Advanced Logic http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2021/AL/

Martin Avanzini

Summer Semester 2021

Last Lecture

- \star a language $L \subseteq \Sigma^{\omega}$ is ω -regular if $L = \bigcup_{0 \le i \le n} U_i \cdot V_i^{\omega}$ *i* for regular languages *Uⁱ , Vⁱ* (0 ≤ *i* ≤ *n*)
- \star a Büchi Automaton is structurally similar to an NFA, but recognizes words $w\in \Sigma^\infty$ that visit final states infinitely often

Theorem

For recognisable $U \in \Sigma^*$ *and* $V, W \in \Sigma^\omega$ *the following are recognisable:*

- 1. *union V* ∪ *W* 4. ω -iteration U^ω
- 2. *intersection V* ∩ *W*
- 3. *leM-concatenation U* ⋅ *V*

5. *complement V*

Theorem

```
L \in \omegaREG(\Sigma) if and only if L = L(\mathcal{A}) for some NBA \mathcal{A}
```
Theorem

For every MSO formula ϕ there exists an NBA A_{ϕ} s.t. $\hat{L}(\phi) = L(A_{\phi})$.

Today's Lecture

- 1. Linear temporal logic (LTL)
- 2. LTL model checking

Linear temporal logic

Motivation

 \star linear temporal logic is a logic for reasoning about events in time

 \star LTL shares algorithmic solutions with MSO

 \star the set of LTL formulas over propositions $P = \{p, q, ...\}$ is given by

 $\phi, \psi ::= p \left| \phi \vee \psi \right| \neg \phi$ *(Propositional Formulas)* $| \times \phi |_{\phi} \cup \psi$ *(Next and Until)*

 \star the set of LTL formulas over propositions $P = \{p, q, \dots\}$ is given by

 $\phi, \psi ::= p \mid \phi \lor \psi \mid \neg \phi$ (Propositional Formulas) $\begin{array}{|c|c|c|c|}\n1 & \times & \phi & | & \phi & \cup & \psi \\
\end{array}$ (Next and Until)

 $\,\star\,$ LTL is a logic of temporal sequences, modeled as infinite words over $\Sigma \triangleq 2^\nu$

 \star the set of LTL formulas over propositions $P = \{p, q, ...\}$ is given by

b, $\psi ::= p \mid \phi \lor \psi \mid \neg \phi$ (Propositional Formulas) $\begin{array}{|c|c|c|}\n\hline\n8 \times \phi & \phi \cup \psi & \text{(Next and Until)}\n\end{array}$

- $\,\star\,$ LTL is a logic of temporal sequences, modeled as infinite words over $\Sigma \triangleq 2^\nu$
- ★ for a sentence ϕ and $w = P_0P_1P_2...$, we define $w \models \phi$ as $w: 0 \models \phi$ where

 $w; i \models p$ $\iff p \in P_i$ *w*: *i* ⊨ *ø* ∨ *ψ* :⇔ *w*: *i* ⊨ *ø* or *w*: *i* ⊨ *w w*; *i* ⊨ $\neg \phi$:⇔ *w*; *i* ⊭ ϕ *w*, $i \models X \phi$:⇔ *w*; $i + 1 \models \phi$ *w*; $i \models \phi \cup \psi$:⇔ exists $k \ge i$ s.t. *w*; $k \models \phi$ and $w; j \models \psi$ for all $i \leq j \leq k$

 \star the set of LTL formulas over propositions $P = \{p, q, ...\}$ is given by

b, $\psi ::= p \mid \phi \lor \psi \mid \neg \phi$ (Propositional Formulas) $| \times \phi |_{\phi} \cup \psi$ *(Next and Until)*

- $\,\star\,$ LTL is a logic of temporal sequences, modeled as infinite words over $\Sigma \triangleq 2^\nu$
- ★ for a sentence ϕ and $w = P_0P_1P_2...$, we define $w \models \phi$ as $w: 0 \models \phi$ where

 \star F ϕ , G ϕ and X ϕ are sometimes denoted by $\diamond \phi$, $\Box \phi$ and $\diamond \phi$, respectively

- ★ F ϕ , G ϕ and X ϕ are sometimes denoted by $\diamond \phi$, $\Box \phi$ and $\diamond \phi$, respectively
- \star a formula ϕ is in positive normal form (PNF) if it is derived from the following grammar:

$$
\phi, \psi ::= p \mid \neg p \mid \phi \land \psi \mid \phi \lor \psi \mid X\phi \mid \phi \cup \psi \mid \phi \mathsf{R} \psi
$$

– negation only in front of literals

- \star F ϕ . G ϕ and X ϕ are sometimes denoted by $\diamond \phi$. $\Box \phi$ and ∘ ϕ , respectively
- \star a formula ϕ is in positive normal form (PNF) if it is derived from the following grammar:

$$
\phi, \psi ::= p \mid \neg p \mid \phi \land \psi \mid \phi \lor \psi \mid X\phi \mid \phi \cup \psi \mid \phi \mathsf{R} \psi
$$

– negation only in front of literals

Lemma

Every formula ϕ can be turned into an equivalent formula ψ in PNF with $|\psi| \leq 2|\phi|$

