Advanced Logic

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2021/AL/

Martin Avanzini

Summer Semester 2021

Last Lecture

Presburger Arithmetic refers to the first-order theory over $(\mathbb{N}, \{0, +, <\})$

Theorem

Satisfiability and Validity are decidable for Presburger Arithmetic.

Theorem

For any formula ϕ , the constructed DFA recognizing $\hat{L}(\phi)$ has size $O(2^{2^{\prime\prime}})$.

★ this bound can be reached

Today's Lecture

- ⋆ non-determinism
- * alternative finite automata
- \star relationship with regular languages

Non-Determinism

What is a non-deterministic machine?

- $\star\,$ a machine which admits several executions on the same input
- ★ put otherwise, during processing, several choices are possible

What is a non-deterministic machine?

- $\star\,$ a machine which admits several executions on the same input
- ★ put otherwise, during processing, several choices are possible
- such choices can be resolved in favor (anglican non-determinism) or against (demonic non-determinism) a positive outcome (e.g. acceptance, termination, etc)
 - Anglican: an angel resolves choices
 - \Rightarrow it is sufficient to have one "good" execution path, to have a positive outcome

What is a non-deterministic machine?

- $\star\,$ a machine which admits several executions on the same input
- ★ put otherwise, during processing, several choices are possible
- such choices can be resolved in favor (anglican non-determinism) or against (demonic non-determinism) a positive outcome (e.g. acceptance, termination, etc)
 - Anglican: an angel resolves choices
 - \Rightarrow it is sufficient to have one "good" execution path, to have a positive outcome
 - Demonic: a demon resolves choices
 - \Rightarrow all execution paths must be good "good", to have a positive outcome

What is a non-deterministic machine?

- $\star\,$ a machine which admits several executions on the same input
- ★ put otherwise, during processing, several choices are possible
- such choices can be resolved in favor (anglican non-determinism) or against (demonic non-determinism) a positive outcome (e.g. acceptance, termination, etc)
 - Anglican: an angel resolves choices
 - \Rightarrow it is sufficient to have one "good" execution path, to have a positive outcome
 - Demonic: a demon resolves choices
 - \Rightarrow all execution paths must be good "good", to have a positive outcome

Example

- ★ NFAs are based on anglican non-determinism
- ★ worst-case complexity analysis assumes demonic non-determinism

NFAs with Demonic Choice

* NFAs incorporate angelic non-determinism because, in order for $w \in L(A)$, only one accepting run of w has to exists

NFAs with Demonic Choice

- * NFAs incorporate angelic non-determinism because, in order for $w \in L(A)$, only one accepting run of w has to exists
- * demonic non-determinism introduced by re-formulating the acceptance condition

 $L^{-}(A) \triangleq \{w \mid \text{all runs on } w \text{ are accepting}\}$

NFAs with Demonic Choice

- * NFAs incorporate angelic non-determinism because, in order for $w \in L(\mathcal{A})$, only one accepting run of w has to exists
- demonic non-determinism introduced by re-formulating the acceptance condition

 $L^{-}(A) \triangleq \{w \mid all runs on w are accepting\}$

- $\star L(\mathcal{A}) = (b \cup c)^*$
- $\star \mathsf{L}^{-}(\mathcal{A}) = \epsilon \cup (\mathsf{b} \cup \mathsf{c})^{*} \cdot \mathsf{c}$

- * recall that for each NFA A, its dual \overline{A} is given by complementing final states
- ★ in general, only when A is deterministic, then $L(\overline{A}) = \overline{L(A)}$

- * recall that for each NFA A, its dual \overline{A} is given by complementing final states
- ★ in general, only when A is deterministic, then $L(\overline{A}) = \overline{L(A)}$

Proposition

$$w \in L(\mathcal{A}) \iff w \notin L^{-}(\overline{\mathcal{A}})$$

- \star recall that for each NFA A, its dual \overline{A} is given by complementing final states
- ★ in general, only when A is deterministic, then $L(\overline{A}) = \overline{L(A)}$

Proposition

$$w \in L(\mathcal{A}) \iff w \notin L^{-}(\overline{\mathcal{A}})$$

- ★ regime to resolve non-determinism has no effect on expressiveness of NFAs
- ★ although potentially on the conciseness of the language description through NFAs

- \star recall that for each NFA A, its dual \overline{A} is given by complementing final states
- ★ in general, only when A is deterministic, then $L(\overline{A}) = \overline{L(A)}$

Proposition

$$w \in L(\mathcal{A}) \iff w \notin L^{-}(\overline{\mathcal{A}})$$

- ★ regime to resolve non-determinism has no effect on expressiveness of NFAs
- ★ although potentially on the conciseness of the language description through NFAs

what happens if we leave regime internal to the automata?

