
Advanced Logic
http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2021/AL/

Martin Avanzini

Summer Semester 2021

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2021/AL/

Last Lecture

Presburger Arithmetic refers to the first-order theory over (N, {0,+,<})
s, t ∶∶= 0 ∣ x ∣ s + t

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ s = t ∣ s < t ∣ 𝜙 ∧ 𝜓 ∣ ¬𝜓 ∣ ∃x.𝜙
Theorem

Satisfiability and Validity are decidable for Presburger Arithmetic.

Theorem

For any formula 𝜙, the constructed DFA recognizing L̂(𝜙) has size O(22n).
⋆ this bound can be reached

Today’s Lecture

⋆ non-determinism

⋆ alternative finite automata

⋆ relationship with regular languages

Non-Determinism

Angelican vs Demonic Non-Determinism

What is a non-deterministic machine?
⋆ a machine which admits several executions on the same input

⋆ put otherwise, during processing, several choices are possible

⋆ such choices can be resolved in favor (anglican non-determinism) or against (demonic
non-determinism) a positive outcome (e.g. acceptance, termination, etc)

– Anglican: an angel resolves choices

⇒ it is sufficient to have one “good” execution path, to have a positive outcome

– Demonic: a demon resolves choices

⇒ all execution paths must be good “good”, to have a positive outcome

Example
⋆ NFAs are based on anglican non-determinism

⋆ worst-case complexity analysis assumes demonic non-determinism

Angelican vs Demonic Non-Determinism

What is a non-deterministic machine?
⋆ a machine which admits several executions on the same input

⋆ put otherwise, during processing, several choices are possible

⋆ such choices can be resolved in favor (anglican non-determinism) or against (demonic
non-determinism) a positive outcome (e.g. acceptance, termination, etc)

– Anglican: an angel resolves choices

⇒ it is sufficient to have one “good” execution path, to have a positive outcome

– Demonic: a demon resolves choices

⇒ all execution paths must be good “good”, to have a positive outcome

Example
⋆ NFAs are based on anglican non-determinism

⋆ worst-case complexity analysis assumes demonic non-determinism

Angelican vs Demonic Non-Determinism

What is a non-deterministic machine?
⋆ a machine which admits several executions on the same input

⋆ put otherwise, during processing, several choices are possible

⋆ such choices can be resolved in favor (anglican non-determinism) or against (demonic
non-determinism) a positive outcome (e.g. acceptance, termination, etc)

– Anglican: an angel resolves choices

⇒ it is sufficient to have one “good” execution path, to have a positive outcome

– Demonic: a demon resolves choices

⇒ all execution paths must be good “good”, to have a positive outcome

Example
⋆ NFAs are based on anglican non-determinism

⋆ worst-case complexity analysis assumes demonic non-determinism

Angelican vs Demonic Non-Determinism

What is a non-deterministic machine?
⋆ a machine which admits several executions on the same input

⋆ put otherwise, during processing, several choices are possible

⋆ such choices can be resolved in favor (anglican non-determinism) or against (demonic
non-determinism) a positive outcome (e.g. acceptance, termination, etc)

– Anglican: an angel resolves choices

⇒ it is sufficient to have one “good” execution path, to have a positive outcome

– Demonic: a demon resolves choices

⇒ all execution paths must be good “good”, to have a positive outcome

Example
⋆ NFAs are based on anglican non-determinism

⋆ worst-case complexity analysis assumes demonic non-determinism

NFAs with Demonic Choice

⋆ NFAs incorporate angelic non-determinism because, in order for w ∈ L(A), only one
accepting run of w has to exists

⋆ demonic non-determinism introduced by re-formulating the acceptance condition

L−(A) ≜ {w ∣ all runs on w are accepting}
Example

b

c

b
b

c

⋆ L(A) = (b ∪ c)∗
⋆ L−(A) = 𝜖 ∪ (b ∪ c)∗ ⋅ c

NFAs with Demonic Choice

⋆ NFAs incorporate angelic non-determinism because, in order for w ∈ L(A), only one
accepting run of w has to exists

⋆ demonic non-determinism introduced by re-formulating the acceptance condition

L−(A) ≜ {w ∣ all runs on w are accepting}

Example
b

c

b
b

c

⋆ L(A) = (b ∪ c)∗
⋆ L−(A) = 𝜖 ∪ (b ∪ c)∗ ⋅ c

NFAs with Demonic Choice

⋆ NFAs incorporate angelic non-determinism because, in order for w ∈ L(A), only one
accepting run of w has to exists

⋆ demonic non-determinism introduced by re-formulating the acceptance condition

L−(A) ≜ {w ∣ all runs on w are accepting}
Example

b

c

b
b

c

⋆ L(A) = (b ∪ c)∗
⋆ L−(A) = 𝜖 ∪ (b ∪ c)∗ ⋅ c

Duality of Non-Determinism

⋆ recall that for each NFAA, its dualA is given by complementing final states

⋆ in general, only whenA is deterministic, then L(A) = L(A)

Proposition

w ∈ L(A) ⇔ w /∈ L−(A)
⋆ regime to resolve non-determinism has no effect on expressiveness of NFAs

⋆ although potentially on the conciseness of the language description through NFAs

what happens if we leave regime internal to the automata?

