Advanced Logic http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2021/AL/

Martin Avanzini

Summer Semester 2021

Last Lecture

Presburger Arithmetic refers to the first-order theory over (N*,* {0*,* +*,* <})

$$
s, t ::= 0 \mid x \mid s+t
$$

$$
\phi, \psi ::= \top \mid \bot \mid s=t \mid s < t \mid \phi \land \psi \mid \neg \psi \mid \exists x. \phi
$$

Theorem

Satisfiability and Validity are decidable for Presburger Arithmetic.

Theorem

For any formula ϕ , the constructed DFA recognizing $\hat{\mathsf{L}}(\phi)$ has size $\mathsf{O}(\mathsf{2}^{2^n})$.

 \star this bound can be reached

Today's Lecture

- \star non-determinism
- \star alternative finite automata
- \star relationship with regular languages

Non-Determinism

What is a non-deterministic machine?

- \star a machine which admits several executions on the same input
- \star put otherwise, during processing, several choices are possible

What is a non-deterministic machine?

- \star a machine which admits several executions on the same input
- \star put otherwise, during processing, several choices are possible
- \star such choices can be resolved in favor (anglican non-determinism) or against (demonic non-determinism) a positive outcome (e.g. acceptance, termination, etc)
	- Anglican: an angel resolves choices
		- \Rightarrow it is sufficient to have one "good" execution path, to have a positive outcome

What is a non-deterministic machine?

- \star a machine which admits several executions on the same input
- \star put otherwise, during processing, several choices are possible
- \star such choices can be resolved in favor (anglican non-determinism) or against (demonic non-determinism) a positive outcome (e.g. acceptance, termination, etc)
	- Anglican: an angel resolves choices
		- \Rightarrow it is sufficient to have one "good" execution path, to have a positive outcome
	- Demonic: a demon resolves choices
		- \Rightarrow all execution paths must be good "good", to have a positive outcome

What is a non-deterministic machine?

- \star a machine which admits several executions on the same input
- \star put otherwise, during processing, several choices are possible
- \star such choices can be resolved in favor (anglican non-determinism) or against (demonic non-determinism) a positive outcome (e.g. acceptance, termination, etc)
	- Anglican: an angel resolves choices
		- \Rightarrow it is sufficient to have one "good" execution path, to have a positive outcome
	- Demonic: a demon resolves choices
		- \Rightarrow all execution paths must be good "good", to have a positive outcome

- \star NFAs are based on anglican non-determinism
- \star worst-case complexity analysis assumes demonic non-determinism

NFAs with Demonic Choice

⋆ NFAs incorporate angelic non-determinism because, in order for *w* ∈ L(*A*), only one accepting run of *w* has to exists

NFAs with Demonic Choice

- ⋆ NFAs incorporate angelic non-determinism because, in order for *w* ∈ L(*A*), only one accepting run of *w* has to exists
- \star demonic non-determinism introduced by re-formulating the acceptance condition

L − (*A*) ≜ {*w* ∣ all runs on *w* are accepting}

NFAs with Demonic Choice

- ⋆ NFAs incorporate angelic non-determinism because, in order for *w* ∈ L(*A*), only one accepting run of *w* has to exists
- \star demonic non-determinism introduced by re-formulating the acceptance condition

L − (*A*) ≜ {*w* ∣ all runs on *w* are accepting}

- \star recall that for each NFA $\mathcal A$, its dual $\overline{\mathcal A}$ is given by complementing final states
- \star in general, only when *A* is deterministic, then $L(\overline{\mathcal{A}}) = \overline{L(\mathcal{A})}$

- \star recall that for each NFA $\cal A$, its dual $\overline{\cal A}$ is given by complementing final states
- \star in general, only when *A* is deterministic, then L(\overline{A}) = $\overline{L(A)}$

Proposition

$$
w\in L(\mathcal{A}) \quad \Longleftrightarrow \quad w\notin L^-(\overline{\mathcal{A}})
$$

- \star recall that for each NFA ${\cal A}$, its dual $\overline{\cal A}$ is given by complementing final states
- \star in general, only when *A* is deterministic, then $L(\overline{\mathcal{A}}) = L(\mathcal{A})$

Proposition

$$
w \in L(\mathcal{A}) \quad \Longleftrightarrow \quad w \notin L^-(\overline{\mathcal{A}})
$$

