# **Advanced Logic**

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2021/AL/

Martin Avanzini





### **Last Lecture**

\* a bottom-up tree automata (BUTA)  $\mathcal{A}$  is a tuple  $(Q, \Sigma, \delta, F)$  where

$$\delta_{\rm f}:Q^{\rm ar(f)}\to 2^Q$$

\* a top-down tree automata (TDTA)  $\mathcal{A}$  is a tuple  $(Q, \Sigma, q_l, \delta)$  where

$$\delta_{\mathtt{f}}: Q \to 2^{Q^{\mathsf{ar}(\mathtt{f})}}$$

★ an input tree is recognised if nodes can be re-labeled, bottom-up ending in a final state, or top-down from an initial state

#### Theorem

the set of languages recognized by BUTAs, deterministic BUTAs and TDTAs coincide

★ There are languages recognised by TDTAs which are not recognised by deterministic TDTAs

#### Theorem

Emptyness is decidable in linear time; universality and equivalence are decidable (EXPTIME-complete)

# **Today's Lecture**

- ★ infinite words
- ★ regular languages over infinite words
- \* Büchi automata
- ★ Monadic Second-Order Logic on Infinite Words





- $\star$  an infinite word over alphabet  $\Sigma$  is an infinite sequence of letters  $a_0a_1a_2\dots$
- $\star \Sigma^{\omega}$  denotes the set of infinite words over  $\Sigma$



- $\star$  an infinite word over alphabet  $\Sigma$  is an infinite sequence of letters  $a_0a_1a_2\dots$
- $\star \Sigma^{\omega}$  denotes the set of infinite words over  $\Sigma$

#### **Notations**

- $\star$  |w|<sub>a</sub> denotes the number of occurrences of  $a \in \Sigma$  within  $w \in \Sigma^{\omega}$ 
  - note  $|w|_a$  may be infinite
  - in fact,  $|w|_a = \infty$  holds for at least one  $a \in \Sigma$



- $\star$  an infinite word over alphabet  $\Sigma$  is an infinite sequence of letters  $a_0a_1a_2\dots$
- $\star \Sigma^{\omega}$  denotes the set of infinite words over  $\Sigma$

#### **Notations**

- $\star |w|_a$  denotes the number of occurrences of  $a \in \Sigma$  within  $w \in \Sigma^{\omega}$ 
  - note  $|w|_a$  may be infinite
  - in fact,  $|w|_a = \infty$  holds for at least one  $a \in \Sigma$
- \* the left-concatenation of  $u \in \Sigma^*$  and  $v \in \Sigma^{\omega}$ , is denoted by  $u \cdot v \in \Sigma^{\omega}$



\* a language over infinite words is a set  $L \subseteq \Sigma^{\omega}$ 



\* a language over infinite words is a set  $L \subseteq \Sigma^{\omega}$ 

### Operations on Infinite Languages

\* for  $U \subseteq \Sigma^*$  and  $V \subseteq \Sigma^{\omega}$ , the left-concatenation of U and V is given by

$$U \cdot V \triangleq \{u \cdot v \mid u \in U \text{ and } v \in V\}$$



\* a language over infinite words is a set  $L \subseteq \Sigma^{\omega}$ 

### Operations on Infinite Languages

\* for  $U \subseteq \Sigma^*$  and  $V \subseteq \Sigma^{\omega}$ , the left-concatenation of U and V is given by

$$U \cdot V \triangleq \{u \cdot v \mid u \in U \text{ and } v \in V\}$$

★ The complement of  $V \subseteq \Sigma^{\omega}$  is given by  $\overline{V} \triangleq \Sigma^{\omega} \setminus V$ 



\* a language over infinite words is a set  $L \subseteq \Sigma^{\omega}$ 

### Operations on Infinite Languages

\* for  $U \subseteq \Sigma^*$  and  $V \subseteq \Sigma^{\omega}$ , the left-concatenation of U and V is given by

$$U \cdot V \triangleq \{u \cdot v \mid u \in U \text{ and } v \in V\}$$

- ★ The complement of  $V \subseteq \Sigma^{\omega}$  is given by  $\overline{V} \triangleq \Sigma^{\omega} \setminus V$
- ★ the  $\omega$ -iteration of  $U \subseteq \Sigma^*$  is given by

$$U^{\omega} \triangleq \{w_0 \cdot w_1 \cdot w_2 \cdot \cdots \mid w_i \in U \text{ and } w_i \neq \epsilon \text{ for all } i \in \mathbb{N}\}$$



# Generalising the Theory of Regular Languages to Infinite Words

#### Recall...

For a language  $L \in \Sigma^*$ , the following are equivalent:

- 1. L is regular
- 2. L is recognized by an NFA
- 3. L is defined through a wMSO formula



# Generalising the Theory of Regular Languages to Infinite Words

#### Recall...

For a language  $L \in \Sigma^*$ , the following are equivalent:

- 1. *L* is regular
- 2. L is recognized by an NFA
- 3. L is defined through a wMSO formula

#### Outlook...

For a language  $L \in \Sigma^{\omega}$ , the following are equivalent:

- 1. L is  $\omega$ -regular
  - defined next
- 2. L is recognized by a Büchi Automaton
  - a finite automaton with a suitable acceptance condition for infinite words
- 3. L is defined through a MSO formula
  - we drop the requirement on finite models present in wMSO



# Regular Languages over Infinite Words



# $\omega$ -Regular Languages

\* a language  $L \subseteq \Sigma^{\omega}$  is  $\omega$ -regular (or simply regular) if

$$L = \bigcup_{0 \le i \le n} U_i \cdot V_i^{\alpha}$$

for regular languages  $U_i$ ,  $V_i$  ( $0 \le i \le n$ )

\* with  $\omega REG(\Sigma)$  we denote the class of  $\omega$ -regular languages



# $\omega$ -Regular Languages

\* a language  $L \subseteq \Sigma^{\omega}$  is  $\omega$ -regular (or simply regular) if

$$L = \bigcup_{0 \le i \le n} U_i \cdot V_i^{\alpha}$$

for regular languages  $U_i$ ,  $V_i$  ( $0 \le i \le n$ )

\* with  $\omega REG(\Sigma)$  we denote the class of  $\omega$ -regular languages

#### Lemma

 $\omega \textit{REG}(\Sigma)$  is closed under union and left-concatenation with regular languages.



# $\omega$ -Regular Languages

\* a language  $L \subseteq \Sigma^{\omega}$  is  $\omega$ -regular (or simply regular) if

$$L = \bigcup_{0 \le i \le n} U_i \cdot V_i^{\omega}$$

for regular languages  $U_i$ ,  $V_i$  ( $0 \le i \le n$ )

\* with  $\omega REG(\Sigma)$  we denote the class of  $\omega$ -regular languages

#### Lemma

 $\omega \textit{REG}(\Sigma)$  is closed under union and left-concatenation with regular languages.

#### Proof Outline.

- ★ Union is obvious
- ★ concerning left-concatenation  $U \cdot L$  where L is as above

$$U \cdot L = U \cdot \left(\bigcup_{0 \le i \le n} U_i \cdot V_i^{\omega}\right) = \bigcup_{0 \le i \le n} U \cdot \left(U_i \cdot V_i^{\omega}\right) = \bigcup_{0 \le i \le n} \left(U \cdot U_i\right) \cdot V_i^{\omega}$$

Let 
$$\Sigma = \{a, b, c\}$$

★ 
$$L_1 \triangleq \{w \mid |w|_a \neq \infty\}$$
 is regular



Let 
$$\Sigma = \{a, b, c\}$$

★ 
$$L_1 \triangleq \{w \mid |w|_a \neq \infty\}$$
 is regular

$$L_1 = \Sigma^* (b \cup c)^{\omega}$$



Let 
$$\Sigma = \{a, b, c\}$$

★ 
$$L_1 \triangleq \{w \mid |w|_a \neq \infty\}$$
 is regular

★ 
$$L_2 \triangleq \{w \mid |w|_b = \infty\}$$
 is regular

$$L_1 = \Sigma^* (b \cup c)^{\omega}$$



Let 
$$\Sigma = \{a, b, c\}$$

★ 
$$L_1 \triangleq \{w \mid |w|_a \neq \infty\}$$
 is regular

★ 
$$L_2 \triangleq \{w \mid |w|_b = \infty\}$$
 is regular

$$L_1 = \Sigma^* (b \cup c)^{\omega}$$
$$L_2 = (\Sigma^* b)^{\omega} = \epsilon (\Sigma^* b)^{\omega}$$



Let 
$$\Sigma = \{a, b, c\}$$

★ 
$$L_1 \triangleq \{w \mid |w|_a \neq \infty\}$$
 is regular

★ 
$$L_2 \triangleq \{w \mid |w|_b = \infty\}$$
 is regular

\* 
$$L_3 \triangleq \{ w \mid |w|_a \neq \infty \text{ or } |w|_b = \infty \}$$
 is regular

$$L_1 = \Sigma^* (b \cup c)^{\omega}$$

$$L_2 = (\Sigma^* b)^{\omega} = \epsilon (\Sigma^* b)^{\omega}$$



Let 
$$\Sigma = \{a, b, c\}$$

★ 
$$L_1 \triangleq \{w \mid |w|_a \neq \infty\}$$
 is regular

★ 
$$L_2 \triangleq \{w \mid |w|_b = \infty\}$$
 is regular

\* 
$$L_3 \triangleq \{ w \mid |w|_a \neq \infty \text{ or } |w|_b = \infty \} \text{ is regular}$$

$$L_1 = \Sigma^* (b \cup c)^{\omega}$$

$$L_2 = (\Sigma^* b)^{\omega} = \epsilon (\Sigma^* b)^{\omega}$$

$$L_2 = L_1 \cup L_2$$



Let 
$$\Sigma = \{a, b, c\}$$

★ 
$$L_1 \triangleq \{w \mid |w|_a \neq \infty\}$$
 is regular

★ 
$$L_2 \triangleq \{w \mid |w|_b = \infty\}$$
 is regular

★ 
$$L_3 \triangleq \{w \mid |w|_a \neq \infty \text{ or } |w|_b = \infty\} \text{ is regular}$$

