Advanced Logic

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2021/AL/

Martin Avanzini

Summer Semester 2021

Last Lecture

* an alternating finite automata (AFA) is a tuple $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ where all components are identical to an NFA except that

 $\delta: Q \times \Sigma \to \mathbb{B}^+(Q)$

★ AFAs are more concise but otherwise equi-expressive to NFAs

Theorem

For every AFA A there exist a DFA B with $O(2^{2^{|A|}})$ states such that L(A) = L(B).

Corollary

AFAs recognize REG.

Today's Lecture

- ★ a short excursion to game theory
- * word-recognition in AFAs through games

Short Excursion to Game Theory

Reachability Games

- ★ a reachability game is played by two players, players ◆ and ■
- the game is played on a graph which determines the current player and her possible moves

Reachability Games

- \star a reachability game is played by two players, players \blacklozenge and \blacksquare
- the game is played on a graph which determines the current player and her possible moves

Objectives

- ★ player ♦: reach a certain positions (among possibly many)
- ★ player ■: prevent player ◆ from winning

Reachability Games

- \star a reachability game is played by two players, players \blacklozenge and \blacksquare
- the game is played on a graph which determines the current player and her possible moves

Objectives

- ★ player ◆: reach a certain positions (among possibly many)
- ★ player ■: prevent player ◆ from winning

Main Question: has player \blacklozenge a winning strategy

Definitions

- ★ an arena is a tuple $\mathcal{G} = (V, V_{\diamondsuit}, V_{\blacksquare}, E, v_I, Z)$ such that
 - $V = V_{\blacklozenge} \uplus V_{\blacksquare}$ are the playing positions
 - *E* are the possible moves
 - v_l is the initial position
 - $Z \subseteq V$ is the set of goal positions for player V_{\blacklozenge}

Definitions

- ★ an arena is a tuple $\mathcal{G} = (V, V_{\diamondsuit}, V_{\blacksquare}, E, v_l, Z)$ such that
 - $-V = V_{\blacklozenge}$ $\forall V_{\blacksquare}$ are the playing positions
 - E are the possible moves
 - $-v_l$ is the initial position
 - $Z \subseteq V$ is the set of goal positions for player V_{\blacklozenge}
- * a match π on \mathcal{G} is a (possible infinite) maximal path within (V, E) starting from v_l

Definitions

- ★ an arena is a tuple $\mathcal{G} = (V, V_{\diamondsuit}, V_{\blacksquare}, E, v_l, Z)$ such that
 - $-V = V_{\diamond} \ \forall V_{\blacksquare}$ are the playing positions
 - E are the possible moves
 - $-v_l$ is the initial position
 - $Z \subseteq V$ is the set of goal positions for player V_{\blacklozenge}
- * a match π on \mathcal{G} is a (possible infinite) maximal path within (V, E) starting from v_I
- ★ player ◆ wins a match if it passes through a position in F, or the path ends in a node V_■
 (player got stuck)
- ★ otherwise player wins

the above depicts the arena $(V, V_{\blacklozenge}, V_{\blacksquare}, E, v_l, Z)$ where

- ★ $V_{\blacklozenge} = \{2, 4, 6\}$ and $V_{\blacksquare} = \{1, 3, 5\}$
- * $v_I = 1$ and $Z = \{5, 6\}$ (employing automata notation)

the above depicts the arena $(V, V_{\diamondsuit}, V_{\blacksquare}, E, v_l, Z)$ where

- ★ $V_{\blacklozenge} = \{2, 4, 6\}$ and $V_{\blacksquare} = \{1, 3, 5\}$
- * $v_I = 1$ and $Z = \{5, 6\}$ (employing automata notation)

Example Matches

 \star the path π_1 : 1 2 3 4 5 is a match won by \blacklozenge

the above depicts the arena $(V, V_{\diamondsuit}, V_{\blacksquare}, E, v_l, Z)$ where

- ★ $V_{\blacklozenge} = \{2, 4, 6\}$ and $V_{\blacksquare} = \{1, 3, 5\}$
- * $v_l = 1$ and $Z = \{5, 6\}$ (employing automata notation)

