LTL Exercises Deadline: 16/05 09:00 ## Exercise 1 Consider $\Sigma = 2^{p,q}$, and let $a = \emptyset$, $b = \{p\}$ and $c = \{q\}$. Define each of the following languages in terms of an LTL formula over propositions $\{p,q\}$. - 1. $L_1 = a^* b^* c^* \Sigma^{\omega}$; - 2. $L_2 = \{ w \in \Sigma^{\omega} \mid |w|_a = \infty \Rightarrow |w|_b = \infty \};$ - 3. $L_3 = (\Sigma^* a \Sigma^* b \Sigma^* c)^{\omega}$. ## Exercise 2 Reason that the following equivalences hold, or give a counter example. - 1. $G \phi \wedge G \psi \equiv G * \phi \wedge \psi$); - 2. $F \phi \wedge F \psi \equiv F (\phi \wedge \psi);$ - 3. $G \phi \rightarrow F \psi \equiv \phi U (\psi \vee \neg \phi)$; - 4. $FG\phi \equiv GF\phi$; - 5. $FF\phi \equiv F\phi$; ## Exercise 3 Prove that $\phi \cup \psi \equiv \psi \vee \mathsf{X} (\phi \cup \psi)$. Assume $w, i \models \phi \cup \psi$, and show that $w, i \models \psi \vee \mathsf{X}(\phi \cup \psi)$; and vice verse.