- \star regime to resolve non-determinism has no effect on expressiveness of NFAs
- \star although potentially on the conciseness of the language description through NFAs

- \star recall that for each NFA ${\cal A}$, its dual $\overline{\cal A}$ is given by complementing final states
- \star in general, only when *A* is deterministic, then $L(\overline{\mathcal{A}}) = L(\mathcal{A})$

Proposition

$$
w \in L(\mathcal{A}) \quad \Longleftrightarrow \quad w \notin L^-(\overline{\mathcal{A}})
$$

- \star regime to resolve non-determinism has no effect on expressiveness of NFAs
- \star although potentially on the conciseness of the language description through NFAs

what happens if we leave regime internal to the automata?

Alternating Finite Automata

Alternating Finite Automata

- \star General Idea: mix Anglican an Demonic choice on the level of individual transitions
	- a player resolves Anglican choice
	- an oppenent resolves Demonic choice

$$
\delta(0, a) = 1 \vee 2
$$

\n
$$
\delta(1, b) = 3 \wedge 4
$$

\n
$$
\delta(2, b) = 5 \wedge 6
$$

\n
$$
\vdots
$$

$$
L(A) = a(b(a \cup b) \cap b(b \cup c))
$$

\n
$$
\cup a(b(a \cup b) \cap bc)
$$

\n
$$
= abb \cup \emptyset
$$

\n
$$
= abb \cup \emptyset
$$

Alternating Finite Automata, Formally

Positive Boolean Formulas

- \star let *A* = { $a, b, ...$ } be a set of atoms
- \star the positive Boolean formulas $\mathbb{B}^+(A)$ over atoms A are given by the following grammar:

$$
\phi, \psi ::= \alpha \mid \phi \land \psi \mid \phi \lor \psi
$$

– such formulas are called positive because negation is missing

Alternating Finite Automata, Formally

Positive Boolean Formulas

- \star let $A = \{a, b, \dots\}$ be a set of atoms
- \star the positive Boolean formulas $\mathbb{B}^+(A)$ over atoms A are given by the following grammar:

$$
\phi, \psi ::= \mathbf{a} \mid \phi \land \psi \mid \phi \lor \psi
$$

- such formulas are called positive because negation is missing
- ⋆ a set *M* ⊆ *A* is a model of if *M* ⊧ where

M ⊧ *a* ∶⇔*a* ∈ *M M* ⊧ ∧ ∶⇔*M* ⊧ **and** *M* ⊧ *M* ⊧ ∨ ∶⇔*M* ⊧ **or** *M* ⊧

Alternating Finite Automata, Formally

Positive Boolean Formulas

- \star let $A = \{a, b, \dots\}$ be a set of atoms
- \star the positive Boolean formulas $\mathbb{B}^+(A)$ over atoms A are given by the following grammar:

$$
\phi, \psi ::= \mathbf{a} \mid \phi \land \psi \mid \phi \lor \psi
$$

- such formulas are called positive because negation is missing
- ⋆ a set *M* ⊆ *A* is a model of if *M* ⊧ where

M ⊧ *a* ∶⇔*a* ∈ *M M* ⊧ ∧ ∶⇔*M* ⊧ **and** *M* ⊧ *M* ⊧ ∨ ∶⇔*M* ⊧ **or** *M* ⊧

Example

consider $\phi = a \wedge (b \vee c)$, then

 ${a,b} \models \phi$ {*a, c*} $\models \phi$ {*a*} $\sharp \phi$ {*b, c*} $\sharp \phi$

Alternating Finite Automata, Formally (II)

an alternating finite automata (AFA) is a tuple $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ where all components are identical to an NFA except that

 $\delta: Q \times \Sigma \to \mathbb{B}^+(Q)$

Alternating Finite Automata, Formally (II)

an alternating finite automata (AFA) is a tuple $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ where all components are identical to an NFA except that

 $\delta: Q \times \Sigma \to \mathbb{B}^+(Q)$

Runs in an AFA

- $\mathsf{let}\ \mathcal{A} = (Q, \Sigma, q_I, \delta, F) \ \mathsf{be} \ \mathsf{an} \ \mathsf{AFA}$
- \star an execution for a word $w = \mathrm{a}_1 \ldots \mathrm{a}_\mathrm{n} \in \Sigma^*$ is a tree \mathcal{T}_w whose nodes are labeled by states *Q* s.t.:
	- 1. the root node of T_w is labeled by the initial state q_l
	- 2. for all nodes *v* on the *i*th layer (*i* = 0, . . . , *n* − 1) with successors v_1, \ldots, v_k on layer *i* + 1, labeled by q_1, \ldots, q_k , respectively:

{ $q_1, ..., q_k$ } ⊨ $\delta(q, a_{i+1})$

Runs in an AFA

- $\mathsf{let}\ \mathcal{A} = (Q, \Sigma, q_I, \delta, F) \ \mathsf{be} \ \mathsf{an} \ \mathsf{AFA}$
- \star an execution for a word $w = \mathrm{a}_1 \ldots \mathrm{a}_\mathrm{n} \in \Sigma^*$ is a tree \mathcal{T}_w whose nodes are labeled by states *Q* s.t.:
	- 1. the root node of T_w is labeled by the initial state q_l
	- 2. for all nodes *v* on the *i*th layer (*i* = 0, . . . , *n* − 1) with successors v_1, \ldots, v_k on layer *i* + 1, labeled by q_1, \ldots, q_k , respectively:

{ $q_1, ..., q_k$ } ⊨ $\delta(q, a_{i+1})$

 \star an execution is accepting if all leafs are labeled by final states

Runs in an AFA

- $\mathsf{let}\ \mathcal{A} = (Q, \Sigma, q_I, \delta, F) \ \mathsf{be} \ \mathsf{an} \ \mathsf{AFA}$
- \star an execution for a word $w = \mathrm{a}_1 \ldots \mathrm{a}_\mathrm{n} \in \Sigma^*$ is a tree \mathcal{T}_w whose nodes are labeled by states *Q* s.t.:
	- 1. the root node of T_w is labeled by the initial state q_l
	- 2. for all nodes *v* on the *i*th layer (*i* = 0, . . . , *n* − 1) with successors v_1, \ldots, v_k on layer *i* + 1, labeled by q_1, \ldots, q_k , respectively:

{ $q_1, ..., q_k$ } ⊨ $\delta(q, a_{i+1})$

- \star an execution is accepting if all leafs are labeled by final states
- \star the language recognized by $\mathcal A$ is given by

L(\mathcal{A}) ≜ {*w* | there exists an accepting execution T_w for *w*}

{*q*1} ⊧ *q*⁰ ∨ *q*¹

{*q*1 *, q*2} ⊧ *q*¹ ∧ *q*²

{*q*1 *, q*2} ⊧ *q*¹ ∧ *q*²

 ${q_1, q_1, q_1}$ ⊆ *F*

Extended Transition Function

the extended transition function

 $\hat{\delta}: \mathbb{B}^+(\mathbb{Q}) \times \Sigma^* \to \mathbb{B}^+(\mathbb{Q})$

is recursively defined by:

 $\hat{\delta}(q, \epsilon) \triangleq q$ $\hat{\delta}(\phi \vee \psi, w) = \hat{\delta}(\phi, w) \vee \hat{\delta}(\psi, w)$ $\hat{\delta}(a, a \cdot w) \triangleq \hat{\delta}(\delta(a, a), w)$ $\hat{\delta}(\phi \wedge \psi, w) = \hat{\delta}(\phi, w) \wedge \hat{\delta}(\psi, w)$ $\hat{\delta}(\phi \wedge \psi, w) = \hat{\delta}(\phi, w) \wedge \hat{\delta}(\psi, w)$

Extended Transition Function

the extended transition function

 $\hat{\delta}: \mathbb{B}^+(\mathbb{Q}) \times \Sigma^* \to \mathbb{B}^+(\mathbb{Q})$

is recursively defined by:

 $\hat{\delta}(q, \epsilon) \triangleq q$ $\hat{\delta}(\phi \vee \psi, w) = \hat{\delta}(\phi, w) \vee \hat{\delta}(\psi, w)$
 $\hat{\delta}(a, a \cdot w) \triangleq \hat{\delta}(\delta(a, a), w)$ $\hat{\delta}(\phi \wedge \psi, w) = \hat{\delta}(\phi, w) \wedge \hat{\delta}(\psi, w)$ $\hat{\delta}(\phi \wedge \psi, w) = \hat{\delta}(\phi, w) \wedge \hat{\delta}(\psi, w)$