Safety = something bad never happens = $G - \phi_{bad}$

Safety = something bad never happens = $G - \phi_{bad}$

Example

- \star a ... A train is approaching
- \star c ... A train is crossing
- \star l ...The light is blinking
- \star b ...The barrier is down

Safety = something bad never happens = $G - \phi_{bad}$

Example

- \star a ... A train is approaching
- \star c ... A train is crossing
- \star l ...The light is blinking
- \star b ...The barrier is down
- \star when a train is crossing, the barrier is down:

Safety = something bad never happens = $G - \phi_{had}$

Example

- \star a ... A train is approaching
- \star c ... A train is crossing
- \star l ...The light is blinking
- \star b The barrier is down
- \star when a train is crossing, the barrier is down:

 $G(c \rightarrow b) \equiv G$ \neg $(c \land \neg b)$

Safety = something bad never happens = $G - \phi_{bad}$

Example

- \star a ... A train is approaching
- \star c ... A train is crossing
- \star l ...The light is blinking
- \star b ...The barrier is down
- \star when a train is crossing, the barrier is down:

 $G(c \rightarrow b) \equiv G$ \neg $(c \land \neg b)$

 \star if a train is approaching or crossing, the light must be blinking:

Safety = something bad never happens = $G - \phi_{bad}$

Example

- \star a ... A train is approaching
- \star c ... A train is crossing
- \star l ...The light is blinking
- \star b. The barrier is down
- \star when a train is crossing, the barrier is down:

 $G(c \rightarrow b) \equiv G$ \neg $(c \land \neg b)$

 \star if a train is approaching or crossing, the light must be blinking:

 $G (a \vee c \rightarrow b) \equiv G - ((a \vee c) \wedge -1)$

Safety = something bad never happens = $G - \phi_{had}$

Example

- \star a ... A train is approaching
- \star c ... A train is crossing
- \star l ...The light is blinking
- \star b The barrier is down
- \star when a train is crossing, the barrier is down:

 $G(c \rightarrow b) \equiv G$ \neg $(c \land \neg b)$

 \star if a train is approaching or crossing, the light must be blinking:

 $G (a \vee c \rightarrow b) \equiv G$ \neg $((a \vee c) \wedge \neg l)$

 \star if the barrier is up and the light is off, no train is approaching or crossing:

Safety = something bad never happens = $G - \phi_{bad}$

Example

- \star a ...A train is approaching
- \star c ... A train is crossing
- \star l ...The light is blinking
- \star b The barrier is down
- \star when a train is crossing, the barrier is down:

 $G(c \rightarrow b) \equiv G$ \neg $(c \land \neg b)$

 \star if a train is approaching or crossing, the light must be blinking:

 $G (a \vee c \rightarrow b) \equiv G \neg ((a \vee c) \wedge \neg l)$

 \star if the barrier is up and the light is off, no train is approaching or crossing:

 $G(\neg b \land \neg l \rightarrow \neg a \land \neg c) \equiv G \neg (\neg b \land \neg l \land (a \lor c))$

Liveness = something intiated eventually terminates = $G(\phi_{init} \rightarrow F \phi_{term})$

Liveness = something intiated eventually terminates = $G(\phi_{init} \rightarrow F \phi_{term})$

 \star approaching trains eventually cross:

Liveness = something intiated eventually terminates = $G(\phi_{init} \rightarrow F \phi_{term})$

 \star approaching trains eventually cross:

 $G (a \rightarrow F c)$

Liveness = something intiated eventually terminates = $G(\phi_{init} \rightarrow F \phi_{term})$

 \star approaching trains eventually cross:

 $G (a \rightarrow F c)$

 \star when a train is approaching, the barrier is down before it crosses:

Liveness = something intiated eventually terminates = $G(\phi_{init} \rightarrow F \phi_{term})$

 \star approaching trains eventually cross:

 $G (a \rightarrow F c)$

 \star when a train is approaching, the barrier is down before it crosses:

 $G (a \rightarrow \neg c \cup b)$

Liveness = something intiated eventually terminates = $G(\phi_{init} \rightarrow F \phi_{term})$

 \star approaching trains eventually cross:

 $G (a \rightarrow F c)$

 \star when a train is approaching, the barrier is down before it crosses:

 $G (a \rightarrow \neg c \cup b)$

 \star if a train finished crossing, the barrier will be eventually risen

Liveness = something intiated eventually terminates = $G(\phi_{init} \rightarrow F \phi_{term})$

 \star approaching trains eventually cross:

 $G (a \rightarrow F c)$

 \star when a train is approaching, the barrier is down before it crosses:

 $G (a \rightarrow \neg c \cup b)$

 \star if a train finished crossing, the barrier will be eventually risen

 $G(c \wedge X \neg c \rightarrow XF \neg b)$

Characterising LTL

- ⋆ LTL can be "expressed" within MSO ≡ Büchi Automata
- \star MSO and Büchi Automata are strictly more expressive

LTL recognisability $< \omega$ -regular

- \star LTL most naturally translated to alternating Büchi Automata (ABA)
- \star loop-free (very weak) ABA characterise precisely the class of LTL recognisable languages

