Theorem

NFAs recognize precisely the regular languages $REG(\Sigma)$.

Proof Outline.

- \leftarrow By induction on $REG(\Sigma)$, using closure properties. (how, why?)
- $\Rightarrow \mathsf{Fix} \mathsf{NFA} \ \mathcal{A} = (Q, \Sigma, q_I, \delta, F).$
 - For $p \in Q$, start with equations

$$L(p) = \bigcup_{p \xrightarrow{a} q} a \cdot L(q) \cup \begin{cases} \{\epsilon\} & \text{if } p \text{ final;} \\ \emptyset & \text{otherwise.} \end{cases}$$

- (intuition?)

Theorem

NFAs recognize precisely the regular languages $REG(\Sigma)$.

Proof Outline.

- \leftarrow By induction on $REG(\Sigma)$, using closure properties. (how, why?)
- $\Rightarrow \text{ Fix NFA } \mathcal{A} = (Q, \Sigma, q_I, \delta, F).$
 - For $p \in Q$, start with equations

$$L(p) = \bigcup_{p \xrightarrow{a} q} a \cdot L(q) \cup \begin{cases} \{\epsilon\} & \text{if } p \text{ final}; \\ \emptyset & \text{otherwise.} \end{cases}$$

- thus $L(p)$ collects words $w = a_1 \dots a_n \text{ s.t. } p = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} q_n \in F$

Theorem

NFAs recognize precisely the regular languages $REG(\Sigma)$.

Proof Outline.

- \leftarrow By induction on *REG*(Σ), using closure properties. (how, why?)
- $\Rightarrow \mathsf{Fix} \mathsf{NFA} \ \mathcal{A} = (Q, \Sigma, q_I, \delta, F).$
 - For $p \in Q$, start with equations

$$L(p) = \bigcup_{p \xrightarrow{a} q} a \cdot L(q) \cup \begin{cases} \{\epsilon\} & \text{if } p \text{ final}; \\ \emptyset & \text{otherwise.} \end{cases}$$

- thus L(p) collects words $w = a_1 \dots a_n$ s.t. $p = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} q_n \in F$
- pick $p \in Q$ and apply Arden's Equality

$$L(p) = M \cdot L(p) \cup N \implies L(p) = M^* \cdot N$$

(1)

Characterisation of *REG*

Theorem

NFAs recognize precisely the regular languages $REG(\Sigma)$.

Proof Outline.

- \leftarrow By induction on *REG*(Σ), using closure properties. (how, why?)
- $\Rightarrow \mathsf{Fix} \mathsf{NFA} \ \mathcal{A} = (Q, \Sigma, q_I, \delta, F).$
 - For $p \in Q$, start with equations

$$L(p) = \bigcup_{p \xrightarrow{a} q} a \cdot L(q) \cup \begin{cases} \{\epsilon\} & \text{if } p \text{ final}; \\ \emptyset & \text{otherwise.} \end{cases}$$

- thus L(p) collects words $w = a_1 \dots a_n$ s.t. $p = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} q_n \in F$
- pick $p \in Q$ and apply Arden's Equality

$$L(p) = M \cdot L(p) \cup N \quad \Rightarrow \quad L(p) = M^* \cdot N$$

(1)

– simplify; substitute and repeat until $\left(1\right)$ not applicable

Characterisation of *REG*

Theorem

NFAs recognize precisely the regular languages $REG(\Sigma)$.

Proof Outline.

- \leftarrow By induction on $REG(\Sigma)$, using closure properties. (how, why?)
- $\Rightarrow \mathsf{Fix} \mathsf{NFA} \ \mathcal{A} = (Q, \Sigma, q_I, \delta, F).$
 - For $p \in Q$, start with equations

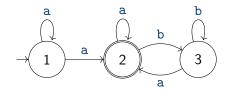
$$L(p) = \bigcup_{p \xrightarrow{a} q} a \cdot L(q) \cup \begin{cases} \{\epsilon\} & \text{if } p \text{ final}; \\ \emptyset & \text{otherwise.} \end{cases}$$

- thus L(p) collects words $w = a_1 \dots a_n$ s.t. $p = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} q_n \in F$
- pick $p \in Q$ and apply Arden's Equality

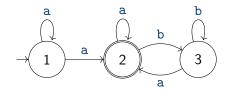
$$L(p) = M \cdot L(p) \cup N \quad \Rightarrow \quad L(p) = M^* \cdot N$$

(1)

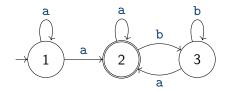
- simplify; substitute and repeat until (1) not applicable
- $L(q_I) = L(\mathcal{A})$ eventually in $REG(\Sigma)$



 $L(1) = aL(1) \cup aL(2) \qquad L(2) = aL(2) \cup bL(3) \cup \epsilon \quad L(3) = aL(2) \cup bL(3)$ $\Rightarrow L(1) = a^* aL(2)$