Duality of Non-Determinism

⋆ recall that for each NFAA, its dualA is given by complementing final states

⋆ in general, only whenA is deterministic, then L(A) = L(A)
Proposition

w ∈ L(A) ⇔ w /∈ L−(A)

⋆ regime to resolve non-determinism has no effect on expressiveness of NFAs

⋆ although potentially on the conciseness of the language description through NFAs

what happens if we leave regime internal to the automata?

Duality of Non-Determinism

⋆ recall that for each NFAA, its dualA is given by complementing final states

⋆ in general, only whenA is deterministic, then L(A) = L(A)
Proposition

w ∈ L(A) ⇔ w /∈ L−(A)
⋆ regime to resolve non-determinism has no effect on expressiveness of NFAs

⋆ although potentially on the conciseness of the language description through NFAs

what happens if we leave regime internal to the automata?

Duality of Non-Determinism

⋆ recall that for each NFAA, its dualA is given by complementing final states

⋆ in general, only whenA is deterministic, then L(A) = L(A)
Proposition

w ∈ L(A) ⇔ w /∈ L−(A)
⋆ regime to resolve non-determinism has no effect on expressiveness of NFAs

⋆ although potentially on the conciseness of the language description through NFAs

what happens if we leave regime internal to the automata?

Alternating Finite Automata

Alternating Finite Automata

⋆ General Idea: mix Anglican an Demonic choice on the level of individual transitions

– a player resolves Anglican choice
– an oppenent resolves Demonic choice

0

1

2

3

4

5

6

a, b

b, c

a, b

c

a

a

b

b

b

b

𝛿(0, a)= 1 ∨ 2
𝛿(1, b)= 3 ∧ 4
𝛿(2, b)= 5 ∧ 6

⋮

L(A)= a(b(a ∪ b) ∩ b(b ∪ c))
∪ a(b(a ∪ b) ∩ bc)

= abb ∪ ∅
= abb

Alternating Finite Automata, Formally

Positive Boolean Formulas
⋆ let A = {a, b, . . . } be a set of atoms
⋆ the positive Boolean formulas B+(A) over atoms A are given by the following grammar:

𝜙, 𝜓 ∶∶= a ∣ 𝜙 ∧ 𝜓 ∣ 𝜙 ∨ 𝜓

– such formulas are called positive because negation is missing

⋆ a setM ⊆ A is a model of 𝜙 ifM ⊧ 𝜙 where

M ⊧ a ∶⇔ a ∈ M M ⊧ 𝜙 ∧ 𝜓 ∶⇔M ⊧ 𝜙 andM ⊧ 𝜓 M ⊧ 𝜙 ∨ 𝜓 ∶⇔M ⊧ 𝜙 orM ⊧ 𝜓

Example
consider 𝜙 = a ∧ (b ∨ c), then{a, b} ⊧ 𝜙 {a, c} ⊧ 𝜙 {a}/⊧ 𝜙 {b, c}/⊧ 𝜙

Alternating Finite Automata, Formally

Positive Boolean Formulas
⋆ let A = {a, b, . . . } be a set of atoms
⋆ the positive Boolean formulas B+(A) over atoms A are given by the following grammar:

𝜙, 𝜓 ∶∶= a ∣ 𝜙 ∧ 𝜓 ∣ 𝜙 ∨ 𝜓

– such formulas are called positive because negation is missing

⋆ a setM ⊆ A is a model of 𝜙 ifM ⊧ 𝜙 where

M ⊧ a ∶⇔ a ∈ M M ⊧ 𝜙 ∧ 𝜓 ∶⇔M ⊧ 𝜙 andM ⊧ 𝜓 M ⊧ 𝜙 ∨ 𝜓 ∶⇔M ⊧ 𝜙 orM ⊧ 𝜓

Example
consider 𝜙 = a ∧ (b ∨ c), then{a, b} ⊧ 𝜙 {a, c} ⊧ 𝜙 {a}/⊧ 𝜙 {b, c}/⊧ 𝜙

Alternating Finite Automata, Formally

Positive Boolean Formulas
⋆ let A = {a, b, . . . } be a set of atoms
⋆ the positive Boolean formulas B+(A) over atoms A are given by the following grammar:

𝜙, 𝜓 ∶∶= a ∣ 𝜙 ∧ 𝜓 ∣ 𝜙 ∨ 𝜓

– such formulas are called positive because negation is missing

⋆ a setM ⊆ A is a model of 𝜙 ifM ⊧ 𝜙 where

M ⊧ a ∶⇔ a ∈ M M ⊧ 𝜙 ∧ 𝜓 ∶⇔M ⊧ 𝜙 andM ⊧ 𝜓 M ⊧ 𝜙 ∨ 𝜓 ∶⇔M ⊧ 𝜙 orM ⊧ 𝜓

Example
consider 𝜙 = a ∧ (b ∨ c), then{a, b} ⊧ 𝜙 {a, c} ⊧ 𝜙 {a}/⊧ 𝜙 {b, c}/⊧ 𝜙

Alternating Finite Automata, Formally (II)

an alternating finite automata (AFA) is a tupleA = (Q,Σ, qI, 𝛿, F) where all components are
identical to an NFA except that

