Advanced Logic

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2021/AL/

Martin Avanzini

Summer Semester 2021

Last Lecture

a reachability game is played by two players, players 🔶 and 🔳

 the game is played on a graph which determines the current player and her possible moves

 $\mathcal{G} = (V, V_{\diamondsuit}, V_{\blacksquare}, E, v_l, Z)$

- ★ the objective of ◆ is to reach a goal Z or make get stuck
- ★ the objective of is to prevent this

Theorem

For every arena \mathcal{G} , either \blacklozenge or \blacksquare has a (positional) winning strategy.

Theorem

 $w \in L(\mathcal{A})$ if and only if player \blacklozenge has a winning strategy in $\mathcal{G}_{\mathcal{A},w}$.

Today's Lecture

- ★ bottom-up tree automata
- ★ closure properties
- ★ top-down tree automata

Bottom-up Tree-Automata

Finite Ordered Trees

Definition

A finite ordered tree (or simply tree here) is a set of sequences of natural numbers $T \subseteq \mathbb{N}^*$ such that, for $w \in \mathbb{N}^*$ and $i \in \mathbb{N}$

 $T = \{\epsilon, 0, 00, 1, 10, 11, 12\}$

- 1. if $w \cdot (i+1) \in T$ then $w \cdot i \in T$
- 2. if $w \cdot 0 \in T$ then $w \in T$

Interpretation

- ★ a tree T is given by the set of nodes
- $\star\,$ a node is identified with its position, i.e., its path from the (unique) root $\epsilon\,$
- ★ the *i*-th child $(0 \le i)$ of a node w is w $\cdot i$

Example

$\Sigma\text{-trees}$

- $\star~$ let Σ be an alphabet, equipped with an arity ar : $\Sigma \to \mathbb{N}$
- ★ a Σ -tree is a tuple (T, ℓ) such that
 - T is a tree
 - $-\ell: T \to \Sigma$ is a labeling of nodes by letters
 - the labeling respects the arity in the following sense: for all $w \in T$,

 $\operatorname{ar}(\ell(w)) = n \iff w$ has exactly *n* children $w \cdot 0, \dots, w \cdot (n-1) \in T$

$\Sigma\text{-trees}$

- $\star~$ let Σ be an alphabet, equipped with an arity ar : $\Sigma \to \mathbb{N}$
- ★ a Σ -tree is a tuple (T, ℓ) such that
 - T is a tree
 - $-\ell: T \to \Sigma$ is a labeling of nodes by letters
 - the labeling respects the arity in the following sense: for all $w \in T$,

 $ar(\ell(w)) = n \iff w$ has exactly *n* children $w \cdot 0, \dots, w \cdot (n-1) \in T$

★ Note: Σ -trees can be seen as (ground) terms $t \in \mathcal{T}(\Sigma)$ over function symbols $f \in \Sigma$

 $t ::= f(t_1, \ldots, t_{ar(f)})$

- $\star\,$ consider the alphabet $\Sigma_{\mathbb{B}}$ consisting of usual Boolean connectives and propositional atoms (p, q, . . .)
- ★ the following labeled tree (*T*, *t*) denotes the propositional formula $\neg \bot \land (\top \lor p)$

Bottom-Up Tree Automatas (BUTAs)

- * A bottom-up tree automata (BUTA) A is a tuple (Q, Σ, δ, F) consisting of
 - a finite set of states Q
 - an alphabet $\boldsymbol{\Sigma}$ with associated arities
 - a transition function $\delta \triangleq \{\delta_{\mathbf{f}} \mid \mathbf{f} \in \Sigma\}$ where $\delta_{\mathbf{f}} : Q^{\operatorname{ar}(\mathbf{f})} \to 2^{Q}$
 - a set of final states $F \subseteq Q$

Bottom-Up Tree Automatas (BUTAs)

- * A bottom-up tree automata (BUTA) A is a tuple (Q, Σ, δ, F) consisting of
 - a finite set of states Q
 - an alphabet Σ with associated arities
 - a transition function $\delta \triangleq \{\delta_{\mathbf{f}} \mid \mathbf{f} \in \Sigma\}$ where $\delta_{\mathbf{f}} : \mathbf{Q}^{\operatorname{ar}(\mathbf{f})} \to \mathbf{2}^{\mathbf{Q}}$
 - a set of final states $F \subseteq Q$
- ★ An execution on a Σ -tree (T, ℓ) is a Q-tree (T, ℓ_Q) such that for all $w \in T$ with n children,