 $L(1) = aL(1) \cup aL(2) \qquad L(2) = aL(2) \cup bL(3) \cup \epsilon \quad L(3) = aL(2) \cup bL(3)$ $\Rightarrow L(1) = a^*aL(2) \qquad L(2) = a^*(bL(3) \cup \epsilon)$



 $L(1) = aL(1) \cup aL(2) \qquad L(2) = aL(2) \cup bL(3) \cup \epsilon \qquad L(3) = aL(2) \cup bL(3)$ $\Rightarrow L(1) = a^* aL(2) \qquad L(2) = a^* (bL(3) \cup \epsilon) \qquad L(3) = b^* aL(2)$

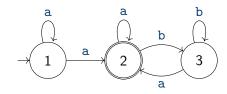
 \Rightarrow

⇒

 $L(1) = aL(1) \cup aL(2) \qquad L(2) = aL(2) \cup bL(3) \cup \epsilon \qquad L(3) = aL(2) \cup bL(3)$ $\Rightarrow L(1) = a^*aL(2) \qquad L(2) = a^*(bL(3) \cup \epsilon) \qquad L(3) = b^*aL(2)$ $\Rightarrow L(1) = a^*aL(2) \qquad L(2) = a^*(bb^*aL(2) \cup \epsilon)$



 \Rightarrow

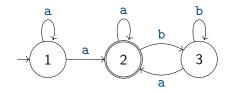


 $L(1) = aL(1) \cup aL(2)$

- $\Rightarrow L(1) = a^* a L(2)$
- $\Rightarrow L(1) = a^* a L(2)$
- $L(2) = a^*(bL(3) \cup \epsilon)$ $L(3) = b^*aL(2)$ $\Rightarrow L(1) = a^* a L(2) \qquad L(2) = a^* (bb^* a L(2) \cup \epsilon)$ $L(2) = a^*bb^*aL(2) \cup a^*$
- $L(2) = aL(2) \cup bL(3) \cup \epsilon$ $L(3) = aL(2) \cup bL(3)$

Example

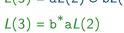
 \Rightarrow



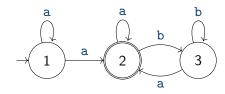
 $L(1) = aL(1) \cup aL(2)$

- $\Rightarrow L(1) = a^*aL(2)$
- $\Rightarrow L(1) = a^* a L(2)$
- $\Rightarrow L(1) = a^* a L(2)$
- $\Rightarrow L(1) = a^* a L(2)$

 $L(2) = aL(2) \cup bL(3) \cup \epsilon \quad L(3) = aL(2) \cup bL(3)$ $L(2) = a^*(bL(3) \cup \epsilon)$ $L(3) = b^*aL(2)$ $L(2) = a^*(bb^*aL(2) \cup \epsilon)$ $L(2) = a^*bb^*aL(2) \cup a^*$ $L(2) = (a^*bb^*a)^*a^*$



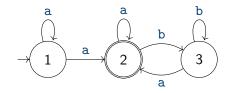
 \Rightarrow



 $L(1) = aL(1) \cup aL(2)$

- $\Rightarrow L(1) = a^*aL(2)$
- $\Rightarrow L(1) = a^* a L(2)$
- $\Rightarrow L(1) = a^* a L(2)$
- $\Rightarrow L(1) = a^* a L(2)$
- \Rightarrow $L(1) = a^*a(a^*bb^*a)^*a^*$

 $L(2) = aL(2) \cup bL(3) \cup \epsilon$ $L(3) = aL(2) \cup bL(3)$ $L(2) = a^*(bL(3) \cup \epsilon)$ $L(3) = b^*aL(2)$ $L(2) = a^*(bb^*aL(2) \cup \epsilon)$ $L(2) = a^*bb^*aL(2) \cup a^*$ $L(2) = (a^*bb^*a)^*a^*$



 $L(1) = aL(1) \cup aL(2)$

- $\Rightarrow L(1) = a^* a L(2)$
- $\Rightarrow L(1) = a^* a L(2)$
- $\Rightarrow L(1) = a^* a L(2)$
- $L(2) = (a^*bb^*a)^*a^*$ $\Rightarrow L(1) = a^* a L(2)$
- \Rightarrow $L(1) = a^* a (a^* b b^* a)^* a^*$
- \Rightarrow $L(1) = aa^* (bb^* aa^*)^* a^*$
- \Rightarrow $L(1) = a^{+}(b^{+}a^{+})^{*}$

 $L(2) = aL(2) \cup bL(3) \cup \epsilon$ $L(3) = aL(2) \cup bL(3)$ $L(2) = a^*(bL(3) \cup \epsilon)$ $L(3) = b^*aL(2)$ $L(2) = a^*(bb^*aL(2) \cup \epsilon)$ $L(2) = a^*bb^*aL(2) \cup a^*$

A deterministic finite automata (DFA) A is a NFA where each state has precisely one successor state:

 $\delta:Q\times\Sigma\to Q$

A deterministic finite automata (DFA) A is a NFA where each state has precisely one successor state:

 $\delta:Q\times\Sigma\to Q$

Theorem (Determinisation)

A language is recognizable by an NFA if and only if it is recognizable by a DFA.