Characterising LTL

- ⋆ LTL can be "expressed" within MSO ≡ Büchi Automata
- \star MSO and Büchi Automata are strictly more expressive

LTL recognisability $< \omega$ -regular

- \star LTL most naturally translated to alternating Büchi Automata (ABA)
- \star loop-free (very weak) ABA characterise precisely the class of LTL recognisable languages

Example

the Büchi Automaton *A* over $P = \{p, q\}$ given by

is not loop-free \Rightarrow L(\angle A) not expressible in LTL

(Very Weak) Alternating Büchi Automata

- \star an alternating Büchi Automaton (ABA) is a tuple $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ identical to an AFA
- \star execution on words $w \in \Sigma^\omega$ are now infinite tree T_w
- \star an execution is accepting in the sense of Büchi: every path visits F infinitely often
- ★ L(\mathcal{A}) \triangleq { $w \in \Sigma^{\omega}$ | there exist an accepting execution T_w for w }

(Very Weak) Alternating Büchi Automata

- \star an alternating Büchi Automaton (ABA) is a tuple $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ identical to an AFA
- \star execution on words $w \in \Sigma^\omega$ are now infinite tree T_w
- \star an execution is accepting in the sense of Büchi: every path visits F infinitely often
- ★ L(\mathcal{A}) \triangleq { $w \in \Sigma^{\omega}$ | there exist an accepting execution T_w for w }
- \star very weak ABA (VWABA) is an ABA if for every $a \in \Sigma$, $\stackrel{a}{\longrightarrow} \ \subseteq \ \leq$ for some linear order ≤ ⊆ *Q* × *Q*

(Very Weak) Alternating Büchi Automata

- \star an alternating Büchi Automaton (ABA) is a tuple $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ identical to an AFA
- \star execution on words $w \in \Sigma^\omega$ are now infinite tree T_w
- \star an execution is accepting in the sense of Büchi: every path visits F infinitely often
- ★ L(\mathcal{A}) \triangleq { $w \in \Sigma^{\omega}$ | there exist an accepting execution T_w for w }
- \star very weak ABA (VWABA) is an ABA if for every $a \in \Sigma$, $\stackrel{a}{\longrightarrow} \ \subseteq \ \leq$ for some linear order ≤ ⊆ *Q* × *Q*

Example

LTL and Automata

Theorem

Let L be a language over Σ = 2 *P . The following are equivalent:*

- ⋆ *L is LTL definable.*
- ⋆ *L is recognizable by VWABA.*

fix a VWABA $A = (\{q_0, \ldots, q_n\}, Z^P, q_0, \delta, F)$ where wlog. $q_0 > q_1 > \cdots > q_n$

fix a VWABA $A = (\{q_0, \ldots, q_n\}, Z^P, q_0, \delta, F)$ where wlog. $q_0 > q_1 > \cdots > q_n$

★ since A is very weak, there are transitions from q_i to q_i only if $i \geq j$

fix a VWABA $A = (\{q_0, \ldots, q_n\}, Z^P, q_0, \delta, F)$ where wlog. $q_0 > q_1 > \cdots > q_n$

- ★ since A is very weak, there are transitions from q_i to q_j only if $i \ge j$
- \star we now associate each state q_i with a formula ϕ_i s.t.

 $L(\phi_i) = L_A(q_i)$

fix a VWABA $A = (\{q_0, \ldots, q_n\}, Z^P, q_0, \delta, F)$ where wlog. $q_0 > q_1 > \cdots > q_n$

- ★ since A is very weak, there are transitions from q_i to q_j only if $i \ge j$
- \star we now associate each state q_i with a formula ϕ_i s.t.

 $L(\phi_i) = L_A(q_i)$

 $\,\star\,$ this can be done inductively: while construction ϕ_i , we already have suitable formulas *j* for *i* > *j*

fix a VWABA $A = (\{q_0, \ldots, q_n\}, Z^P, q_0, \delta, F)$ where wlog. $q_0 > q_1 > \cdots > q_n$

- ⋆ since *A* is very weak, there are transitions from *qⁱ* to *q^j* only if *i* ≥ *j*
- \star we now associate each state q_i with a formula ϕ_i s.t.

 $L(\phi_i) = L_A(q_i)$

- $\,\star\,$ this can be done inductively: while construction ϕ_i , we already have suitable formulas *j* for *i* > *j*
- ⋆ for propositions *P* ⊆ *P*, the construction uses the characteristic function

$$
\chi_{P} \triangleq \left(\bigwedge_{p \in P} p\right) \wedge \left(\bigwedge_{p \notin P} \neg p\right)
$$

$$
\mathbf{\acute{L}}_{\mathbf{\acute{m}}}\mathbf{\acute{u}}_{\mathbf{\acute{e}t}}\mathbf{\acute{d}}_{\mathbf{\acute{e}t}}\math
$$

fix a VWABA $A = (\{q_0, \ldots, q_n\}, Z^P, q_0, \delta, F)$ where wlog. $q_0 > q_1 > \cdots > q_n$

- ⋆ since *A* is very weak, there are transitions from *qⁱ* to *q^j* only if *i* ≥ *j*
- \star we now associate each state q_i with a formula ϕ_i s.t.