Lemma

 $L(\mathcal{A}) = \{w \mid F \models \hat{\delta}(q_l, w)\}$

$$
\hat{\delta}(q_0, \text{abbc}) = \hat{\delta}(q_0 \vee q_1, \text{bbc}) \n= \hat{\delta}(q_0, \text{bbc}) \vee \hat{\delta}(q_1, \text{bbc}) \n= \hat{\delta}(q_\perp, \text{bc}) \vee (\hat{\delta}(q_1, \text{bc}) \wedge \hat{\delta}(q_2, \text{bc})) \n= \hat{\delta}(q_\perp, \text{c}) \vee (\hat{\delta}(q_1, \text{c}) \wedge \hat{\delta}(q_2, \text{c})) \n= \hat{\delta}(q_\perp, \epsilon) \vee \hat{\delta}(q_1, \epsilon) \n= q_\perp \vee q_1 \n\{q_1\} \vDash q_\perp \vee q_1
$$

- \star AFAs generalise NFAs
	- every DFA is a NFA is an AFA

- \star AFAs generalise NFAs
	- every DFA is a NFA is an AFA
- \star AFAs allow often more succinct encoding / automata constructions

- \star AFAs generalise NFAs
	- every DFA is a NFA is an AFA
- \star AFAs allow often more succinct encoding / automata constructions

- \star let $\mathcal{A}^{(m)}m = (Q^{(m)}, \{a\}, \delta^{(m)}, q^{(m)}_l, F^{(m)})$ be an NFA such that L(A_i) = {*w* | |*w*| = 0 mod *m*}
	- this NFA has at least *m* states

- \star AFAs generalise NFAs
	- every DFA is a NFA is an AFA
- \star AFAs allow often more succinct encoding / automata constructions

- \star let $\mathcal{A}^{(m)}m = (Q^{(m)}, \{a\}, \delta^{(m)}, q^{(m)}_l, F^{(m)})$ be an NFA such that L(A_i) = {*w* | |*w*| = 0 mod *m*}
	- this NFA has at least *m* states
- \star consider the AFA *A* defined from $\mathcal{A}^{(m)}$ for primes $m = 7,13,17,19$ by

- \star AFAs generalise NFAs
	- every DFA is a NFA is an AFA
- \star AFAs allow often more succinct encoding / automata constructions

- \star let $\mathcal{A}^{(m)}m = (Q^{(m)}, \{a\}, \delta^{(m)}, q^{(m)}_l, F^{(m)})$ be an NFA such that $L(\mathcal{A}_i) = \{w \mid |w| = 0 \text{ mod } m\}$
	- this NFA has at least *m* states
- \star consider the AFA *A* defined from $\mathcal{A}^{(m)}$ for primes $m = 7,13,17,19$ by

- \star AFAs generalise NFAs
	- every DFA is a NFA is an AFA
- \star AFAs allow often more succinct encoding / automata constructions

- \star let $\mathcal{A}^{(m)}m = (Q^{(m)}, \{a\}, \delta^{(m)}, q^{(m)}_l, F^{(m)})$ be an NFA such that $L(\mathcal{A}_i) = \{w \mid |w| = 0 \text{ mod } m\}$
	- this NFA has at least *m* states
- \star consider the AFA *A* defined from $\mathcal{A}^{(m)}$ for primes $m = 7,13,17,19$ by

- L(*A*) = {*w* ∣ ∣*w*∣ = 1 mod 29393} since 29393 = 7 ⋅ 13 ⋅ 17 ⋅ 19
- $-$ AFA $\mathcal A$ has 57 = 1 + 7 + 13 + 17 + 19, whereas a corresponding NFA needs 29393 states

★ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFA A there exists an AFA \overline{A} *of equal size such that* $L(\overline{A}) = \overline{L(A)}$

★ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFA $\mathcal A$ *there exists an AFA* $\overline{\mathcal A}$ *of equal size such that* $L(\overline{\mathcal A}) = \overline{L(\mathcal A)}$

Proof Outline.