 $\ell_Q(w) \in \delta_{\ell(w)}(\ell_Q(w \cdot 0), \dots, \ell_Q(w \cdot (n-1)))$

Bottom-Up Tree Automatas (BUTAs)

- * A bottom-up tree automata (BUTA) A is a tuple (Q, Σ, δ, F) consisting of
 - a finite set of states Q
 - an alphabet Σ with associated arities
 - a transition function $\delta \triangleq \{\delta_{\mathbf{f}} \mid \mathbf{f} \in \Sigma\}$ where $\delta_{\mathbf{f}} : \mathbf{Q}^{\operatorname{ar}(\mathbf{f})} \to \mathbf{2}^{\mathbf{Q}}$
 - a set of final states $F \subseteq Q$
- ★ An execution on a Σ -tree (T, ℓ) is a Q-tree (T, ℓ_Q) such that for all $w \in T$ with n children,

 $\ell_Q(w) \in \delta_{\ell(w)}(\ell_Q(w \cdot 0), \dots, \ell_Q(w \cdot (n-1)))$

fragment of Σ -tree (T, ℓ) $\delta_{f}(q) = (p_1, p_2, p_3)$

 \star the BUTA $\mathcal A$ recognises the tree-language

 $L(A) \triangleq \{(T, \ell) \mid (T, \ell) \text{ has an execution whose root is in } F\}$

nventeurs du monde numérique

* consider the BUTA $\mathcal{B} = (\{0, 1\}, \Sigma_{\mathbb{B}}, \delta, \{1\})$ where

$$\begin{split} \delta_{\top} &= \{1\} & \delta_{p} = \{0,1\} & \delta_{\wedge}(b_{1},b_{2}) = b_{1} \cdot b_{2} \\ \delta_{\perp} &= \{0\} & \delta_{\neg}(b) = \{1-b\} & \delta_{\vee}(b_{1},b_{2}) = \{b_{1}+b_{2}-b_{1} \cdot b_{2}\} \end{split}$$

★ consider the BUTA $\mathcal{B} = (\{0, 1\}, \Sigma_{\mathbb{B}}, \delta, \{1\})$ where

$$\begin{split} \delta_{\top} &= \{1\} & \delta_{p} = \{0, 1\} & \delta_{\wedge}(b_{1}, b_{2}) = b_{1} \cdot b_{2} \\ \delta_{\perp} &= \{0\} & \delta_{\neg}(b) = \{1 - b\} & \delta_{\vee}(b_{1}, b_{2}) = \{b_{1} + b_{2} - b_{1} \cdot b_{2}\} \end{split}$$

★ consider the BUTA $\mathcal{B} = (\{0, 1\}, \Sigma_{\mathbb{B}}, \delta, \{1\})$ where

$$\begin{split} \delta_{\top} &= \{1\} & \delta_{p} = \{0,1\} & \delta_{\wedge}(b_{1},b_{2}) = b_{1} \cdot b_{2} \\ \delta_{\perp} &= \{0\} & \delta_{\neg}(b) = \{1-b\} & \delta_{\vee}(b_{1},b_{2}) = \{b_{1}+b_{2}-b_{1} \cdot b_{2}\} \end{split}$$

★ consider the BUTA $\mathcal{B} = (\{0, 1\}, \Sigma_{\mathbb{B}}, \delta, \{1\})$ where

$$\begin{split} \delta_{\top} &= \{1\} & \delta_{p} = \{0, 1\} & \delta_{\wedge}(b_{1}, b_{2}) = b_{1} \cdot b_{2} \\ \delta_{\perp} &= \{0\} & \delta_{\neg}(b) = \{1 - b\} & \delta_{\vee}(b_{1}, b_{2}) = \{b_{1} + b_{2} - b_{1} \cdot b_{2}\} \end{split}$$

