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Last Lecture

⋆ a language L ⊆ Σ𝜔 is 𝜔-regular if L = ⋃0≤i≤n Ui ⋅ V
𝜔
i for regular languages Ui, Vi(0 ≤ i ≤ n)

⋆ a Büchi Automaton is structurally similar to an NFA, but recognizes words w ∈ Σ∞ that
visit final states infinitely oMen

Theorem

For recognisable U ∈ Σ∗ and V,W ∈ Σ𝜔 the following are recognisable:
1. union V ∪W

2. intersection V ∩W

3. leM-concatenation U ⋅ V

4. 𝜔-iteration U𝜔

5. complement V

Theorem

L ∈ 𝜔REG(Σ) if and only if L = L(A) for some NBAA
Theorem

For every MSO formula 𝜙 there exists an NBAA𝜙 s.t. L̂(𝜙) = L(A𝜙).



Today’s Lecture

1. Linear temporal logic (LTL)

2. LTL model checking



Linear temporal logic



Motivation

⋆ linear temporal logic is a logic for reasoning about events in time

– always not (𝜙 ∧ 𝜓) safety
– always (Request implies eventually Grant) liveness
– always (Request implies (Request until Grant)) liveness

⋆ LTL shares algorithmic solutions with MSO



Formal Definition

⋆ the set of LTL formulas over propositions P = {p, q, . . . } is given by
𝜙, 𝜓 ∶∶= p ∣ 𝜙 ∨ 𝜓 ∣ ¬𝜙 (Propositional Formulas)∣ X 𝜙 ∣ 𝜙 U 𝜓 (Next and Until)

⋆ LTL is a logic of temporal sequences, modeled as infinite words over Σ ≜ 2P

⋆ for a sentence 𝜙 and w = P0P1P2 . . . , we define w ⊧ 𝜙 as w;0 ⊧ 𝜙 where

w; i ⊧ p ∶⇔ p ∈ Pi …
i

p

w; i ⊧ 𝜙 ∨ 𝜓 ∶⇔ w; i ⊧ 𝜙 or w; i ⊧ 𝜓
w; i ⊧ ¬𝜙 ∶⇔ w; i /⊧ 𝜙

w, i ⊧ X 𝜙 ∶⇔ w; i + 1 ⊧ 𝜙 …
i

𝜙

w; i ⊧ 𝜙 U 𝜓 ∶⇔ exists k ≥ i s.t. w; k ⊧ 𝜙 …
i

𝜙 𝜙 𝜙 𝜓

and w; j ⊧ 𝜓 for all i ≤ j < k
⋆ a LTL formula 𝜙 defines the language L(𝜙) ≜ {w ∣ w ⊧ 𝜙}
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Derived Operators and Positive Normal Forms

finally: F 𝜙 ∶⇔ ⊤ U 𝜙 …𝜙

globally: G 𝜙 ∶⇔ ¬(F¬𝜙) …𝜙 𝜙 𝜙 𝜙 𝜙 …

release: 𝜙 R 𝜓 ∶⇔ ¬(¬𝜙 U ¬𝜓) …𝜓 𝜓 𝜓 𝜓 𝜓 …
𝜓 𝜓 𝜓 𝜙

⋆ F 𝜙, G 𝜙 and X 𝜙 are sometimes denoted by ⋄𝜙, □𝜙 and ◦𝜙, respectively

⋆ a formula 𝜙 is in positive normal form (PNF) if it is derived from the following grammar:

𝜙, 𝜓 ∶∶= p ∣ ¬p ∣ 𝜙 ∧ 𝜓 ∣ 𝜙 ∨ 𝜓 ∣ X 𝜙 ∣ 𝜙 U 𝜓 ∣ 𝜙 R 𝜓

– negation only in front of literals

Lemma

Every formula 𝜙 can be turned into an equivalent formula 𝜓 in PNF with ∣𝜓∣ ≤ 2∣𝜙∣
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Safety Properties in LTL

Safety = something bad never happens = G¬𝜙bad

Example

⋆ a …A train is approaching

⋆ c …A train is crossing

⋆ l …The light is blinking

⋆ b …The barrier is down

⋆ when a train is crossing, the barrier is down:

G (c→ b) ≡ G¬(c ∧ ¬b)
⋆ if a train is approaching or crossing, the light must be blinking:

G (a ∨ c→ b) ≡ G¬((a ∨ c) ∧ ¬l)
⋆ if the barrier is up and the light is off, no train is approaching or crossing:

G (¬b ∧ ¬l→ ¬a ∧ ¬c) ≡ G¬(¬b ∧ ¬l ∧ (a ∨ c))
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Liveness Properties in LTL

Liveness = something intiated eventually terminates = G (𝜙init → F 𝜙term)

⋆ approaching trains eventually cross:

G (a→ F c)
⋆ when a train is approaching, the barrier is down before it crosses:

G (a→ ¬c U b)
⋆ if a train finished crossing, the barrier will be eventually risen

G (c ∧ X¬c→ X F¬b)
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Characterising LTL

⋆ LTL can be “expressed” within MSO ≡ Büchi Automata

⋆ MSO and Büchi Automata are strictly more expressive

LTL recognisability < 𝜔-regular

⋆ LTL most naturally translated to alternating Büchi Automata (ABA)

⋆ loop-free (very weak) ABA characterise precisely the class of LTL recognisable languages

Example
the Büchi AutomatonA over P = {p, q} given by

1 2

{p}
{q}

is not loop-free⇒ L(A) not expressible in LTL
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(VeryWeak) Alternating Büchi Automata

⋆ an alternating Büchi Automaton (ABA) is a tupleA = (Q,Σ, qI, 𝛿, F) identical to an AFA
⋆ execution on words w ∈ Σ𝜔 are now infinite tree Tw

⋆ an execution is accepting in the sense of Büchi: every path visits F infinitely oMen

⋆ L(A) ≜ {w ∈ Σ𝜔 ∣ there exist an accepting execution Tw for w}

⋆ very weak ABA (VWABA) is an ABA if for every a ∈ Σ,
a
−→ ⊆ ≤ for some linear order

≤ ⊆ Q × Q
Example

0 1

4

∧

2 3
{p, q}{p}
∅,

{q}
∅, {q}

Σ

{p}{p, q}
∅, {p}

{q}, {p, q}
Σ

Gp ∧ F q
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LTL and Automata

Theorem

Let L be a language over Σ = 2P . The following are equivalent:
⋆ L is LTL definable.

⋆ L is recognizable by VWABA.



From Automata to LTL

fix a VWABAA = ({q0, . . . , qn}, 2P , q0, 𝛿, F) where wlog. q0 > q1 > ⋅ ⋅ ⋅ > qn
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fix a VWABAA = ({q0, . . . , qn}, 2P , q0, 𝛿, F) where wlog. q0 > q1 > ⋅ ⋅ ⋅ > qn
⋆ sinceA is very weak, there are transitions from qi to qj only if i ≥ j

⋆ we now associate each state qi with a formula 𝜙i s.t.

L(𝜙i) = LA(qi)

⋆ this can be done inductively: while construction 𝜙i, we already have suitable formulas
𝜙j for i > j

⋆ for propositions P ⊆ P , the construction uses the characteristic function

𝜒P ≜ (⋀p∈P p) ∧ (⋀p/∈P¬p)
⋆ the construction differs whether the state is final, we thus consider two cases
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From Automata to LTL (II)
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⋆ note that LA(qi) satisfies
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P⊆P

𝜒P ∧ X (𝛿(qi, P)[qi/LA(qi), qi+1/LA(qi+1) . . . , qn/LA(qi)])
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From LTL to Automata

the ABAA𝜙 for a PNF formula 𝜙 is given by (Q, 2P , 𝜙, 𝛿, F) where
⋆ Q ≜ {⊤,⊥} ∪ {q𝜓 ∣ 𝜓 occurs as sub-formula in 𝜙}

⋆ the transition function 𝛿 ∶ Q × 2P → B+(Q) is given by
𝛿(⊤, P) ≜ ⊤ 𝛿(⊥, P) ≜ ⊥ 𝛿(qp, P) ≜ {⊤ if p ∈ P

⊥ if p ∉ P
𝛿(q¬p, P) ≜ {⊥ if p ∈ P

⊤ if p ∉ P
𝛿(q𝜓1∧𝜓2 , P) ≜ 𝛿(q𝜓1 , P) ∧ 𝛿(q𝜓2 , P) 𝛿(q𝜓1∨𝜓2 , P) ≜ 𝛿(q𝜓1 , P) ∨ 𝛿(q𝜓2 , P)

𝛿(qX 𝜓, P) ≜ q𝜓
𝛿(q𝜓1U𝜓2 , P) ≜ 𝛿(q𝜓2 , P) ∨ (𝛿(q𝜓1 , P) ∧ q𝜓1U𝜓2)
𝛿(q𝜓1R𝜓2 , P) ≜ 𝛿(q𝜓2 , P) ∧ (𝛿(q𝜓1 , P) ∨ q𝜓1R𝜓2)

⋆ the only final states are⊤ and q𝜓1R𝜓2 ∈ Q

Notes
⋆ A𝜙 is linear in size in ∣𝜙∣
⋆ using the construction for AFAs, this ABA can be transformed to an NBA of size O(2∣𝜙∣)
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Example