 $L(\phi_i) = L_A(q_i)$

- $\,\star\,$ this can be done inductively: while construction ϕ_i , we already have suitable formulas *j* for *i* > *j*
- ⋆ for propositions *P* ⊆ *P*, the construction uses the characteristic function

$$
\chi_{P} \triangleq \left(\bigwedge_{p \in P} p\right) \wedge \left(\bigwedge_{p \notin P} \neg p\right)
$$

 \star the construction differs whether the state is final, we thus consider two cases

From Automata to LTL (II)

fix a VWABA $A = (\{q_0, \ldots, q_n\}, Z^P, q_0, \delta, F)$ where wlog. $q_0 > q_1 > \cdots > q_n$

 \star note that L_A(q_i) satisfies

 $L_{\mathcal{A}}(q_i) \equiv \bigvee \chi_P \wedge X(\delta(q_i, P) [q_i/L_{\mathcal{A}}(q_i), q_{i+1}/L_{\mathcal{A}}(q_{i+1}), \ldots, q_n/L_{\mathcal{A}}(q_i)]\big)$ *P*⊆*P*

★ if $q_i \notin F$ then we rewrite $L_A(q_i)$ as $\psi \vee (\rho \wedge \chi L_A(q_i))$ and set

<i>i \triangleq *o* U *ili*

★ if $q_i \in F$ then we rewrite $L_A(q_i)$ as $\psi \wedge (\rho \vee \mathsf{XL}_A(q_i))$ and set

 $\phi_i \triangleq G \psi \vee (\psi \cup (\rho \wedge \psi))$

the ABA \mathcal{A}_{ϕ} for a PNF formula ϕ is given by $(\mathcal{Q},\mathsf{2}^{\mathcal{P}},\phi,\delta,\mathsf{F})$ where **★** $Q \triangleq \{T, \perp\} \cup \{q_{\psi} | \psi$ occurs as sub-formula in $\phi\}$

- the ABA \mathcal{A}_{ϕ} for a PNF formula ϕ is given by $(\mathcal{Q},\mathsf{2}^{\mathcal{P}},\phi,\delta,\mathsf{F})$ where
- **★** $Q \triangleq \{T, \perp\} \cup \{q_{\psi} | \psi \text{ occurs as sub-formula in } \phi\}$
- ★ the transition function $\delta: Q \times 2^{\mathcal{P}} \to \mathbb{B}^+(Q)$ is given by

$$
\delta(\top, P) \triangleq \top \quad \delta(\bot, P) \triangleq \bot \quad \delta(q_p, P) \triangleq \begin{cases} \top & \text{if } p \in P \\ \bot & \text{if } p \notin P \end{cases} \quad \delta(q_{\neg p}, P) \triangleq \begin{cases} \bot & \text{if } p \in P \\ \top & \text{if } p \notin P \end{cases} \\ \delta(q_{\psi_1 \land \psi_2}, P) \triangleq \delta(q_{\psi_1}, P) \land \delta(q_{\psi_2}, P) \end{cases}
$$

$$
\delta(q_{\chi\psi}, P) \triangleq q_{\psi}
$$
\n
$$
\delta(q_{\psi_1 \cup \psi_2}, P) \triangleq \delta(q_{\psi_2}, P) \vee (\delta(q_{\psi_1}, P) \wedge q_{\psi_1 \cup \psi_2})
$$
\n
$$
\delta(q_{\psi_1 \cap \psi_2}, P) \triangleq \delta(q_{\psi_2}, P) \wedge (\delta(q_{\psi_1}, P) \vee q_{\psi_1 \cap \psi_2})
$$

- the ABA \mathcal{A}_{ϕ} for a PNF formula ϕ is given by $(\mathcal{Q},\mathsf{2}^{\mathcal{P}},\phi,\delta,\mathsf{F})$ where
- **★** $Q \triangleq \{T, \perp\} \cup \{q_{\psi} \mid \psi \text{ occurs as sub-formula in } \phi\}$
- ★ the transition function $\delta: Q \times 2^{\mathcal{P}} \to \mathbb{B}^+(Q)$ is given by

$$
\delta(\top, P) \triangleq \top \quad \delta(\bot, P) \triangleq \bot \quad \delta(q_p, P) \triangleq \begin{cases} \top & \text{if } p \in P \\ \bot & \text{if } p \notin P \end{cases} \quad \delta(q_{\neg p}, P) \triangleq \begin{cases} \bot & \text{if } p \in P \\ \top & \text{if } p \notin P \end{cases} \\ \delta(q_{\psi_1 \land \psi_2}, P) \triangleq \delta(q_{\psi_1}, P) \land \delta(q_{\psi_2}, P) \end{cases}
$$

$$
\delta(q_{\chi\psi}, P) \triangleq q_{\psi}
$$
\n
$$
\delta(q_{\psi_1 \cup \psi_2}, P) \triangleq \delta(q_{\psi_2}, P) \vee (\delta(q_{\psi_1}, P) \wedge q_{\psi_1 \cup \psi_2})
$$
\n
$$
\delta(q_{\psi_1 \cap \psi_2}, P) \triangleq \delta(q_{\psi_2}, P) \wedge (\delta(q_{\psi_1}, P) \vee q_{\psi_1 \cap \psi_2})
$$

