Finite Automata Exercises

Deadline: 04/04 09:00

Exercise 1

Explain what a language is. When is a language regular? What does it mean for a language to be recognized by an NFA.

Consider the regular language $(a \cup b)^{*} a(a b)^{*}$

1. construct an NFA recognizing this language;
2. translate this NFA to an equivalent DFA; and
3. minimise the resulting DFA.

Exercise 2

What does Kleene's Theorem tell us?
Let L and M be two languages recognized by NFAs, say \mathcal{A} and \mathcal{B}, respectively. Show that the following languages are recognizable as well.

1. concatenation $L \cdot M$;
2. union $L \cup M$; and
3. intersection $L \cap M$.

Hint: Construct corresponding new automatons based on \mathcal{A} and \mathcal{B}. For the last point, use a product construction, where states of the new NFA are pairs of states of the NFAs \mathcal{A} and \mathcal{B}.

Exercise 3

Define an AFA \mathcal{A} with at most 8 states such that $\mathrm{L}(\mathcal{A})=\left\{\mathrm{a}^{12 k} \mid k \geq 0\right\}$. Give the corresponding NFA and DFA, via the two constructions discussed in the lecture.

