Advanced Logic http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2021/AL/

Martin Avanzini

Summer Semester 2021

Last Lecture

 \star an alternating finite automata (AFA) is a tuple $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ where all components are identical to an NFA except that

 $\delta: Q \times \Sigma \to \mathbb{B}^+(Q)$

 \star AFAs are more concise but otherwise equi-expressive to NFAs

Theorem

For every AFA $\mathcal A$ *there exist a DFA* $\mathcal B$ *with* O(2^{2| $\mathcal A$}) *states such that* L($\mathcal A$) = L($\mathcal B$).

Corollary

AFAs recognize REG.

Today's Lecture

- \star a short excursion to game theory
- \star word-recognition in AFAs through games

Short Excursion to Game Theory

Reachability Games

- ⋆ a reachability game is played by two players, players ◆ and ■
- \star the game is played on a graph which determines the current player and her possible moves

Reachability Games

- \star a reachability game is played by two players, players \bullet and \blacksquare
- \star the game is played on a graph which determines the current player and her possible moves

Objectives

- \star player \bullet : reach a certain positions (among possibly many)
- \star player \blacksquare : prevent player \blacklozenge from winning

Reachability Games

- \star a reachability game is played by two players, players \bullet and \blacksquare
- \star the game is played on a graph which determines the current player and her possible moves

Objectives

- \star player \bullet : reach a certain positions (among possibly many)
- \star player ■: prevent player ♦ from winning

Main Question: has player ◆ a winning strategy

Definitions

- \star an arena is a tuple $G = (V, V_{\bullet}, V_{\bullet}, E, v_l, Z)$ such that
	- *V* = *V*◆ ⊎ *V* are the playing positions
	- *E* are the possible moves
	- v_I is the initial position
	- *Z* ⊆ *V* is the set of goal positions for player *V*◆

Definitions

- \star an arena is a tuple $G = (V, V_{\bullet}, V_{\bullet}, E, v_l, Z)$ such that
	- *V* = *V*◆ ⊎ *V* are the playing positions
	- *E* are the possible moves
	- v_I is the initial position
	- *Z* ⊆ *V* is the set of goal positions for player *V*◆
- \star a match π on \mathcal{G} is a (possible infinite) maximal path within (*V, E*) starting from v_I

Definitions

- \star an arena is a tuple $G = (V, V_{\bullet}, V_{\bullet}, E, v_l, Z)$ such that
	- *V* = *V*◆ ⊎ *V* are the playing positions
	- *E* are the possible moves
	- v_I is the initial position
	- *Z* ⊆ *V* is the set of goal positions for player *V*◆
- \star a match π on \mathcal{G} is a (possible infinite) maximal path within (*V*, *E*) starting from v_i
- ⋆ player ◆ wins a match if it passes through a position in *F*, or the path ends in a node *V* (player ■ got stuck)
- \star otherwise player \blacksquare wins

the above depicts the arena (*V, V*◆*, V*■*, E, v^I , Z*) where

- \star *V* \bullet = {2*,* 4*,* 6} and *V* \bullet = {1*,* 3*,* 5}
- \star *v_I* = 1 and *Z* = {5, 6} (employing automata notation)

the above depicts the arena (*V, V*◆*, V*■*, E, v^I , Z*) where

- \star *V* \bullet = {2*,* 4*,* 6} and *V* \bullet = {1*,* 3*,* 5}
- \star *v_I* = 1 and *Z* = {5, 6} (employing automata notation)

Example Matches

 \star the path π_1 : 1 2 3 4 5 is a match won by \blacklozenge

the above depicts the arena (*V, V*◆*, V*■*, E, v^I , Z*) where

- \star $V_{\bullet} = \{2, 4, 6\}$ and $V_{\bullet} = \{1, 3, 5\}$
- \star *v_I* = 1 and *Z* = {5, 6} (emploving automata notation)

