Advanced Logic

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2021/AL/

Martin Avanzini

B MASTER 7
5 I N Fo RM ATI QU E informatiques g#”mathématiques

UNIVERSITE COTE DAZUR 8% A —

Summer Semester 2021

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2021/AL/

Last Lecture

* alanguage L € = isw-regularif L = |, U; - Vi* for regular languages U;, V;
(0<i<n)

* a Biichi Automaton is structurally similar to an NFA, but recognizes words w € % that
visit final states infinitely often

Theorem
For recognisable U € " and V. W/ € % the following are recognisable:
1. union VU W 4. w-iteration U

2. intersection V. n W 5. complement V/

3. left-concatenation U - V

Theorem
L € wREG(Z) ifand only if L = L(.A) for some NBA A

Theorem
For every MSO formula ¢ there exists an NBA A s.t. L(g) = L(Agp).

Today'’s Lecture

1. Linear temporal logic (LTL)
2. LTL model checking

Linear temporal logic

Motivation

* linear temporal logic is a logic for reasoning about events in time

— always not (¢ A ¢) safety
— always (Request implies eventually Grant) liveness
- always (Request implies (Request until Grant)) liveness

* LTL shares algorithmic solutions with MSO

Formal Definition

* the set of LTL formulas over propositions P = {p,q, ... } is given by

é, ¢ i=p | dVY | —¢ (Propositional Formulas)
| X¢ | o Uy (Next and Until)

Formal Definition

* the set of LTL formulas over propositions P = {p,q, ... } is given by

é, ¢ i=p | dVY | —¢ (Propositional Formulas)
| X¢ | o Uy (Next and Until)

« LTLis a logic of temporal sequences, modeled as infinite words over = £ 27

Formal Definition

* the set of LTL formulas over propositions P = {p,q, ... } is given by

é, ¢ i=p | dVY | —¢ (Propositional Formulas)
| X¢ | o Uy (Next and Until)

* LTLis a logic of temporal sequences, modeled as infinite words over = 2 2”

* forasentence ¢ and w = PgPiP>...,we definew F ¢ as w; 0 F ¢ where

wiiEp = pEP o

wWiEoVy = wiEg¢orw,iFy |

Wik —¢p o= wile

w,i EX¢ = wii+1FE ¢ O 2
wiiEgpUy = existskzistwkF¢ g 5 & &

andw;jEyforalli<j<k

Formal Definition

* the set of LTL formulas over propositions P = {p,q, ... } is given by

é, ¢ i=p | dVY | —¢ (Propositional Formulas)
| X¢ | o Uy (Next and Until)

* LTLis a logic of temporal sequences, modeled as infinite words over = 2 2”

* forasentence ¢ and w = PoPiP> ..., wedefinew F ¢ as w; 0 F ¢ where

wiiEp = pEP o

wWiEoVy = wiEg¢orw,iFy |

Wik —¢p o= wile

w,i EX¢ = wii+1FE ¢ O 2
wiiEgpUy = existskzistwkF¢ g 5 & &

andw;jEyforalli<j<k
* a LTL formula ¢ defines the language L(¢) = {w | w E ¢}

Derived Operators and Positive Normal Forms

finally: Fo = TUg 5
globally: Go 1= —(F-9) g ¢

/2
release: pRY = =(=¢U-y) g ¥

Derived Operators and Positive Normal Forms

finally: Fo = TUg o ¢
globally: Go¢ = =(F-¢) ¢ ¢ ¢ ¢
o9

AS
<
<
<

release: pRY = =(=¢U-y)

* F¢,G¢and X ¢ are sometimes denoted by ¢¢, O¢ and o¢, respectively

Derived Operators and Positive Normal Forms

finally: Fo = TU¢ o 4 O—

globally: G¢ 1= —(F-g) g ¢ ¢ ¢ ¢ -
v v 9

release: dRY = =(=¢U-y) ‘é g ¥ ¥ EL -

* F¢,G¢and X ¢ are sometimes denoted by ¢¢, O¢ and o¢, respectively
* aformula ¢ is in positive normal form (PNF) if it is derived from the following grammar:

dyi=p | =p | oaw | ovy | Xo | Uy | oRY

— negation only in front of literals

Derived Operators and Positive Normal Forms

finally: Fo = TU¢ o 4 O—

globally: G¢ 1= —(F-g) g ¢ ¢ ¢ ¢ -
v v 9

release: dRY = =(-¢U-y) 'é g ¥ ¥ ‘CL -

* F¢,Gg¢andX ¢ are sometimes denoted by ¢¢, O¢ and o¢, respectively
* aformula ¢ is in positive normal form (PNF) if it is derived from the following grammar:
pw=p | -p | oay | ovy | Xo | Uy | Ry
— negation only in front of literals