★ consider the BUTA $\mathcal{B} = (\{0, 1\}, \Sigma_{\mathbb{B}}, \delta, \{1\})$ where

$$\begin{aligned} \delta_{\top} &= \{1\} & \delta_{p} &= \{0, 1\} & \delta_{\wedge}(b_{1}, b_{2}) &= b_{1} \cdot b_{2} \\ \delta_{\perp} &= \{0\} & \delta_{\neg}(b) &= \{1 - b\} & \delta_{\vee}(b_{1}, b_{2}) &= \{b_{1} + b_{2} - b_{1} \cdot b_{2}\} \end{aligned}$$

Tree Automata Seen as Rewrite Systems

★ a transition $\delta_f(q) = (q_1, ..., q_n)$ in BUTA A is seen as rule

 $\mathtt{f}(q_1,\ldots,q_n)\to_{\mathcal{A}} q$

* an execution on a labeled tree, seen as term t, is a maximal reduction sequence

 $t \rightarrow_{\mathcal{A}} \cdots \rightarrow_{\mathcal{A}} q$

 $\star \ t \in \mathsf{L}(\mathcal{A}) \iff t \to_{\mathcal{A}}^{*} q \text{ and } q \in F$

Tree Automata Seen as Rewrite Systems

★ a transition $\delta_f(q) = (q_1, ..., q_n)$ in BUTA A is seen as rule

 $\mathtt{f}(q_1,\ldots,q_n)\to_{\mathcal{A}} q$

 \star an execution on a labeled tree, seen as term t, is a maximal reduction sequence

 $t \rightarrow_{\mathcal{A}} \cdots \rightarrow_{\mathcal{A}} q$

 $\star \ t \in \mathsf{L}(\mathcal{A}) \iff t \to_{\mathcal{A}}^{*} q \text{ and } q \in F$

Example

- $\star~$ The BUTA ${\cal B}$ on $\Sigma_{\mathbb B}$ as defined before induces the rewrite sytem $\to_{\cal B}$
 - $\begin{array}{ccc} \top \rightarrow_{\mathcal{B}} 1 & p \rightarrow_{\mathcal{B}} b & b_1 \wedge b_2 \rightarrow_{\mathcal{B}} b_1 \cdot b_2 \\ \bot \rightarrow_{\mathcal{B}} 0 & \neg(b) \rightarrow_{\mathcal{B}} 1 b & b_1 \vee b_2 \rightarrow_{\mathcal{B}} b_1 + b_2 b_1 \cdot b_2 \end{array}$

where b, b_1, b_2 ranges over $\{0, 1\}$

Tree Automata Seen as Rewrite Systems

★ a transition $\delta_f(q) = (q_1, ..., q_n)$ in BUTA A is seen as rule

 $\mathtt{f}(q_1,\ldots,q_n)\to_{\mathcal{A}} q$

 \star an execution on a labeled tree, seen as term t, is a maximal reduction sequence

 $t \rightarrow_{\mathcal{A}} \cdots \rightarrow_{\mathcal{A}} q$

 $\star \ t \in \mathsf{L}(\mathcal{A}) \iff t \to_{\mathcal{A}}^{*} q \text{ and } q \in F$

Example

- * The BUTA \mathcal{B} on $\Sigma_{\mathbb{B}}$ as defined before induces the rewrite sytem $\rightarrow_{\mathcal{B}}$
 - $\begin{array}{cccc} \top \rightarrow_{\mathcal{B}} 1 & p \rightarrow_{\mathcal{B}} b & b_1 \wedge b_2 \rightarrow_{\mathcal{B}} b_1 \cdot b_2 \\ \bot \rightarrow_{\mathcal{B}} 0 & \neg(b) \rightarrow_{\mathcal{B}} 1 b & b_1 \vee b_2 \rightarrow_{\mathcal{B}} b_1 + b_2 b_1 \cdot b_2 \end{array}$

where b, b_1, b_2 ranges over $\{0, 1\}$

★ we have $t = \neg \bot \land (\top \lor p) \in L(A)$ as

 $t = \neg \bot \land (\underline{\top} \lor \underline{p}) \rightarrow^{3}_{\mathcal{B}} \underline{\neg 0} \land (\underline{1} \lor \underline{0}) \rightarrow^{2}_{\mathcal{B}} 1 \land 1 \rightarrow_{\mathcal{B}} 1 \in F$

A deterministic BUTA (DBUTA) is a BUTA $\mathcal{A} = (Q, \Sigma, \delta, F)$ where $\delta_{f} : Q^{\operatorname{ar}(f)} \to Q$ for all $f \in \Sigma$.