Example Matches

- \star the path π_1 : 1 2 3 4 5 is a match won by \blacklozenge
- \star the path π_2 : 1 2 3 4 \rightarrow \cdots is a match won by \blacksquare

the above depicts the arena (*V, V*◆*, V*■*, E, v^I , Z*) where

- \star *V* \bullet = {2*,* 4*,* 6} and *V* \bullet = {1*,* 3*,* 5}
- \star *v_I* = 1 and *Z* = {5, 6} (emploving automata notation)

Example Matches

- \star the path π_1 : 1 2 3 4 5 is a match won by \blacklozenge
- \star the path π_2 : 1 \leftrightarrow 3 \leftrightarrow 3 \leftrightarrow … is a match won by \Box

⋆ in this arena, ◆ can always win if played properly ⇒ ◆ has a winning strategy

 \star a strategy is a function that determines the next move of a player depending on the current match

- \star a strategy is a function that determines the next move of a player depending on the current match
- \star formally, a strategy on an arena $G = (V, V_{\blacklozenge}, V_{\blacksquare}, E, v_i, Z)$ for player $P \in {\blacklozenge, \blacksquare}$ is a function

$$
\sigma: V^*V_P \to V
$$

such that $\sigma(\pi \cdot v) = w$ implies $(v, w) \in E$ for any match $\pi \cdot v$

- \star a strategy is a function that determines the next move of a player depending on the current match
- \star formally, a strategy on an arena $G = (V, V_{\blacklozenge}, V_{\blacksquare}, E, v_i, Z)$ for player $P \in {\blacklozenge, \blacksquare}$ is a function

$$
\sigma: V^*V_P \to V
$$

such that $\sigma(\pi \cdot v) = w$ implies $(v, w) \in E$ for any match $\pi \cdot v$

 \star a match π conforms to such a strategy σ if player P moves according to π : for any prefixes $\pi' \in V^*V_P$ of π , its extension $\pi' \cdot \sigma(\pi')$ is again a prefix of π

- \star a strategy is a function that determines the next move of a player depending on the current match
- \star formally, a strategy on an arena $G = (V, V_{\blacklozenge}, V_{\blacksquare}, E, v_i, Z)$ for player $P \in {\blacklozenge, \blacksquare}$ is a function

$$
\sigma: V^*V_P \to V
$$

such that $\sigma(\pi \cdot v) = w$ implies $(v, w) \in E$ for any match $\pi \cdot v$

- \star a match π conforms to such a strategy σ if player P moves according to π : for any prefixes $\pi' \in V^*V_P$ of π , its extension $\pi' \cdot \sigma(\pi')$ is again a prefix of π
- \star σ is a winning strategy for player *P* if player *P* wins all matches conforming to σ

- \star a strategy is a function that determines the next move of a player depending on the current match
- \star formally, a strategy on an arena $G = (V, V_{\blacklozenge}, V_{\blacksquare}, E, v_i, Z)$ for player $P \in {\blacklozenge, \blacksquare}$ is a function

$$
\sigma: V^*V_P \to V
$$

such that $\sigma(\pi \cdot v) = w$ implies $(v, w) \in E$ for any match $\pi \cdot v$

- \star a match π conforms to such a strategy σ if player P moves according to π : for any prefixes $\pi' \in V^*V_P$ of π , its extension $\pi' \cdot \sigma(\pi')$ is again a prefix of π
- \star σ is a winning strategy for player *P* if player *P* wins all matches conforming to σ

Theorem

For every arena G, either ◆ *or* ■ *has a winning strategy.*

 \star instance of a more general theorem due to Donald A. Martin (1982) 22

Strategies Seen as Trees

Memoryless Strategies

 \star a strategy σ is memoryless (or positional) if it depends only on the current players position

 $\sigma(\pi_1 \cdot v) = \sigma(\pi_2 \cdot v)$

⋆ a memoryless strategy for player *P* ∈ {◆*,* ■} can be seen as a function ∶ *V^P* → *V*

An arena

Theorem

For every arena G, either ◆ *or* ■ *have a positional winning strategy.*

Theorem

For every arena G, either ◆ *or* ■ *have a positional winning strategy.*

Proof Outline.