Lemma
Every formula ¢ can be turned into an equivalent formula ¢ in PNF with |y/| < 2|¢|

Safety Properties in LTL

Safety = something bad never happens = G —¢paq

Safety Properties in LTL

Safety = something bad never happens = G —¢paq

Example

*

a..Atrain is approaching

*

c..Atrain is crossing
[..The light is blinking

*

b ..The barrier is down

*

Safety Properties in LTL

Safety = something bad never happens = G —¢paq

Example

*

a..Atrain is approaching

*

c..Atrain is crossing
[..The light is blinking

*

b ..The barrier is down

*

* when atrain is crossing, the barrier is down:

Safety Properties in LTL

Safety = something bad never happens = G —¢paq

Example

*

a..Atrain is approaching

*

c..Atrain is crossing
[..The light is blinking

*

b ..The barrier is down

*

* when atrain is crossing, the barrier is down:

G(c - b) = G-(c A —b)

Safety Properties in LTL

Safety = something bad never happens = G —¢paq

Example

*

a..Atrain is approaching

*

c..Atrainis crossing

[..The light is blinking

*

b ..The barrier is down

*

* when atrain is crossing, the barrier is down:
G(C—> b) = G—|(C/\—|b)

* if atrain is approaching or crossing, the light must be blinking:

Safety Properties in LTL
Safety = something bad never happens = G —¢paq

Example

*

a..Atrain is approaching

*

c..Atrainis crossing

[..The light is blinking

*

b ..The barrier is down

*

* when atrain is crossing, the barrier is down:
G(C—> b) = G—|(C/\—|b)
* if atrain is approaching or crossing, the light must be blinking:

Gavc—-b)=G=((avec)a-l

Safety Properties in LTL

Safety = something bad never happens = G —¢paq

Example

*

a..Atrain is approaching

*

c..Atrainis crossing

[..The light is blinking

*

b ..The barrier is down

*

* when atrain is crossing, the barrier is down:
G(c—>b)=G=(cA=b)
» if atrain is approaching or crossing, the light must be blinking:
Gavc—-b)=G=((avec)a-l

» if the barrier is up and the light is off, no train is approaching or crossing:

Safety Properties in LTL
Safety = something bad never happens = G —¢paq

Example

*

a..Atrain is approaching

*

c..Atrainis crossing

[..The light is blinking

*

b ..The barrier is down

*

* when atrain is crossing, the barrier is down:
G(c—>b)=G=(cA=b)
* if atrain is approaching or crossing, the light must be blinking:
Gavc—-b)=G=((avec)a-l
» if the barrier is up and the light is off, no train is approaching or crossing:

G(—|b/\—|l—>—|a/\—|C)EG—1(—|b/\—|l/\(aVC))

Liveness Properties in LTL

Liveness = something intiated eventually terminates = G (¢init — F drerm)

Liveness Properties in LTL

Liveness = something intiated eventually terminates = G (¢init — F drerm)

* approaching trains eventually cross:

Liveness Properties in LTL

Liveness = something intiated eventually terminates = G (¢init — F drerm)

* approaching trains eventually cross:

G(a—Fc)

Liveness Properties in LTL

Liveness = something intiated eventually terminates = G (¢init — F drerm)

* approaching trains eventually cross:

G(a—Fc)

* when atrain is approaching, the barrier is down before it crosses:

Liveness Properties in LTL

Liveness = something intiated eventually terminates = G (¢init — F drerm)

* approaching trains eventually cross:

G(a—Fc)

* when atrain is approaching, the barrier is down before it crosses:

G(a— -cUb)

Liveness Properties in LTL

Liveness = something intiated eventually terminates = G (¢init — F drerm)