𝛿 ∶ Q × Σ → B+(Q)

Example

q0 q1 q2

a

a

b

b

c

b

c

𝛿 a b c

q0 q0 ∨ q1 q⊥ q⊥
q1 q⊥ q1 ∧ q2 q1
q2 q⊥ q2 q1
q⊥ q⊥ q⊥ q⊥

Alternating Finite Automata, Formally (II)

an alternating finite automata (AFA) is a tupleA = (Q,Σ, qI, 𝛿, F) where all components are
identical to an NFA except that

𝛿 ∶ Q × Σ → B+(Q)
Example

q0 q1 q2

a

a

b

b

c

b

c

𝛿 a b c

q0 q0 ∨ q1 q⊥ q⊥
q1 q⊥ q1 ∧ q2 q1
q2 q⊥ q2 q1
q⊥ q⊥ q⊥ q⊥

Runs in an AFA

letA = (Q,Σ, qI, 𝛿, F) be an AFA
⋆ an execution for a word w = a1 . . . an ∈ Σ∗ is a tree Tw whose nodes are labeled by
states Q s.t.:

1. the root node of Tw is labeled by the initial state qI

2. for all nodes v on the ith layer (i = 0, . . . , n − 1) with successors v1, . . . , vk on layer i + 1,
labeled by q1, . . . , qk, respectively:{q1, . . . , qk} ⊧ 𝛿(q, ai+1)

⋆ an execution is accepting if all leafs are labeled by final states

⋆ the language recognized byA is given by

L(A) ≜ {w ∣ there exists an accepting execution Tw for w}

Runs in an AFA

letA = (Q,Σ, qI, 𝛿, F) be an AFA
⋆ an execution for a word w = a1 . . . an ∈ Σ∗ is a tree Tw whose nodes are labeled by
states Q s.t.:

1. the root node of Tw is labeled by the initial state qI

2. for all nodes v on the ith layer (i = 0, . . . , n − 1) with successors v1, . . . , vk on layer i + 1,
labeled by q1, . . . , qk, respectively:{q1, . . . , qk} ⊧ 𝛿(q, ai+1)

⋆ an execution is accepting if all leafs are labeled by final states

⋆ the language recognized byA is given by

L(A) ≜ {w ∣ there exists an accepting execution Tw for w}

Runs in an AFA

letA = (Q,Σ, qI, 𝛿, F) be an AFA
⋆ an execution for a word w = a1 . . . an ∈ Σ∗ is a tree Tw whose nodes are labeled by
states Q s.t.:

1. the root node of Tw is labeled by the initial state qI

2. for all nodes v on the ith layer (i = 0, . . . , n − 1) with successors v1, . . . , vk on layer i + 1,
labeled by q1, . . . , qk, respectively:{q1, . . . , qk} ⊧ 𝛿(q, ai+1)