Example Matches

- \star the path π_1 : 1 2 3 5 is a match won by \blacklozenge
- * the path π_2 : 1 2 3 4 3 4 ... is a match won by =

the above depicts the arena $(V, V_{\diamondsuit}, V_{\blacksquare}, E, v_l, Z)$ where

- ★ $V_{\blacklozenge} = \{2, 4, 6\}$ and $V_{\blacksquare} = \{1, 3, 5\}$
- * $v_I = 1$ and $Z = \{5, 6\}$ (employing automata notation)

Example Matches

- \star the path π_1 : 1 2 3 5 is a match won by \blacklozenge
- * the path π_2 : 1 2 3 4 3 4 ... is a match won by =

 \star in this arena, \blacklozenge can always win if played properly $\Rightarrow \blacklozenge$ has a winning strategy \checkmark

inventeurs du monde numérique

★ a strategy is a function that determines the next move of a player depending on the current match

- ★ a strategy is a function that determines the next move of a player depending on the current match
- ★ formally, a strategy on an arena $\mathcal{G} = (V, V_{\diamondsuit}, V_{\blacksquare}, E, v_I, Z)$ for player $P \in \{\diamondsuit, \blacksquare\}$ is a function

 $\sigma: V^*V_P \to V$

such that $\sigma(\pi \cdot v) = w$ implies $(v, w) \in E$ for any match $\pi \cdot v$

- ★ a strategy is a function that determines the next move of a player depending on the current match
- ★ formally, a strategy on an arena $\mathcal{G} = (V, V_{\diamondsuit}, V_{\blacksquare}, E, v_l, Z)$ for player $P \in \{\diamondsuit, \blacksquare\}$ is a function

$$\sigma: V^*V_P \to V$$

such that $\sigma(\pi \cdot v) = w$ implies $(v, w) \in E$ for any match $\pi \cdot v$

* a match π conforms to such a strategy σ if player P moves according to π : for any prefixes $\pi' \in V^* V_P$ of π , its extension $\pi' \cdot \sigma(\pi')$ is again a prefix of π

- ★ a strategy is a function that determines the next move of a player depending on the current match
- ★ formally, a strategy on an arena $\mathcal{G} = (V, V_{\diamondsuit}, V_{\blacksquare}, E, v_l, Z)$ for player $P \in \{\diamondsuit, \blacksquare\}$ is a function

$$\sigma: V^*V_P \to V$$

such that $\sigma(\pi \cdot v) = w$ implies $(v, w) \in E$ for any match $\pi \cdot v$

- * a match π conforms to such a strategy σ if player P moves according to π : for any prefixes $\pi' \in V^* V_P$ of π , its extension $\pi' \cdot \sigma(\pi')$ is again a prefix of π
- $\star~\sigma$ is a winning strategy for player P if player P wins all matches conforming to σ

- ★ a strategy is a function that determines the next move of a player depending on the current match
- ★ formally, a strategy on an arena $\mathcal{G} = (V, V_{\diamondsuit}, V_{\blacksquare}, E, v_l, Z)$ for player $P \in \{\diamondsuit, \blacksquare\}$ is a function

$$\sigma: V^*V_P \to V$$

such that $\sigma(\pi \cdot v) = w$ implies $(v, w) \in E$ for any match $\pi \cdot v$

- * a match π conforms to such a strategy σ if player P moves according to π : for any prefixes $\pi' \in V^* V_P$ of π , its extension $\pi' \cdot \sigma(\pi')$ is again a prefix of π
- $\star~\sigma$ is a winning strategy for player P if player P wins all matches conforming to σ

Theorem

For every arena \mathcal{G} , either \blacklozenge or \blacksquare has a winning strategy.

