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Last Lecture

a reachability game is played by two players, players ¢ and m

* the game is played on a graph which determines the current player and her possible

moves
g = (V9 V‘y Vla Ev VI’Z)

* the objective of @ is to reach a goal Z or make m get stuck

* the objective of m is to prevent this

Theorem
For every arena G, either @ or m has a (positional) winning strategy.

Theorem
w € L(A) if and only if player ® has a winning strategy in G 4 .



Today'’s Lecture

* bottom-up tree automata
* closure properties

* top-down tree automata



Bottom-up Tree-Automata



Finite Ordered Trees

Definition Interpretation

Afinite ordered tree (or simply tree here)isa  + atree Tis given by the set of nodes
set of sequences of natural numbers T ¢ N*

such that, forw € N* and € N * anode is identified with its position, i.e,

its path from the (unique) root €
1L ifw-(i+1)eTthenw-ieT

2. ifw-0eTthenweT

* the i-th child (0 < i) ofanodewisw- i

Example

T = {€,0,00,1,10,1,12} 0 1
|



> -trees

* let X be an alphabet, equipped with an arityar : ¥ - N
* aX-treeisatuple (T, ¢) such that

- Tisatree
- (:T - Xisalabeling of nodes by letters
- the labeling respects the arity in the following sense: forallw € T,

ar(¢((w))=n << whasexactly nchildrenw-0,...,w-(n=1) €T



> -trees

* let X be an alphabet, equipped with an arityar : ¥ - N
* aX-treeisatuple (T, ¢) such that

- Tisatree
- (:T - Xisalabeling of nodes by letters
- the labeling respects the arity in the following sense: forallw € T,

ar(¢((w))=n << whasexactly nchildrenw-0,...,w-(n=1) €T
* Note: X-trees can be seen as (ground) terms t € 7(X) over function symbols f € X

to=1f(t, ... tagr))



Example

* consider the alphabet Xy consisting of usual Boolean connectives and propositional
atoms (p,q,...)

* the following labeled tree (T, t) denotes the propositional formula —=L A (T v p)
weT £{(w) N
€ A
‘ . / \ .
1
00 | /N
L T p

10
n

g9 < |



Bottom-Up Tree Automatas (BUTAS)

* Abottom-up tree automata (BUTA) Aisatuple (Q,X, 5, F) consisting of
— afinite set of states Q
- an alphabet X with associated arities
- atransition function § 2 {6; | f € X} where 6; : Q¥ 5 0
— asetof final states F € Q
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Bottom-Up Tree Automatas (BUTAS)

* Abottom-up tree automata (BUTA) Aisatuple (Q,X, 5, F) consisting of

— afinite set of states Q

— an alphabet X with associated arities

- atransition function § 2 {6; | f € X} where 6; : Q¥ 5 0
— asetof final states F € Q

* An execution on aX-tree (T, () isa Q-tree (T, /) such that for all w € T with n children,

lo(w) € pwy(lp(w-0),...,Lg(w-(n—1)))

f q
PARRN VRN
g1 g2 g3 P p2 p3
fragment of =-tree (T, () 6:(q) = (p1.p2.P3)

* the BUTA A recognises the tree-language
L(A) =2 {(T,¢) | (T,¢) hasan execution whose root isin F}



Example

* consider the BUTA B = ({0,1}, 2, 5, {1}) where

ot = {1} 6p = {0,1} da(b1,b2) = by - by
61 = {0} 6-(b) = {1-b} 8y (b1, b2) = {by + bz — by - by}

* it recognises the set of satisfiable formulas, for instance
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Tree Automata Seen as Rewrite Systems
* atransition 6:(gq) = (g1,...,gn) in BUTA Ais seen as rule
£(q1.---.Gn) 24 Q
* an execution on a labeled tree, seen as term t, is a maximal reduction sequence

t—=4"—>4aq

x telL(A) = t—-jgandg€eF
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£(q1.---.Gn) 24 Q
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Example
*» The BUTA 3 on X5 as defined before induces the rewrite sytem — 53

T -p1 p—pb by A bz —p by - by
1 -50 ﬁ(b)—>51—b b1Vb2—>Bb1+b2—b1'b2

where b, by, b, ranges over {0, 1}



Tree Automata Seen as Rewrite Systems

* atransition 6:(gq) = (g1,...,gn) in BUTA Ais seen as rule
£(q1...-.9n) 24 q
* an execution on a labeled tree, seen as term t, is a maximal reduction sequence
t—=4"—>4aq

x telL(A) = t—-jgandg€eF

Example
*» The BUTA 3 on X5 as defined before induces the rewrite sytem — 53

T -p1 p—pb by A bz —p by - by
1 -50 ﬁ(b)—>31—b b1Vb2—>Bb1+b2—b1'b2

where b, by, b, ranges over {0, 1}
* wehavet =1L A (T vp)eL(A)as

t=-LA(Tvp)—>5=0A(V0)-5TATo51€F
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A deterministic BUTA (DBUTA) is a BUTA A = (Q, X, 6, F) where 6; : 0*"*) - Qforall £ € 3.



Determinisation

A deterministic BUTA (DBUTA) is a BUTA A = (Q, X, 6, F) where 6; : 0*"*) - Qforall £ € 3.
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For every BUTA A with n states there exists a DBUTA B with at most 2" states such that
L(A) = L(B).



Determinisation

A deterministic BUTA (DBUTA) isa BUTA A = (Q,%, 6, F) where &; : Q*®  Qforallf e 3.