 $\text{let } \mathcal{G} = (V, V_{\blacklozenge}, V_{\blacksquare}, E, v_l, Z)$

- \star Let *W* be the set of positions *v* such that the game with initial position *v* admits a positional winning strategy for player ◆
- **★ We show that from** $v \notin W$, player has a positional winning strategy

Theorem

For every arena G, either ◆ *or* ■ *have a positional winning strategy.*

Proof Outline.

 $\text{let } \mathcal{G} = (V, V_{\blacklozenge}, V_{\blacksquare}, E, v_l, Z)$

- \star Let *W* be the set of positions *v* such that the game with initial position *v* admits a positional winning strategy for player ◆
- ⋆ We show that from *v* ∈/ *W*, player has a positional winning strategy
	- *v* ∈ *V*◆: Then no successors of *v* is in *W*
		- otherwise, a winning strategy for player ◆ on *v* could be defined by stepping to such a position, contradicting $v \notin W$
	- *v* ∈ *V*■: Then at least one successor *w* of *v* is not in *W*
		- otherwise, independent of the next move of player ■, player ◆ would win hence *v* ∈ *W*

Theorem

For every arena G, either ◆ *or* ■ *have a positional winning strategy.*

Proof Outline.

 $\text{let } \mathcal{G} = (V, V_{\blacklozenge}, V_{\blacksquare}, E, v_l, Z)$

- \star Let *W* be the set of positions *v* such that the game with initial position *v* admits a positional winning strategy for player ◆
- ⋆ We show that from *v* ∈/ *W*, player has a positional winning strategy
	- *v* ∈ *V*◆: Then no successors of *v* is in *W*
		- otherwise, a winning strategy for player ◆ on *v* could be defined by stepping to such a position, contradicting $v \notin W$
	- *v* ∈ *V*■: Then at least one successor *w* of *v* is not in *W*
		- otherwise, independent of the next move of player ■, player ◆ would win hence *v* ∈ *W*
	- moving for all *v* ∈ *V* to a successor *w* ∈ *V* yields a winning strategy for ■

- ⋆ For a set of positions *W*, denote by Pre◆(*W*) the set of positions *v* such that:
	- if *v* ∈ *V*◆, there is a successor of *v* in *W*
	- if *v* ∈ *V*■, all successors of *v* are in *W*
- ⋆ informally, Pre◆(*W*) extends winning positions *W* for player ◆ along the arena, going backwards

- ⋆ For a set of positions *W*, denote by Pre◆(*W*) the set of positions *v* such that:
	- if *v* ∈ *V*◆, there is a successor of *v* in *W*
	- if *v* ∈ *V*■, all successors of *v* are in *W*
- ⋆ informally, Pre◆(*W*) extends winning positions *W* for player ◆ along the arena, going backwards
- \star Then the set of winning positions is the smallest (in the sense of set-inclusion) fixed-point of

 $f(W)$ ≜ *Z* ∪ Pre (*W*)

- ⋆ For a set of positions *W*, denote by Pre◆(*W*) the set of positions *v* such that:
	- if *v* ∈ *V*◆, there is a successor of *v* in *W*
	- if *v* ∈ *V*■, all successors of *v* are in *W*
- ⋆ informally, Pre◆(*W*) extends winning positions *W* for player ◆ along the arena, going backwards
- \star Then the set of winning positions is the smallest (in the sense of set-inclusion) fixed-point of

 $f(W)$ ≜ *Z* ∪ Pre (*W*)

