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Last Lecture

a reachability game is played by two players, players◆ and ■

⋆ the game is played on a graph which determines the current player and her possible
moves

G = (V, V◆, V■, E, vI, Z)
⋆ the objective of◆ is to reach a goal Z or make ■ get stuck

⋆ the objective of ■ is to prevent this

Theorem

For every arena G , either◆ or ■ has a (positional) winning strategy.

Theorem

w ∈ L(A) if and only if player◆ has a winning strategy in GA,w.



Today’s Lecture

⋆ bottom-up tree automata

⋆ closure properties

⋆ top-down tree automata



Bottom-up Tree-Automata



Finite Ordered Trees

Definition
A finite ordered tree (or simply tree here) is a
set of sequences of natural numbers T ⊆ N∗

such that, for w ∈ N∗ and i ∈ N

1. if w ⋅ (i + 1) ∈ T then w ⋅ i ∈ T
2. if w ⋅ 0 ∈ T then w ∈ T

Interpretation

⋆ a tree T is given by the set of nodes

⋆ a node is identified with its position, i.e.,
its path from the (unique) root 𝜖

⋆ the i-th child (0 ≤ i) of a node w is w ⋅ i
Example

𝜖

10

111000 12

T = {𝜖,0,00, 1, 10, 11, 12}



Σ-trees

⋆ let Σ be an alphabet, equipped with an arity ar ∶ Σ → N

⋆ a Σ-tree is a tuple (T, ℓ) such that
– T is a tree
– ℓ ∶ T→ Σ is a labeling of nodes by letters
– the labeling respects the arity in the following sense: for all w ∈ T,

ar(ℓ(w)) = n ⇔ w has exactly n children w ⋅ 0, . . . ,w ⋅ (n − 1) ∈ T

⋆ Note: Σ-trees can be seen as (ground) terms t ∈ T (Σ) over function symbols f ∈ Σ

t ∶∶= f(t1, . . . , tar(f))
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Example

⋆ consider the alphabet ΣB consisting of usual Boolean connectives and propositional
atoms (p, q, . . . )

⋆ the following labeled tree (T, t) denotes the propositional formula ¬⊥ ∧ (⊤ ∨ p)
w ∈ T ℓ(w)
𝜖 ∧
0 ¬
1 ∨
00 ⊥
10 ⊤
11 p

∧

∨¬

⊤⊥ p



Bottom-Up Tree Automatas (BUTAs)
⋆ A bottom-up tree automata (BUTA)A is a tuple (Q,Σ, 𝛿, F) consisting of

– a finite set of states Q
– an alphabet Σ with associated arities

– a transition function 𝛿 ≜ {𝛿f ∣ f ∈ Σ} where 𝛿f ∶ Q
ar(f) → 2Q

– a set of final states F ⊆ Q

⋆ An execution on a Σ-tree (T, ℓ) is a Q-tree (T, ℓQ) such that for all w ∈ T with n children,

ℓQ(w) ∈ 𝛿ℓ(w)(ℓQ(w ⋅ 0), . . . , ℓQ(w ⋅ (n − 1)))
f

g1 g2 g3

fragment of Σ-tree (T, ℓ)
q

p1 p2 p3

𝛿f(q) = (p1, p2, p3)
⋆ the BUTAA recognises the tree-language

L(A) ≜ {(T, ℓ) ∣ (T, ℓ) has an execution whose root is in F}
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Example

⋆ consider the BUTA B = ({0, 1},ΣB, 𝛿, {1}) where
𝛿⊤ = {1} 𝛿p = {0, 1} 𝛿∧(b1, b2) = b1 ⋅ b2
𝛿⊥ = {0} 𝛿¬(b) = {1 − b} 𝛿∨(b1, b2) = {b1 + b2 − b1 ⋅ b2}

⋆ it recognises the set of satisfiable formulas, for instance

∧

∨¬

⊤⊥ p

Input Tree (T, ℓ)

10 0

11

1

Execution on (T, ℓ)
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Tree Automata Seen as Rewrite Systems

