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Last Lecture

Presburger Arithmetic refers to the first-order theory over (N, {0, +, <})

s,tx=0 | X | s+t

p=T | L |s=t]|s<t|ony | -v | Ixg

Theorem
Satisfiability and Validity are decidable for Presburger Arithmetic.

Theorem
For any formula ¢, the constructed DFA recognizing L(¢) has size 0(2%).

* this bound can be reached



Today'’s Lecture

* non-determinism
* alternative finite automata

* relationship with regular languages



Non-Determinism
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Angelican vs Demonic Non-Determinism

What is a non-deterministic machine?

* amachine which admits several executions on the same input
* put otherwise, during processing, several choices are possible

* such choices can be resolved in favor (anglican non-determinism) or against (demonic
non-determinism) a positive outcome (e.g. acceptance, termination, etc)

— Anglican: an angel resolves choices

= it is sufficient to have one “good” execution path, to have a positive outcome

— Demonic: a demon resolves choices
= all execution paths must be good “good”, to have a positive outcome
Example
* NFAs are based on anglican non-determinism

* worst-case complexity analysis assumes demonic non-determinism
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NFAs with Demonic Choice

*» NFAs incorporate angelic non-determinism because, in order for w € L(A), only one
accepting run of w has to exists

* demonic non-determinism introduced by re-formulating the acceptance condition

L (A) = {w | all runs on w are accepting}

Example

* L(A) = (buc)*

* LT(A)=euuc) -c
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Duality of Non-Determinism

* recall that for each NFA 4, its dual A is given by complementing final states

* in general, only when A is deterministic, then L(A) = L(A)

Proposition

weL(A) o wé¢L (A)

* regime to resolve non-determinism has no effect on expressiveness of NFAs

* although potentially on the conciseness of the language description through NFAs

what happens if we leave regime internal to the automata?
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Alternating Finite Automata

* General Idea: mix Anglican an Demonic choice on the level of individual transitions

— aplayer resolves Anglican choice
- an oppenent resolves Demonic choice

§(0,a)=1v 2
6(1,b)=3 A4

5(2,b)=5A6

L(A)=a(b(aub) Nnb(buc))
U a(b(aUb) N bc)
=abb U g
= abb



Alternating Finite Automata, Formally

Positive Boolean Formulas
* letA={a,b,...}beasetofatoms

* the positive Boolean formulas B" (A) over atoms A are given by the following grammar:

py=a | gay | ovy
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Alternating Finite Automata, Formally

Positive Boolean Formulas
* letA={a,b,...}beasetofatoms

* the positive Boolean formulas B" (A) over atoms A are given by the following grammar:
o=a | oay | vy
- such formulas are called positive because negation is missing
* aset M c Aisamodel of ¢ if M F ¢ where

MEai=aeM MEpAYy:=MEpandMEy ME¢oVYy:=MEporMEy

Example
consider ¢ = a A (b v c), then

{a,b} F ¢ {a.c}F¢ {a}¥ o {b.c}¥ ¢
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Alternating Finite Automata, Formally (II)

an alternating finite automata (AFA) is a tuple A = (Q, %, g, 5, F) where all components are
identical to an NFA except that

§:Qx% - B (Q)

Example

Go GoV qL qL
a1 qL O AG @
4z g1 qz a1
q1 q1 qL qL




Runsin an AFA

let A=(Q.%, g, 5, F)beanAFA

* an execution foraword w = a; ...a, € " isatree T,, whose nodes are labeled by
states Q s.t.

1. the root node of T, is labeled by the initial state g,
2. forall nodes von theith layer (i = 0,...,n — 1) with successors vy, ..., v, on layeri + 1,
labeled by gy, . . ., gk, respectively:
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Runsin an AFA

let A=(Q.%, g, 5, F)beanAFA

* an execution foraword w = a; ...a, € " isatree T,, whose nodes are labeled by
states Q s.t.

1. the root node of T, is labeled by the initial state g,

2. forall nodes von theith layer (i = 0,...,n — 1) with successors vy, ..., v, on layeri + 1,
labeled by gy, . . ., gk, respectively:

{Q1a cee ,Qk} F 6(Q’ a'i+1)

* an execution is accepting if all leafs are labeled by final states

» the language recognized by A is given by

L(A) £ {w | there exists an accepting execution T,, for w}



Example of Accepting Execution for w = abbc

9o
|
a1
/ N\
a1 gz
0 a b C / \ ‘
Qo qo V g qL a1 o 92 92
a1 qL QGING a1 a1 g
gz q. g2 a1

g1 g1 g1 g1



Example of Accepting Execution for w = abbc

0 a b c
o - g1 qL
N aL NG G
gz gL q? a1
gL gL gL aq.




Example of Accepting Execution for w = abbc

do
0 a b c
q q
4o o vV 1 g1 gL 1 2 92
a9 [ o & G
gz gL gz a1
gL aq. gL aq.