⋆ an execution is accepting if all leafs are labeled by final states

⋆ the language recognized byA is given by

L(A) ≜ {w ∣ there exists an accepting execution Tw for w}

Example of Accepting Execution forw = abbc

q0 q1 q2

a

a

b

b

c

b

c

𝛿 a b c

q0 q0 ∨ q1 q⊥ q⊥
q1 q⊥ q1 ∧ q2 q1
q2 q⊥ q2 q1
q⊥ q⊥ q⊥ q⊥

q0

q1

q1

q1

q1

q2

q1

q2

q2

q1

a

b

b

c

Example of Accepting Execution forw = abbc

q0 q1 q2

a

a

b

b

c

b

c

𝛿 a b c

q0 q0 ∨ q1 q⊥ q⊥
q1 q⊥ q1 ∧ q2 q1
q2 q⊥ q2 q1
q⊥ q⊥ q⊥ q⊥

q0

q1

q1

q1

q1

q2

q1

q2

q2

q1

a

b

b

c

{q1} ⊧ q0 ∨ q1

Example of Accepting Execution forw = abbc

q0 q1 q2

a

a

b

b

c

b

c

𝛿 a b c

q0 q0 ∨ q1 q⊥ q⊥
q1 q⊥ q1 ∧ q2 q1
q2 q⊥ q2 q1
q⊥ q⊥ q⊥ q⊥

q0

q1

q1

q1

q1

q2

q1

q2

q2

q1

a

b

b

c

{q1, q2} ⊧ q1 ∧ q2

Example of Accepting Execution forw = abbc

q0 q1 q2

a

a

b

b

c

b

c

𝛿 a b c

q0 q0 ∨ q1 q⊥ q⊥
q1 q⊥ q1 ∧ q2 q1
q2 q⊥ q2 q1
q⊥ q⊥ q⊥ q⊥

q0

q1

q1

q1

q1

q2

q1

q2

q2

q1

a

b

b

c

{q1, q2} ⊧ q1 ∧ q2

Example of Accepting Execution forw = abbc

q0 q1 q2

a

a

b

b

c

b

c

𝛿 a b c

q0 q0 ∨ q1 q⊥ q⊥
q1 q⊥ q1 ∧ q2 q1
q2 q⊥ q2 q1
q⊥ q⊥ q⊥ q⊥

q0

q1

q1

q1

q1

q2

q1

q2

q2

q1

a

b

b

c

{q2} ⊧ q2

Example of Accepting Execution forw = abbc

q0 q1 q2

a

a

b

b

c

b

c

𝛿 a b c

q0 q0 ∨ q1 q⊥ q⊥
q1 q⊥ q1 ∧ q2 q1
q2 q⊥ q2 q1
q⊥ q⊥ q⊥ q⊥

q0

q1

q1

q1

q1

q2

q1

q2

q2

q1

a

b

b

c

{q1} ⊧ q1

Example of Accepting Execution forw = abbc

q0 q1 q2

a

a

b

b

c

b

c

𝛿 a b c

q0 q0 ∨ q1 q⊥ q⊥
q1 q⊥ q1 ∧ q2 q1
q2 q⊥ q2 q1
q⊥ q⊥ q⊥ q⊥

q0

q1

q1

q1

q1

q2

q1

q2

q2

q1

a

b

b

c

{q1, q1, q1} ⊆ F

Extended Transition Function

the extended transition function

𝛿 ∶ B+(Q) × Σ∗ → B+(Q)
is recursively defined by:

𝛿(q, 𝜖) ≜ q 𝛿(𝜙 ∨ 𝜓,w) = 𝛿(𝜙,w) ∨ 𝛿(𝜓,w)
𝛿(q, a ⋅ w) ≜ 𝛿(𝛿(q, a),w) 𝛿(𝜙 ∧ 𝜓,w) = 𝛿(𝜙,w) ∧ 𝛿(𝜓,w)

Lemma
L(A) = {w ∣ F ⊧ 𝛿(qI,w)}

Extended Transition Function

the extended transition function

𝛿 ∶ B+(Q) × Σ∗ → B+(Q)
is recursively defined by:

𝛿(q, 𝜖) ≜ q 𝛿(𝜙 ∨ 𝜓,w) = 𝛿(𝜙,w) ∨ 𝛿(𝜓,w)
𝛿(q, a ⋅ w) ≜ 𝛿(𝛿(q, a),w) 𝛿(𝜙 ∧ 𝜓,w) = 𝛿(𝜙,w) ∧ 𝛿(𝜓,w)

Lemma
L(A) = {w ∣ F ⊧ 𝛿(qI,w)}

Example of Accepting Execution forw = abbc (II)

q0 q1 q2

a

a

b

b

c

b

c

𝛿 a b c

q0 q0 ∨ q1 q⊥ q⊥
q1 q⊥ q1 ∧ q2 q1
q2 q⊥ q2 q1
q⊥ q⊥ q⊥ q⊥

q0

q1

q1

q1

q1

q2

q1

q2

q2

q1

a

b

b

c

𝛿(q0, abbc)= 𝛿(q0 ∨ q1, bbc)
= 𝛿(q0, bbc) ∨ 𝛿(q1, bbc)
= 𝛿(q⊥, bc) ∨ (𝛿(q1, bc) ∧ 𝛿(q2, bc))
= 𝛿(q⊥, c) ∨ (𝛿(q1, c) ∧ 𝛿(q2, c))
= 𝛿(q⊥, 𝜖) ∨ 𝛿(q1, 𝜖)
= q⊥ ∨ q1{q1}⊧ q⊥ ∨ q1

Comparison to NFAs and DFAs

⋆ AFAs generalise NFAs
– every DFA is a NFA is an AFA

⋆ AFAs allow oMen more succinct encoding / automata constructions

Example

⋆ letA(m)m = (Q(m)
, {a}, 𝛿(m)

, q(m)
I , F(m)) be an NFA such that

L(Ai) = {w ∣ ∣w∣ = 0 mod m}
– this NFA has at leastm states

⋆ consider the AFAA defined fromA(m) for primesm = 7, 13, 17, 19 by

A(7) A(13) A(17) A(19)
qI

∧
a a a a

– L(A) = {w ∣ ∣w∣ = 1 mod 29393} since 29393 = 7 ⋅ 13 ⋅ 17 ⋅ 19
– AFAA has 57 = 1 + 7 + 13 + 17 + 19, whereas a corresponding NFA needs 29393 states

Comparison to NFAs and DFAs

⋆ AFAs generalise NFAs
– every DFA is a NFA is an AFA

⋆ AFAs allow oMen more succinct encoding / automata constructions

Example

⋆ letA(m)m = (Q(m)
, {a}, 𝛿(m)

, q(m)
I , F(m)) be an NFA such that

L(Ai) = {w ∣ ∣w∣ = 0 mod m}
– this NFA has at leastm states

⋆ consider the AFAA defined fromA(m) for primesm = 7, 13, 17, 19 by

A(7) A(13) A(17) A(19)
qI

∧
a a a a

– L(A) = {w ∣ ∣w∣ = 1 mod 29393} since 29393 = 7 ⋅ 13 ⋅ 17 ⋅ 19
– AFAA has 57 = 1 + 7 + 13 + 17 + 19, whereas a corresponding NFA needs 29393 states

Comparison to NFAs and DFAs

⋆ AFAs generalise NFAs
– every DFA is a NFA is an AFA

⋆ AFAs allow oMen more succinct encoding / automata constructions

Example

⋆ letA(m)m = (Q(m)
, {a}, 𝛿(m)