A deterministic BUTA (DBUTA) is a BUTA $\mathcal{A} = (Q, \Sigma, \delta, F)$ where $\delta_{f} : Q^{\operatorname{ar}(f)} \to Q$ for all $f \in \Sigma$.

Theorem

For every BUTA A with n states there exists a DBUTA B with at most 2ⁿ states such that L(A) = L(B).

A deterministic BUTA (DBUTA) is a BUTA $\mathcal{A} = (Q, \Sigma, \delta, F)$ where $\delta_{f} : Q^{\operatorname{ar}(f)} \to Q$ for all $f \in \Sigma$.

Theorem

For every BUTA A with n states there exists a DBUTA B with at most 2ⁿ states such that L(A) = L(B).

Proof Outline.

Let $\mathcal{A} = (Q, \Sigma, \delta, F)$.

The construction corresponds to the subset construction for determinisation of NFAs:

- \star the states of \mathcal{B} are sets 2^Q of states Q
- $\star\,$ the transition relation $\Delta_{\tt f}$ for $\tt f\in \Sigma$ of ${\mathcal B}$ is

 $\Delta_{f}(M_{1},\ldots,M_{ar(f)}) \triangleq \bigcup \{\delta_{f}(q_{1},\ldots,q_{ar(f)}) \mid q_{1} \in M_{1},\ldots,q_{ar(f)} \in M_{ar(f)}\}$

★ the final states of \mathcal{B} are $\{M \mid M \cap F \neq \emptyset\}$

Closure Properties

Closure Properties of BUTAs

Theorem

The class of languages recognised by BUTAs is closed under the following operations:

- 1. union, intersection, and complement
- 2. arity-preserving homomorphism
- ★ a function $h : \Sigma \to \Gamma$ is arity-preserving if $ar_{\Sigma}(f) = ar_{\Gamma}(h(f))$
- ★ the homomorphic application of such a function to a labeled tree $t = (T, \ell)$ is given by $h(t) \triangleq (T, \ell_h)$ where

 $\ell_h(w) = h(\ell(w)) \text{ for all } w \in T$

i.e., h(t) is obtained by re-relabeling letters f in t with h(f)

Pumping Lemma for Tree Automata

- * A context is a tuple $C = (T, \ell, w)$ where (T, ℓ) is a tree and $w \in T$ a leaf
- with C[s] we denotes the labeled tree obtained by replacing leaf
 w in C by the whole tree s
- ★ formally, for $s = (S, \ell_S), C[s] \triangleq (T_{C[s]}, \ell_{C[s]})$ where
 - $T_{C[s]} = T \cup w \cdot S$
 - $\ell_{C[s]}(u) = t(u) \text{ for all } u \in T \setminus \{w\}$
 - $\ell_{C[s]}(w \cdot u) = \ell_{S}(u) \text{ for all } u \in T$

Pumping Lemma for Tree Automata (II)

Theorem

Let L be a language recognised by a BUTA. Then there exists $n \ge 0$ such that for all trees t of height larger than n:

- * t = C[D[s]] for some contexts C, D and trees s; and
- * for all $k \ge 0$, $C[\underbrace{D[\dots [D[s]]\dots]]}_{k \text{ times}} \in L$

Pumping Lemma for Tree Automata (II)

Theorem

Let L be a language recognised by a BUTA. Then there exists $n \ge 0$ such that for all trees t of height larger than n:

- * t = C[D[s]] for some contexts C, D and trees s; and
- * for all $k \ge 0$, $C[\underbrace{D[\dots [D[s]]\dots]]}_{k \text{ times}} \in L$

Proof Outline.