Theorem
For every BUTA A with n states there exists a DBUTA B with at most 2" states such that
L(A) = L(B).

Proof Outline.
Let A = (Q.%, 6, F).
The construction corresponds to the subset construction for determinisation of NFAs:

* the states of 3 are sets 27 of states Q

* the transition relation A; for f € X of Bis
Af(M‘b SRR Mar(f)) 2 U{éf(QL s Qar(f)) | g1 € Mb -5 Qar(s) € Mar(f)}

* the final statesof Bare (M | Mn F # @}



Closure Properties



Closure Properties of BUTAs

Theorem

The class of languages recognised by BUTAs is closed under the following operations:
1. union, intersection, and complement

2. arity-preserving homomorphism

* afunction h : X — I'is arity-preserving ifarg(£) = arp(h(£))

* the homomorphic application of such a function to a labeled tree t = (T, ¢) is given by
h(t) = (T, ¢,) where
th(w) = h(¢(w)) forallweT

i.e, h(t) is obtained by re-relabeling letters £ in t with h(f)



Pumping Lemma for Tree Automata

* AcontextisatupleC = (T,¢,w)where (T,¢)isatreeandw € Ta
leaf

* with C[s] we denotes the labeled tree obtained by replacing leaf
win C by the whole tree s

» formally, for s = (S, (s), C[s] 2 (Tes1. €cls)) Where
- Tgs)=TUuw-S
- Lesy(u) = t(u) forallu € T\ {w}
- lgsy(w-u) ={s(u) forallue T



Pumping Lemma for Tree Automata (ll)

Theorem
Let L be a language recognised by a BUTA. Then there exists n = 0 such that for all trees t

of height larger than n:
* t = C[D[s]] for some contexts C, D and trees s; and
* forallk =0, C[D[...[D[s]]...]] el
[ —"

k times



Pumping Lemma for Tree Automata (ll)

Theorem
Let L be a language recognised by a BUTA. Then there exists n = 0 such that for all trees t

of height larger than n:
* t = C[D[s]] for some contexts C, D and trees s; and
* forallk =0, C[D[...[D[s]]...]] el
\ﬂ_l

k times

Proof Outline.
* nis given by the number of states of the corresponding automaton
* since the height of t is larger then n, it has a path from the root longer than n
* on such a path, the automaton has to loop
* the path to the loop defines C, the loop itself D, and the remainder to the leaf defines s



Top-Down Tree Automata



Top-Down Tree Automata

* Atop-down tree automata (TDTA) Ais atuple (Q, %, g, §) consisting of
— afinite set of states Q
— an alphabet X with associated arities

ar(f)
— atransition function & £ {5, | a € =} where §; : Q — 2°
- g, € Qisaninitial state
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Equivalence of BUTAs and TDTAs

Theorem

The following are equivalent:
1. the set of languages recognized by BUTAs
2. the set of languages recognized by TDTAs

Proof Qutline.

* (1) = (2) : Let L be recognised by TDTA A = (Q, X, g/, ).
Then L is recognised by the BUTA 5 = (0.%.5". {g,}) where

5¢(q,--»qn) 2{q | (g1,--.,qn) € 6£(q)}



Equivalence of BUTAs and TDTAs

Theorem

The following are equivalent:
1. the set of languages recognized by BUTAs
2. the set of languages recognized by TDTAs

Proof Outline.
* (1) = (2) : Let L be recognised by TDTA A = (Q, X, g/, ).

Then L is recognised by the BUTA 5 = (0.%.5". {g,}) where

8:(Gr----qn) 2{q | (g1,....qn) € 6¢(q)}

* (2) = (1) : Let L be recognised by BUTA A = (Q, X, 6, F).

Then L is recognised by the TDTA B = (Q v {g,}. 2. q,.6') where

(Q1a-~-,Qn)65’f(Q) :<:>q66f(q1 """ CIn)
5:(q) £ {(@1,---.qn) | 6:(qr.....n) € F}
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A deterministic TDTA (DTDTA) isa TDTA A = (Q, .6, F) where 5; : Q » Q¥ U {1} isa
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Determinisation

A deterministic TDTA (DTDTA) isa TDTA A = (Q, .6, F) where 5; : Q » Q¥ U {1} isa
partial function forall £ € X.

Theorem
There are languages recognised by TDTAs which are not recognised by DTDTAs.

Proof Outline.
* consider L £ {f(g,h), f(h, g)} which is clearly recognised by a TDTA

* now suppose A = (Q,X,q,,5) recognises L

* then A has the following shape:
1. 6¢(q;) = (p, q) for some states p, g, otherwise, it would not accept a tree rooted in £

2. 0g(p) = () = ou(q),since £(g,h) € L
3. dual, 6n(p) = () = 64(q),sincef(h,g) € L
* by (2) and (3) it follows that £(g, g), f(h,h) € L(A), contradicting L(A) = L



Decision Problems

Theorem
The emptyness problem for BUTAs/TDTAs A is decidable in time O(|.A|).

Proof.
Exercise.

Theorem
The universality and equivalence problems for BUTAs/TDTAs A are decidable in time
o2,



Decision Problems

Theorem
The emptyness problem for BUTAs/TDTAs A is decidable in time O(|.A|).

Proof.
Exercise.

Theorem
The universality and equivalence problems for BUTAs/TDTAs A are decidable in time
02h.

Remark they are in fact EXPTIME-complete, and thus “slightly more difficult” than
corresponding problems for NFAs