⋆ a transition 𝛿f(q) = (q1, . . . , qn) in BUTAA is seen as rule

f(q1, . . . , qn) →A q

⋆ an execution on a labeled tree, seen as term t, is a maximal reduction sequence

t→A ⋯→A q

⋆ t ∈ L(A) ⟺ t→∗
A q and q ∈ F

Example
⋆ The BUTA B on ΣB as defined before induces the rewrite sytem→B

⊤ →B 1 p →B b b1 ∧ b2 →B b1 ⋅ b2
⊥ →B 0 ¬(b) →B 1 − b b1 ∨ b2 →B b1 + b2 − b1 ⋅ b2

where b, b1, b2 ranges over {0, 1}
⋆ we have t = ¬⊥ ∧ (⊤ ∨ p) ∈ L(A) as

t = ¬⊥ ∧ (⊤ ∨ p) →3
B ¬0 ∧ (1 ∨ 0) →2

B 1 ∧ 1→B 1 ∈ F
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Determinisation

A deterministic BUTA (DBUTA) is a BUTAA = (Q,Σ, 𝛿, F) where 𝛿f ∶ Q
ar(f) → Q for all f ∈ Σ.

Theorem

For every BUTAA with n states there exists a DBUTA B with at most 2n states such that
L(A) = L(B).
Proof Outline.

LetA = (Q,Σ, 𝛿, F).
The construction corresponds to the subset construction for determinisation of NFAs:

⋆ the states of B are sets 2Q of states Q

⋆ the transition relation Δf for f ∈ Σ of B is

Δf(M1, . . . ,Mar(f)) ≜ ⋃{𝛿f(q1, . . . , qar(f)) ∣ q1 ∈ M1, . . . , qar(f) ∈ Mar(f)}
⋆ the final states of B are {M ∣ M ∩ F /= ∅}
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Closure Properties



Closure Properties of BUTAs

Theorem

The class of languages recognised by BUTAs is closed under the following operations:

1. union, intersection, and complement

2. arity-preserving homomorphism

⋆ a function h ∶ Σ → Γ is arity-preserving if arΣ(f) = arΓ(h(f))
⋆ the homomorphic application of such a function to a labeled tree t = (T, ℓ) is given by
h(t) ≜ (T, ℓh) where

ℓh(w) = h(ℓ(w)) for all w ∈ T

i.e., h(t) is obtained by re-relabeling letters f in t with h(f)



Pumping Lemma for Tree Automata

⋆ A context is a tuple C = (T, ℓ,w)where (T, ℓ) is a tree and w ∈ T a
leaf

⋆ with C[s] we denotes the labeled tree obtained by replacing leaf
w in C by the whole tree s

⋆ formally, for s = (S, ℓS), C[s] ≜ (TC[s], ℓC[s]) where
– TC[s] = T ∪ w ⋅ S
– ℓC[s](u) = t(u) for all u ∈ T \ {w}
– ℓC[s](w ⋅ u) = ℓS(u) for all u ∈ T

C
w

S



Pumping Lemma for Tree Automata (II)

Theorem

Let L be a language recognised by a BUTA. Then there exists n ≥ 0 such that for all trees t
of height larger than n:

⋆ t = C[D[s]] for some contexts C,D and trees s; and
⋆ for all k ≥ 0, C[D[. . . [D[ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

k times

s]] . . . ]] ∈ L

Proof Outline.

⋆ n is given by the number of states of the corresponding automaton

⋆ since the height of t is larger then n, it has a path from the root longer than n

⋆ on such a path, the automaton has to loop

⋆ the path to the loop defines C, the loop itself D, and the remainder to the leaf defines s
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Top-Down Tree Automata
⋆ A top-down tree automata (TDTA)A is a tuple (Q,Σ, qI, 𝛿) consisting of

– a finite set of states Q
– an alphabet Σ with associated arities

– a transition function 𝛿 ≜ {𝛿a ∣ a ∈ Σ} where 𝛿f ∶ Q→ 2Q
ar(f)

– qI ∈ Q is an initial state

⋆ An execution on a Σ-tree (T, ℓ) is a Q-tree (T, ℓQ) such that
– ℓQ(𝜖) = qI
– for all w ∈ T with n children,(ℓQ(w ⋅ 0), . . . , ℓQ(w ⋅ (n − 1))) ∈ 𝛿ℓ(w)(ℓQ(w))