- ★ *n* is given by the number of states of the corresponding automaton
- ★ since the height of *t* is larger then *n*, it has a path from the root longer than *n*
- ★ on such a path, the automaton has to loop
- ★ the path to the loop defines C, the loop itself D, and the remainder to the leaf defines s

- * A top-down tree automata (TDTA) A is a tuple (Q, Σ, q_l, δ) consisting of
 - a finite set of states Q
 - an alphabet $\boldsymbol{\Sigma}$ with associated arities
 - a transition function $\delta \triangleq \{\delta_a \mid a \in \Sigma\}$ where $\delta_f : Q \to 2^{Q^{\operatorname{ar}(f)}}$
 - $-q_I \in Q$ is an initial state

- * A top-down tree automata (TDTA) A is a tuple (Q, Σ, q_l, δ) consisting of
 - a finite set of states Q
 - an alphabet Σ with associated arities
 - a transition function $\delta \triangleq \{\delta_a \mid a \in \Sigma\}$ where $\delta_f : Q \to 2^{Q^{ar(f)}}$
 - $-q_I \in Q$ is an initial state
- * An execution on a Σ -tree (T, ℓ) is a Q-tree (T, ℓ_Q) such that
 - $\ell_Q(\epsilon) = q_I$
 - for all $w \in T$ with *n* children,

 $(\ell_Q(w \cdot 0), \ldots, \ell_Q(w \cdot (n-1))) \in \delta_{\ell(w)}(\ell_Q(w))$

- * A top-down tree automata (TDTA) A is a tuple (Q, Σ, q_l, δ) consisting of
 - a finite set of states Q
 - an alphabet Σ with associated arities
 - − a transition function $\delta \triangleq \{\delta_a \mid a \in \Sigma\}$ where $\delta_f : Q \to 2^{Q^{ar(f)}}$
 - $-q_I \in Q$ is an initial state
- * An execution on a Σ -tree (T, ℓ) is a Q-tree (T, ℓ_Q) such that
 - $\ell_Q(\epsilon) = q_I$
 - for all $w \in T$ with *n* children,

$$(\ell_Q(w \cdot 0), \ldots, \ell_Q(w \cdot (n-1))) \in \delta_{\ell(w)}(\ell_Q(w))$$

 \star the TDTA $\mathcal A$ recognises the tree-language

 $L(A) \triangleq \{(T, \ell) \mid (T, \ell) \text{ has an execution whose root is in } F\}$

★ consider the TDTA $\mathcal{B} = (\{0, 1\}, \Sigma_{\mathbb{B}}, \delta, 1)$ where

q	δ_{T}	δ_{\perp}	δ_{\vee}	δ_{\wedge}	δ_{\neg}	$\delta_{\tt p}$
0	Ø	()	(0,0)	(0,0),(0,1),(1,0)	1	()
1	()	Ø	(0,1),(1,0),(1,1)	(1,1)	0	()

★ consider the TDTA $\mathcal{B} = (\{0, 1\}, \Sigma_{\mathbb{B}}, \delta, 1)$ where

q	δ_{T}	δ_{\perp}	δ_{\vee}	δ_{\wedge}	δ_{\neg}	$\delta_{\tt p}$
0	Ø	()	(0,0)	(0,0),(0,1),(1,0)	1	()
1	()	Ø	(0,1),(1,0),(1,1)	(1,1)	0	()

★ consider the TDTA $\mathcal{B} = (\{0, 1\}, \Sigma_{\mathbb{B}}, \delta, 1)$ where

9	δ_{T}	δ_{\perp}	δ_{\vee}	δ_{\wedge}	δ_{\neg}	$\delta_{\tt p}$
0	Ø	()	(0,0)	(0,0),(0,1),(1,0)	1	()
1	()	Ø	(0,1),(1,0),(1,1)	(1,1)	0	()

★ consider the TDTA $\mathcal{B} = (\{0, 1\}, \Sigma_{\mathbb{B}}, \delta, 1)$ where

9	δ_{T}	δ_{\perp}	δ_{\vee}	δ_{\wedge}	δ_{\neg}	$\delta_{\tt p}$
0	Ø	()	(0,0)	(0,0),(0,1),(1,0)	1	()
1	()	Ø	(0,1),(1,0),(1,1)	(1,1)	0	()

★ consider the TDTA $\mathcal{B} = (\{0, 1\}, \Sigma_{\mathbb{B}}, \delta, 1)$ where

9	δ_{T}	δ_{\perp}	δ_{\vee}	δ_{\wedge}	δ_{\neg}	$\delta_{\tt p}$
0	Ø	()	(0,0)	(0,0),(0,1),(1,0)	1	()
1	()	Ø	(0,1), (1,0), (1,1)	(1,1)	0	()

★ consider the TDTA $\mathcal{B} = (\{0, 1\}, \Sigma_{\mathbb{B}}, \delta, 1)$ where

9	δ_{T}	δ_{\perp}	δ_{\vee}	δ_{\wedge}	δ_{\neg}	$\delta_{\tt p}$
0	Ø	()	(0,0)	(0,0),(0,1),(1,0)	1	()
1	()	Ø	(0,1),(1,0),(1,1)	(1,1)	0	()

Equivalence of BUTAs and TDTAs

Theorem

- The following are equivalent:
- 1. the set of languages recognized by BUTAs
- 2. the set of languages recognized by TDTAs

Proof Outline.