- \star let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- $\star \;$ define the dual formula $\overline{\phi}$ of $\phi \in \mathbb{B}^+(Q)$ following De Morgans rules $\overline{q} \triangleq q$ $\overline{\phi} \vee \overline{\psi} \triangleq \overline{\phi} \wedge \overline{\psi}$ $\overline{\phi} \wedge \overline{\psi} \triangleq \overline{\phi} \vee \overline{\psi}$
	- morally, $q \in Q$ re-used for their "negation"; we have (i) *M* ⊧ ϕ iff $Q \setminus M \not\models \overline{\phi}$

★ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFA $\mathcal A$ *there exists an AFA* $\overline{\mathcal A}$ *of equal size such that* $L(\overline{\mathcal A}) = \overline{L(\mathcal A)}$

Proof Outline.

- \star let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- $\star \;$ define the dual formula $\overline{\phi}$ of $\phi \in \mathbb{B}^+(Q)$ following De Morgans rules $\overline{q} \triangleq q$ $\overline{\phi} \vee \overline{\psi} \triangleq \overline{\phi} \wedge \overline{\psi}$ $\overline{\phi} \wedge \overline{\psi} \triangleq \overline{\phi} \vee \overline{\psi}$
	- morally, $q \in Q$ re-used for their "negation"; we have (i) $M \models \phi$ iff $Q\setminus M \not\models \overline{\phi}$

 \star we now define $\mathcal{A} \triangleq (Q, \Sigma, \delta, q_l, Q \backslash F)$ where $\delta(q, a) \triangleq \delta(q, a)$ for all $q \in Q$, $a \in \Sigma$

★ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFA $\mathcal A$ *there exists an AFA* $\overline{\mathcal A}$ *of equal size such that* $L(\overline{\mathcal A}) = \overline{L(\mathcal A)}$

Proof Outline.

- \star let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- $\star \;$ define the dual formula $\overline{\phi}$ of $\phi \in \mathbb{B}^+(Q)$ following De Morgans rules $\overline{q} \triangleq q$ $\overline{\phi} \vee \overline{\psi} \triangleq \overline{\phi} \wedge \overline{\psi}$ $\overline{\phi} \wedge \overline{\psi} \triangleq \overline{\phi} \vee \overline{\psi}$
	- morally, $q \in Q$ re-used for their "negation"; we have (i) $M \models \phi$ iff $Q\setminus M \not\models \overline{\phi}$
- \star we now define $\mathcal{A} \triangleq (Q, \Sigma, \delta, q_l, Q \backslash F)$ where $\delta(q, a) \triangleq \delta(q, a)$ for all $q \in Q$, $a \in \Sigma$
	- $-$ by induction on $|w|$ it can now be shown that (ii) $\hat{\delta}(q_i, w) = \hat{\delta}(q, w)$

 \star recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFA $\mathcal A$ *there exists an AFA* $\overline{\mathcal A}$ *of equal size such that* $L(\overline{\mathcal A}) = \overline{L(\mathcal A)}$

Proof Outline.

- \star let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- $\star \;$ define the dual formula $\overline{\phi}$ of $\phi \in \mathbb{B}^+(Q)$ following De Morgans rules $\overline{q} \triangleq q$ $\overline{\phi} \vee \overline{\psi} \triangleq \overline{\phi} \wedge \overline{\psi}$ $\overline{\phi} \wedge \overline{\psi} \triangleq \overline{\phi} \vee \overline{\psi}$
	- morally, $q \in Q$ re-used for their "negation"; we have (i) $M \models \phi$ iff $Q\setminus M \not\models \overline{\phi}$
- \star we now define $\mathcal{A} \triangleq (Q, \Sigma, \delta, q_l, Q \backslash F)$ where $\delta(q, a) \triangleq \delta(q, a)$ for all $q \in Q$, $a \in \Sigma$
	- $-$ by induction on $|w|$ it can now be shown that (ii) $\hat{\delta}(q_i, w) = \hat{\delta}(q, w)$
	- overall, we have

 $w \notin L(\mathcal{A}) \stackrel{def.}{\iff} F \nvdash \hat{\delta}(q_i, w) \stackrel{(i)}{\iff} Q \backslash F \models \overline{\hat{\delta}(q_i, w)} \stackrel{(ii)}{\iff} Q \backslash F \models \hat{\overline{\delta}}(q_i, w) \stackrel{def.}{\iff} w \in L(\overline{\mathcal{A}})$

Example

⇕ complement

Relationship with Regular Languages

Theorem

For every AFA $\mathcal A$ *there exist a DFA* $\mathcal B$ *with* O(2^{2 $\mathcal A$}) *states such that* L($\mathcal A$) = L($\mathcal B$).