⊤

⊥

Σ

Σ

q𝜙 q⋅R⋅

∧

q⋅U⋅
{p, q}{p}
∅,

{q}
∅, {q} {p}{p, q}

∅, {p}
{q}, {p, q}

∧

⊤

⊥

Σ

Σ

P

P ≡ ⊥

Σ

consider 𝜙 = Gp ∧ F q ≡ ((p ∧ ¬p) R p) ∧ ((p ∨ ¬p) U q)

𝛿(qp, P) = {⊤ if p ∈ P
⊥ if p ∉ P

𝛿(q¬p, P) = {⊥ if p ∈ P
⊤ if p ∉ P

𝛿(qp∧¬p, P) = 𝛿(qp, P) ∧ 𝛿(q¬p, P) = ⊤ ∧⊥ ≈ ⊥

𝛿(qp∨¬p, P) = 𝛿(qp, P) ∨ 𝛿(q¬p, P) = ⊥ ∨⊤ ≈ ⊤

𝛿(q(p∧¬p)Rp, P) = 𝛿(p, P) ∧ (𝛿(qp∧¬p, P) ∨ q(p∧¬p)Rp) ≈ {q(p∧¬p)Rp if p ∈ P
⊥ if p ∉ P

𝛿(q(p∨¬p)Uq, P) = 𝛿(q, P) ∨ (𝛿(qp∨¬p, P) ∧ q(p∨¬p)Rq) ≈ {⊤ if q ∈ P
q(p∨¬p)Uq if q ∉ P

𝛿(𝜙, P) = 𝛿(q(p∧¬p)Rp, P) ∧ 𝛿(q(p∨¬p)Uq, P) ≈
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
⊥ if P = ∅
q(p∧¬p)Rp ∧ q(p∨¬p)Uq if P = {p}
⊥ if P = {q}
q(p∧¬p)Rp if P = {p, q}
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Model Checking



Transition Systems (TSs)

⋆ transition systems capture evolution of state based programs etc.

⋆ they can be seen as finite representations of potentially infinitely many program runs

⋆ a transition system (TR) is a tuple S = (S,→, sI, 𝜆) where
1. S is a set of states
2. → ⊆ S × S is a transition relation
3. sI ∈ S is an initial state
4. 𝜆 ∶ S→ 2P a labeling of states by propositions P

⋆ we assume S is total, i.e. every node has a successor: ∀s ∈ S.∃t ∈ S. s→ t

⋆ a run in a total TS is an infinite word w = P0P1P2 . . . such that 𝜆(si) = Pi for an infinite
path

sI = s0 → s1 → s2 → . . .

⋆ L(S) ≜ {w ∣ w is a run in S} is the set of all runs
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LTLModel Checking

We are interested in the following decision problem:
⋆ Given: An TS S = (S,→, sI, 𝜆) and specification as LTL formula 𝜙
⋆ Question: L(S) ⊆ L(𝜙)?

Theorem

The above model checking problem is decidable in time O(∣S∣2) ⋅ 2O(∣𝜙∣)
Proof Outline.

⋆ letA¬𝜙 = (Q, 2P , qI, 𝛿, F) be the NBA with L(¬𝜙) = L(A¬𝜙) of size 2O(∣𝜙∣)
⋆ define the NBA S ⊗A¬𝜙 ≜ (S × Q, {•}, (sI, qI),Δ, S × F) where

Δ((s, q), •) ≜ {(s′, q′) ∣ s→ s′ and q′ ∈ 𝛿(q, 𝜆(s))}
⋆ then L(S) ⊆ L(𝜙) ⇔ L(S) ∩ L(¬𝜙) = ∅ ⇔ L(S ⊗A¬𝜙) = ∅
⋆ emptyness of S ⊗A¬𝜙 is decidable in time linear in ∣S ⊗A¬𝜙∣ ∈ O(∣S∣2) ⋅ 2O(∣𝜙∣)
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LTLModel Checking In Practice

Explicit Model Checking: each automaton node is an individual state
⋆ SPIN model checker: http://spinroot.com/
Symbolic Model Checking: each automaton node represents a set of state, symbolically
⋆ SMVmodel checker: http://www.cs.cmu.edu/~modelcheck/smv.html

they have been successfully applied in industrial contexts (see e.g.
http://spinroot.com/spin/success.html)

Main Challenge
⋆ while real problems have a finite number of states, we deal with an astronmoical
number of cases

⋆ industrial-strength tools such as the ones above generate S ⊗A¬𝜙 on-the-fly and
implement several techniques to combat state-space explosion
– partial order reduction: detects when an ordering of interleavings is irrelevant. E.g., the n!
transitions of n concurrently executing processes is reduced to 1 representative transition,
when ordering irrelevant for property under investigation

– Bounded Model Checking: check that 𝜙 is violated in ≤ k steps
– …

http://spinroot.com/
http://www.cs.cmu.edu/~modelcheck/smv.html
http://spinroot.com/spin/success.html
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Thanks!