⋆ this fixed-point is reached by iterating *f* on ∅ at most ∣*V*∣ times

- ⋆ For a set of positions *W*, denote by Pre◆(*W*) the set of positions *v* such that:
	- if *v* ∈ *V*◆, there is a successor of *v* in *W*
	- if *v* ∈ *V*■, all successors of *v* are in *W*
- ⋆ informally, Pre◆(*W*) extends winning positions *W* for player ◆ along the arena, going backwards
- \star Then the set of winning positions is the smallest (in the sense of set-inclusion) fixed-point of

 $f(W)$ ≜ *Z* ∪ Pre (*W*)

- ⋆ this fixed-point is reached by iterating *f* on ∅ at most ∣*V*∣ times
- ⋆ player ◆ has a winning strategy iff *v^I* is within this fixed-point

Optimal Complexity

Theorem

For an arena $G = (V, V_{\bullet}, V_{\bullet}, E, v_l, Z)$ *, the set of winning positions can be computed in time* $O(|V| + |E|)$.

Optimal Complexity

Theorem

For an arena $G = (V, V_{\bullet}, V_{\bullet}, E, v_l, Z)$ *, the set of winning positions can be computed in time* $O(|V| + |E|)$.

Note: to arrive at this optimal bound, we proceed as before and iteratively compute the set of winner positions *W* for player ◆, but:

- \star we associate each node in *v* ∈ *V* with a counter k ^{*v*}
- $\star \; k_{\rm v}$ indicates the number of successors outside of *W*, initially it is simply the out-degree of *v*
- \star once $k_v = 0$, *v* is added to *W*

Word-Recognition in AFAs through games

consider a word $w = a_0 \dots a_{n-1} \in \Sigma^*$ and AFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

 the question $w \in \mathsf{L}(\mathcal{A})$ be conceived as a reachability game $\mathcal{G}_{\mathcal{A},w} \triangleq (V,V_\blacklozenge,V_\blacksquare,E,v_l,Z)$

consider a word $w = a_0 \dots a_{n-1} \in \Sigma^*$ and AFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

 the question $w \in \mathsf{L}(\mathcal{A})$ be conceived as a reachability game $\mathcal{G}_{\mathcal{A},w} \triangleq (V,V_\blacklozenge,V_\blacksquare,E,v_l,Z)$

⋆ player ◆ wants to show *w* ∈ L(*A*), whereas player ■ wants to refute this

consider a word $w = a_0 \dots a_{n-1} \in \Sigma^*$ and AFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

 the question $w \in \mathsf{L}(\mathcal{A})$ be conceived as a reachability game $\mathcal{G}_{\mathcal{A},w} \triangleq (V,V_\blacklozenge,V_\blacksquare,E,v_l,Z)$

- ⋆ player ◆ wants to show *w* ∈ L(*A*), whereas player wants to refute this
- ⋆ the game is played in 0 ≤ *i* < *n* stages, each stage involves reading letter ai:

consider a word $w = a_0 \dots a_{n-1} \in \Sigma^*$ and AFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

 the question $w \in \mathsf{L}(\mathcal{A})$ be conceived as a reachability game $\mathcal{G}_{\mathcal{A},w} \triangleq (V,V_\blacklozenge,V_\blacksquare,E,v_l,Z)$

- ⋆ player ◆ wants to show *w* ∈ L(*A*), whereas player wants to refute this
- ⋆ the game is played in 0 ≤ *i* < *n* stages, each stage involves reading letter ai:
	- $−$ being in a current state *q*, player ♦ picks a model *M* which should satisfy $\delta(q, q_i)$

 $V_{\bullet} \triangleq Q \times \{0, \ldots, n-1\}$ (*q, i*) → $(M, i+1)$: $\Longleftrightarrow M \models \delta(q, a_i)$ and $i < n$

consider a word $w = a_0 \dots a_{n-1} \in \Sigma^*$ and AFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

 the question $w \in \mathsf{L}(\mathcal{A})$ be conceived as a reachability game $\mathcal{G}_{\mathcal{A},w} \triangleq (V,V_\blacklozenge,V_\blacksquare,E,v_l,Z)$