* approaching trains eventually cross:

G(a—Fc)

* when atrain is approaching, the barrier is down before it crosses:

G(a— -cUb)

* if atrain finished crossing, the barrier will be eventually risen

Liveness Properties in LTL

Liveness = something intiated eventually terminates = G (¢init — F drerm)

* approaching trains eventually cross:
G(a—Fc)
* when atrain is approaching, the barrier is down before it crosses:

G(a— -cUb)

* if atrain finished crossing, the barrier will be eventually risen

G(C/\X—|C—>XF—|b)

Characterising LTL

* LTL can be “expressed” within MSO = Biichi Automata

* MSO and Biichi Automata are strictly more expressive

LTL recognisability < w-regular

* LTL most naturally translated to alternating Blichi Automata (ABA)

* loop-free (very weak) ABA characterise precisely the class of LTL recognisable languages

Characterising LTL

* LTL can be “expressed” within MSO = Biichi Automata

* MSO and Biichi Automata are strictly more expressive

LTL recognisability < w-regular

* LTL most naturally translated to alternating Blichi Automata (ABA)

* loop-free (very weak) ABA characterise precisely the class of LTL recognisable languages

Example

the Blichi Automaton A over P = {p, q} given by
{p}
{a}

is not loop-free = L(.A) not expressible in LTL

(Very Weak) Alternating Biichi Automata

* an alternating Blichi Automaton (ABA) isatuple A = (Q, %, g;,d, F) identical to an AFA
* execution on words w € = are now infinite tree T,,
* an execution is accepting in the sense of Biichi: every path visits F infinitely often

* L(A) £ {w € =% | there exist an accepting execution T,, for w}

(Very Weak) Alternating Biichi Automata

* an alternating Blichi Automaton (ABA) isatuple A = (Q, %, g;,d, F) identical to an AFA
* execution on words w € = are now infinite tree T,,
* an execution is accepting in the sense of Biichi: every path visits F infinitely often

* L(A) £ {w € =% | there exist an accepting execution T,, for w}

* very weak ABA (VWABA) is an ABA if for every a € %, 2, c < for some linear order

<c@QxqQ

(Very Weak) Alternating Biichi Automata

* an alternating Blichi Automaton (ABA) isatuple A = (Q, %, g;,d, F) identical to an AFA
* execution on words w € = are now infinite tree T,,
* an execution is accepting in the sense of Biichi: every path visits F infinitely often

* L(A) =2 {w € =“ | there exist an accepting execution T,, for w}

* very weak ABA (VWABA) is an ABA if for every a € 2, 2, c < for some linear order
<c@QxqQ

Example

GpAFg

LTL and Automata

Theorem

Let L be a language over X = 27 The following are equivalent:
* Lis LTL definable.
* L is recognizable by VWABA.

From Automatato LTL

fixaVWABA A = ({qo,...,qn},zp,qo,é, F) where wlog. go > g1 > -+ > g,

From Automatato LTL

fixa VWABA A = ({qo....,qn}. 2", 0.8, F) where wlog. go > g; > -+ > g,

* since A is very weak, there are transitions from g; to gj only if i > j

From Automatato LTL

fixa VWABA A = ({qo....,qn}. 2", 0.8, F) where wlog. go > g; > -+ > g,
* since A is very weak, there are transitions from g; to gj only if i > j

* Wwe now associate each state g; with a formula ¢, s.t.

L(#i) = La(aq))

From Automatato LTL

fixa VWABA A = ({qo, . ..,qn},ZP,qo,é, F) where wlog. go > g1 > -+ > g,
* since A is very weak, there are transitions from g; to gj only if i > j

* we now associate each state g; with a formula ¢, s.t.
L(¢i) = La(ai)

* this can be done inductively: while construction ¢;, we already have suitable formulas
¢jfori>j

From Automatato LTL

fixa VWABA A = ({qo, . ..,qn},ZP,qo,é, F) where wlog. go > g1 > -+ > g,
* since A is very weak, there are transitions from g; to gj only if i > j

* we now associate each state g; with a formula ¢, s.t.
L(¢i) = La(aq:)