A deterministic finite automata (DFA) A is a NFA where each state has precisely one successor state:

 $\delta:Q\times\Sigma\to Q$

Theorem (Determinisation)

A language is recognizable by an NFA if and only if it is recognizable by a DFA.

Proof Outline.

⇐ Every DFA is an NFA.

 \Rightarrow Given NFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ recognizing L, define DFA $\mathcal{A}_d(2^Q, \Sigma, \{q_I\}, \delta_d, F_d)$ s.t.:

 $- \delta_d(\{q_1,\ldots,q_n\},\mathtt{a}) \triangleq \delta(q_1,\mathtt{a}) \cup \cdots \cup \delta(q_n,\mathtt{a})$

 $-F_d \triangleq \{S \subseteq Q \mid F \cap S \neq \emptyset\}$, i.e., $\{q_1, \ldots, q_n\}$ final in \mathcal{A}_d if one of the q_i final in \mathcal{A}

Then \mathcal{A}_d recognizes *L*:

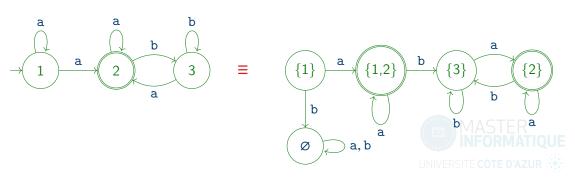
run in new \mathcal{A}_d on word $w \equiv all$ runs on w in \mathcal{A}

A deterministic finite automata (DFA) A is a NFA where each state has precisely one successor state:

 $\delta:Q\times\Sigma\to Q$

Theorem (Determinisation)

A language is recognizable by an NFA if and only if it is recognizable by a DFA.



A deterministic finite automata (DFA) A is a NFA where each state has precisely one successor state:

 $\delta:Q\times\Sigma\to Q$

Theorem (Determinisation)

A language is recognizable by an NFA if and only if it is recognizable by a DFA.

Lemma

If L is regular, then so its complement $\overline{L} = \Sigma^* \setminus L$.

Proof Outline.

ideas?

A deterministic finite automata (DFA) A is a NFA where each state has precisely one successor state:

 $\delta:Q\times\Sigma\to Q$

Theorem (Determinisation)

A language is recognizable by an NFA if and only if it is recognizable by a DFA.

Lemma

If L is regular, then so its complement $\overline{L} = \Sigma^* \setminus L$.

Proof Outline.

- * Since L is regular, there is a DFA \mathcal{A} with $L(\mathcal{A}) = L$
- * flipping the set of final states in A results in DFA \overline{A} with $L(\overline{A}) = \overline{L}$

Kleene's Theorem

Theorem

The following are equivalent:

- 1. The class of regular languages $REG(\Sigma)$
- 2. The class of languages recognized by NFAs over $\boldsymbol{\Sigma}$
- 3. The class of languages recognized by DFAs over $\boldsymbol{\Sigma}$

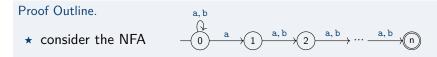
Theorem

For every number $n \in \mathbb{N}$ there exists an NFA \mathcal{A} with n + 1 states such that every equivalent DFA has at least 2^n states.

 \Rightarrow NFAs can be exponentially more succinct than DFAs

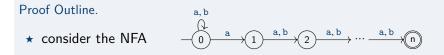
Theorem

For every number $n \in \mathbb{N}$ there exists an NFA \mathcal{A} with n + 1 states such that every equivalent DFA has at least 2^n states.



Theorem

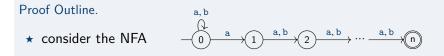
For every number $n \in \mathbb{N}$ there exists an NFA \mathcal{A} with n + 1 states such that every equivalent DFA has at least 2^n states.



 \star for a proof by contradiction, suppose equivalent DFA \mathcal{A} has strictly less than 2ⁿ states:

Theorem

For every number $n \in \mathbb{N}$ there exists an NFA \mathcal{A} with n + 1 states such that every equivalent DFA has at least 2^n states.



 \star for a proof by contradiction, suppose equivalent DFA \mathcal{A} has strictly less than 2ⁿ states:

- since there are 2ⁿ words of length n, there must be two such distinct words $u, v \in \Sigma^n$ ending up in the same state, i.e. $\delta^*(q_I, u) = \delta^*(q_I, v)$

Theorem

For every number $n \in \mathbb{N}$ there exists an NFA \mathcal{A} with n + 1 states such that every equivalent DFA has at least 2^n states.