★ (1) ⇒ (2) : Let *L* be recognised by TDTA $\mathcal{A} = (Q, \Sigma, q_I, \delta)$. Then *L* is recognised by the BUTA $\mathcal{B} = (Q, \Sigma, \delta^I, \{q_I\})$ where

 $\delta_{\mathtt{f}}'(q_1,\ldots,q_n) \triangleq \{q \mid (q_1,\ldots,q_n) \in \delta_{\mathtt{f}}(q)\}$

Equivalence of BUTAs and TDTAs

Theorem

- The following are equivalent:
- 1. the set of languages recognized by BUTAs
- 2. the set of languages recognized by TDTAs

Proof Outline.

★ (1) ⇒ (2): Let *L* be recognised by TDTA $\mathcal{A} = (Q, \Sigma, q_I, \delta)$. Then *L* is recognised by the BUTA $\mathcal{B} = (Q, \Sigma, \delta^I, \{q_I\})$ where

 $\delta_{\mathtt{f}}'(q_1,\ldots,q_n) \triangleq \{q \mid (q_1,\ldots,q_n) \in \delta_{\mathtt{f}}(q)\}$

★ (2) ⇒ (1) : Let *L* be recognised by BUTA $\mathcal{A} = (Q, \Sigma, \delta, F)$. Then *L* is recognised by the TDTA $\mathcal{B} = (Q \uplus \{q_l\}, \Sigma, q_l, \delta')$ where

$$(q_1, \dots, q_n) \in \delta'_{\mathbf{f}}(q) : \Leftrightarrow q \in \delta_{\mathbf{f}}(q_1, \dots, q_n)$$
$$\delta'_{\mathbf{f}}(q_l) \triangleq \{(q_1, \dots, q_n) \mid \delta_{\mathbf{f}}(q_1, \dots, q_n) \in F\}$$

A deterministic TDTA (DTDTA) is a TDTA $\mathcal{A} = (Q, \Sigma, \delta, F)$ where $\delta_{f} : Q \to Q^{\operatorname{ar}(f)} \cup \{\bot\}$ is a partial function for all $f \in \Sigma$.

A deterministic TDTA (DTDTA) is a TDTA $\mathcal{A} = (Q, \Sigma, \delta, F)$ where $\delta_{f} : Q \to Q^{\operatorname{ar}(f)} \cup \{\bot\}$ is a partial function for all $f \in \Sigma$.

Theorem

There are languages recognised by TDTAs which are not recognised by DTDTAs.

A deterministic TDTA (DTDTA) is a TDTA $\mathcal{A} = (Q, \Sigma, \delta, F)$ where $\delta_{f} : Q \to Q^{\operatorname{ar}(f)} \cup \{\bot\}$ is a partial function for all $f \in \Sigma$.

Theorem

There are languages recognised by TDTAs which are not recognised by DTDTAs.

Proof Outline.

* consider $L \triangleq \{f(g,h), f(h,g)\}$ which is clearly recognised by a TDTA

A deterministic TDTA (DTDTA) is a TDTA $\mathcal{A} = (Q, \Sigma, \delta, F)$ where $\delta_{f} : Q \to Q^{\operatorname{ar}(f)} \cup \{\bot\}$ is a partial function for all $f \in \Sigma$.

Theorem

There are languages recognised by TDTAs which are not recognised by DTDTAs.

Proof Outline.

- * consider $L \triangleq \{f(g,h), f(h,g)\}$ which is clearly recognised by a TDTA
- * now suppose $\mathcal{A} = (Q, \Sigma, q_I, \delta)$ recognises L

A deterministic TDTA (DTDTA) is a TDTA $\mathcal{A} = (Q, \Sigma, \delta, F)$ where $\delta_{f} : Q \to Q^{\operatorname{ar}(f)} \cup \{\bot\}$ is a partial function for all $f \in \Sigma$.

