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Last Lecture

* abottom-up tree automata (BUTA) A is atuple (Q,X, 5, F) where
51 Q0 - 2¢

* atop-down tree automata (TDTA) A is a tuple (Q, X, g;, ) where

ar(f)
5e:0—2°
* an input tree is recognised if nodes can be re-labeled, bottom-up ending in a final state,
or top-down from an initial state
Theorem
the set of languages recognized by BUTAs, deterministic BUTAs and TDTAs coincide

* There are languages recognised by TDTAs which are not recognised by deterministic
TDTAs
Theorem

Emptyness is decidable in linear time; universality and equivalence are decidable
(EXPTIME-complete)



Today'’s Lecture

* infinite words
* regular languages over infinite words
* Blchiautomata

* Monadic Second-Order Logic on Infinite Words
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Infinite Words

* an infinite word over alphabet X is an infinite sequence of letters aga;a, ...

* X“ denotes the set of infinite words over &

Notations
* |w|, denotes the number of occurrences of a € ¥ withinw € ¢

- note |w|, may be infinite
- infact, |w|, = oo holds for at leastonea €

* the left-concatenation of u € " and v € =, is denoted by u - v € 2
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Languages over Infinite Words

x alanguage over infinite words isaset L € ¢

Operations on Infinite Languages
x forUcx"and V c 2, the left-concatenation of U and Vis given by

U-V&{u-v|ueUandveV}

* The complement of V ¢ = isgivenby V 2 ¢\ V
* the w-iteration of U ¢ X" is given by

U 2{wp-wy-wp---- | w; € Uand w; # e forall i € N}
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Generalising the Theory of Regular Languages to Infinite Words
Recall...
For a language L € X", the following are equivalent:

1. Lisregular

2. Lisrecognized by an NFA

3. Lis defined through a wMSO formula
Outlook...
Foralanguage L € >, the following are equivalent:
1. Lis w-regular
- defined next
2. Lisrecognized by a Biichi Automaton
- afinite automaton with a suitable acceptance condition for infinite words

3. Lis defined through a MSO formula
— we drop the requirement on finite models present in wMSO
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w-Regular Languages

* alanguage L ¢ = is w-regular (or simply regular) if
L=J u-v
O<i<n
for regular languages U;, V; (0 < i < n)

* with wREG(X) we denote the class of w-regular languages

Lemma

wREG(Y) is closed under union and left-concatenation with regular languages.

Proof Outline.
* Union is obvious
* concerning left-concatenation U - L where L is as above

v-t=u-(lJuv)= ooy = | wouy-ve

O<i<n O<i<n O<izn
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Let> = {a,b,c}
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Examples

Let> = {a,b,c}

* Ly = {w| |w|, # oo} isregular Li=%"(buc)®
* Ly = {w| |w|, = oo} isregular Lz = (£7b)” = e(Z")”
* L3 = {w| |w|, # o or|w|, = oo} is regular L=LUlL
*x L, = {w | |w|, # coand |w|, = oo} is regular Ly =" (bc™)”
*x Ls = {w” | wex"}isregular Ls = Upesn ew”
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Biichi Automata

* A non-deterministic (deterministic) Biichi Automaton A, short NBA (DBA), is a tuple
(Q.%,q,,6,F) identical to an NFA (DFA)

* arunonw = asasasz... isan infinite sequence
a ag an
P+ q=Qqo—qr—qx —
* Biichi Condition: arunis accepting if Inf(p) N F # @, where

Inf(p) = {qg € Q| |plq = o0}
- arunisaccepting if it visits a final state infinitely often

* the language recognised by AisL(A) = {w € “ | w has an accepting run}

@M

L(A1) —{WEZ | lw|a = oo} L(Az) = {w € 2 | |w], # oo}

Example
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Non-Determinisation

Theorem
There are NBAs without equivalent DBA.

Proof Outline.
*x the NBA A, with L(Az) = {w € =% | |w|, # oo}

* it can be shown that L(.4;) is not recognized by a DBA (exercise)



Closure Properties on NBAs

Theorem

For recognisable U € =" and V. W € =“ the following are recognisable:
1. union VU W 4. w-iteration U”
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Closure Properties on NBAs

Theorem
For recognisable U € " and V. W/ € % the following are recognisable:
1. union VU W 4. w-iteration U

2. intersection V N W 5. complement V

3. left-concatenation U - V

Proof Outline.
* (1) and (3). Identical to NFA construction

* (2) Similar to NFA case. For Blichi condition, keep additional counter mod 2

o ay ©) aiq & i, O QAig+1
p . O —_ eee O —_— eee @ [— O — eee
0 1 2 0
——
2final

* (4) exercise

* (5) non-trivial, see next
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NBAs Characterise wREG(X)

Theorem
L € wREG(X) ifand only if L = L(A) for some NBA A

Proof Outline.