Proof Outline.

$$a, b$$
 \diamond consider the NFA
 0
 $a \rightarrow 1$
 $a, b \rightarrow 2$
 $a, b \rightarrow 2$
 $a, b \rightarrow \infty$

 \star for a proof by contradiction, suppose equivalent DFA \mathcal{A} has strictly less than 2ⁿ states:

- since there are 2^n words of length *n*, there must be two such distinct words $u, v \in \Sigma^n$ ending up in the same state, i.e. $\delta^*(q_I, u) = \delta^*(q_I, v)$
- suppose they differ at position *i*, e.g., u[i] = a and v[i] = b, hence

$$u \underbrace{\text{a...a}}_{i-1 \text{ times}} \in L(\mathcal{A}) \quad \text{but} \quad v \underbrace{\text{a...a}}_{i-1 \text{ times}} \notin L(\mathcal{A})$$

Theorem

For every number $n \in \mathbb{N}$ there exists an NFA \mathcal{A} with n + 1 states such that every equivalent DFA has at least 2^n states.

Proof Outline.

$$a, b$$
 \diamond consider the NFA
 0
 $a \rightarrow 1$
 $a, b \rightarrow 2$
 $a, b \rightarrow 2$
 $a, b \rightarrow \infty$

 \star for a proof by contradiction, suppose equivalent DFA \mathcal{A} has strictly less than 2ⁿ states:

- since there are 2^n words of length *n*, there must be two such distinct words $u, v \in \Sigma^n$ ending up in the same state, i.e. $\delta^*(q_I, u) = \delta^*(q_I, v)$
- suppose they differ at position *i*, e.g., u[i] = a and v[i] = b, hence

$$u \underbrace{\text{a...a}}_{i-1 \text{ times}} \in L(\mathcal{A}) \quad \text{but} \quad v \underbrace{\text{a...a}}_{i-1 \text{ times}} \notin L(\mathcal{A})$$

– the DFA now either accepts or rejects both extended words; contradicting that ${\cal A}$ is equivalent to the NFA

Two NFAs (DFAs) A_1 and A_2 are equivalent if $L(A_1) = L(A_2)$.

Two NFAs (DFAs) A_1 and A_2 are equivalent if $L(A_1) = L(A_2)$.

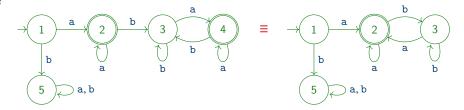
Theorem

For every DFA there exists a unique (up to renaming of states) minimal DFA.

Two NFAs (DFAs) A_1 and A_2 are equivalent if $L(A_1) = L(A_2)$.

Theorem

For every DFA there exists a unique (up to renaming of states) minimal DFA.

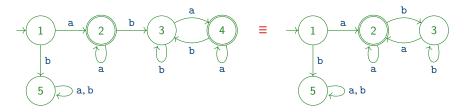


Two NFAs (DFAs) A_1 and A_2 are equivalent if $L(A_1) = L(A_2)$.

Theorem

For every DFA there exists a unique (up to renaming of states) minimal DFA.

Example



★ let $L(p, A) \triangleq \{w \mid \delta^*(p, w) \in F\}$, hence in particular, $L(A) = L(q_I, A)$

\star two states *p*, *q* are equivalent in \mathcal{A} if accepting runs coincide:

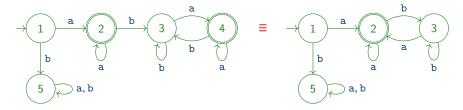
 $p \equiv_{\mathcal{A}} q \qquad : \Leftrightarrow \qquad L(p, \mathcal{A}) = L(q, \mathcal{A})$

Two NFAs (DFAs) A_1 and A_2 are equivalent if $L(A_1) = L(A_2)$.

Theorem

For every DFA there exists a unique (up to renaming of states) minimal DFA.

Example



★ let $L(p, A) \triangleq \{w \mid \delta^*(p, w) \in F\}$, hence in particular, $L(A) = L(q_I, A)$

\star two states *p*, *q* are equivalent in \mathcal{A} if accepting runs coincide:

 $p \equiv_{\mathcal{A}} q \qquad : \Leftrightarrow \qquad L(p, \mathcal{A}) = L(q, \mathcal{A})$

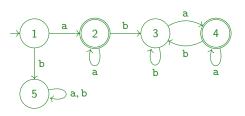
★ merging equivalent states (e.g. $2 \equiv_A 4$) does not change L(A); results in minimal DFA

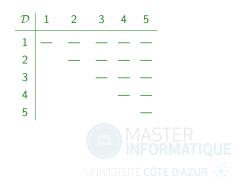
Definition (Computing Distinguished States)