Theorem

For every AFA $\mathcal A$ *there exist a DFA* $\mathcal B$ *with* O(2^{2 $\mathcal A$}) *states such that* L($\mathcal A$) = L($\mathcal B$).

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Idea:

- \star the states of *B* are formulas
- $\star \phi \stackrel{a}{\longrightarrow} \psi$ in *B* if $\hat{\delta}(\phi, a) = \psi$
	- $-$ Example: $\delta(p, a) = q \land r$ and $\delta(q, a) = r$ ⇒ $p ∨ q \xrightarrow{a} (q ∧ r) ∨ r$
	- $-$ a run $q_1 \stackrel{a_1}{\longrightarrow} \cdots \stackrel{a_n}{\longrightarrow} \phi$ thus models $\hat{\delta}(q_1, a_1 \ldots a_n) = \phi$
- $\,\star\,$ the formula q_I is the initial state
- \star the formulas modeled by *F* are final

Theorem

For every AFA $\mathcal A$ *there exist a DFA* $\mathcal B$ *with* O(2^{2 $\mathcal A$}) *states such that* L($\mathcal A$) = L($\mathcal B$).

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Idea:

- \star the states of *B* are formulas
- $\star \phi \stackrel{a}{\longrightarrow} \psi$ in *B* if $\hat{\delta}(\phi, a) = \psi$
	- $-$ Example: $\delta(p, a) = q \land r$ and $\delta(q, a) = r$ ⇒ $p ∨ q \xrightarrow{a} (q ∧ r) ∨ r$
	- $-$ a run $q_l \stackrel{a_1}{\longrightarrow} \cdots \stackrel{a_n}{\longrightarrow} \phi$ thus models $\hat{\delta}(q_l, a_1 \ldots a_n) = \phi$
- $\,\star\,$ the formula q_I is the initial state
- \star the formulas modeled by *F* are final
- \star to keep the construction finite, we'll identify equivalent formulas

Theorem

For every AFA $\mathcal A$ *there exist a DFA* $\mathcal B$ *with* O(2^{2 $\mathcal A$}) *states such that* L($\mathcal A$) = L($\mathcal B$).

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Formally:

 \star the equivalence ~ on $\mathbb{B}^+(Q)$ is given by $\phi \sim \psi$ if $\{M \mid M \vDash \phi\} = \{M \mid M \vDash \psi\}$

– *q* ∼ *q* ∨ *q* ∼ *q* ∧ *q* but *q* ∼/ *p* ∨ *q* ∼/ *p* ∧ *q*

Theorem

For every AFA $\mathcal A$ *there exist a DFA* $\mathcal B$ *with* O(2^{2 $\mathcal A$}) *states such that* L($\mathcal A$) = L($\mathcal B$).

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Formally:

 \star the equivalence ~ on $\mathbb{B}^+(Q)$ is given by $\phi \sim \psi$ if $\{M \mid M \vDash \phi\} = \{M \mid M \vDash \psi\}$

– *q* ∼ *q* ∨ *q* ∼ *q* ∧ *q* but *q* ∼/ *p* ∨ *q* ∼/ *p* ∧ *q*

 \star the equivalence class $\lceil\phi\rceil$ _∼ can be simply conceived as the formula ϕ , with equivalent formulas $\phi \sim \psi$ identified

– [*q* ∨ *q*][∼] = {*q, q* ∨ *q, q* ∧ *q, . . .* }

Theorem

For every AFA $\mathcal A$ *there exist a DFA* $\mathcal B$ *with* O(2^{2 $\mathcal A$}) *states such that* L($\mathcal A$) = L($\mathcal B$).

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Formally:

 \star the equivalence ~ on $\mathbb{B}^+(Q)$ is given by $\phi \sim \psi$ if $\{M \mid M \vDash \phi\} = \{M \mid M \vDash \psi\}$

– *q* ∼ *q* ∨ *q* ∼ *q* ∧ *q* but *q* ∼/ *p* ∨ *q* ∼/ *p* ∧ *q*

 \star the equivalence class $\lceil ∅ \rceil$ can be simply conceived as the formula ϕ , with equivalent formulas $\phi \sim \psi$ identified

– [*q* ∨ *q*][∼] = {*q, q* ∨ *q, q* ∧ *q, . . .* }

⋆ the set of all such equivalence classes B + (*Q*)/∼ contains O(2 2 ∣*Q*∣) elements

Theorem

For every AFA $\mathcal A$ *there exist a DFA* $\mathcal B$ *with* O(2^{2 $\mathcal A$}) *states such that* L($\mathcal A$) = L($\mathcal B$).