, q(m)
I , F(m)) be an NFA such that

L(Ai) = {w ∣ ∣w∣ = 0 mod m}
– this NFA has at leastm states

⋆ consider the AFAA defined fromA(m) for primesm = 7, 13, 17, 19 by

A(7) A(13) A(17) A(19)
qI

∧
a a a a

– L(A) = {w ∣ ∣w∣ = 1 mod 29393} since 29393 = 7 ⋅ 13 ⋅ 17 ⋅ 19
– AFAA has 57 = 1 + 7 + 13 + 17 + 19, whereas a corresponding NFA needs 29393 states

Comparison to NFAs and DFAs

⋆ AFAs generalise NFAs
– every DFA is a NFA is an AFA

⋆ AFAs allow oMen more succinct encoding / automata constructions

Example

⋆ letA(m)m = (Q(m)
, {a}, 𝛿(m)

, q(m)
I , F(m)) be an NFA such that

L(Ai) = {w ∣ ∣w∣ = 0 mod m}
– this NFA has at leastm states

⋆ consider the AFAA defined fromA(m) for primesm = 7, 13, 17, 19 by

A(7) A(13) A(17) A(19)
qI

∧
a a a a

– L(A) = {w ∣ ∣w∣ = 1 mod 29393} since 29393 = 7 ⋅ 13 ⋅ 17 ⋅ 19
– AFAA has 57 = 1 + 7 + 13 + 17 + 19, whereas a corresponding NFA needs 29393 states

Comparison to NFAs and DFAs

⋆ AFAs generalise NFAs
– every DFA is a NFA is an AFA

⋆ AFAs allow oMen more succinct encoding / automata constructions

Example

⋆ letA(m)m = (Q(m)
, {a}, 𝛿(m)

, q(m)
I , F(m)) be an NFA such that

L(Ai) = {w ∣ ∣w∣ = 0 mod m}
– this NFA has at leastm states

⋆ consider the AFAA defined fromA(m) for primesm = 7, 13, 17, 19 by

A(7) A(13) A(17) A(19)
qI

∧
a a a a

– L(A) = {w ∣ ∣w∣ = 1 mod 29393} since 29393 = 7 ⋅ 13 ⋅ 17 ⋅ 19

– AFAA has 57 = 1 + 7 + 13 + 17 + 19, whereas a corresponding NFA needs 29393 states

Comparison to NFAs and DFAs

⋆ AFAs generalise NFAs
– every DFA is a NFA is an AFA

⋆ AFAs allow oMen more succinct encoding / automata constructions

Example

⋆ letA(m)m = (Q(m)
, {a}, 𝛿(m)

, q(m)
I , F(m)) be an NFA such that

L(Ai) = {w ∣ ∣w∣ = 0 mod m}
– this NFA has at leastm states

⋆ consider the AFAA defined fromA(m) for primesm = 7, 13, 17, 19 by

A(7) A(13) A(17) A(19)
qI

∧
a a a a

– L(A) = {w ∣ ∣w∣ = 1 mod 29393} since 29393 = 7 ⋅ 13 ⋅ 17 ⋅ 19
– AFAA has 57 = 1 + 7 + 13 + 17 + 19, whereas a corresponding NFA needs 29393 states

Complementation

⋆ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFAA there exists an AFAA of equal size such that L(A) = L(A)

Proof Outline.

⋆ letA = (Q,Σ, qI, 𝛿, F)
⋆ define the dual formula 𝜙 of 𝜙 ∈ B+(Q) following De Morgans rules

q ≜ q 𝜙 ∨ 𝜓 ≜ 𝜙 ∧ 𝜓 𝜙 ∧ 𝜓 ≜ 𝜙 ∨ 𝜓

– morally, q ∈ Q re-used for their “negation”; we have (i)M ⊧ 𝜙 iff Q\M /⊧ 𝜙

⋆ we now defineA ≜ (Q,Σ, 𝛿, qI,Q\F) where 𝛿(q, a) ≜ 𝛿(q, a) for all q ∈ Q, a ∈ Σ

– by induction on ∣w∣ it can now be shown that (ii) 𝛿̂(qI,w) = 𝛿(q,w)
– overall, we have

w /∈ L(A) def.
⟺ F /⊧ 𝛿(qI,w) (i)

⟺ Q\F ⊧ 𝛿(qI,w) (ii)
⟺ Q\F ⊧ 𝛿̂(qI,w) def.

⟺ w ∈ L(A)

Complementation

⋆ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFAA there exists an AFAA of equal size such that L(A) = L(A)
Proof Outline.

⋆ letA = (Q,Σ, qI, 𝛿, F)
⋆ define the dual formula 𝜙 of 𝜙 ∈ B+(Q) following De Morgans rules

q ≜ q 𝜙 ∨ 𝜓 ≜ 𝜙 ∧ 𝜓 𝜙 ∧ 𝜓 ≜ 𝜙 ∨ 𝜓

– morally, q ∈ Q re-used for their “negation”; we have (i)M ⊧ 𝜙 iff Q\M /⊧ 𝜙

⋆ we now defineA ≜ (Q,Σ, 𝛿, qI,Q\F) where 𝛿(q, a) ≜ 𝛿(q, a) for all q ∈ Q, a ∈ Σ

– by induction on ∣w∣ it can now be shown that (ii) 𝛿̂(qI,w) = 𝛿(q,w)
– overall, we have

w /∈ L(A) def.
⟺ F /⊧ 𝛿(qI,w) (i)

⟺ Q\F ⊧ 𝛿(qI,w) (ii)
⟺ Q\F ⊧ 𝛿̂(qI,w) def.

