LTL Exercises

Deadline: 16/05 09:00

Exercise 1

Consider $\Sigma = 2^{p,q}$, and let $a = \emptyset$, $b = \{p\}$ and $c = \{q\}$. Define each of the following languages in terms of an LTL formula over propositions $\{p,q\}$.

- 1. $L_1 = a^* b^* c^* \Sigma^{\omega}$;
- 2. $L_2 = \{ w \in \Sigma^{\omega} \mid |w|_a = \infty \Rightarrow |w|_b = \infty \};$
- 3. $L_3 = (\Sigma^* a \Sigma^* b \Sigma^* c)^{\omega}$.

Exercise 2

Reason that the following equivalences hold, or give a counter example.

- 1. $G \phi \wedge G \psi \equiv G * \phi \wedge \psi$);
- 2. $F \phi \wedge F \psi \equiv F (\phi \wedge \psi);$
- 3. $G \phi \rightarrow F \psi \equiv \phi U (\psi \vee \neg \phi)$;
- 4. $FG\phi \equiv GF\phi$;
- 5. $FF\phi \equiv F\phi$;

Exercise 3

Prove that $\phi \cup \psi \equiv \psi \vee \mathsf{X} (\phi \cup \psi)$.

Assume $w, i \models \phi \cup \psi$, and show that $w, i \models \psi \vee \mathsf{X}(\phi \cup \psi)$; and vice verse.