- 1. initially, we distinguish pairs $\mathcal{D} \triangleq \{(p,q) \mid p \in F \text{ and } q \notin F\}$
- 2. As long as new pairs are added, repeat: $\mathcal{D} := \mathcal{D} \cup \{(p,q) \mid \exists a \in \Sigma. \ (\delta(p,a), \delta(q,a)) \in \mathcal{D}\}$
- 3. Return \mathcal{D}

Definition (Computing Distinguished States)

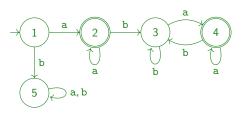
- 1. initially, we distinguish pairs $\mathcal{D} \triangleq \{(p,q) \mid p \in F \text{ and } q \notin F\}$
- 2. As long as new pairs are added, repeat: $\mathcal{D} := \mathcal{D} \cup \{(p,q) \mid \exists a \in \Sigma. (\delta(p,a), \delta(q,a)) \in \mathcal{D}\}$
- 3. Return \mathcal{D}





Definition (Computing Distinguished States)

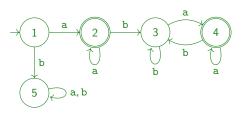
- 1. initially, we distinguish pairs $\mathcal{D} \triangleq \{(p,q) \mid p \in F \text{ and } q \notin F\}$
- 2. As long as new pairs are added, repeat: $\mathcal{D} := \mathcal{D} \cup \{(p,q) \mid \exists a \in \Sigma. (\delta(p,a), \delta(q,a)) \in \mathcal{D}\}$
- 3. Return \mathcal{D}



\mathcal{D}	1	2	3	4	5			
1			_		_			
2	o	—						
2 3 4		0	—	_	—			
4	0		0	—	—			
5		ο		0	—			

Definition (Computing Distinguished States)

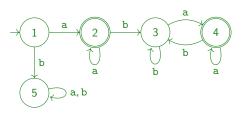
- 1. initially, we distinguish pairs $\mathcal{D} \triangleq \{(p,q) \mid p \in F \text{ and } q \notin F\}$
- 2. As long as new pairs are added, repeat: $\mathcal{D} := \mathcal{D} \cup \{(p,q) \mid \exists a \in \Sigma. (\delta(p,a), \delta(q,a)) \in \mathcal{D}\}$
- 3. Return \mathcal{D}



\mathcal{D}	1	2	3	4	5	
1	—		_		_	
2	0	—	—	—	—	
3 4 5		0	—	_	—	
4	0		0	—	—	
5	0	0	0	0	—	

Definition (Computing Distinguished States)

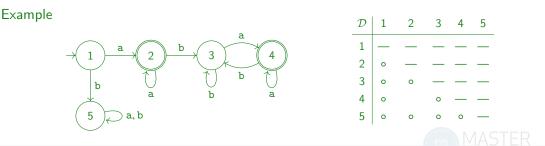
- 1. initially, we distinguish pairs $\mathcal{D} \triangleq \{(p,q) \mid p \in F \text{ and } q \notin F\}$
- 2. As long as new pairs are added, repeat: $\mathcal{D} := \mathcal{D} \cup \{(p,q) \mid \exists a \in \Sigma. (\delta(p,a), \delta(q,a)) \in \mathcal{D}\}$
- 3. Return \mathcal{D}



I	2	1	2	3	4	5	
	L						
2	2	0 0 0	—				
3	3	0	0	_		—	
4	ł	0		0	—	—	
5	5	0	0	0	ο	—	

Definition (Computing Distinguished States)

- 1. initially, we distinguish pairs $\mathcal{D} \triangleq \{(p,q) \mid p \in F \text{ and } q \notin F\}$
- 2. As long as new pairs are added, repeat: $\mathcal{D} := \mathcal{D} \cup \{(p,q) \mid \exists a \in \Sigma. (\delta(p,a), \delta(q,a)) \in \mathcal{D}\}$
- 3. Return \mathcal{D}



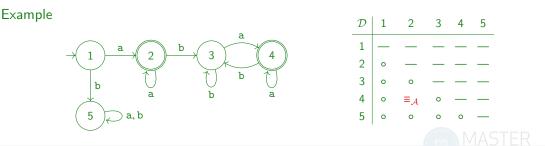
Lemma (Correctness)

If two states are not distinguished, then they are equivalent.

Definition (Computing Distinguished States)

1. initially, we distinguish pairs $\mathcal{D} \triangleq \{(p,q) \mid p \in F \text{ and } q \notin F\}$

- 2. As long as new pairs are added, repeat: $\mathcal{D} := \mathcal{D} \cup \{(p,q) \mid \exists a \in \Sigma. (\delta(p,a), \delta(q,a)) \in \mathcal{D}\}$
- 3. Return \mathcal{D}



Lemma (Correctness)

If two states are not distinguished, then they are equivalent.