⋆ the only final states are ⊤ and *q*1R² ∈ *Q*

- the ABA \mathcal{A}_{ϕ} for a PNF formula ϕ is given by $(\mathcal{Q},\mathsf{2}^{\mathcal{P}},\phi,\delta,\mathsf{F})$ where
- **★** $Q \triangleq \{T, \perp\} \cup \{q_{\psi} \mid \psi \text{ occurs as sub-formula in } \phi\}$
- ★ the transition function $\delta: Q \times 2^{\mathcal{P}} \to \mathbb{B}^+(Q)$ is given by

$$
\delta(\top, P) \triangleq \top \quad \delta(\bot, P) \triangleq \bot \quad \delta(q_p, P) \triangleq \begin{cases} \top & \text{if } p \in P \\ \bot & \text{if } p \notin P \end{cases} \quad \delta(q_{\neg p}, P) \triangleq \begin{cases} \bot & \text{if } p \in P \\ \top & \text{if } p \notin P \end{cases} \\ \delta(q_{\psi_1 \land \psi_2}, P) \triangleq \delta(q_{\psi_1}, P) \land \delta(q_{\psi_2}, P) \quad \delta(q_{\psi_1 \lor \psi_2}, P) \triangleq \delta(q_{\psi_1}, P) \lor \delta(q_{\psi_2}, P)
$$

$$
\delta(q_{\chi\psi}, P) \triangleq q_{\psi}
$$

\n
$$
\delta(q_{\psi_1 \cup \psi_2}, P) \triangleq \delta(q_{\psi_2}, P) \vee (\delta(q_{\psi_1}, P) \wedge q_{\psi_1 \cup \psi_2})
$$

\n
$$
\delta(q_{\psi_1 \cap \psi_2}, P) \triangleq \delta(q_{\psi_2}, P) \wedge (\delta(q_{\psi_1}, P) \vee q_{\psi_1 \cap \psi_2})
$$

⋆ the only final states are ⊤ and *q*1R² ∈ *Q*

Notes

 \star *A* $_{\phi}$ is linear in size in $|\phi|$

 \star using the construction for AFAs, this ABA can be transformed to an NBA of size $0(2^{|\phi|})$

consider $\phi = Gp \land Fq \equiv ((p \land \neg p) \land p) \land ((p \lor \neg p) \cup q)$

consider $\phi = Gp \land Fq \equiv ((p \land \neg p) \land p) \land ((p \lor \neg p) \cup q)$ $\delta(q_p, P) = \{$ ⊤ if *p* ∈ *P* ⊥ if *p* ∉ *P*

$$
\delta(q_{\neg p}, P) = \begin{cases} \bot & \text{if } p \in P \\ \top & \text{if } p \notin P \end{cases}
$$

consider $\phi = Gp \land Fq \equiv ((p \land \neg p) \land p) \land ((p \lor \neg p) \cup q)$

$$
\delta(q_p, P) = \begin{cases}\n\top & \text{if } p \in P \\
\bot & \text{if } p \notin P\n\end{cases}
$$
\n
$$
\delta(q_{\neg p}, P) = \begin{cases}\n\bot & \text{if } p \in P \\
\top & \text{if } p \notin P\n\end{cases}
$$
\n
$$
\delta(q_{p \land \neg p}, P) = \delta(q_p, P) \land \delta(q_{\neg p}, P) = \top \land \bot \approx \bot
$$
\n
$$
\delta(q_{p \lor \neg p}, P) = \delta(q_p, P) \lor \delta(q_{\neg p}, P) = \bot \lor \top \approx \top
$$

∧ ΣΩ(⊥) (Τ)∏Σ *PP* ≡ ⊥Σ consider $\phi = Gp \land Fq \equiv ((p \land \neg p) \land p) \land ((p \lor \neg p) \cup q)$ $\delta(q_p, P) = \{$ ⊤ if *p* ∈ *P* ⊥ if *p* ∉ *P* $\delta(q_{\neg p}, P) = \{$ ⊥ if *p* ∈ *P* ⊤ if *p* ∉ *P* $\delta(q_{p\wedge \neg p}, P) = \delta(q_p, P) \wedge \delta(q_{\neg p}, P) = \top \wedge \bot \approx \bot$ $\delta(q_{p \vee \neg p}, P) = \delta(q_p, P) \vee \delta(q_{\neg p}, P) = \bot \vee \top \approx \top$ $\delta(q_{(p \wedge \neg p) \mathsf{R} p}, P) = \delta(p, P) \wedge (\delta(q_{p \wedge \neg p}, P) \vee q_{(p \wedge \neg p) \mathsf{R} p}) \approx \Big\}$ $q_{(p \wedge \neg p)Rp}$ if $p \in P$ ⊥ if *p* ∉ *P*