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Formally:

 \star the equivalence ~ on $\mathbb{B}^+(Q)$ is given by $\phi \sim \psi$ if $\{M \mid M \vDash \phi\} = \{M \mid M \vDash \psi\}$

– *q* ∼ *q* ∨ *q* ∼ *q* ∧ *q* but *q* ∼/ *p* ∨ *q* ∼/ *p* ∧ *q*

- \star the equivalence class $\lceil\phi\rceil_z$ can be simply conceived as the formula ϕ , with equivalent formulas $\phi \sim \psi$ identified
	- [*q* ∨ *q*][∼] = {*q, q* ∨ *q, q* ∧ *q, . . .* }
- ⋆ the set of all such equivalence classes B + (*Q*)/∼ contains O(2 2 ∣*Q*∣) elements
- \star *B* \triangleq ($\mathbb{B}^{+}(Q)/\sim$, Σ, q_{l}, δ_{\sim} , {[ϕ] \sim | F $\models \phi$ }) where $\delta_{\sim}([\phi]_{\sim}$, a) \triangleq [$\hat{\delta}(\phi, a)$] \sim recognises L(*A*)

Example

0 $\begin{array}{c} a \end{array}$ 1 v 2 $\begin{array}{c} b \end{array}$ (3 ∧ 4) ∨(5 ∧ 6)

the translated DFA

the initial AFA

From AFAs to NFA

Theorem

For every AFA $\mathcal A$ *there exist a NFA* $\mathcal B$ *with* $O(2^{|\mathcal A|})$ *states such that* $L(\mathcal A) = L(\mathcal B)$ *.*

Proof Outline.

- \star let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- \star idea: rather then "recording" to be validated formulas as in the DFA construction, the corresponding NFA "records" valuations
	- the construction is simpler, at the expense of non-determinism

From AFAs to NFA

Theorem

For every AFA $\mathcal A$ *there exist a NFA* $\mathcal B$ *with* $O(2^{|\mathcal A|})$ *states such that* $L(\mathcal A) = L(\mathcal B)$ *.*

Proof Outline.

- \star let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- \star idea: rather then "recording" to be validated formulas as in the DFA construction, the corresponding NFA "records" valuations
	- the construction is simpler, at the expense of non-determinism
- ★ the NFA is given by $\mathcal{B} \triangleq (2^Q, \Sigma, \{q_i\}, \delta', \{M \mid M \subseteq F\})$ where

$$
N \in \delta'(M, a) \quad : \Longleftrightarrow \quad N \models \bigwedge_{q \in M} \delta(q, a)
$$

Example (II)

 $\begin{array}{c} a \\ 0 \end{array}$ 1 v 2 (3 ∧ 4) ∨(5 ∧ 6) a $\langle \cdot, \cdot \rangle$ b

the translated DFA

the initial AFA

Discussion

- ⋆ What if we translate wMSO formulas to AFAs?
	- for basic formulas *x* < *y* and *X*(*y*), the construction is as seen previously
	- Boolean connectives are reflected directly in the transition
	- Quantifier elimination through projection homomorphisms

Discussion

- ⋆ What if we translate wMSO formulas to AFAs?
	- for basic formulas *x* < *y* and *X*(*y*), the construction is as seen previously
	- Boolean connectives are reflected directly in the transition
	- Quantifier elimination through projection homomorphisms
- \star this suggests resulting automaton is linear in size of formula
	- ⇒ wMSO model-checking in exponential time, contradicting the lower-bound result!

Projections and AFAs

Discussion

⋆ What if we translate wMSO formulas to AFAs?

- for basic formulas *x* < *y* and *X*(*y*), the construction is as seen previously
- Boolean connectives are reflected directly in the transition
- Quantifier elimination through projection homomorphisms
- \star this suggests resulting automaton is linear in size of formula
	- ⇒ wMSO model-checking in exponential time, contradicting the lower-bound result!

Problem:

We do not have a polytime algorithm for homorphism applications on AFAs