* this can be done inductively: while construction ¢;, we already have suitable formulas
¢jfori>j
* for propositions P ¢ P, the construction uses the characteristic function

xp £ (/\pePp) A (/\p¢P —|p)

From Automatato LTL

fixa VWABA A = ({qo, . ..,qn},ZP,qo,é, F) where wlog. go > g1 > -+ > g,

*

*

since A is very weak, there are transitions from g; to g; only if i > j

we now associate each state g; with a formula ¢; s.t.
L(¢i) = La(aq:)

this can be done inductively: while construction ¢;, we already have suitable formulas
¢jfori>j
for propositions P ¢ P, the construction uses the characteristic function

Xp = (/\pePp) A (/\p¢P —|p)

the construction differs whether the state is final, we thus consider two cases

From Automata to LTL (II)

fixaVWABA A = ({qo,...,qn},zp,qo,d, F) where wlog. gg > g1 > - -«

* note that L ,(g;) satisfies

La(a) = \/ xe A X(8(ai P)[@i/La(9), Qisr/La(Gis)
PSP

* if g; ¢ Fthenwerewrite L 1 (g;)asy v (p A XL 4(g;)) and set
pi=pUy

* if g; € Fthenwerewrite L 1(g;)asy A (p v XL 4(g;)) and set

¢ =Gy v (¥ U (pAy))

> Qn

-»qn/La(ai)])

From LTL to Automata

the ABA A, for a PNF formula ¢ is given by (Q, ZP, ¢, 96, F) where
* Q={T,L}u{qy | ¢ occursas sub-formulain ¢}

From LTL to Automata

the ABA A, for a PNF formula ¢ is given by (Q, ZP, ¢, 96, F) where
* Q={T,L}u{qy | ¢ occursas sub-formulain ¢}

* the transition functiond : Q x 2" — B*(Q) is given by

A A A T |fp eEP A 1 |fp eP
o(T,P=T o(L,P)=L 6(gyP)= . o(g_p, P) = .

(T.P) (L.P) (ap. P) {J_ fp¢p (q-p. P) {T fp P

6(qw1/\l//2’ P) 2 6(ql,//1’P) A 6(ql//2’ P) 6(qw1vw29p) 2 6(ql//1’P) \4 6(ql//2’ P)

5(axy.P) = qy
6(qysups» P) 2 5(qy,» P) V (6(qy» P) A Quauy,)
6(ql,//1Rl//2’ P) 2 6(ql//2’P) A (5(('71//1’ P) \4 ql//1Rl//2)

From LTL to Automata

the ABA A, for a PNF formula ¢ is given by (Q, ZP, ¢, 96, F) where
* Q={T,L}u{qy | ¢ occursas sub-formulain ¢}

* the transition functiond : Q x 2" — B*(Q) is given by

A A A T |fp eEP A 1 |fp eP
o(T,P=T o(L,P)=L 6(gyP)= . o(g_p, P) = .

(T.P) (L.P) (ap. P) {J_ fp¢p (q-p. P) {T fp P

6(ql,ﬁ1/\l/12’ P) 2 6(ql,//1’P) A 6(ql//2’ P) 6(qw1vw29p) 2 6(ql//1’P) \4 6(ql//2’ P)

6(axy-P) = qy
6(qysups» P) 2 5(qy,» P) V (6(qy» P) A Quauy,)
6(ql,//1Rl//2’ P) 2 6(ql//2’P) A (5(('71//1’ P) \ ql//1Rl//2)

* the only final states are T and gz, € Q

From LTL to Automata

the ABA A, for a PNF formula ¢ is given by (Q, ZP, ¢, 96, F) where
* Q={T,L}u{qy | ¢ occursas sub-formulain ¢}

* the transition functiond : Q x 2" — B*(Q) is given by

R . L |T ifpeP L |L ifpeP
S(T.PY2T &6(L.P)2L 4(qgp.P)2 . 6(q-p, P) = :

(T.P) (L,P) (Gp. P) {J_ fp¢p (q-p. P) {T fp P

6(ql,ﬁ-|/\l/12’P) 2 6(ql,//1’P) A 6<ql//2’P) 6(q1,1/1vw29p) 2 6(ql//1’P) \4 6(ql,/12’P)

