WMSO Exercises

Deadline: 11/04 09:00

Exercise 1

Explain, in your own words, WMSO.

Show that the following properties are expressible in WMSO:

1. x = y (without using the equality symbol);

2. x = y + 1; and

3. more generally y = x + k for a fixed constant integer $k \ge 0$.

Exercise 2

How do we define the language $L(\phi)$ of a WMSO formula ϕ .

For each language L below, give a formula ϕ_L of WMSO such that $L = L(\phi_L)$, assuming $\Sigma = \{a, b\}$. When possible, take a formula in FO.

1. a*b*.

- 2. $\{a_0 \dots a_n \mid a_{3i} = a \text{ for all } i < \frac{n}{3}\}$, in other words language of words containing an *a* on all positions that are multiples of 3.
- 3. Generalize to the language $L_k = \{a_0 \dots a_n \mid a_{ki} = a \text{ for all } i < \frac{n}{k}\}.$

Exercise 3

Determine the language $L(\phi)$ over $\Sigma = \{a, b\}$ for the following WMSO formulas ϕ :

- 1. $\forall x.P_{a}(x) \rightarrow \forall y.x < y \rightarrow P_{b}(y)$.
- 2. $\exists x. P_{\mathsf{b}}(x) \land \forall y. y < x \rightarrow P_{\mathsf{a}}(y).$
- 3. $\exists l. \exists X, Y. \ (\forall z.z \le l \to (X(z) \lor Y(z))) \land (\forall x, y. X(x) \land Y(y) \to x < y \land P_{a}(x) \land P_{b}(y))$.
- 4. $\forall x.(\exists z.x < z) \rightarrow \exists y.x < y \land (P_a(x) \leftrightarrow \neg P_a(y))$

Exercise 4

Outline the construction of an NFA from ϕ that recognizes the same language. Why is this useful?

Give an NFA which recognizes $\hat{\mathsf{L}}(\phi)$ for $\phi = X(x) \to \exists y.y < x \land Y(y)$. Use the variable order X, Y, x, y in the construction.