
Advanced Logic
http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2021/AL/

Martin Avanzini

Summer Semester 2021

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2021/AL/


Last Lecture

⋆ an alternating finite automata (AFA) is a tupleA = (Q,Σ, qI, 𝛿, F) where all components
are identical to an NFA except that

𝛿 ∶ Q × Σ → B+(Q)
⋆ AFAs are more concise but otherwise equi-expressive to NFAs

Theorem

For every AFAA there exist a DFA B with O(22∣A∣) states such that L(A) = L(B).
Corollary

AFAs recognize REG.



Today’s Lecture

⋆ a short excursion to game theory

⋆ word-recognition in AFAs through games



Short Excursion to Game Theory



Reachability Games

⋆ a reachability game is played by two players, players◆ and ■

⋆ the game is played on a graph which determines the current player and her possible
moves

1start 2 3 4 5

6

Objectives
⋆ player◆: reach a certain positions (among possibly many)

⋆ player ■: prevent player◆ from winning

Main Question: has player◆ a winning strategy
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Definitions

⋆ an arena is a tuple G = (V, V◆, V■, E, vI, Z) such that
– V = V◆ ⊎ V■ are the playing positions
– E are the possible moves
– vI is the initial position
– Z ⊆ V is the set of goal positions for player V◆

⋆ a match 𝜋 on G is a (possible infinite) maximal path within (V, E) starting from vI

⋆ player◆ wins a match if it passes through a position in F, or the path ends in a node V■
(player ■ got stuck)

⋆ otherwise player ■ wins
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Example

1start 2 3 4 5

6

the above depicts the arena (V, V◆, V■, E, vI, Z) where
⋆ V◆ = {2, 4, 6} and V■ = {1, 3, 5}
⋆ vI = 1 and Z = {5, 6} (employing automata notation)

Example Matches

⋆ the path 𝜋1: 1 2 3 4 5 is a match won by◆

⋆ the path 𝜋2: 1 2 3 4 3 4 ⋯ is a match won by ■

⋆ in this arena,◆ can always win if played properly⇒◆ has a winning strategy
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Strategies

⋆ a strategy is a function that determines the next move of a player depending on the
current match

⋆ formally, a strategy on an arena G = (V, V◆, V■, E, vI, Z) for player P ∈ {◆,■} is a
function

𝜎 ∶ V∗VP → V

such that 𝜎(𝜋 ⋅ v) = w implies (v,w) ∈ E for any match 𝜋 ⋅ v

⋆ a match 𝜋 conforms to such a strategy 𝜎 if player Pmoves according to 𝜋: for any
prefixes 𝜋′ ∈ V∗VP of 𝜋, its extension 𝜋

′ ⋅ 𝜎(𝜋′) is again a prefix of 𝜋
⋆ 𝜎 is a winning strategy for player P if player P wins all matches conforming to 𝜎

Theorem

For every arena G , either◆ or ■ has a winning strategy.

⋆ instance of a more general theorem due to Donald A. Martin (1982)
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Strategies Seen as Trees

1start 2 3 4 5

6

An arena

1

2 1

2 3

4 5

5

6 6 6 ⋯

6 6 6 6 6 ⋯

A strategy for player◆; this is a winning strategy



Memoryless Strategies

⋆ a strategy 𝜎 is memoryless (or positional) if it depends only on the current players
position

𝜎(𝜋1 ⋅ v) = 𝜎(𝜋2 ⋅ v)
⋆ a memoryless strategy for player P ∈ {◆,■} can be seen as a function 𝜎 ∶ VP → V



Example

1start 2 3 4 5

6

An arena

1

2 1

2 3

4 5

5

6 6 6 ⋯

6 6 6 6 6 ⋯

A strategy for◆ that is not memoryless
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Positional Winning Strategies

Theorem

For every arena G , either◆ or ■ have a positional winning strategy.