5(axy.P) = qy
6(qysups» P) 2 5(qy,» P) V (6(qy» P) A Quauy,)
6(q1,//1Rz//2’P) 2 5(%/2,’3) A (5(%//1,’3) \ ql/I1Rl//2)

* the only final states are T and gz, € Q

Notes
*x Ay islinearinsizein |¢|

* using the construction for AFAs, this ABA can be transformed to an NBA of size 0(2|¢|)

Example

consider¢ =GpAFg=((pA-p)Rp)A((pV-p)Uq)

Example
consider¢ =GpAFg=((pA-p)Rp)A((pV-p)Uq)

T ifpeP
6(ap, P) = {J_ ifp ¢ P

1 ifpeP

6(9-p. P) = {T ifp¢P

Example
consider¢ =GpAFg=((pA-p)Rp)A((pV-p)Uq)

T ifpeP
6(ap, P) = {J_ ifp ¢ P

1 ifpeP
1) ,P) = .
(G-p, P) {T iftp¢& P
6(qu—|p’P)=6(Qp,P)/\6(qﬂp7P)=TAJ-zJ-
5(va—|p,P)=6(Qp,P)V6(qﬂp’P)=LVTxT

Example

consider¢ =GpAFg=((pA-p)Rp)A((pV-p)Uq)

T ifpeP
p) =
5(9p. P) {J_ ifp¢p
L ifpeP z
o ,P) = .
(G-p, P) {T iftp¢& P
6(qp/\—|p’P) = 6(Qp,P) Aé‘(q_‘p,P) = T A J‘ = J‘
5(va—|p,P)=6(Qp,P)V6(qﬂp’P)=LVTxT

Qpr-p)rp ifpEP

5(q(pr-p)rp» P) = 6(p, P) A (5(QpA—.p,P) \ Q(p/\ﬂp)Rp) = {J_ ifp¢P ¥

Example
consider¢ =GpAFg=((pA-p)Rp)A((pV-p)Uq)

T ifpeP
p) =
5(9p. P) {J_ ifp¢p
L ifpeP z
o ,P) = .
(G-p, P) {T iftp¢& P
6(qp/\—|p’P) = 6(Qp,P) Aé‘(q_‘p,P) = T A J‘ = J‘
5(va—|p,P)=6(Qp,P)V6(qﬂp’P)=LVTxT

Qpr-p)rp ifpEP
L ifp & P z

T ifgeP
G(pv-p)Ug ifq ¢ P

6(q(p/\—|p)Rp’P) =6(p,P) A (5(QpA—.p,P) 4 Q(p/\ﬂp)Rp) = {

5(Q(pv—up)Uan) = 6(‘75 P) \4 (6(va—\pvp) A Q(pv—up)Rq) = {

Example
consider¢ =GpAFg=((pA-p)Rp)A((pV-p)Uq)

T ifpeP
P) =
L ifpeP s
5(qp:P) = !
(G- P) {T iftp¢& P
6(qpa—p-P) = 6(qp. P) AN6(q-p,P) =T AL =1L
5(Qpv-p:P) = 6(qp,P) V(g p,P)= LV T = T

A(pr- ifpeP
6(q(pa-p)rps P) = 6(p, P) A (6(Gpa-ps P) V Q(pa-p)rp) = { o

L ifp & P b3
T ifgeP
8(q(pv-pyug: P) = (g, P) v (6(qpv-p, P) A Q(pv-p)rg) = {Q(pv pug Ifqé&P
ifP=o
Q(pr-p)Rp A A(pv-p)ug IF P = {p}
0 ’ P)=4¢ - > P)AO - 5 P) =~ .
(¢,P) (Gpr-p)rp> P) (G(pv-p)ug> P) h P = (a)

9(pr-p)Rp if P={p,q}

Example
consider¢ =GpAFg=((pA-p)Rp)A((pV-p)Uq)

T ifpeP
p) =
5(9p. P) {L ifp¢p
1 ifpeP
0 ,P) = .
(G-p, P) {T iftp¢& P
6(qp/\—|p’P) = 6(Qp,P) Aé‘(q_‘p,P) = T A J‘ = J‘
5(va—|p,P)=6(Qp,P)V6(qﬂp’P)=LVT2T