Minimisation

- * let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ without non-reachable states (otherwise, remove them)
- ★ note $\equiv_{\mathcal{A}}$ is an equivalence relation
- ★ let [q] denote the equivalence class of $q \in Q$
- ★ define the quotient automata $A_{\equiv} \triangleq (Q_{\equiv}, \Sigma, [q_I], \delta_{\equiv}, F_{\equiv})$ where:
 - $Q_{\equiv} \triangleq \{ [q] \mid q \in Q \}$
 - $\delta_{\equiv}([q], a) \triangleq [\delta(q, a)] \text{ for all } a \in \Sigma$
 - $F_{\equiv} \triangleq \{ [q] \mid q \in F \}$

Minimisation

- * let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ without non-reachable states (otherwise, remove them)
- ★ note \equiv_A is an equivalence relation
- ★ let [q] denote the equivalence class of $q \in Q$
- ★ define the quotient automata $A_{\equiv} \triangleq (Q_{\equiv}, \Sigma, [q_I], \delta_{\equiv}, F_{\equiv})$ where:
 - $Q_{\equiv} \triangleq \{ [q] \mid q \in Q \}$
 - $\delta_{\equiv}([q], a) \triangleq [\delta(q, a)] \text{ for all } a \in \Sigma$
 - $F_{\equiv} \triangleq \{ [q] \mid q \in F \}$

Theorem

The quotient automata \mathcal{A}_{\equiv} is the minimal and unique DFA equivalent to \mathcal{A}

Discussion

How computationally difficult is it to ...

- 1. check $L(\mathcal{A}) = \emptyset$ for given \mathcal{A}
- 2. check $w \in L(\mathcal{A})$ for given $w \in \mathcal{A}$
- 3. check $L(A) = \Sigma^*$ for given $w \in A$

Decision Procedures

- \star A decision problem presents itself as a question to which must be answered yes or no.
 - Is the list sorted? Is the automaton minimal? etc.

- \star A decision problem presents itself as a question to which must be answered yes or no.
 - Is the list sorted? Is the automaton minimal? etc.
- \star A decision problem depends on a given input, which has a certain size *n*
 - the list of length n, the automaton with n states, etc.

- \star A decision problem presents itself as a question to which must be answered yes or no.
 - Is the list sorted? Is the automaton minimal? etc.
- \star A decision problem depends on a given input, which has a certain size *n*
 - the list of length n, the automaton with n states, etc.
- ★ Often, a problem admits several algorithmic solutions, whose effectiveness varies.
- ★ For some problems, no algorithmic solution exists
 - halting problem, Hilberts 10th problem, etc.

- \star A decision problem presents itself as a question to which must be answered yes or no.
 - Is the list sorted? Is the automaton minimal? etc.
- \star A decision problem depends on a given input, which has a certain size *n*
 - the list of length n, the automaton with n states, etc.
- \star Often, a problem admits several algorithmic solutions, whose effectiveness varies.
- ★ For some problems, no algorithmic solution exists
 - halting problem, Hilberts 10th problem, etc.
- ★ To compare them, from a theoretical point of view, we usually assess their worst case complexity wrt. some notion of cost
 - e.g. time or space

- \star A decision problem presents itself as a question to which must be answered yes or no.
 - Is the list sorted? Is the automaton minimal? etc.
- \star A decision problem depends on a given input, which has a certain size *n*
 - the list of length n, the automaton with n states, etc.
- \star Often, a problem admits several algorithmic solutions, whose effectiveness varies.
- ★ For some problems, no algorithmic solution exists
 - halting problem, Hilberts 10th problem, etc.
- ★ To compare them, from a theoretical point of view, we usually assess their worst case complexity wrt. some notion of cost
 - e.g. time or space
- * The complexity is generally described by a function in the input size n.
- $\star\,$ Usually, we are interested in an asymptotic analysis.

 $- O(n), O(n^2), O(2^n), ...$

★ The complexity of a problem can be thought of as the complexity of the best algorithm that solves it.

- The complexity of a problem can be thought of as the complexity of the best algorithm that solves it.
- \star this allows us to classify problems based on their inherent difficulty
 - polynomial time (P or PTIME), non-deterministic polynomial time (NP), exponential time (EXPTIME), etc.
 - polynomial space (PSPACE), etc.