Proof Outline.

let G = (V, V◆, V■, E, vI, Z)
⋆ LetW be the set of positions v such that the game with initial position v admits a
positional winning strategy for player◆

⋆ We show that from v /∈ W, player ■ has a positional winning strategy
– v ∈ V◆: Then no successors of v is inW

◦ otherwise, a winning strategy for player◆ on v could be defined by stepping to such a position,

contradicting v /∈ W
– v ∈ V■: Then at least one successor w of v is not inW

◦ otherwise, independent of the next move of player ■, player◆ would win hence v ∈ W

– moving for all v ∈ V■ to a successor w ∈ V■ yields a winning strategy for ■
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Effective Computation of Winner

⋆ For a set of positionsW, denote by Pre◆(W) the set of positions v such that:
– if v ∈ V◆, there is a successor of v inW
– if v ∈ V■, all successors of v are inW

⋆ informally, Pre◆(W) extends winning positionsW for player◆ along the arena, going
backwards

⋆ Then the set of winning positions is the smallest (in the sense of set-inclusion)
fixed-point of

f(W) ≜ Z ∪ Pre◆(W)
⋆ this fixed-point is reached by iterating f on∅ at most ∣V∣ times
⋆ player◆ has a winning strategy iff vI is within this fixed-point



Effective Computation of Winner

⋆ For a set of positionsW, denote by Pre◆(W) the set of positions v such that:
– if v ∈ V◆, there is a successor of v inW
– if v ∈ V■, all successors of v are inW

⋆ informally, Pre◆(W) extends winning positionsW for player◆ along the arena, going
backwards

⋆ Then the set of winning positions is the smallest (in the sense of set-inclusion)
fixed-point of

f(W) ≜ Z ∪ Pre◆(W)

⋆ this fixed-point is reached by iterating f on∅ at most ∣V∣ times
⋆ player◆ has a winning strategy iff vI is within this fixed-point



Effective Computation of Winner

⋆ For a set of positionsW, denote by Pre◆(W) the set of positions v such that:
– if v ∈ V◆, there is a successor of v inW
– if v ∈ V■, all successors of v are inW

⋆ informally, Pre◆(W) extends winning positionsW for player◆ along the arena, going
backwards

⋆ Then the set of winning positions is the smallest (in the sense of set-inclusion)
fixed-point of

f(W) ≜ Z ∪ Pre◆(W)
⋆ this fixed-point is reached by iterating f on∅ at most ∣V∣ times

⋆ player◆ has a winning strategy iff vI is within this fixed-point



Effective Computation of Winner

⋆ For a set of positionsW, denote by Pre◆(W) the set of positions v such that:
– if v ∈ V◆, there is a successor of v inW
– if v ∈ V■, all successors of v are inW

⋆ informally, Pre◆(W) extends winning positionsW for player◆ along the arena, going
backwards

⋆ Then the set of winning positions is the smallest (in the sense of set-inclusion)
fixed-point of

f(W) ≜ Z ∪ Pre◆(W)
⋆ this fixed-point is reached by iterating f on∅ at most ∣V∣ times
⋆ player◆ has a winning strategy iff vI is within this fixed-point



Example

1start 2 3 4 5

6

v ∈ V◆ 𝜎

6 6
4 5
2 3

◆ has winning strategy 𝜎



Example

1start 2 3 4 5

6
v ∈ V◆ 𝜎

6 6

4 5
2 3

◆ has winning strategy 𝜎



Example

1start 2 3 4 5

6
v ∈ V◆ 𝜎

6 6
4 5

2 3

◆ has winning strategy 𝜎



Example

1start 2 3 4 5

6
v ∈ V◆ 𝜎

6 6
4 5

2 3

◆ has winning strategy 𝜎



Example

1start 2 3 4 5

6
v ∈ V◆ 𝜎

6 6
4 5
2 3

◆ has winning strategy 𝜎



Example

1start 2 3 4 5

6
v ∈ V◆ 𝜎

6 6
4 5
2 3

◆ has winning strategy 𝜎



Optimal Complexity

Theorem

For an arena G = (V, V◆, V■, E, vI, Z), the set of winning positions can be computed in time
O(∣V∣ + ∣E∣).