Theorem

There are languages recognised by TDTAs which are not recognised by DTDTAs.

Proof Outline.

- * consider $L \triangleq \{f(g,h), f(h,g)\}$ which is clearly recognised by a TDTA
- * now suppose $\mathcal{A} = (Q, \Sigma, q_I, \delta)$ recognises L
- \star then \mathcal{A} has the following shape:

1. $\delta_f(q_I) = (p, q)$ for some states p, q, otherwise, it would not accept a tree rooted in f

A deterministic TDTA (DTDTA) is a TDTA $\mathcal{A} = (Q, \Sigma, \delta, F)$ where $\delta_{f} : Q \to Q^{\operatorname{ar}(f)} \cup \{\bot\}$ is a partial function for all $f \in \Sigma$.

Theorem

There are languages recognised by TDTAs which are not recognised by DTDTAs.

Proof Outline.

- * consider $L \triangleq \{f(g,h), f(h,g)\}$ which is clearly recognised by a TDTA
- * now suppose $\mathcal{A} = (Q, \Sigma, q_I, \delta)$ recognises L
- \star then \mathcal{A} has the following shape:

1. $\delta_{f}(q_{l}) = (p, q)$ for some states p, q, otherwise, it would not accept a tree rooted in f 2. $\delta_{\sigma}(p) = () = \delta_{h}(q)$, since $f(g, h) \in L$

A deterministic TDTA (DTDTA) is a TDTA $\mathcal{A} = (Q, \Sigma, \delta, F)$ where $\delta_{f} : Q \to Q^{\operatorname{ar}(f)} \cup \{\bot\}$ is a partial function for all $f \in \Sigma$.

Theorem

There are languages recognised by TDTAs which are not recognised by DTDTAs.

Proof Outline.

- * consider $L \triangleq \{f(g,h), f(h,g)\}$ which is clearly recognised by a TDTA
- * now suppose $\mathcal{A} = (Q, \Sigma, q_I, \delta)$ recognises L
- \star then \mathcal{A} has the following shape:
 - 1. $\delta_{f}(q_{I}) = (p, q)$ for some states p, q, otherwise, it would not accept a tree rooted in f
 - 2. $\delta_{g}(p) = () = \delta_{h}(q)$, since $f(g,h) \in L$
 - 3. dual, $\delta_{h}(p) = () = \delta_{g}(q)$, since $f(h, g) \in L$

A deterministic TDTA (DTDTA) is a TDTA $\mathcal{A} = (Q, \Sigma, \delta, F)$ where $\delta_{f} : Q \to Q^{\operatorname{ar}(f)} \cup \{\bot\}$ is a partial function for all $f \in \Sigma$.

Theorem

There are languages recognised by TDTAs which are not recognised by DTDTAs.

Proof Outline.

- * consider $L \triangleq \{f(g,h), f(h,g)\}$ which is clearly recognised by a TDTA
- * now suppose $\mathcal{A} = (Q, \Sigma, q_I, \delta)$ recognises L
- \star then \mathcal{A} has the following shape:
 - 1. $\delta_{f}(q_{I}) = (p, q)$ for some states p, q, otherwise, it would not accept a tree rooted in f
 - 2. $\delta_{g}(p) = () = \delta_{h}(q)$, since $f(g,h) \in L$
 - 3. dual, $\delta_{h}(p) = () = \delta_{g}(q)$, since $f(h, g) \in L$
- * by (2) and (3) it follows that $f(g,g), f(h,h) \in L(\mathcal{A})$, contradicting $L(\mathcal{A}) = L$

Decision Problems

Theorem

The emptyness problem for BUTAs/TDTAs A is decidable in time O(|A|).

Proof.

Exercise.

Theorem

The universality and equivalence problems for BUTAs/TDTAs A are decidable in time $O(2^{|A|})$.

Decision Problems

Theorem

The emptyness problem for BUTAs/TDTAs A is decidable in time O(|A|).

Proof.

Exercise.

Theorem

The universality and equivalence problems for BUTAs/TDTAs A are decidable in time $O(2^{|A|})$.

Remark they are in fact EXPTIME-complete, and thus "slightly more difficult" than corresponding problems for NFAs