- ⋆ player ◆ wants to show *w* ∈ L(*A*), whereas player wants to refute this
- ⋆ the game is played in 0 ≤ *i* < *n* stages, each stage involves reading letter ai:
	- $−$ being in a current state *q*, player ♦ picks a model *M* which should satisfy $\delta(q, q_i)$

 $V_{\bullet} \triangleq Q \times \{0, \ldots, n-1\}$ (*q,i*) → (*M,i* + 1) : $\Leftrightarrow M \models \delta(q, a_i)$ and *i* < *n*

– having received a model *M*, player ■ picks a state *q* ∈ *M* contradicting this fact

V■ ≜ 2 *Q* $(M, i) \rightarrow (a, i) : \Leftrightarrow a \in M$

consider a word $w = a_0 \dots a_{n-1} \in \Sigma^*$ and AFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

 the question $w \in \mathsf{L}(\mathcal{A})$ be conceived as a reachability game $\mathcal{G}_{\mathcal{A},w} \triangleq (V,V_\blacklozenge,V_\blacksquare,E,v_l,Z)$

- ⋆ player ◆ wants to show *w* ∈ L(*A*), whereas player wants to refute this
- ⋆ the game is played in 0 ≤ *i* < *n* stages, each stage involves reading letter ai:
	- $−$ being in a current state *q*, player ♦ picks a model *M* which should satisfy $\delta(q, q_i)$

 $V_{\blacktriangle} \triangleq Q \times \{0, \ldots, n-1\}$ (*q,i*) → (*M,i* + 1) : $\Leftrightarrow M \models \delta(q, a_i)$ and *i* < *n*

– having received a model *M*, player ■ picks a state *q* ∈ *M* contradicting this fact

V■ ≜ 2 *Q* $(M, i) \rightarrow (q, i) := q \in M$

⋆ the game starts at (*q^I ,* 0), the goal for player ◆ is to reach (*M, n*) with *M* final

 $v_1 \triangleq (a_1, 0)$ F ≜ {(*M, n*) | *M* ⊆ *F*}

Theorem

w ∈ L(*A*) *if and only if player* \blacklozenge *has a winning strategy in* $\mathcal{G}_{A,w}$ *.*

Theorem

w ∈ L(A) *if and only if player* \triangle *has a winning strategy in* G_A _{*w*}.

Corollary

The word problem for an AFA with n states is decidable in time $O(|V| + |E|) = O(|V_{\bullet}| \cdot |V_{\bullet}|) = O(n \cdot 2^n \cdot |w|^2).$

Theorem

w ∈ L(\mathcal{A}) *if and only if player* ◆ *has a winning strategy in* $\mathcal{G}_{A, w}$ *.*

Corollary

The word problem for an AFA with n states is decidable in time $O(|V| + |E|) = O(|V_{\bullet}| \cdot |V_{\bullet}|) = O(n \cdot 2^n \cdot |w|^2).$

Remarks

- \star translating an AFA to DFA takes 0(2^{2ⁿ) space}
- \star it is more efficient to resolve the game instead
- \star however, it may be more efficient to construct the DFA on the fly, avoiding the state-space explosion to some extend

Programming Project (II)

write a solver for a reachability game, computing the set of winning positions for player ♦

 \star the algorithm should obey the optimal complexity bound

Programming Project (II)

write a solver for a reachability game, computing the set of winning positions for player \blacklozenge

- \star the algorithm should obey the optimal complexity bound
- \star concrete method and programming language up to you
- \star parser and stand-alone executable nice to have, but not a must

Programming Project (II)

write a solver for a reachability game, computing the set of winning positions for player \blacklozenge

- \star the algorithm should obey the optimal complexity bound
- \star concrete method and programming language up to you
- \star parser and stand-alone executable nice to have, but not a must
- ⋆ send solutions including instructions to martin.avanzini@inria.fr
- ⋆ **deadline** Friday 14/05 08:00, exercise will be discussed in lecture 7