Note: to arrive at this optimal bound, we proceed as before and iteratively compute the set
of winner positionsW for player◆, but:

⋆ we associate each node in v ∈ V■ with a counter kV

⋆ kv indicates the number of successors outside ofW, initially it is simply the out-degree
of v

⋆ once kv = 0, v is added toW
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Word-Recognition in AFAs through
games



AFAs and Reachability Games

consider a word w = a0 . . . an−1 ∈ Σ∗ and AFAA = (Q,Σ, qI, 𝛿, F)
the question w ∈ L(A) be conceived as a reachability game GA,w ≜ (V, V◆, V■, E, vI, Z)

⋆ player◆ wants to show w ∈ L(A), whereas player ■ wants to refute this
⋆ the game is played in 0 ≤ i < n stages, each stage involves reading letter ai:

– being in a current state q, player◆ picks a modelM which should satisfy 𝛿(q, qi)
V◆ ≜ Q × {0, . . . , n − 1} (q, i) → (M, i + 1) ∶⇔ M ⊧ 𝛿(q, ai) and i < n

– having received a modelM, player ■ picks a state q ∈ M contradicting this fact

V■ ≜ 2Q × {1, . . . , n} (M, i) → (q, i) ∶⇔ q ∈ M

⋆ the game starts at (qI,0), the goal for player◆ is to reach (M, n) withM final

vI ≜ (qI,0) F ≜ {(M, n) ∣ M ⊆ F}



AFAs and Reachability Games

consider a word w = a0 . . . an−1 ∈ Σ∗ and AFAA = (Q,Σ, qI, 𝛿, F)
the question w ∈ L(A) be conceived as a reachability game GA,w ≜ (V, V◆, V■, E, vI, Z)
⋆ player◆ wants to show w ∈ L(A), whereas player ■ wants to refute this

⋆ the game is played in 0 ≤ i < n stages, each stage involves reading letter ai:

– being in a current state q, player◆ picks a modelM which should satisfy 𝛿(q, qi)
V◆ ≜ Q × {0, . . . , n − 1} (q, i) → (M, i + 1) ∶⇔ M ⊧ 𝛿(q, ai) and i < n

– having received a modelM, player ■ picks a state q ∈ M contradicting this fact

V■ ≜ 2Q × {1, . . . , n} (M, i) → (q, i) ∶⇔ q ∈ M

⋆ the game starts at (qI,0), the goal for player◆ is to reach (M, n) withM final

vI ≜ (qI,0) F ≜ {(M, n) ∣ M ⊆ F}



AFAs and Reachability Games

consider a word w = a0 . . . an−1 ∈ Σ∗ and AFAA = (Q,Σ, qI, 𝛿, F)
the question w ∈ L(A) be conceived as a reachability game GA,w ≜ (V, V◆, V■, E, vI, Z)
⋆ player◆ wants to show w ∈ L(A), whereas player ■ wants to refute this
⋆ the game is played in 0 ≤ i < n stages, each stage involves reading letter ai:

– being in a current state q, player◆ picks a modelM which should satisfy 𝛿(q, qi)
V◆ ≜ Q × {0, . . . , n − 1} (q, i) → (M, i + 1) ∶⇔ M ⊧ 𝛿(q, ai) and i < n

– having received a modelM, player ■ picks a state q ∈ M contradicting this fact

V■ ≜ 2Q × {1, . . . , n} (M, i) → (q, i) ∶⇔ q ∈ M

⋆ the game starts at (qI,0), the goal for player◆ is to reach (M, n) withM final

vI ≜ (qI,0) F ≜ {(M, n) ∣ M ⊆ F}



AFAs and Reachability Games

consider a word w = a0 . . . an−1 ∈ Σ∗ and AFAA = (Q,Σ, qI, 𝛿, F)
the question w ∈ L(A) be conceived as a reachability game GA,w ≜ (V, V◆, V■, E, vI, Z)
⋆ player◆ wants to show w ∈ L(A), whereas player ■ wants to refute this
⋆ the game is played in 0 ≤ i < n stages, each stage involves reading letter ai:

– being in a current state q, player◆ picks a modelM which should satisfy 𝛿(q, qi)
V◆ ≜ Q × {0, . . . , n − 1} (q, i) → (M, i + 1) ∶⇔ M ⊧ 𝛿(q, ai) and i < n