∧ ΣΩ(⊥) (Τ)∏Σ *PP* ≡ ⊥Σ consider $\phi = Gp \land Fq \equiv ((p \land \neg p) \land p) \land ((p \lor \neg p) \cup q)$ $\delta(q_p, P) = \{$ ⊤ if *p* ∈ *P* ⊥ if *p* ∉ *P* $\delta(q_{\neg p}, P) = \{$ ⊥ if *p* ∈ *P* ⊤ if *p* ∉ *P* $\delta(q_{p\wedge \neg p}, P) = \delta(q_p, P) \wedge \delta(q_{\neg p}, P) = \top \wedge \bot \approx \bot$ $\delta(q_{p \vee \neg p}, P) = \delta(q_p, P) \vee \delta(q_{\neg p}, P) = \bot \vee \top \approx \top$ $\delta(q_{(p \wedge \neg p) \mathsf{R} p}, P) = \delta(p, P) \wedge (\delta(q_{p \wedge \neg p}, P) \vee q_{(p \wedge \neg p) \mathsf{R} p}) \approx \Big\}$ $q_{(p \wedge \neg p)Rp}$ if $p \in P$ ⊥ if *p* ∉ *P* $\delta(q_{(p \vee \neg p) \cup q}, P) = \delta(q, P) \vee (\delta(q_{p \vee \neg p}, P) \wedge q_{(p \vee \neg p) \mathsf{R} q}) \approx \left\{$ ⊤ if *q* ∈ *P q*_{(*p*∨¬*p*)∪*q* if *q* ∉ *P*} ()

∧ ⊤ ⊥ Σ Σ *PP* ≡ ⊥ Σ consider $\phi = G p \wedge F q \equiv ((p \wedge \neg p) \mathbb{R} p) \wedge ((p \vee \neg p) \cup q)$ $\delta(q_p, P) = \begin{cases} \top & \text{if } p \in P \\ \bot & \text{if } p \notin P \end{cases}$ ⊥ if *p* ∉ *P* $\delta(q_{\neg p}, P) = \begin{cases} \bot & \text{if } p \in P \\ \top & \text{if } p \notin P \end{cases}$ ⊤ if *p* ∉ *P* $\delta(q_{p\wedge \neg p}, P) = \delta(q_p, P) \wedge \delta(q_{\neg p}, P) = \top \wedge \bot \approx \bot$ $\delta(q_{p\vee\neg p}, P) = \delta(q_p, P) \vee \delta(q_{\neg p}, P) = \bot \vee \top \approx \top$ $\delta(q_{(p \wedge \neg p)Rp}, P) = \delta(p, P) \wedge (\delta(q_{p \wedge \neg p}, P) \vee q_{(p \wedge \neg p)Rp}) \approx \begin{cases} q_{(p \wedge \neg p)Rp} & \text{if } p \in P \\ 1 & \text{if } p \notin P \end{cases}$ ⊥ if *p* ∉ *P* $\delta(q_{(p \vee \neg p) \cup q}, P) = \delta(q, P) \vee (\delta(q_{p \vee \neg p}, P) \wedge q_{(p \vee \neg p) \cap q}) \approx \begin{cases} \top & \text{if } q \in P \\ a_{(p \vee \neg p) \cup q}, & \text{if } q \notin P \end{cases}$ *^q*(*p*∨¬*p*)U*^q* if *^q* [∉] *^P* $\delta(\phi, P) = \delta(q_{(p \wedge \neg p)Rp}, P) \wedge \delta(q_{(p \vee \neg p)Uq}, P) \approx$ ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ ⊥ if *P* = ∅ *q*_{(*p*∧¬*p*)R*p* ∧ *q*_{(*p*∨¬*p*)U*q* if *P* = {*p*}}} ⊥ if *P* = {*q*} $q_{(p \wedge \neg p)Rp}$ in if $P \rightrightarrows \{p, q\}$

Consider
$$
\phi = Gp \land Fq \equiv ((p \land \neg p) \land P) \land ((p \lor \neg p) \lor q) \rightarrow \neg p)
$$

\n
$$
\delta(q_p, P) = \begin{cases} \top & \text{if } p \in P \\ \bot & \text{if } p \notin P \end{cases}
$$
\n
$$
\delta(q_{\neg p}, P) = \begin{cases} \bot & \text{if } p \in P \\ \top & \text{if } p \notin P \end{cases}
$$
\n
$$
\delta(q_{p \land \neg p}, P) = \delta(q_p, P) \land \delta(q_{\neg p}, P) = \top \land \bot \approx \bot
$$
\n
$$
\delta(q_{p \land \neg p}, P) = \delta(q_p, P) \land \delta(q_{\neg p}, P) = \bot \lor \top \approx \top
$$
\n
$$
\delta(q_{(p \land \neg p) \mid Rp}, P) = \delta(p, P) \land (\delta(q_{p \land \neg p}, P) \lor q_{(p \land \neg p) \mid Rp}) \approx \begin{cases} q_{(p \land \neg p) \mid Rp} & \text{if } p \in P \\ \bot & \text{if } p \notin P \end{cases}
$$
\n
$$
\delta(q_{(p \lor \neg p) \mid q}, P) = \delta(q, P) \lor (\delta(q_{p \lor \neg p}, P) \land q_{(p \lor \neg p) \mid Rq}) \approx \begin{cases} \top & \text{if } q \in P \\ q_{(p \lor \neg p) \mid q} & \text{if } q \notin P \end{cases}
$$
\n
$$
\delta(\phi, P) = \delta(q_{(p \land \neg p) \mid Rp}, P) \land \delta(q_{(p \lor \neg p) \mid q}, P) \approx \begin{cases} \bot & \text{if } P = Q \\ q_{(p \land \neg p) \mid Rp} \land q_{(p \lor \neg p) \mid q} & \text{if } P = \{p\} \end{cases}
$$
\n
$$
\begin{cases} \bot & \text{if } P = \{p\} \\ q_{(p \land \neg p) \mid Rp} \land q_{(p \lor \neg p) \mid q} & \text{if } P = \{p\} \end{cases}
$$