★ 
$$L_4 \triangleq \{w \mid |w|_a \neq \infty \text{ and } |w|_b = \infty\}$$
 is regular

$$L_1 = \Sigma^* (b \cup c)^{\omega}$$

$$L_2 = (\Sigma^* b)^{\omega} = \epsilon (\Sigma^* b)^{\omega}$$

$$L_2 = L_1 \cup L_2$$



Let 
$$\Sigma = \{a, b, c\}$$

★ 
$$L_1 \triangleq \{w \mid |w|_a \neq \infty\}$$
 is regular

★ 
$$L_2 \triangleq \{w \mid |w|_b = \infty\}$$
 is regular

★ 
$$L_3 \triangleq \{w \mid |w|_a \neq \infty \text{ or } |w|_b = \infty\} \text{ is regular}$$

★ 
$$L_4 \triangleq \{w \mid |w|_a \neq \infty \text{ and } |w|_b = \infty\}$$
 is regular

$$L_{1} = \Sigma^{*}(b \cup c)^{\omega}$$

$$L_{2} = (\Sigma^{*}b)^{\omega} = \epsilon(\Sigma^{*}b)^{\omega}$$

$$L_{2} = L_{1} \cup L_{2}$$

$$L_{4} = \Sigma^{*}(bc^{*})^{\omega}$$



Let 
$$\Sigma = \{a, b, c\}$$

★ 
$$L_1 \triangleq \{w \mid |w|_a \neq \infty\}$$
 is regular

★ 
$$L_2 \triangleq \{w \mid |w|_b = \infty\}$$
 is regular

★ 
$$L_3 \triangleq \{w \mid |w|_a \neq \infty \text{ or } |w|_b = \infty\} \text{ is regular}$$

★ 
$$L_4 \triangleq \{w \mid |w|_a \neq \infty \text{ and } |w|_b = \infty\}$$
 is regular

★ 
$$L_5 \triangleq \{w^{\omega} \mid w \in \Sigma^n\}$$
 is regular

$$L_{1} = \Sigma^{*}(b \cup c)^{\omega}$$

$$L_{2} = (\Sigma^{*}b)^{\omega} = \epsilon(\Sigma^{*}b)^{\omega}$$

$$L_{2} = L_{1} \cup L_{2}$$

$$L_{4} = \Sigma^{*}(bc^{*})^{\omega}$$



Let 
$$\Sigma = \{a, b, c\}$$

★ 
$$L_1 \triangleq \{w \mid |w|_a \neq \infty\}$$
 is regular

★ 
$$L_2 \triangleq \{w \mid |w|_b = \infty\}$$
 is regular

★ 
$$L_3 \triangleq \{w \mid |w|_a \neq \infty \text{ or } |w|_b = \infty\} \text{ is regular}$$

★ 
$$L_4 \triangleq \{w \mid |w|_a \neq \infty \text{ and } |w|_b = \infty\}$$
 is regular

★ 
$$L_5 \triangleq \{w^{\omega} \mid w \in \Sigma^n\}$$
 is regular

$$L_{1} = \Sigma^{*}(b \cup c)^{\omega}$$

$$L_{2} = (\Sigma^{*}b)^{\omega} = \epsilon(\Sigma^{*}b)^{\omega}$$

$$L_{2} = L_{1} \cup L_{2}$$

$$L_{4} = \Sigma^{*}(bc^{*})^{\omega}$$

$$L_{5} = \bigcup_{w \in \Sigma^{n}} \epsilon w^{\omega}$$





- \* A non-deterministic (deterministic) Büchi Automaton  $\mathcal{A}$ , short NBA (DBA), is a tuple  $(Q, \Sigma, q_I, \delta, F)$  identical to an NFA (DFA)
- \* a run on  $w = a_1 a_2 a_3 \dots$  is an infinite sequence

$$\rho: \quad q_1 = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{a_n} \cdots$$