★ instance of a more general theorem due to Donald A. Martin (1982)

Strategies Seen as Trees

A strategy for player \blacklozenge ; this is a winning strategy

Memoryless Strategies

 $\star\,$ a strategy σ is memoryless (or positional) if it depends only on the current players position

 $\sigma(\pi_1 \cdot v) = \sigma(\pi_2 \cdot v)$

★ a memoryless strategy for player $P \in \{\diamondsuit, \blacksquare\}$ can be seen as a function $\sigma: V_P \to V$

An arena

Theorem

For every arena \mathcal{G} , either \blacklozenge or \blacksquare have a positional winning strategy.

Theorem

For every arena \mathcal{G} , either \blacklozenge or \blacksquare have a positional winning strategy.

Proof Outline.

 $\mathsf{let}\,\mathcal{G}=(V,V_{\diamondsuit},V_{\blacksquare},E,v_I,Z)$

- ★ Let *W* be the set of positions *v* such that the game with initial position *v* admits a positional winning strategy for player ◆
- ★ We show that from $v \notin W$, player **■** has a positional winning strategy

Theorem

For every arena \mathcal{G} , either \blacklozenge or \blacksquare have a positional winning strategy.

Proof Outline.

 $\mathsf{let}\,\mathcal{G}=(V,V_{\diamondsuit},V_{\blacksquare},E,v_I,Z)$

- ★ Let W be the set of positions v such that the game with initial position v admits a
 positional winning strategy for player ◆
- ★ We show that from v ∉ W, player has a positional winning strategy
 - *v* ∈ *V*_•: Then no successors of *v* is in *W*
 - otherwise, a winning strategy for player ◆ on v could be defined by stepping to such a position, contradicting v ∉ W
 - $v \in V_{\blacksquare}$: Then at least one successor w of v is not in W
 - otherwise, independent of the next move of player \blacksquare , player \blacklozenge would win hence $v \in W$

Theorem

For every arena \mathcal{G} , either \blacklozenge or \blacksquare have a positional winning strategy.

Proof Outline.

 $\mathsf{let}\,\mathcal{G}\,=\,(V,V_{\diamondsuit},V_{\blacksquare},E,v_I,Z)$

- ★ Let W be the set of positions v such that the game with initial position v admits a
 positional winning strategy for player ◆
- ★ We show that from v ∉ W, player has a positional winning strategy
 - *v* ∈ *V*_•: Then no successors of *v* is in *W*
 - otherwise, a winning strategy for player ◆ on v could be defined by stepping to such a position, contradicting v ∉ W
 - $-v \in V_{\blacksquare}$: Then at least one successor w of v is not in W
 - otherwise, independent of the next move of player \blacksquare , player \blacklozenge would win hence $v \in W$
 - moving for all $v \in V_{\blacksquare}$ to a successor $w \in V_{\blacksquare}$ yields a winning strategy for \blacksquare

- * For a set of positions W, denote by $Pre_{\bullet}(W)$ the set of positions v such that:
 - if $v \in V_{\blacklozenge}$, there is a successor of v in W
 - if $v \in V_{\blacksquare}$, all successors of v are in W
- ★ informally, Pre
 (W) extends winning positions W for player ◆ along the arena, going backwards

- * For a set of positions W, denote by $Pre_{\bullet}(W)$ the set of positions v such that:
 - if $v \in V_{\blacklozenge}$, there is a successor of v in W
 - if $v \in V_{\blacksquare}$, all successors of v are in W
- ★ informally, Pre
 (W) extends winning positions W for player ◆ along the arena, going backwards
- Then the set of winning positions is the smallest (in the sense of set-inclusion) fixed-point of

 $f(W) \triangleq Z \cup \operatorname{Pre}_{\diamondsuit}(W)$

- * For a set of positions W, denote by $Pre_{\bullet}(W)$ the set of positions v such that:
 - if $v \in V_{\blacklozenge}$, there is a successor of v in W
 - if $v \in V_{\blacksquare}$, all successors of v are in W
- ★ informally, Pre
 (W) extends winning positions W for player ◆ along the arena, going backwards
- Then the set of winning positions is the smallest (in the sense of set-inclusion) fixed-point of