Model Checking

- \star transition systems capture evolution of state based programs etc.
- \star they can be seen as finite representations of potentially infinitely many program runs

- \star transition systems capture evolution of state based programs etc.
- \star they can be seen as finite representations of potentially infinitely many program runs
- \star a transition system (TR) is a tuple $S = (S, \rightarrow, s_i, \lambda)$ where
	- 1. *S* is a set of states
	- 2. $\rightarrow \subseteq S \times S$ is a transition relation
	- 3. $s_i \in S$ is an initial state
	- 4. λ : S → 2^P a labeling of states by propositions \mathcal{P}

- \star transition systems capture evolution of state based programs etc.
- \star they can be seen as finite representations of potentially infinitely many program runs
- \star a transition system (TR) is a tuple $S = (S, \rightarrow, s_i, \lambda)$ where
	- 1. *S* is a set of states
	- 2. → ⊆ *S* × *S* is a transition relation
	- 3. s ^{*I*} ∈ *S* is an initial state
	- 4. λ : S → 2^P a labeling of states by propositions \mathcal{P}
- ⋆ we assume *S* is total, i.e. every node has a successor: ∀*s* ∈ *S.*∃*t* ∈ *S. s* → *t*

- \star transition systems capture evolution of state based programs etc.
- \star they can be seen as finite representations of potentially infinitely many program runs
- \star a transition system (TR) is a tuple $S = (S, \rightarrow, s_i, \lambda)$ where
	- 1. *S* is a set of states
	- 2. $\rightarrow \subseteq S \times S$ is a transition relation
	- 3. s ^{*I*} ∈ *S* is an initial state
	- 4. λ : S → 2^P a labeling of states by propositions \mathcal{P}
- ⋆ we assume *S* is total, i.e. every node has a successor: ∀*s* ∈ *S.*∃*t* ∈ *S. s* → *t*
- \star a run in a total TS is an infinite word $w = P_0 P_1 P_2 \dots$ such that $\lambda(s_i) = P_i$ for an infinite path

$$
s_1 = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots
$$

- \star transition systems capture evolution of state based programs etc.
- \star they can be seen as finite representations of potentially infinitely many program runs
- \star a transition system (TR) is a tuple $S = (S, \rightarrow, s_i, \lambda)$ where
	- 1. *S* is a set of states
	- 2. $\rightarrow \subseteq S \times S$ is a transition relation
	- 3. s ^{*I*} ∈ *S* is an initial state
	- 4. λ : S → 2^P a labeling of states by propositions \mathcal{P}
- ⋆ we assume *S* is total, i.e. every node has a successor: ∀*s* ∈ *S.*∃*t* ∈ *S. s* → *t*
- \star a run in a total TS is an infinite word $w = P_0 P_1 P_2 \dots$ such that $\lambda(s_i) = P_i$ for an infinite path

$$
s_1 = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots
$$

⋆ L(*S*) ≜ {*w* ∣ *w* is a run in *S*} is the set of all runs

We are interested in the following decision problem:

- \star Given: An TS $\mathcal{S} = (S, \rightarrow, s_I, \lambda)$ and specification as LTL formula ϕ
- **★** Question: $L(S) \subseteq L(\phi)$?

We are interested in the following decision problem:

- \star Given: An TS $\mathcal{S} = (S, \rightarrow, s_I, \lambda)$ and specification as LTL formula ϕ
- **★** Question: $L(S) \subseteq L(\phi)$?

Theorem

The above model checking problem is decidable in time 0 $(|S|^2) \cdot 2^{O(|\phi|)}$

Proof Outline.

We are interested in the following decision problem:

- \star Given: An TS $\mathcal{S} = (S, \rightarrow, s_I, \lambda)$ and specification as LTL formula ϕ
- **★** Question: $L(S) \subseteq L(\phi)$?

Theorem

The above model checking problem is decidable in time 0 $(|S|^2) \cdot 2^{O(|\phi|)}$

Proof Outline.

$$
\star \ \ \text{let } \mathcal{A}_{\neg \phi} = (Q, 2^{\mathcal{P}}, q_1, \delta, F) \text{ be the NBA with } L(\neg \phi) = L(\mathcal{A}_{\neg \phi}) \text{ of size } 2^{O(|\phi|)}
$$

We are interested in the following decision problem:

- \star Given: An TS $\mathcal{S} = (S, \rightarrow, s_I, \lambda)$ and specification as LTL formula ϕ
- **★** Question: $L(S) \subseteq L(\phi)$?

Theorem

The above model checking problem is decidable in time 0 $(|S|^2) \cdot 2^{O(|\phi|)}$

Proof Outline.