⟺ w ∈ L(A)

Complementation

⋆ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFAA there exists an AFAA of equal size such that L(A) = L(A)
Proof Outline.

⋆ letA = (Q,Σ, qI, 𝛿, F)
⋆ define the dual formula 𝜙 of 𝜙 ∈ B+(Q) following De Morgans rules

q ≜ q 𝜙 ∨ 𝜓 ≜ 𝜙 ∧ 𝜓 𝜙 ∧ 𝜓 ≜ 𝜙 ∨ 𝜓

– morally, q ∈ Q re-used for their “negation”; we have (i)M ⊧ 𝜙 iff Q\M /⊧ 𝜙

⋆ we now defineA ≜ (Q,Σ, 𝛿, qI,Q\F) where 𝛿(q, a) ≜ 𝛿(q, a) for all q ∈ Q, a ∈ Σ

– by induction on ∣w∣ it can now be shown that (ii) 𝛿̂(qI,w) = 𝛿(q,w)
– overall, we have

w /∈ L(A) def.
⟺ F /⊧ 𝛿(qI,w) (i)

⟺ Q\F ⊧ 𝛿(qI,w) (ii)
⟺ Q\F ⊧ 𝛿̂(qI,w) def.

⟺ w ∈ L(A)

Complementation

⋆ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFAA there exists an AFAA of equal size such that L(A) = L(A)
Proof Outline.

⋆ letA = (Q,Σ, qI, 𝛿, F)
⋆ define the dual formula 𝜙 of 𝜙 ∈ B+(Q) following De Morgans rules

q ≜ q 𝜙 ∨ 𝜓 ≜ 𝜙 ∧ 𝜓 𝜙 ∧ 𝜓 ≜ 𝜙 ∨ 𝜓

– morally, q ∈ Q re-used for their “negation”; we have (i)M ⊧ 𝜙 iff Q\M /⊧ 𝜙

⋆ we now defineA ≜ (Q,Σ, 𝛿, qI,Q\F) where 𝛿(q, a) ≜ 𝛿(q, a) for all q ∈ Q, a ∈ Σ

– by induction on ∣w∣ it can now be shown that (ii) 𝛿̂(qI,w) = 𝛿(q,w)

– overall, we have

w /∈ L(A) def.
⟺ F /⊧ 𝛿(qI,w) (i)

⟺ Q\F ⊧ 𝛿(qI,w) (ii)
⟺ Q\F ⊧ 𝛿̂(qI,w) def.

⟺ w ∈ L(A)

Complementation

⋆ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFAA there exists an AFAA of equal size such that L(A) = L(A)
Proof Outline.

⋆ letA = (Q,Σ, qI, 𝛿, F)
⋆ define the dual formula 𝜙 of 𝜙 ∈ B+(Q) following De Morgans rules

q ≜ q 𝜙 ∨ 𝜓 ≜ 𝜙 ∧ 𝜓 𝜙 ∧ 𝜓 ≜ 𝜙 ∨ 𝜓

– morally, q ∈ Q re-used for their “negation”; we have (i)M ⊧ 𝜙 iff Q\M /⊧ 𝜙

⋆ we now defineA ≜ (Q,Σ, 𝛿, qI,Q\F) where 𝛿(q, a) ≜ 𝛿(q, a) for all q ∈ Q, a ∈ Σ

– by induction on ∣w∣ it can now be shown that (ii) 𝛿̂(qI,w) = 𝛿(q,w)
– overall, we have

w /∈ L(A) def.
⟺ F /⊧ 𝛿(qI,w) (i)

⟺ Q\F ⊧ 𝛿(qI,w) (ii)
⟺ Q\F ⊧ 𝛿̂(qI,w) def.

⟺ w ∈ L(A)

Example

q0 q1 q2

a

a

b

b

c

b

c

⇕ complement

q0 q1 q2

a

a

b
b

c

b

c

Relationship with Regular Languages

AFAs Recognize REG

Theorem

For every AFAA there exist a DFA B with O(22∣A∣) states such that L(A) = L(B).