- \* A non-deterministic (deterministic) Büchi Automaton  $\mathcal{A}$ , short NBA (DBA), is a tuple  $(Q, \Sigma, q_I, \delta, F)$  identical to an NFA (DFA)
- \* a run on  $w = a_1 a_2 a_3 \dots$  is an infinite sequence

$$\rho: q_1 = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{a_n} \cdots$$

★ Büchi Condition: a run is accepting if  $Inf(\rho) \cap F \neq \emptyset$ , where

$$\mathsf{Inf}(\rho) \triangleq \{ q \in Q \mid |\rho|_q = \infty \}$$

- a run is accepting if it visits a final state infinitely often



- \* A non-deterministic (deterministic) Büchi Automaton  $\mathcal{A}$ , short NBA (DBA), is a tuple  $(Q, \Sigma, q_I, \delta, F)$  identical to an NFA (DFA)
- \* a run on  $w = a_1 a_2 a_3 \dots$  is an infinite sequence

$$\rho: q_1 = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{a_n} \cdots$$

★ Büchi Condition: a run is accepting if  $Inf(\rho) \cap F \neq \emptyset$ , where

$$\mathsf{Inf}(\rho) \triangleq \{q \in Q \mid |\rho|_q = \infty\}$$

- a run is accepting if it visits a final state infinitely often
- ★ the language recognised by  $\mathcal{A}$  is  $L(\mathcal{A}) \triangleq \{w \in \Sigma^{\omega} \mid w \text{ has an accepting run}\}$



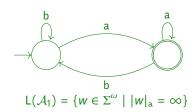
- \* A non-deterministic (deterministic) Büchi Automaton  $\mathcal{A}$ , short NBA (DBA), is a tuple  $(Q, \Sigma, q_I, \delta, F)$  identical to an NFA (DFA)
- \* a run on  $w = a_1 a_2 a_3 \dots$  is an infinite sequence

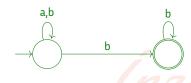
$$\rho: q_1 = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{a_n} \cdots$$

\* Büchi Condition: a run is accepting if  $Inf(\rho) \cap F \neq \emptyset$ , where

$$Inf(\rho) \triangleq \{q \in Q \mid |\rho|_q = \infty\}$$

- a run is accepting if it visits a final state infinitely often
- ★ the language recognised by A is  $L(A) \triangleq \{w \in \Sigma^{\omega} \mid w \text{ has an accepting run}\}$





$$L(A_2) = \{ w \in \Sigma^{\omega} \mid |w|_{a} \neq \infty \}$$
 nonde numério

## **Non-Determinisation**

Theorem

There are NBAs without equivalent DBA.



### **Non-Determinisation**

#### Theorem

There are NBAs without equivalent DBA.

#### Proof Outline.

- \* the NBA  $\mathcal{A}_2$  with  $L(\mathcal{A}_2) = \{ w \in \Sigma^{\omega} \mid |w|_a \neq \infty \}$
- \* it can be shown that  $L(A_2)$  is not recognized by a DBA

ín-

(exercise)

# **Closure Properties on NBAs**

#### Theorem

For recognisable  $U \in \Sigma^*$  and  $V, W \in \Sigma^{\omega}$  the following are recognisable:

union V ∪ W
 intersection V ∩ W

4.  $\omega$ -iteration  $U^{\omega}$ 

3. left-concatenation  $U \cdot V$ 

5. complement  $\overline{V}$ 

### Proof Outline.

★ (1) and (3). Identical to NFA construction

# **Closure Properties on NBAs**

#### Theorem

For recognisable  $U \in \Sigma^*$  and  $V, W \in \Sigma^{\omega}$  the following are recognisable:

1. union  $V \cup W$ 

4.  $\omega$ -iteration  $U^{\omega}$ 

2. intersection  $V \cap W$ 

5. complement  $\overline{V}$ 

3. left-concatenation  $U \cdot V$ 

#### Proof Outline.

- \* (1) and (3). Identical to NFA construction
- ★ (2) Similar to NFA case. For Büchi condition, keep additional counter mod 2

$$\rho: \begin{pmatrix} \bigcirc \\ \bigcirc \\ 0 \end{pmatrix} \xrightarrow{\mathbf{a}_1} \cdots \begin{pmatrix} \bigcirc \\ \bigcirc \\ 1 \end{pmatrix} \xrightarrow{\mathbf{a}_{\mathbf{i}_1}} \cdots \underbrace{\begin{pmatrix} \bigcirc \\ \bigcirc \\ \bigcirc \\ \mathbf{2} \end{pmatrix}} \xrightarrow{\mathbf{a}_{\mathbf{i}_2}} \begin{pmatrix} \bigcirc \\ \bigcirc \\ \mathbf{0} \end{pmatrix} \xrightarrow{\mathbf{a}_{\mathbf{i}_2+1}} \cdots$$

# **Closure Properties on NBAs**

### Theorem

For recognisable  $U \in \Sigma^*$  and  $V, W \in \Sigma^{\omega}$  the following are recognisable:

- 1. union  $V \cup W$  4.  $\omega$ -iteration  $U^{\omega}$
- 2. intersection  $V \cap W$  5. complement  $\overline{V}$
- 3. left-concatenation  $U \cdot V$

### Proof Outline.

- ★ (1) and (3). Identical to NFA construction
- ★ (2) Similar to NFA case. For Büchi condition, keep additional counter mod 2

$$\rho: \begin{pmatrix} \bigcirc \\ \bigcirc \\ \mathbf{0} \end{pmatrix} \xrightarrow{\mathbf{a}_1} \cdots \begin{pmatrix} \bigcirc \\ \bigcirc \\ \mathbf{1} \end{pmatrix} \xrightarrow{\mathbf{a}_{i_1}} \cdots \begin{pmatrix} \bigcirc \\ \bigcirc \\ \mathbf{2} \end{pmatrix} \xrightarrow{\mathbf{a}_{i_2}} \begin{pmatrix} \bigcirc \\ \bigcirc \\ \mathbf{0} \end{pmatrix} \xrightarrow{\mathbf{a}_{i_2+1}} \cdots$$

- ★ (4) exercise
- ★ (5) non-trivial, see next

### Theorem

 $L \in \omega REG(\Sigma)$  if and only if L = L(A) for some NBA A

### Proof Outline.

★ ⇒: consequence of closure properties

### Theorem

$$L \in \omega REG(\Sigma)$$
 if and only if  $L = L(A)$  for some NBA  $A$ 

### Proof Outline.

- ★ ⇒: consequence of closure properties
- ★ ⇐:
  - for finite word  $w = a_1, \ldots, a_n$  define

$$p \xrightarrow{w} q :\Leftrightarrow p \xrightarrow{a_1} \cdots \xrightarrow{a_n} q \text{ and } L_{p,q} \triangleq \{w \mid p \xrightarrow{w} q\}$$

### Theorem

 $L \in \omega REG(\Sigma)$  if and only if L = L(A) for some NBA A

### Proof Outline.

- **★** ⇒: consequence of closure properties
- ★ <=:
  - for finite word  $w = a_1, \ldots, a_n$  define

$$p \xrightarrow{w} q :\Leftrightarrow p \xrightarrow{a_1} \cdots \xrightarrow{a_n} q \text{ and } L_{p,q} \triangleq \{w \mid p \xrightarrow{w} q\}$$

 $-L_{p,q}$  is regular: the sub-automaton of A with initial state p and final state q recognises it

### Theorem

$$L \in \omega REG(\Sigma)$$
 if and only if  $L = L(A)$  for some NBA  $A$ 

### Proof Outline.

- ★ ⇒: consequence of closure properties
- ★ <=:
  - for finite word  $w = a_1, \ldots, a_n$  define

$$p \xrightarrow{w} q : \Leftrightarrow p \xrightarrow{a_1} \cdots \xrightarrow{a_n} q \text{ and } L_{p,q} \triangleq \{w \mid p \xrightarrow{w} q\}$$

- $L_{p,q}$  is regular: the sub-automaton of A with initial state p and final state q recognises it
- $w \in L(A)$  if and only if a run on w traverses some  $q \in F$  infinitely often

$$w \in L(A) \iff \exists q \in F. \ w = u \cdot v^{\omega} \text{ for some } u \in L_{q_1,q} \text{ and } v \in L_{q,q}^{\omega}$$

### Theorem

 $L \in \omega REG(\Sigma)$  if and only if L = L(A) for some NBA A

### Proof Outline.

- ★ ⇒: consequence of closure properties
- ★ ⇐:
  - for finite word  $w = a_1, \ldots, a_n$  define

$$p \xrightarrow{w} q : \iff p \xrightarrow{a_1} \cdots \xrightarrow{a_n} q \text{ and } L_{p,q} \triangleq \{w \mid p \xrightarrow{w} q\}$$

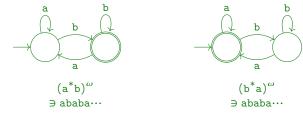
- $L_{p,q}$  is regular: the sub-automaton of A with initial state p and final state q recognises it
- $w \in L(A)$  if and only if a run on w traverses some  $q \in F$  infinitely often

$$w \in L(A) \Leftrightarrow \exists q \in F. \ w = u \cdot v^{\omega} \text{ for some } u \in L_{q_i,q} \text{ and } v \in L_{q,q}^{\omega}$$

hence

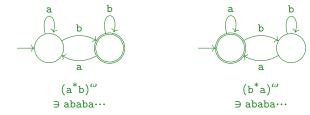
$$L(\mathcal{A}) = \bigcup_{q \in F} L_{q_i, q} \cdot L_{q, q}^{\omega} \in \omega REG(\Sigma)$$

even for DBAs, unlike for NFAs, complementation is non-trivial





even for DBAs, unlike for NFAs, complementation is non-trivial



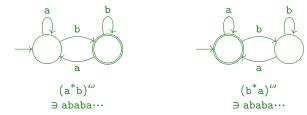
Idea

 $\star$  find a finite partition P of  $\Sigma^*$  of regular languages such that