- ★ The complexity of a problem can be thought of as the complexity of the best algorithm that solves it.
- \star this allows us to classify problems based on their inherent difficulty
 - polynomial time (P or PTIME), non-deterministic polynomial time (NP), exponential time (EXPTIME), etc.
 - polynomial space (PSPACE), etc.
- \star complexity theory is concerned with the classification and relationships among classes

$\mathsf{PTIME} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE} \subseteq \mathsf{EXPTIME}$

- we know PTIME \subsetneq EXPTIME, but we do not know the status of individual inclusions
- solving PTIME ⊊ NP is worth 1.000.000\$: a strict inclusion would separate, what we assume to be, feasible from unfeasible problems

- ★ The complexity of a problem can be thought of as the complexity of the best algorithm that solves it.
- \star this allows us to classify problems based on their inherent difficulty
 - polynomial time (P or PTIME), non-deterministic polynomial time (NP), exponential time (EXPTIME), etc.
 - polynomial space (PSPACE), etc.
- \star complexity theory is concerned with the classification and relationships among classes

$\mathsf{PTIME} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE} \subseteq \mathsf{EXPTIME}$

- we know PTIME \subsetneq EXPTIME, but we do not know the status of individual inclusions
- solving PTIME ⊊ NP is worth 1.000.000\$: a strict inclusion would separate, what we assume to be, feasible from unfeasible problems
- nowadays, some pretty good algorithms exists that can tackle unfeasible problems on average cases (e.g. SAT solvers)

- $\star\,$ Given: An NFA $\mathcal A$ with $\mathit n$ states and word $\mathit w$ of length $|\mathit w|$
- ★ Question: $w \in L(A)$?

Theorem

The word problem for NFAs is in PTIME.

- **\star** Given: An NFA \mathcal{A} with *n* states and word *w* of length |w|
- ★ Question: $w \in L(A)$?

Theorem

The word problem for NFAs is in PTIME.

Proof Outline.

 \star the following depth-first search solves the problem in exponential time

```
def explore(q, w)

if w is \epsilon : return q \in F

for p in \delta(q, w[0]) :

if explore(p, w[1:]) : return True

return False

def member(w) : return explore(q<sub>1</sub>, w)
```

- ★ Given: An NFA A with *n* states and word *w* of length |w|
- ★ Question: $w \in L(A)$?

Theorem

The word problem for NFAs is in PTIME.

Proof Outline.

 \star the following depth-first search solves the problem in exponential time

* redundant calls can be eliminated via memoisation (i.e., tabulate calls explore(q, w))

- ★ Given: An NFA A with *n* states and word *w* of length |w|
- ★ Question: $w \in L(A)$?

Theorem

The word problem for NFAs is in PTIME.

Proof Outline.

 $\star\,$ the following depth-first search solves the problem in exponential time

```
def explore(q, w)

if w is \epsilon : return q \in F

for p in \delta(q, w[0]) :

if explore(p, w[1:]) : return True

return False

def member(w) : return explore(q<sub>l</sub>, w)
```

- * redundant calls can be eliminated via memoisation (i.e., tabulate calls explore(q, w))
- * table bounded in size $O(n \cdot |w|^2)$

The Emptiness Problem

- \star Given: An NFA ${\cal A}$
- ★ Question: $L(A) = \emptyset$?

Theorem

The emptiness problem for NFAs is in PTIME.

The Emptiness Problem

- \star Given: An NFA \mathcal{A}
- ★ Question: $L(A) = \emptyset$?

Theorem

The emptiness problem for NFAs is in PTIME.

- ★ essentially a graph reachability problem (why?)
- ★ solvable by depth-first or breath-first search in time $O(n^2)$

- \star Given: An NFA \mathcal{A}
- **★** Question: $L(A) = \Sigma^*$?

Theorem

The universal language problem for NFAs is in PSPACE \subseteq EXPTIME.

 \star result non-trivial, because an infinity of words Σ^{\star} should be accepting

- \star Given: An NFA \mathcal{A}
- ***** Question: $L(A) = \Sigma^*$?

Theorem

The universal language problem for NFAs is in PSPACE \subseteq EXPTIME.

- \star result non-trivial, because an infinity of words Σ^{\star} should be accepting
- ★ however, the problem is equivalent to $\overline{L(A)} = \emptyset$

- \star Given: An NFA \mathcal{A}
- ***** Question: $L(A) = \Sigma^*$?

Theorem

The universal language problem for NFAs is in PSPACE \subseteq EXPTIME.

- \star result non-trivial, because an infinity of words Σ^{\star} should be accepting
- ★ however, the problem is equivalent to $\overline{L(A)} = \emptyset$
- * for DFAs, this amounts to checking $L(\overline{A}) = \emptyset$, thus is in PTIME

- \star Given: An NFA \mathcal{A}
- ***** Question: $L(A) = \Sigma^*$?

Theorem

The universal language problem for NFAs is in PSPACE \subseteq EXPTIME.

- \star result non-trivial, because an infinity of words Σ^{\star} should be accepting
- ★ however, the problem is equivalent to $\overline{L(A)} = \emptyset$
- ★ for DFAs, this amounts to checking $L(\overline{A}) = \emptyset$, thus is in PTIME
- $\star\,$ translating NFAs to equivalent DFAs results in EXPTIME algorithm

- \star Given: An NFA ${\cal A}$
- **★** Question: $L(A) = \Sigma^*$?