⋆ the TDTAA recognises the tree-language

L(A) ≜ {(T, ℓ) ∣ (T, ℓ) has an execution whose root is in F}
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Example

⋆ consider the TDTA B = ({0, 1},ΣB, 𝛿, 1) where
q 𝛿⊤ 𝛿⊥ 𝛿∨ 𝛿∧ 𝛿¬ 𝛿p

0 ∅ () (0,0) (0,0), (0, 1), (1,0) 1 ()
1 () ∅ (0, 1), (1,0), (1, 1) (1, 1) 0 ()

⋆ it again recognises the set of satisfiable formulas, for instance

∧

∨¬

⊤⊥ p

Input Tree (T, ℓ)

10 0

11

1

Execution on (T, ℓ)
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Equivalence of BUTAs and TDTAs

Theorem

The following are equivalent:

1. the set of languages recognized by BUTAs

2. the set of languages recognized by TDTAs

Proof Outline.

⋆ (1) ⇒ (2) ∶ Let L be recognised by TDTAA = (Q,Σ, qI, 𝛿).
Then L is recognised by the BUTA B = (Q,Σ, 𝛿′, {qI}) where

𝛿
′
f(q1, . . . , qn) ≜ {q ∣ (q1, . . . , qn) ∈ 𝛿f(q)}

⋆ (2) ⇒ (1) ∶ Let L be recognised by BUTAA = (Q,Σ, 𝛿, F).
Then L is recognised by the TDTA B = (Q ⊎ {qI},Σ, qI, 𝛿′) where(q1, . . . , qn) ∈ 𝛿

′
f(q) ∶⇔ q ∈ 𝛿f(q1, . . . , qn)

𝛿
′
f(qI) ≜ {(q1, . . . , qn) ∣ 𝛿f(q1, . . . , qn) ∈ F}



Equivalence of BUTAs and TDTAs

Theorem

The following are equivalent:

1. the set of languages recognized by BUTAs

2. the set of languages recognized by TDTAs

Proof Outline.

⋆ (1) ⇒ (2) ∶ Let L be recognised by TDTAA = (Q,Σ, qI, 𝛿).
Then L is recognised by the BUTA B = (Q,Σ, 𝛿′, {qI}) where

𝛿
′
f(q1, . . . , qn) ≜ {q ∣ (q1, . . . , qn) ∈ 𝛿f(q)}

⋆ (2) ⇒ (1) ∶ Let L be recognised by BUTAA = (Q,Σ, 𝛿, F).
Then L is recognised by the TDTA B = (Q ⊎ {qI},Σ, qI, 𝛿′) where(q1, . . . , qn) ∈ 𝛿

′
f(q) ∶⇔ q ∈ 𝛿f(q1, . . . , qn)

𝛿
′
f(qI) ≜ {(q1, . . . , qn) ∣ 𝛿f(q1, . . . , qn) ∈ F}



Determinisation

A deterministic TDTA (DTDTA) is a TDTAA = (Q,Σ, 𝛿, F) where 𝛿f ∶ Q→ Qar(f) ∪ {⊥} is a
partial function for all f ∈ Σ.

Theorem

There are languages recognised by TDTAs which are not recognised by DTDTAs.

Proof Outline.

⋆ consider L ≜ {f(g, h), f(h, g)} which is clearly recognised by a TDTA
⋆ now supposeA = (Q,Σ, qI, 𝛿) recognises L
⋆ thenA has the following shape:

1. 𝛿f(qI) = (p, q) for some states p, q, otherwise, it would not accept a tree rooted in f

2. 𝛿g(p) = () = 𝛿h(q), since f(g, h) ∈ L
3. dual, 𝛿h(p) = () = 𝛿g(q), since f(h, g) ∈ L

⋆ by (2) and (3) it follows that f(g, g), f(h, h) ∈ L(A), contradicting L(A) = L
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Decision Problems

Theorem

The emptyness problem for BUTAs/TDTAsA is decidable in time O(∣A∣).
Proof.

Exercise. □

Theorem

The universality and equivalence problems for BUTAs/TDTAsA are decidable in time
O(2∣A∣).

Remark they are in fact EXPTIME-complete, and thus “slightly more difficult” than
corresponding problems for NFAs
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