Qpr-prp IfPEP

6(q(p/\—|p)Rp’P) =6(p,P) A (6(QpA—.p,P) 4 Q(p/\ﬁp)Rp) = {

1 ifp¢P
T ifgeP
6(q(pv-p)ug: P) = 6(q, P) V (6(Gpv-p. P) A Q(pv-p)rg) = {Q(pv pug Ifqé&P
ifP=o
Q(pr-p)Rp A A(pv-p)ug IF P = {p}
0 ’ P)=4¢ - > P)AO - 5 P) =~ .
(¢,P) (Gpr-p)rp> P) (G(pv-p)ug> P) h P = (a)

A(pr-p)Rp if P = {P, q}

Model Checking

Transition Systems (TSs)

* transition systems capture evolution of state based programs etc.

* they can be seen as finite representations of potentially infinitely many program runs

Transition Systems (TSs)

* transition systems capture evolution of state based programs etc.

* they can be seen as finite representations of potentially infinitely many program runs

* atransition system (TR) isatuple S = (S, —,s;, 1) where
1. Sisaset of states
2. —» c SxSisatransition relation
3. 5, € Sisaninitial state
4. 1:5-2"a labeling of states by propositions P

Transition Systems (TSs)

* transition systems capture evolution of state based programs etc.

* they can be seen as finite representations of potentially infinitely many program runs

* atransition system (TR) isatuple S = (S, —,s;, 1) where
1. Sisaset of states
2. —» c SxSisatransition relation
3. 5, € Sisaninitial state
4. 1:5-2"a labeling of states by propositions P

* we assume S is total, i.e. every node has a successor: Vs € S.3t € S.s — t

Transition Systems (TSs)

* transition systems capture evolution of state based programs etc.

*

they can be seen as finite representations of potentially infinitely many program runs

* atransition system (TR) isatuple S = (S, —,s;, 1) where
1. Sisaset of states
2. —» c SxSisatransition relation
3. 5, € Sisaninitial state
4. 1:5-2"a labeling of states by propositions P

we assume S is total, i.e. every node has asuccessor: Vs € S.3t € S.s —» t

*

* aruninatotal TS is an infinite word w = PgP;P ... such that A(s;) = P; for an infinite
path
S)=S9g >S5 >S5 — ...

Transition Systems (TSs)

* transition systems capture evolution of state based programs etc.

*

they can be seen as finite representations of potentially infinitely many program runs

* atransition system (TR) isatuple S = (S, —,s;, 1) where
1. Sisaset of states
2. —» c SxSisatransition relation
3. 5, € Sisaninitial state
4. 1:5-2"a labeling of states by propositions P

*

we assume S is total, i.e. every node has asuccessor: Vs € S.3t € S.s —» t

* aruninatotal TS is an infinite word w = PgP;P ... such that A(s;) = P; for an infinite
path
S)=S9g >S5 >S5 — ...

*

L(S) 2 {w | wisaruninS}isthesetofall runs

LTL Model Checking

We are interested in the following decision problem:
* Given: AnTS S = (S, -, s, 1) and specification as LTL formula ¢
* Question: L(S) ¢ L(¢)?

LTL Model Checking

We are interested in the following decision problem:
* Given: AnTS S = (S, -, 5., 1) and specification as LTL formula ¢
* Question: L(S) ¢ L(¢)?

Theorem

The above model checking problem is decidable in time O(|S|2) . 200D

Proof Outline.

LTL Model Checking

We are interested in the following decision problem:
* Given: AnTS S = (S, -, 5., 1) and specification as LTL formula ¢
* Question: L(S) ¢ L(¢)?

Theorem

The above model checking problem is decidable in time O(|S|2) . 200D

Proof Outline.
* let A, = (Q, 2", g1, 6, F) be the NBA with L(—¢) = L(A_,) of size 200D

LTL Model Checking

We are interested in the following decision problem:
* Given: AnTS S = (S, -, 5., 1) and specification as LTL formula ¢
* Question: L(S) ¢ L(¢)?