* = consequence of closure properties

* =
— for finiteword w = a4, ..., a, define

p—qie=p-—>-Sgandlyg 2 {w|p— q}

L, q is regular: the sub-automaton of A with initial state p and final state g recognises it
w € L(A) if and only if a run on w traverses some q € Finfinitely often

welL(Ad) e dgeF.w=u-v”forsomeu €Ly qandve Ly,

hence
L(A) = | ] Lg.q - Lgq € wREG(Z)
geF
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Complementation of NBA (1)

even for DBAs, unlike for NFAs, complementation is non-trivial

6:@@:&

(a"p)” (b*a)®
ldea 3 ababa-- 3 ababa

» find a finite partition P of =" of regular languages such that

(i) either U- vV c L(A)or U- Vv’ c L(A) foru.vePr  (i)z“= [ ] U-v*
u,veP
* hence

LAY (L u-v)\ (’)Uu-v‘”

UVeP u,vepr
U-v’nLA) =0
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» define p —¢, g i< p — gr — qforsomegr € Fandu-v=w

* U~vies VpgeQ.(p—q & p-—g)and(p —fn g <> p —pn q) defines an
equivalence on =¥

* if u ~ vthen uand vare “indistinguishable” by the considered NBA

Lemma

Foreveryw € ¥, [w]. is regular.

Proof Outline.
Reformulating the definition, [w]. = (ﬂpl)q{“ |p = g})n (ﬂpl)f. q{u | p =in })
Lemma
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Complementation of NBAs (ll)

» define p —¢, g i< p — gr — qforsomegr € Fandu-v=w

* U~vies VpgeQ.(p—q & p-—g)and(p —fn g <> p —pn q) defines an
equivalence on =¥

* ifu ~ vthen uand vare “indistinguishable” by the considered NBA

Lemma

Foreveryw € ¥, [w]. is regular.

Proof Outline.
Reformulating the definition, [w]. = (ﬂpl)q{“ |p = g})n (ﬂpl)f. q{u | p =in })
Lemma

The set of equivalence classes ¥/~ = {[w]. | w € ="} is finite.

Proof Outline.

2
Every class [w]. is described through two sets of state-pairs (at most 0(22” ) many)
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Complementation of NBAs (l11)

Lemma

1. Forany two U,V € ¥/~ either () U - V < L(A) or (i) U - V¥ < L(A).
2. Zw = UU,VEZ*/~ U * Vw.

Theorem
For any NBA A, there is an NBA 3 such that L(B) = L(.A).
Proof Outline.
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Complementation of NBAs (ll1)

Lemma

1. Forany two U,V € ¥/~ either () U - V < L(A) or (i) U - V¥ < L(A).
2. Zw = UU,VEZ*/"' U * Vw

Theorem
For any NBA A, there is an NBA BB such that L(B) = L(A).
Proof Outline.
* the auxiliary lemmas yield that
L(A) = | J{u-v? | uves"/~u- v’ nL(A) = 2}
* as U,V e =%/~ isregular, L(A) language is regular, and thus described by an NBA

Notes
* the above equation directly yield a recipe for building B

2
* the size of the constructed NBA is proportional to the cardinality of =* /~ (0(2°" ))
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MSO on Infinite Words

* the set of MSO formulas over V;, V> coincides with that of weak MSO formulas:
oy =T | 1 | X<y | X(x) | dVY | - | dx.¢ | IX.¢

* the satisfiability relation a F ¢ is defined equivalently, but allows infinite valuations of
second order variables

aF3IX¢ = a[x— M]E forsomeMc N

Example
AXVy X(y) « X(y +2)

* not satisfiable in WMSO
* valid in MSO
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MSO Decidability

* consider MSO formula ¢ over V> = {X,.... Xptand Vy = {Vmits - s Ymant

* as in the case of WMSO, the alphabet X, is given by m + n bit-vectors, i.e,
Zd) é {0’1}n+m

* MSO0 assignment @ can be coded as infinite words o € =)

- n € a(X;) iff the i-th entry in n-th letter of ¢ is 1
- a(y;) = niffthe i-th entry in n-th letter of 2 is 1

the language L(¢) ¥ of coded valuations making ¢ true is given by:

L(g) 2{a|aF ¢}

Theorem

For every MSO formula ¢ there exists an NBA A s.t. L(p) = L(Ag).

Proof Outline.
construction analoguous to the case of WMSO