Proof Outline.

letA = (Q,Σ, qI, 𝛿, F)
Formally:

⋆ the equivalence ∼ on B+(Q) is given by 𝜙 ∼ 𝜓 if {M ∣ M ⊧ 𝜙} = {M ∣ M ⊧ 𝜓}
– q ∼ q ∨ q ∼ q ∧ q but q /∼ p ∨ q /∼ p ∧ q

⋆ the equivalence class [𝜙]∼ can be simply conceived as the formula 𝜙, with equivalent
formulas 𝜙 ∼ 𝜓 identified

– [q ∨ q]∼ = {q, q ∨ q, q ∧ q, . . . }
⋆ the set of all such equivalence classes B+(Q)/∼ contains O(22∣Q∣) elements
⋆ B ≜ (B+(Q)/∼,Σ, qI, 𝛿∼, {[𝜙]∼ ∣ F ⊧ 𝜙}) where 𝛿∼([𝜙]∼, a) ≜ [𝛿(𝜙, a)]∼ recognises
L(A)

AFAs Recognize REG

Theorem

For every AFAA there exist a DFA B with O(22∣A∣) states such that L(A) = L(B).
Proof Outline.

letA = (Q,Σ, qI, 𝛿, F)
Idea:
⋆ the states of B are formulas

⋆ 𝜙
a
−→𝜓 in B if 𝛿(𝜙, a) = 𝜓

– Example: 𝛿(p, a) = q ∧ r and 𝛿(q, a) = r ⇒ p ∨ q
a
−−→ (q ∧ r) ∨ r

– a run qI
a1−−→⋯

an−−→ 𝜙 thus models 𝛿(qI, a1 . . . an) = 𝜙

⋆ the formula qI is the initial state

⋆ the formulas modeled by F are final

⋆ to keep the construction finite, we’ll identify equivalent formulas

AFAs Recognize REG

Theorem

For every AFAA there exist a DFA B with O(22∣A∣) states such that L(A) = L(B).
Proof Outline.

letA = (Q,Σ, qI, 𝛿, F)
Idea:
⋆ the states of B are formulas

⋆ 𝜙
a
−→𝜓 in B if 𝛿(𝜙, a) = 𝜓

– Example: 𝛿(p, a) = q ∧ r and 𝛿(q, a) = r ⇒ p ∨ q
a
−−→ (q ∧ r) ∨ r

– a run qI
a1−−→⋯

an−−→ 𝜙 thus models 𝛿(qI, a1 . . . an) = 𝜙

⋆ the formula qI is the initial state

⋆ the formulas modeled by F are final

⋆ to keep the construction finite, we’ll identify equivalent formulas

AFAs Recognize REG

Theorem

For every AFAA there exist a DFA B with O(22∣A∣) states such that L(A) = L(B).
Proof Outline.

letA = (Q,Σ, qI, 𝛿, F)
Formally:

⋆ the equivalence ∼ on B+(Q) is given by 𝜙 ∼ 𝜓 if {M ∣ M ⊧ 𝜙} = {M ∣ M ⊧ 𝜓}
– q ∼ q ∨ q ∼ q ∧ q but q /∼ p ∨ q /∼ p ∧ q

⋆ the equivalence class [𝜙]∼ can be simply conceived as the formula 𝜙, with equivalent
formulas 𝜙 ∼ 𝜓 identified

– [q ∨ q]∼ = {q, q ∨ q, q ∧ q, . . . }
⋆ the set of all such equivalence classes B+(Q)/∼ contains O(22∣Q∣) elements
⋆ B ≜ (B+(Q)/∼,Σ, qI, 𝛿∼, {[𝜙]∼ ∣ F ⊧ 𝜙}) where 𝛿∼([𝜙]∼, a) ≜ [𝛿(𝜙, a)]∼ recognises
L(A)

AFAs Recognize REG

Theorem

For every AFAA there exist a DFA B with O(22∣A∣) states such that L(A) = L(B).
Proof Outline.

letA = (Q,Σ, qI, 𝛿, F)
Formally:

⋆ the equivalence ∼ on B+(Q) is given by 𝜙 ∼ 𝜓 if {M ∣ M ⊧ 𝜙} = {M ∣ M ⊧ 𝜓}
– q ∼ q ∨ q ∼ q ∧ q but q /∼ p ∨ q /∼ p ∧ q

⋆ the equivalence class [𝜙]∼ can be simply conceived as the formula 𝜙, with equivalent
formulas 𝜙 ∼ 𝜓 identified

– [q ∨ q]∼ = {q, q ∨ q, q ∧ q, . . . }

⋆ the set of all such equivalence classes B+(Q)/∼ contains O(22∣Q∣) elements
⋆ B ≜ (B+(Q)/∼,Σ, qI, 𝛿∼, {[𝜙]∼ ∣ F ⊧ 𝜙}) where 𝛿∼([𝜙]∼, a) ≜ [𝛿(𝜙, a)]∼ recognises
L(A)

AFAs Recognize REG

Theorem

For every AFAA there exist a DFA B with O(22∣A∣) states such that L(A) = L(B).
Proof Outline.

letA = (Q,Σ, qI, 𝛿, F)
Formally:

⋆ the equivalence ∼ on B+(Q) is given by 𝜙 ∼ 𝜓 if {M ∣ M ⊧ 𝜙} = {M ∣ M ⊧ 𝜓}
– q ∼ q ∨ q ∼ q ∧ q but q /∼ p ∨ q /∼ p ∧ q

⋆ the equivalence class [𝜙]∼ can be simply conceived as the formula 𝜙, with equivalent
formulas 𝜙 ∼ 𝜓 identified

– [q ∨ q]∼ = {q, q ∨ q, q ∧ q, . . . }
⋆ the set of all such equivalence classes B+(Q)/∼ contains O(22∣Q∣) elements