Theorem

The above model checking problem is decidable in time O(|S|2) . 200D

Proof Outline.
* let Ay = (Q,27,), 6, F) be the NBA with L(~¢) = L(A_4) of size 2°U*V
» definethe NBAS ® A_, = (Sx Q,{®},(5,q/),A,S X F) where

A((s,9),#) £ {(s,q) | s » s'and q' € 5(q,4(s))}

LTL Model Checking

We are interested in the following decision problem:
* Given: AnTS S = (S, -, 5., 1) and specification as LTL formula ¢
* Question: L(S) ¢ L(¢)?

Theorem

The above model checking problem is decidable in time O(|S|2) . 200D

Proof Outline.
* let Ay = (Q,27,), 6, F) be the NBA with L(~¢) = L(A_4) of size 2°U*V
» definethe NBAS ® A_, = (Sx Q,{®},(5,q/),A,S X F) where

A((s,9),#) £ {(s,q) | s » s'and q' € 5(q,4(s))}

x thenl(S)cL(¢) & LS)NL-¢)=0 <= LE®A,) =0

LTL Model Checking

We are interested in the following decision problem:
* Given: AnTS S = (S, -, 5., 1) and specification as LTL formula ¢
* Question: L(S) ¢ L(¢)?

Theorem

The above model checking problem is decidable in time O(|S|2) . 200D

Proof Outline.

* let A, = (Q, ZP,q,,(S, F) be the NBA with L(—¢) = L(A_,) of size 200D

» definethe NBAS ® A_, = (Sx Q,{®},(5,q/),A,S X F) where
A((s.q).#) £ {(s.q) | s > s'and g € 6(q.A(s))}

x thenl(S)cL(¢) & LS)NL-¢)=0 <= LE®A,) =0

* emptyness of S ® A_, is decidable in time linearin |[S® A_,| € 0(|S|2) . 200¢D)

LTL Model Checking In Practice

Explicit Model Checking: each automaton node is an individual state
* SPIN model checker: http://spinroot.com/

Symbolic Model Checking: each automaton node represents a set of state, symbolically
* SMV model checker: http://www.cs.cmu.edu/~modelcheck/smv.html

http://spinroot.com/
http://www.cs.cmu.edu/~modelcheck/smv.html
http://spinroot.com/spin/success.html

LTL Model Checking In Practice

Explicit Model Checking: each automaton node is an individual state
* SPIN model checker: http://spinroot.com/

Symbolic Model Checking: each automaton node represents a set of state, symbolically
* SMV model checker: http://www.cs.cmu.edu/~modelcheck/smv.html

they have been successfully applied in industrial contexts (see e.g.
http://spinroot.com/spin/success.html)

http://spinroot.com/
http://www.cs.cmu.edu/~modelcheck/smv.html
http://spinroot.com/spin/success.html

LTL Model Checking In Practice

Explicit Model Checking: each automaton node is an individual state
* SPIN model checker: http://spinroot.com/

Symbolic Model Checking: each automaton node represents a set of state, symbolically
* SMV model checker: http://www.cs.cmu.edu/~modelcheck/smv.html

they have been successfully applied in industrial contexts (see e.g.
http://spinroot.com/spin/success.html)

Main Challenge
* while real problems have a finite number of states, we deal with an astronmoical
number of cases

http://spinroot.com/
http://www.cs.cmu.edu/~modelcheck/smv.html
http://spinroot.com/spin/success.html

LTL Model Checking In Practice

Explicit Model Checking: each automaton node is an individual state
* SPIN model checker: http://spinroot.com/

Symbolic Model Checking: each automaton node represents a set of state, symbolically
* SMV model checker: http://www.cs.cmu.edu/~modelcheck/smv.html

they have been successfully applied in industrial contexts (see e.g.
http://spinroot.com/spin/success.html)

Main Challenge

* while real problems have a finite number of states, we deal with an astronmoical
number of cases

» industrial-strength tools such as the ones above generate S ® A_, on-the-fly and
implement several techniques to combat state-space explosion
— partial order reduction: detects when an ordering of interleavings is irrelevant. E.g., the n!
transitions of n concurrently executing processes is reduced to 1 representative transition,
when ordering irrelevant for property under investigation
— Bounded Model Checking: check that ¢ is violated in < k steps

http://spinroot.com/
http://www.cs.cmu.edu/~modelcheck/smv.html
http://spinroot.com/spin/success.html

Thanks!