 $f(W) \triangleq Z \cup \operatorname{Pre}_{\bigstar}(W)$

* this fixed-point is reached by iterating f on \emptyset at most |V| times

- * For a set of positions W, denote by $Pre_{\bullet}(W)$ the set of positions v such that:
 - if $v \in V_{\blacklozenge}$, there is a successor of v in W
 - if $v \in V_{\blacksquare}$, all successors of v are in W
- ★ informally, Pre
 (W) extends winning positions W for player ◆ along the arena, going backwards
- Then the set of winning positions is the smallest (in the sense of set-inclusion) fixed-point of

 $f(W) \triangleq Z \cup \operatorname{Pre}_{\diamondsuit}(W)$

- * this fixed-point is reached by iterating f on \emptyset at most |V| times
- ★ player ◆ has a winning strategy iff v_l is within this fixed-point

Example

Optimal Complexity

Theorem

For an arena $\mathcal{G} = (V, V_{\diamondsuit}, V_{\blacksquare}, E, v_l, Z)$, the set of winning positions can be computed in time O(|V| + |E|).

Optimal Complexity

Theorem

For an arena $\mathcal{G} = (V, V_{\diamondsuit}, V_{\blacksquare}, E, v_l, Z)$, the set of winning positions can be computed in time O(|V| + |E|).

Note: to arrive at this optimal bound, we proceed as before and iteratively compute the set of winner positions W for player \blacklozenge , but:

- ★ we associate each node in $v \in V_{\blacksquare}$ with a counter k_V
- k_v indicates the number of successors outside of W, initially it is simply the out-degree of v
- * once $k_v = 0$, v is added to W

Word-Recognition in AFAs through games

consider a word $w = a_0 \dots a_{n-1} \in \Sigma^*$ and AFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

the question $w \in L(\mathcal{A})$ be conceived as a reachability game $\mathcal{G}_{\mathcal{A},w} \triangleq (V, V_{\blacklozenge}, V_{\blacksquare}, E, v_l, Z)$

consider a word $w = a_0 \dots a_{n-1} \in \Sigma^*$ and AFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

the question $w \in L(\mathcal{A})$ be conceived as a reachability game $\mathcal{G}_{\mathcal{A},w} \triangleq (V, V_{\blacklozenge}, V_{\blacksquare}, E, v_l, Z)$

★ player ♦ wants to show $w \in L(A)$, whereas player ■ wants to refute this

consider a word $w = a_0 \dots a_{n-1} \in \Sigma^*$ and AFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

the question $w \in L(\mathcal{A})$ be conceived as a reachability game $\mathcal{G}_{\mathcal{A},w} \triangleq (V, V_{\blacklozenge}, V_{\blacksquare}, E, v_l, Z)$

- ★ player ♦ wants to show $w \in L(A)$, whereas player wants to refute this
- ★ the game is played in 0 ≤ i < n stages, each stage involves reading letter a_i:

consider a word $w = a_0 \dots a_{n-1} \in \Sigma^*$ and AFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

the question $w \in L(\mathcal{A})$ be conceived as a reachability game $\mathcal{G}_{\mathcal{A},w} \triangleq (V, V_{\blacklozenge}, V_{\blacksquare}, E, v_l, Z)$

- ★ player ♦ wants to show $w \in L(A)$, whereas player wants to refute this
- ★ the game is played in 0 ≤ i < n stages, each stage involves reading letter a_i:
 - being in a current state q, player \blacklozenge picks a model M which should satisfy $\delta(q, q_i)$

 $V_{\blacklozenge} \triangleq Q \times \{0, \dots, n-1\} \qquad (q, i) \to (M, i+1) :\Leftrightarrow M \models \delta(q, a_i) \text{ and } i < n$

consider a word $w = a_0 \dots a_{n-1} \in \Sigma^*$ and AFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

the question $w \in L(\mathcal{A})$ be conceived as a reachability game $\mathcal{G}_{\mathcal{A},w} \triangleq (V, V_{\blacklozenge}, V_{\blacksquare}, E, v_l, Z)$