⋆ B ≜ (B+(Q)/∼,Σ, qI, 𝛿∼, {[𝜙]∼ ∣ F ⊧ 𝜙}) where 𝛿∼([𝜙]∼, a) ≜ [𝛿(𝜙, a)]∼ recognises
L(A)

AFAs Recognize REG

Theorem

For every AFAA there exist a DFA B with O(22∣A∣) states such that L(A) = L(B).
Proof Outline.

letA = (Q,Σ, qI, 𝛿, F)
Formally:

⋆ the equivalence ∼ on B+(Q) is given by 𝜙 ∼ 𝜓 if {M ∣ M ⊧ 𝜙} = {M ∣ M ⊧ 𝜓}
– q ∼ q ∨ q ∼ q ∧ q but q /∼ p ∨ q /∼ p ∧ q

⋆ the equivalence class [𝜙]∼ can be simply conceived as the formula 𝜙, with equivalent
formulas 𝜙 ∼ 𝜓 identified

– [q ∨ q]∼ = {q, q ∨ q, q ∧ q, . . . }
⋆ the set of all such equivalence classes B+(Q)/∼ contains O(22∣Q∣) elements
⋆ B ≜ (B+(Q)/∼,Σ, qI, 𝛿∼, {[𝜙]∼ ∣ F ⊧ 𝜙}) where 𝛿∼([𝜙]∼, a) ≜ [𝛿(𝜙, a)]∼ recognises
L(A)

Example

0 ∨

1 ∧

2 ∧

3

4

5

6

a

a

b

b

b

b

the initial AFA

0 1 ∨ 2
(3 ∧ 4)
∨(5 ∧ 6)a b

the translated DFA

{0}

{1}

{1, 2}

{2}

{3, 4}

{5, 6}

{3, 4, 5, 6}
a

a

a

a

b

b

a

the translated NFA

From AFAs to NFA

Theorem

For every AFAA there exist a NFA B with O(2∣A∣) states such that L(A) = L(B).
Proof Outline.

⋆ letA = (Q,Σ, qI, 𝛿, F)
⋆ idea: rather then “recording” to be validated formulas as in the DFA construction, the
corresponding NFA “records” valuations

– the construction is simpler, at the expense of non-determinism

⋆ the NFA is given by B ≜ (2Q,Σ, {qI}, 𝛿′, {M ∣ M ⊆ F}) where
N ∈ 𝛿

′(M, a) ∶⇔ N ⊧ ⋀
q∈M

𝛿(q, a)

From AFAs to NFA

Theorem

For every AFAA there exist a NFA B with O(2∣A∣) states such that L(A) = L(B).
Proof Outline.

⋆ letA = (Q,Σ, qI, 𝛿, F)
⋆ idea: rather then “recording” to be validated formulas as in the DFA construction, the
corresponding NFA “records” valuations

– the construction is simpler, at the expense of non-determinism

⋆ the NFA is given by B ≜ (2Q,Σ, {qI}, 𝛿′, {M ∣ M ⊆ F}) where
N ∈ 𝛿

′(M, a) ∶⇔ N ⊧ ⋀
q∈M

𝛿(q, a)

Example (II)

0 ∨

1 ∧

2 ∧

3

4

5

6

a

a

b

b

b

b

the initial AFA

0 1 ∨ 2
(3 ∧ 4)
∨(5 ∧ 6)a b

the translated DFA

{0}

{1}

{1, 2}

{2}

{3, 4}

{5, 6}

{3, 4, 5, 6}
a

a

a

a

b

b

a

the translated NFA

Discussion

⋆ What if we translate wMSO formulas to AFAs?

– for basic formulas x < y and X(y), the construction is as seen previously
– Boolean connectives are reflected directly in the transition
– Quantifier elimination through projection homomorphisms

⋆ this suggests resulting automaton is linear in size of formula
⇒ wMSOmodel-checking in exponential time, contradicting the lower-bound result!

Problem:
We do not have a polytime algorithm for homorphism applications on AFAs

Discussion

⋆ What if we translate wMSO formulas to AFAs?

– for basic formulas x < y and X(y), the construction is as seen previously
– Boolean connectives are reflected directly in the transition
– Quantifier elimination through projection homomorphisms

⋆ this suggests resulting automaton is linear in size of formula
⇒ wMSOmodel-checking in exponential time, contradicting the lower-bound result!

Problem:
We do not have a polytime algorithm for homorphism applications on AFAs

Projections and AFAs

0 ∨

1

2

3

4

5

6

(0
0)

(0
0)

(0
0)

(0
0)

(0
1)

(0
1)

L(A) = ∅

⇒ 0 ∨

1

2

3

4

5

6

(0)

(0)

(0)

(0)
(0)

(0)
L(del2,2(A)) = {00}

Discussion

⋆ What if we translate wMSO formulas to AFAs?

– for basic formulas x < y and X(y), the construction is as seen previously
– Boolean connectives are reflected directly in the transition
– Quantifier elimination through projection homomorphisms

⋆ this suggests resulting automaton is linear in size of formula
⇒ wMSOmodel-checking in exponential time, contradicting the lower-bound result!

Problem:
We do not have a polytime algorithm for homorphism applications on AFAs