(i) either 
$$U \cdot V^{\omega} \subseteq L(\mathcal{A})$$
 or  $U \cdot V^{\omega} \subseteq \overline{L(\mathcal{A})}$  for  $U, V \in P$  (ii)  $\Sigma^{\omega} = \bigcup_{U, V \in P} U \cdot V^{\omega}$ 



even for DBAs, unlike for NFAs, complementation is non-trivial



Idea

 $\star$  find a finite partition *P* of  $\Sigma^*$  of regular languages such that

(i) either 
$$U \cdot V^{\omega} \subseteq L(A)$$
 or  $U \cdot V^{\omega} \subseteq \overline{L(A)}$  for  $U, V \in P$  (ii)  $\Sigma^{\omega} = \bigcup_{U, V \in P} U \cdot V^{\omega}$ 

★ hence

$$\overline{\mathsf{L}(\mathcal{A})} \stackrel{(ii)}{=} \Big( \bigcup_{U,V \in P} U \cdot V^{\omega} \Big) \setminus \mathsf{L}(\mathcal{A}) \stackrel{(i)}{=} \bigcup_{U,V \in P} U \cdot V^{\omega}$$

$$U,V \in P$$

$$U \cdot V^{\omega} \cap \mathsf{L}(\mathcal{A}) = \emptyset$$

inventeurs du monde numérique

\* define  $p \xrightarrow{w}_{fin} q :\Leftrightarrow p \xrightarrow{u} q_f \xrightarrow{v} q$  for some  $q_f \in F$  and  $u \cdot v = w$ 



- \* define  $p \xrightarrow{w}_{fin} q :\Leftrightarrow p \xrightarrow{u} q_f \xrightarrow{v} q$  for some  $q_f \in F$  and  $u \cdot v = w$
- \*  $u \sim v : \Leftrightarrow \forall p.q \in Q. (p \xrightarrow{u} q \iff p \xrightarrow{v} q)$  and  $(p \xrightarrow{u}_{fin} q \iff p \xrightarrow{v}_{fin} q)$  defines an equivalence on  $\Sigma^*$
- $\star$  if  $u \sim v$  then u and v are "indistinguishable" by the considered NBA

### Lemma

For every  $w \in \Sigma^*$ ,  $[w]_{\sim}$  is regular.



- \* define  $p \xrightarrow{w}_{fin} q :\Leftrightarrow p \xrightarrow{u} q_f \xrightarrow{v} q$  for some  $q_f \in F$  and  $u \cdot v = w$
- \*  $u \sim v : \iff \forall p.q \in Q. \ (p \xrightarrow{u} q \iff p \xrightarrow{v} q) \ \text{and} \ (p \xrightarrow{u}_{\text{fin}} q \iff p \xrightarrow{v}_{\text{fin}} q) \ \text{defines an}$  equivalence on  $\Sigma^*$
- \* if  $u \sim v$  then u and v are "indistinguishable" by the considered NBA

### Lemma

For every  $w \in \Sigma^*$ ,  $[w]_{\sim}$  is regular.

### Proof Outline.

Reformulating the definition,  $[w]_{\sim} = \left(\bigcap_{p \xrightarrow{w} q} \{u \mid p \xrightarrow{u} q\}\right) \cap \left(\bigcap_{p \xrightarrow{w} \text{fin } q} \{u \mid p \xrightarrow{u} \text{fin } q\}\right)$ 



- \* define  $p \xrightarrow{w}_{fin} q :\Leftrightarrow p \xrightarrow{u} q_f \xrightarrow{v} q$  for some  $q_f \in F$  and  $u \cdot v = w$
- \*  $u \sim v : \iff \forall p.q \in Q. \ (p \xrightarrow{u} q \iff p \xrightarrow{v} q) \ \text{and} \ (p \xrightarrow{u}_{\text{fin}} q \iff p \xrightarrow{v}_{\text{fin}} q) \ \text{defines an}$  equivalence on  $\Sigma^*$
- $\star$  if  $u \sim v$  then u and v are "indistinguishable" by the considered NBA

### Lemma

For every  $w \in \Sigma^*$ ,  $[w]_{\sim}$  is regular.

### Proof Outline.

Reformulating the definition,  $[w]_{\sim} = \left(\bigcap_{p \xrightarrow{w} q} \{u \mid p \xrightarrow{u} q\}\right) \cap \left(\bigcap_{p \xrightarrow{w} \text{fin } q} \{u \mid p \xrightarrow{u} \text{fin } q\}\right)$ 

### Lemma

The set of equivalence classes  $\Sigma^*/\sim = \{[w]_{\sim} \mid w \in \Sigma^*\}$  is finite.