Example of Accepting Execution for w = abbc

0 a b c
o qgoV g gL gL
o K
gz gL gz a1
gL aq. gL aq.

a1

g1 g



Example of Accepting Execution for w =

0 a b c
o qgoV g gL gL
ai a. GANG G
qz qL - 91
gL gL gL q.L

abbc

a1

a1

gz

a1 g1



Example of Accepting Execution for w = abbc

0 a b c

o qgoV g gL gL
) qL WNCE -
qz q. 9> -
qL q. gL q.L

do
| a
a1
/\ b
a1 'k
/N |
a1 gz gz



Example of Accepting Execution for w = abbc

0 a b c
o qgoV g gL gL
ai a. GANG G
az aiL a2 a1
gL gL gL gL

do

/ A\

0 qz
/N

) g2 g2

@ an

o’

o

(e}



Extended Transition Function

the extended transition function
§:BT(Q)x=" - B(Q)
is recursively defined by:

5(g.€) 2 q S(p v g, w) = 5(g,w) v oy, w)
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Extended Transition Function

the extended transition function
§:BT(Q)x=" - B(Q)
is recursively defined by:

5(g.€) 2 q S(p v g, w) = 5(g,w) v oy, w)
S(q’ a- W) = S(é(q’ a)’ W) 5((]5 AY, W) = 3(¢’ W) A 3('70’ W)

Lemma

L(A) = {w | FE 5(q1,w)}



Example of Accepting Execution for w = abbc (I1)

o a b C
o goV g gL a1
ai a.L GANG G
gz gL gz g1
gL gL gL a.

Al

A

do

A

/ A\

0 gz
/N

g2 gz

a1 g1
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Comparison to NFAs and DFAs
* AFAs generalise NFAs
— every DFAisa NFA is an AFA

* AFAs allow often more succinct encoding / automata constructions

Example

* let A™m = Q"™ {a},s'™, qu), F™ be an NFA such that
L(A;) = {w | |w| = 0 mod m}
— this NFA has at least m states

* consider the AFA A defined from A(m) for primes m = 7,13,17,19 by

- L(A) ={w | |w| =1 mod 29393} since 29393 =7-13-17-19
- AFA Ahas57 =1+7 +13 + 17 + 19, whereas a corresponding NFA needs 29393 states
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Complementation

* recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma
For every AFA A there exists an AFA A of equal size such that L(A) = L(A)

Proof Outline.
* let A=(Q,%,q,,6,F)
» define the dual formula ¢ of ¢ € B*(Q) following De Morgans rules

q=q SVY2PAY PAYZIVY
- morally, g € Q re-used for their “negation”; we have (i) M E ¢ iff Q\M ¥ ¢
* we now define A 2 (Q,X,6,q,, Q\F) where 5(g,a) 2 6(g,a) forallge Q,a e X

— by induction on |w/| it can now be shown that (ii) g(q,, w) = 6(q,w)

— overall, we have

we LA & Fidanw) < Q\FES(gnw) <2 o\FF 5(qnw) <5 we L(A)



Example




Relationship with Regular Languages
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AFAs Recognize REG

Theorem

]
For every AFA A there exist a DFA B with 0(2° ) states such that L(A) = L(B).

Proof Outline.
letA = (0’29 QI,(S, F)

Idea:
* the states of B are formulas

* ¢y in Bifb(p,a) = ¢
- Example:6(p,a)=qAr and 6(ga)=r = pvg—(gAr)Vvr

- arung; s oo =2 ¢ thus models 5(g, a1 ...a,) = ¢
* the formula g, is the initial state
* the formulas modeled by F are final

* to keep the construction finite, we'll identify equivalent formulas
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AFAs Recognize REG

Theorem

]
For every AFA A there exist a DFA B with 0(2° ) states such that L(A) = L(B).

Proof Outline.

let A=(Q,%,q,,6,F)

Formally:

* the equivalence ~on B (Q) isgivenby ¢ ~ y if (M | M E ¢} = {M | M E y}
- g~qvqg~qAqgbutgtpvgipng

* the equivalence class [¢]. can be simply conceived as the formula ¢, with equivalent
formulas ¢ ~ v identified

-[gvql-={9.9vqg.qAq,...}

lol
* the set of all such equivalence classes B" (Q)/~ contains 0(22 ) elements

* B2 (B'(Q)/~.2.q,,6-,{[¢]- | FF ¢}) where5_([¢]-,a) £ [6(¢,a)]- recognises
L(A)



Example

the translated DFA

the initial AFA
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From AFAs to NFA

Theorem
For every AFA A there exist a NFA B with 0(2'“4') states such that L(A) = L(B).

Proof Outline.

* letA= (Q,quls(ssF)

* idea: rather then “recording” to be validated formulas as in the DFA construction, the
corresponding NFA “records” valuations

— the construction is simpler, at the expense of non-determinism
* the NFAis given by B 2 (29,2, {g,}.6". {M | M < F}) where

Nes'(Ma) = NE /\ é(g.a)
geEM



Example (1)

the initial AFA
the translated NFA
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Projections and AFAs

L(delz2(A)) = {00}



Discussion

* What if we translate wMSO formulas to AFAs?

— for basic formulas x < y and X(y), the construction is as seen previously
— Boolean connectives are reflected directly in the transition
- Quantifier elimination through projection homomorphisms

* this suggests resulting automaton is linear in size of formula
= wMSO0 model-checking in exponential time, contradicting the lower-bound result!

Problem:
We do not have a polytime algorithm for homorphism applications on AFAs