- ★ player ♦ wants to show $w \in L(A)$, whereas player wants to refute this
- ★ the game is played in 0 ≤ i < n stages, each stage involves reading letter a_i:
 - being in a current state q, player \blacklozenge picks a model M which should satisfy $\delta(q, q_i)$

 $V_{\blacklozenge} \triangleq Q \times \{0, \dots, n-1\} \qquad (q, i) \to (M, i+1) :\Leftrightarrow M \vDash \delta(q, a_i) \text{ and } i < n$

- having received a model M, player \blacksquare picks a state $q \in M$ contradicting this fact

 $V_{\bullet} \triangleq 2^{Q} \times \{1, \dots, n\} \qquad (M, i) \to (q, i) : \Leftrightarrow q \in M$

consider a word $w = a_0 \dots a_{n-1} \in \Sigma^*$ and AFA $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

the question $w \in L(\mathcal{A})$ be conceived as a reachability game $\mathcal{G}_{\mathcal{A},w} \triangleq (V, V_{\blacklozenge}, V_{\blacksquare}, E, v_l, Z)$

- ★ player ♦ wants to show $w \in L(A)$, whereas player wants to refute this
- ★ the game is played in 0 ≤ i < n stages, each stage involves reading letter a_i:
 - being in a current state q, player \blacklozenge picks a model M which should satisfy $\delta(q, q_i)$

 $V_{\blacklozenge} \triangleq Q \times \{0, \dots, n-1\} \qquad (q, i) \to (M, i+1) :\Leftrightarrow M \vDash \delta(q, a_i) \text{ and } i < n$

- having received a model M, player \blacksquare picks a state $q \in M$ contradicting this fact

 $V_{\bullet} \triangleq 2^{Q} \times \{1, \dots, n\} \qquad (M, i) \to (q, i) : \Leftrightarrow q \in M$

★ the game starts at $(q_1, 0)$, the goal for player ◆ is to reach (M, n) with M final

 $v_{I} \triangleq (q_{I}, 0) \qquad F \triangleq \{(M, n) \mid M \subseteq F\}$

nventeurs du monde numérique

Example

Example

Theorem

 $w \in L(\mathcal{A})$ if and only if player \blacklozenge has a winning strategy in $\mathcal{G}_{\mathcal{A},w}$.

Theorem

 $w \in L(\mathcal{A})$ if and only if player \blacklozenge has a winning strategy in $\mathcal{G}_{\mathcal{A},w}$.

Corollary

The word problem for an AFA with n states is decidable in time $O(|V| + |E|) = O(|V_{\blacklozenge}| \cdot |V_{\blacksquare}|) = O(n \cdot 2^n \cdot |w|^2).$

Theorem

 $w \in L(\mathcal{A})$ if and only if player \blacklozenge has a winning strategy in $\mathcal{G}_{\mathcal{A},w}$.

Corollary

The word problem for an AFA with n states is decidable in time $O(|V| + |E|) = O(|V_{\blacklozenge}| \cdot |V_{\blacksquare}|) = O(n \cdot 2^n \cdot |w|^2).$

Remarks

- ★ translating an AFA to DFA takes 0(2^{2ⁿ}) space
- ★ it is more efficient to resolve the game instead
- however, it may be more efficient to construct the DFA on the fly, avoiding the state-space explosion to some extend

Programming Project (II)

write a solver for a reachability game, computing the set of winning positions for player igoplus

 $\star\,$ the algorithm should obey the optimal complexity bound

Programming Project (II)

write a solver for a reachability game, computing the set of winning positions for player 🔶

- ★ the algorithm should obey the optimal complexity bound
- ★ concrete method and programming language up to you
- ★ parser and stand-alone executable nice to have, but not a must

Programming Project (II)

write a solver for a reachability game, computing the set of winning positions for player 🔶

- $\star\,$ the algorithm should obey the optimal complexity bound
- ★ concrete method and programming language up to you
- ★ parser and stand-alone executable nice to have, but not a must
- * send solutions including instructions to martin.avanzini@inria.fr
- deadline Friday 14/05 08:00, exercise will be discussed in lecture 7