Theorem

The universal language problem for NFAs is in PSPACE \subseteq EXPTIME.

Proof Outline.

* we check $L(A) = \Sigma^*$ in PSPACE for $A = (Q, \Sigma, q_I, \delta, F)$

- \star Given: An NFA \mathcal{A}
- **★** Question: $L(A) = \Sigma^*$?

Theorem

The universal language problem for NFAs is in PSPACE \subseteq EXPTIME.

- * we check $L(A) = \Sigma^*$ in PSPACE for $A = (Q, \Sigma, q_I, \delta, F)$
- * as we saw, this amount to translating A into an equivalent DFA B and checking $\overline{B} = \emptyset$

- \star Given: An NFA \mathcal{A}
- ***** Question: $L(A) = \Sigma^*$?

Theorem

The universal language problem for NFAs is in PSPACE \subseteq EXPTIME.

- * we check $L(A) = \Sigma^*$ in PSPACE for $A = (Q, \Sigma, q_I, \delta, F)$
- * as we saw, this amount to translating A into an equivalent DFA B and checking $\overline{B} = \emptyset$
- * constructing $\overline{\mathcal{B}}$ on-the-fly, this can be done non-deterministically in polynomial space

- \star Given: An NFA \mathcal{A}
- ***** Question: $L(A) = \Sigma^*$?

Theorem

The universal language problem for NFAs is in PSPACE \subseteq EXPTIME.

- * we check $L(A) = \Sigma^*$ in PSPACE for $A = (Q, \Sigma, q_I, \delta, F)$
- * as we saw, this amount to translating A into an equivalent DFA B and checking $\overline{B} = \emptyset$
- \star constructing $\overline{\mathcal{B}}$ on-the-fly, this can be done non-deterministically in polynomial space
- ★ by Savich's theorem, any such algorithm can be turned into a deterministic one in PSPACE

Further Consequences

The Inclusion Problem

- $\star\,$ Given: two NFA ${\cal A}$ and ${\cal B}$
- ★ Question: $L(A) \subseteq L(B)$?

The Equivalence Problem

- \star Given: two NFA \mathcal{A} and \mathcal{B}
- ★ Question: L(A) = L(B)?

Theorem

Both problem are PSPACE complete.

★ model checking, i.e., checking an implementation against high-level specifications, usually expressed as language inclusion.

Summary

	Word	Emptiness	Universality	Inclusion	Equivalence
DFA	PTIME	PTIME	PTIME	PTIME	PTIME
NFA	PTIME	PTIME	PSPACE	PSPACE	PSPACE

* Michael Rabin and Dana Scott received their Turing Award for their work "Finite Automat and Their Decision Problems"

Summary

	Word	Emptiness	Universality	Inclusion	Equivalence
DFA	PTIME	PTIME	PTIME	PTIME	PTIME
NFA	PTIME	PTIME	PSPACE	PSPACE	PSPACE

★ Michael Rabin and Dana Scott received their Turing Award for their work "Finite Automat and Their Decision Problems"

Applications

- \star finite state machines (and its extensions) used in many disciplines
- ★ efficient string search (Knuth-Morris-Pratt algorithm), e.g., in grep, sed, awk, Java, C#...
- ★ Antivirus software
- ★ DNA/protein analysis
- * ...

★ effectively satisiability/validity decision procedures for certain logics (see next lecture)

Programming Project (I)

Program a function match(w, e) that matches a word w over alphabet $\Sigma = \{a, ..., z\}$ against a regular expression e

- \star regular expressions should encompass letters, union $e \mid f$, concatenation e.f and e^*
 - bonus: complement, intersection, etc.
- $\star\,$ test your implementation against Exercise 1

Programming Project (I)

Program a function match(w, e) that matches a word w over alphabet $\Sigma = \{a, ..., z\}$ against a regular expression e

- * regular expressions should encompass letters, union $e \mid f$, concatenation e.f and e^*
 - bonus: complement, intersection, etc.
- $\star\,$ test your implementation against Exercise 1
- ★ concrete method and programming language up to you
- \star parser and stand-alone executable nice to have, but not a must

Programming Project (I)

Program a function match(w, e) that matches a word w over alphabet $\Sigma = \{a, ..., z\}$ against a regular expression e

- \star regular expressions should encompass letters, union $e \mid f$, concatenation e.f and e^*
 - bonus: complement, intersection, etc.
- $\star\,$ test your implementation against Exercise 1
- ★ concrete method and programming language up to you
- ★ parser and stand-alone executable nice to have, but not a must
- ★ send solutions including instructions to martin.avanzini@inria.fr
- ★ deadline Friday 23/04 08:00, exercise will be discussed in lecture 4