\* define  $p \xrightarrow{w}_{fin} q :\iff p \xrightarrow{u} q_f \xrightarrow{v} q$  for some  $q_f \in F$  and  $u \cdot v = w$ 

\*  $u \sim v : \Leftrightarrow \forall p.q \in Q. (p \xrightarrow{u} q \iff p \xrightarrow{v} q) \text{ and } (p \xrightarrow{u}_{fin} q \iff p \xrightarrow{v}_{fin} q) \text{ defines an equivalence on } \Sigma^*$ 

 $\star$  if  $u \sim v$  then u and v are "indistinguishable" by the considered NBA

### Lemma

For every  $w \in \Sigma^*$ ,  $[w]_{\sim}$  is regular.

# Proof Outline. Reformulating the definition, $[w]_{\sim} = \left(\bigcap_{p \xrightarrow{w} q} \{u \mid p \xrightarrow{u} q\}\right) \cap \left(\bigcap_{p \xrightarrow{w}_{fin} q} \{u \mid p \xrightarrow{u}_{fin} q\}\right)$

Lemma

The set of equivalence classes  $\Sigma^*/\sim = \{ [w]_{\sim} \mid w \in \Sigma^* \}$  is finite.

# Proof Outline.

Every class  $[w]_{\sim}$  is described through two sets of state-pairs (at most  $O(2^{2n^2})$  many)

### Lemma

- 1. For any two  $U, V \in \Sigma^*/\sim$ , either (i)  $U \cdot V^{\omega} \subseteq L(A)$  or (ii)  $U \cdot V^{\omega} \subseteq \overline{L(A)}$ .
- 2.  $\Sigma^{\omega} = \bigcup_{U,V \in \Sigma^*/\sim} U \cdot V^{\omega}$ .



### Lemma

- 1. For any two  $U, V \in \Sigma^*/\sim$ , either (i)  $U \cdot V^{\omega} \subseteq L(A)$  or (ii)  $U \cdot V^{\omega} \subseteq \overline{L(A)}$ .
- 2.  $\Sigma^{\omega} = \bigcup_{U,V \in \Sigma^*/\sim} U \cdot V^{\omega}$ .

### Theorem

For any NBA  $\mathcal{A}$ , there is an NBA  $\mathcal{B}$  such that  $L(\mathcal{B}) = L(\mathcal{A})$ .



### Lemma

- 1. For any two  $U, V \in \Sigma^*/\sim$ , either (i)  $U \cdot V^{\omega} \subseteq L(A)$  or (ii)  $U \cdot V^{\omega} \subseteq \overline{L(A)}$ .
- 2.  $\Sigma^{\omega} = \bigcup_{U,V \in \Sigma^*/\sim} U \cdot V^{\omega}$ .

### Theorem

For any NBA  $\mathcal{A}$ , there is an NBA  $\mathcal{B}$  such that  $L(\mathcal{B}) = \overline{L(\mathcal{A})}$ .

### Proof Outline.

\* the auxiliary lemmas yield that

$$\overline{\mathsf{L}(\mathcal{A})} = \left\{ \int \{U \cdot V^{\omega} \mid U, V \in \Sigma^* / \sim, U \cdot V^{\omega} \cap \mathsf{L}(\mathcal{A}) = \emptyset \right\}$$

\* as  $U, V \in \Sigma^*/\sim$  is regular, L(A) language is regular, and thus described by an NBA



### Lemma

- 1. For any two  $U, V \in \Sigma^*/\sim$ , either (i)  $U \cdot V^{\omega} \subseteq L(\mathcal{A})$  or (ii)  $U \cdot V^{\omega} \subseteq \overline{L(\mathcal{A})}$ .
- 2.  $\Sigma^{\omega} = \bigcup_{U,V \in \Sigma^*/\sim} U \cdot V^{\omega}$ .

### Theorem

For any NBA  $\mathcal{A}$ , there is an NBA  $\mathcal{B}$  such that  $L(\mathcal{B}) = \overline{L(\mathcal{A})}$ .

### Proof Outline.

\* the auxiliary lemmas yield that

$$\overline{\mathsf{L}(\mathcal{A})} = \left\{ \ \left| \{U \cdot V^{\omega} \mid U, V \in \Sigma^* / \sim, U \cdot V^{\omega} \cap \mathsf{L}(\mathcal{A}) = \varnothing \right\} \right.$$

\* as  $U, V \in \Sigma^* / \sim$  is regular,  $\overline{L(A)}$  language is regular, and thus described by an NBA

### Notes

- $\star$  the above equation directly yield a recipe for building  $\mathcal{B}$
- \* the size of the constructed NBA is proportional to the cardinality of  $\Sigma^*/\sim (0(2^{2n^2}))$