- \star let $A_{\neg \phi} = (Q, z^{\mathcal{P}}, q_{\mathcal{I}}, \delta, F)$ be the NBA with L($\neg \phi$) = L($A_{\neg \phi}$) of size 2^{0(| ϕ |)}
- ★ define the NBA $S \otimes A_{\neg \phi} \triangleq (S \times Q, \{\bullet\}, (s_i, q_i), \Delta, S \times F)$ where

$$
\Delta((s,q),\bullet) \triangleq \{(s',q') \mid s \to s' \text{ and } q' \in \delta(q,\lambda(s))\}
$$

We are interested in the following decision problem:

- \star Given: An TS $\mathcal{S} = (S, \rightarrow, s_I, \lambda)$ and specification as LTL formula ϕ
- **★** Question: $L(S) \subseteq L(\phi)$?

Theorem

The above model checking problem is decidable in time 0 $(|S|^2) \cdot 2^{O(|\phi|)}$

Proof Outline.

- \star let $A_{\neg \phi} = (Q, z^{\mathcal{P}}, q_{\mathcal{I}}, \delta, F)$ be the NBA with L($\neg \phi$) = L($A_{\neg \phi}$) of size 2^{0(| ϕ |)}
- ★ define the NBA $S \otimes A_{\neg \phi} \triangleq (S \times Q, \{\bullet\}, (s_i, q_i), \Delta, S \times F)$ where

$$
\Delta((s,q),\bullet) \triangleq \{(s',q') \mid s \to s' \text{ and } q' \in \delta(q,\lambda(s))\}
$$

 \star then L(*S*) ⊆ L(ϕ) ⇔ L(*S*) ∩ L(¬ ϕ) = ∅ ⇔ L(*S* ⊗ *A*_{¬ ϕ}) = ∅

We are interested in the following decision problem:

- \star Given: An TS $\mathcal{S} = (S, \rightarrow, s_I, \lambda)$ and specification as LTL formula ϕ
- **★** Question: $L(S) \subseteq L(\phi)$?

Theorem

The above model checking problem is decidable in time 0 $(|S|^2) \cdot 2^{O(|\phi|)}$

Proof Outline.

- \star let $A_{\neg \phi} = (Q, z^{\mathcal{P}}, q_{\mathcal{I}}, \delta, F)$ be the NBA with L($\neg \phi$) = L($A_{\neg \phi}$) of size 2^{0(| ϕ |)}
- ★ define the NBA $S \otimes A_{\neg \phi} \triangleq (S \times Q, \{\bullet\}, (s_i, q_i), \Delta, S \times F)$ where

$$
\Delta((s,q),\bullet) \triangleq \{ (s',q') \mid s \to s' \text{ and } q' \in \delta(q,\lambda(s)) \}
$$

 \star then L(*S*) ⊆ L(ϕ) ⇔ L(*S*) ∩ L(¬ ϕ) = ∅ ⇔ L(*S* ⊗ *A*_{¬ ϕ}) = ∅

 \star emptyness of $S\otimes A_{\neg\phi}$ is decidable in time linear in $|S\otimes A_{\neg\phi}|\in$ 0($|S|^2) \cdot 2^{0(|\phi|)}$

Explicit Model Checking: each automaton node is an individual state

⋆ SPIN model checker: http://spinroot.com/

Symbolic Model Checking: each automaton node represents a set of state, symbolically

⋆ SMV model checker: http://www.cs.cmu.edu/~modelcheck/smv.html

Explicit Model Checking: each automaton node is an individual state

⋆ SPIN model checker: http://spinroot.com/

Symbolic Model Checking: each automaton node represents a set of state, symbolically

⋆ SMV model checker: http://www.cs.cmu.edu/~modelcheck/smv.html

they have been successfully applied in industrial contexts (see e.g. http://spinroot.com/spin/success.html)

Explicit Model Checking: each automaton node is an individual state

⋆ SPIN model checker: http://spinroot.com/

Symbolic Model Checking: each automaton node represents a set of state, symbolically

⋆ SMV model checker: http://www.cs.cmu.edu/~modelcheck/smv.html

they have been successfully applied in industrial contexts (see e.g. http://spinroot.com/spin/success.html)

Main Challenge

 \star while real problems have a finite number of states, we deal with an astronmoical number of cases

Explicit Model Checking: each automaton node is an individual state

⋆ SPIN model checker: http://spinroot.com/

Symbolic Model Checking: each automaton node represents a set of state, symbolically

⋆ SMV model checker: http://www.cs.cmu.edu/~modelcheck/smv.html

they have been successfully applied in industrial contexts (see e.g. http://spinroot.com/spin/success.html)

Main Challenge

– …

- \star while real problems have a finite number of states, we deal with an astronmoical number of cases
- \star industrial-strength tools such as the ones above generate *S* ⊗ $\mathcal{A}_{\neg \phi}$ on-the-fly and implement several techniques to combat state-space explosion
	- partial order reduction: detects when an ordering of interleavings is irrelevant. E.g., the *n*! transitions of *n* concurrently executing processes is reduced to 1 representative transition, when ordering irrelevant for property under investigation
	- $−$ Bounded Model Checking: check that ϕ is violated in ≤ *k* steps

Thanks!