– having received a modelM, player ■ picks a state q ∈ M contradicting this fact

V■ ≜ 2Q × {1, . . . , n} (M, i) → (q, i) ∶⇔ q ∈ M

⋆ the game starts at (qI,0), the goal for player◆ is to reach (M, n) withM final

vI ≜ (qI,0) F ≜ {(M, n) ∣ M ⊆ F}



AFAs and Reachability Games

consider a word w = a0 . . . an−1 ∈ Σ∗ and AFAA = (Q,Σ, qI, 𝛿, F)
the question w ∈ L(A) be conceived as a reachability game GA,w ≜ (V, V◆, V■, E, vI, Z)
⋆ player◆ wants to show w ∈ L(A), whereas player ■ wants to refute this
⋆ the game is played in 0 ≤ i < n stages, each stage involves reading letter ai:

– being in a current state q, player◆ picks a modelM which should satisfy 𝛿(q, qi)
V◆ ≜ Q × {0, . . . , n − 1} (q, i) → (M, i + 1) ∶⇔ M ⊧ 𝛿(q, ai) and i < n

– having received a modelM, player ■ picks a state q ∈ M contradicting this fact

V■ ≜ 2Q × {1, . . . , n} (M, i) → (q, i) ∶⇔ q ∈ M

⋆ the game starts at (qI,0), the goal for player◆ is to reach (M, n) withM final

vI ≜ (qI,0) F ≜ {(M, n) ∣ M ⊆ F}



AFAs and Reachability Games

consider a word w = a0 . . . an−1 ∈ Σ∗ and AFAA = (Q,Σ, qI, 𝛿, F)
the question w ∈ L(A) be conceived as a reachability game GA,w ≜ (V, V◆, V■, E, vI, Z)
⋆ player◆ wants to show w ∈ L(A), whereas player ■ wants to refute this
⋆ the game is played in 0 ≤ i < n stages, each stage involves reading letter ai:

– being in a current state q, player◆ picks a modelM which should satisfy 𝛿(q, qi)
V◆ ≜ Q × {0, . . . , n − 1} (q, i) → (M, i + 1) ∶⇔ M ⊧ 𝛿(q, ai) and i < n

– having received a modelM, player ■ picks a state q ∈ M contradicting this fact

V■ ≜ 2Q × {1, . . . , n} (M, i) → (q, i) ∶⇔ q ∈ M

⋆ the game starts at (qI,0), the goal for player◆ is to reach (M, n) withM final

vI ≜ (qI,0) F ≜ {(M, n) ∣ M ⊆ F}



Example (q0,0)
({q0, q2}, 1)({q0, q1}, 1)({q1}, 1)({q0}, 1) ({q1, q2}, 1) ({q0, q1, q2}, 1)
(q1, 1)(q0, 1) (q2, 1)

({q2}, 2)({q0, q1, q2}, 2)({q1, q2}, 2) ({q0, q2}, 2)
(q1, 2)(q0, 2) (q2, 2)

({q1}, 3)({q0, q1, q2}, 3)({q1, q2}, 3) ({q0, q2}, 3) q0 q1 q2

a

a

b

b

c

b

c
w = abc
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(q1, 2)(q0, 2) (q2, 2)

({q1}, 3)({q0, q1, q2}, 3)({q1, q2}, 3) ({q0, q2}, 3) q0 q1 q2

a

a

b

b

c

b

c
w = abc



AFAs and Reachability Games (II)

Theorem

w ∈ L(A) if and only if player◆ has a winning strategy in GA,w.

Corollary

The word problem for an AFA with n states is decidable in time
O(∣V∣ + ∣E∣) = O(∣V◆∣ ⋅ ∣V■∣) = O(n ⋅ 2n ⋅ ∣w∣2).
Remarks
⋆ translating an AFA to DFA takes O(22n) space
⋆ it is more efficient to resolve the game instead

⋆ however, it may be more efficient to construct the DFA on the fly, avoiding the
state-space explosion to some extend
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Programming Project (II)

write a solver for a reachability game, computing the set of winning positions for player◆

⋆ the algorithm should obey the optimal complexity bound

⋆ concrete method and programming language up to you

⋆ parser and stand-alone executable nice to have, but not a must

⋆ send solutions including instructions to martin.avanzini@inria.fr
⋆ deadline Friday 14/05 08:00, exercise will be discussed in lecture 7

martin.avanzini@inria.fr
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