# Monadic Second-Order Logic on Infinite Words



### **MSO on Infinite Words**

\* the set of MSO formulas over  $\mathcal{V}_1, \mathcal{V}_2$  coincides with that of weak MSO formulas:

$$\phi, \psi ::= \top \ \big| \ \bot \ \big| \ x < y \ \big| \ X(x) \ \big| \ \phi \lor \psi \ \big| \ \neg \phi \ \big| \ \exists x. \phi \ \big| \ \exists X. \phi$$

\* the satisfiability relation  $\alpha \models \phi$  is defined equivalently, but allows infinite valuations of second order variables

$$\alpha \models \exists X. \phi : \Leftrightarrow \alpha[x \mapsto M] \models \phi \text{ for some } M \subseteq \mathbb{N}$$



### **MSO on Infinite Words**

★ the set of MSO formulas over  $V_1$ ,  $V_2$  coincides with that of weak MSO formulas:

$$\phi, \psi ::= \top \quad | \quad \bot \quad | \quad x < y \quad | \quad X(x) \quad | \quad \phi \lor \psi \mid \neg \phi \quad | \quad \exists x. \phi \quad | \quad \exists X. \phi$$

\* the satisfiability relation  $\alpha \models \phi$  is defined equivalently, but allows infinite valuations of second order variables

$$\alpha \models \exists X. \phi : \Leftrightarrow \alpha[x \mapsto M] \models \phi \text{ for some } M \subseteq \mathbb{N}$$

### Example

$$\exists X. \forall y. X(y) \leftrightarrow X(y+2)$$

- ★ not satisfiable in WMSO
- \* valid in MSO



# **MSO Decidability**

- ★ consider MSO formula  $\phi$  over  $\mathcal{V}_2 = \{X_1, \dots, X_m\}$  and  $\mathcal{V}_1 = \{y_{m+1}, \dots, y_{m+n}\}$
- \* as in the case of WMSO, the alphabet  $\Sigma_{\phi}$  is given by m+n bit-vectors, i.e.,  $\Sigma_{\phi} \triangleq \{0,1\}^{n+m}$
- $\star$  MSO assignment  $\alpha$  can be coded as infinite words  $\underline{\alpha} \in \Sigma_{\phi}^{\omega}$ 
  - n ∈  $\alpha(X_i)$  iff the i-th entry in n-th letter of  $\underline{\alpha}$  is 1
  - $-\alpha(y_j)=n$  iff the *i*-th entry in *n*-th letter of  $\underline{\alpha}$  is 1



# **MSO Decidability**

- ★ consider MSO formula  $\phi$  over  $\mathcal{V}_2 = \{X_1, \dots, X_m\}$  and  $\mathcal{V}_1 = \{y_{m+1}, \dots, y_{m+n}\}$
- \* as in the case of WMSO, the alphabet  $\Sigma_{\phi}$  is given by m+n bit-vectors, i.e.,  $\Sigma_{\phi} \triangleq \{0,1\}^{n+m}$
- $\star$  MSO assignment  $\alpha$  can be coded as infinite words  $\underline{\alpha} \in \Sigma_{\phi}^{\omega}$ 
  - n ∈  $\alpha(X_i)$  iff the i-th entry in n-th letter of  $\alpha$  is 1
  - $-\alpha(y_j)=n$  iff the *i*-th entry in *n*-th letter of  $\underline{\alpha}$  is 1

the language  $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{\omega}$  of coded valuations making  $\phi$  true is given by:

$$\hat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$$



# **MSO Decidability**

- ★ consider MSO formula  $\phi$  over  $\mathcal{V}_2 = \{X_1, \dots, X_m\}$  and  $\mathcal{V}_1 = \{y_{m+1}, \dots, y_{m+n}\}$
- \* as in the case of WMSO, the alphabet  $\Sigma_{\phi}$  is given by m+n bit-vectors, i.e.,  $\Sigma_{\phi} \triangleq \{0,1\}^{n+m}$
- $\star$  MSO assignment  $\alpha$  can be coded as infinite words  $\underline{\alpha} \in \Sigma_{\phi}^{\omega}$ 
  - n ∈  $\alpha(X_i)$  iff the i-th entry in n-th letter of  $\alpha$  is 1
  - $\alpha(y_i) = n$  iff the *i*-th entry in *n*-th letter of  $\underline{\alpha}$  is 1

the language  $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{\omega}$  of coded valuations making  $\phi$  true is given by:

$$\hat{\mathsf{L}}(\phi) \triangleq \{ \underline{\alpha} \mid \alpha \vDash \phi \}$$

### Theorem

For every MSO formula  $\phi$  there exists an NBA  $\mathcal{A}_{\phi}$  s.t.  $\hat{L}(\phi) = L(\mathcal{A}_{\phi})$ .

### Proof Outline.

construction analoguous to the case of WMSO