Alternating Finite Automata

Alternating Finite Automata

- * General Idea: mix Anglican an Demonic choice on the level of individual transitions
 - a player resolves Anglican choice
 - an oppenent resolves Demonic choice

$$\delta(0, a) = 1 \lor 2$$

$$\delta(1, b) = 3 \land 4$$

$$\delta(2, b) = 5 \land 6$$

:

$$L(\mathcal{A}) = a(b(a \cup b) \cap b(b \cup c))$$
$$\cup a(b(a \cup b) \cap bc)$$
$$= abb \cup \emptyset$$
$$= abb$$

nventeurs du monde numérique

Alternating Finite Automata, Formally

Positive Boolean Formulas

- ★ let $A = \{a, b, ...\}$ be a set of atoms
- * the positive Boolean formulas $\mathbb{B}^+(A)$ over atoms A are given by the following grammar:

$$\phi,\psi ::= a \mid \phi \land \psi \mid \phi \lor \psi$$

- such formulas are called positive because negation is missing

Alternating Finite Automata, Formally

Positive Boolean Formulas

- ★ let $A = \{a, b, ...\}$ be a set of atoms
- * the positive Boolean formulas $\mathbb{B}^+(A)$ over atoms A are given by the following grammar:

$$\phi,\psi ::= a \mid \phi \land \psi \mid \phi \lor \psi$$

- such formulas are called positive because negation is missing

★ a set $M \subseteq A$ is a model of ϕ if $M \models \phi$ where

 $M \models a : \iff a \in M$ $M \models \phi \land \psi : \iff M \models \phi$ and $M \models \psi$ $M \models \phi \lor \psi : \iff M \models \phi$ or $M \models \psi$

Alternating Finite Automata, Formally

Positive Boolean Formulas

- ★ let $A = \{a, b, ...\}$ be a set of atoms
- * the positive Boolean formulas $\mathbb{B}^+(A)$ over atoms A are given by the following grammar:

$$\phi,\psi ::= a \mid \phi \land \psi \mid \phi \lor \psi$$

- such formulas are called positive because negation is missing
- ★ a set $M \subseteq A$ is a model of ϕ if $M \models \phi$ where

 $M \models a : \iff a \in M$ $M \models \phi \land \psi : \iff M \models \phi$ and $M \models \psi$ $M \models \phi \lor \psi : \iff M \models \phi$ or $M \models \psi$

Example consider $\phi = a \land (b \lor c)$, then

 $\{a,b\} \vDash \phi \qquad \qquad \{a,c\} \vDash \phi$

{a}⊭ *φ*

Alternating Finite Automata, Formally (II)

an alternating finite automata (AFA) is a tuple $\mathcal{A} = (Q, \Sigma, q_l, \delta, F)$ where all components are identical to an NFA except that

 $\delta: Q \times \Sigma \to \mathbb{B}^+(Q)$

Alternating Finite Automata, Formally (II)

an alternating finite automata (AFA) is a tuple $\mathcal{A} = (Q, \Sigma, q_l, \delta, F)$ where all components are identical to an NFA except that

 $\delta: Q \times \Sigma \to \mathbb{B}^+(Q)$

Example

δ	a	b	С
9 0	$q_0 \lor q_1$	q_{\perp}	q_{\perp}
q 1	q_{\perp}	$q_1 \wedge q_2$	q 1
q ₂	q_{\perp}	q ₂	q 1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

Runs in an AFA

- let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ be an AFA
- * an execution for a word $w = a_1 \dots a_n \in \Sigma^*$ is a tree T_w whose nodes are labeled by states Q s.t.:
 - 1. the root node of T_w is labeled by the initial state q_I
 - 2. for all nodes v on the *i*th layer (i = 0, ..., n 1) with successors $v_1, ..., v_k$ on layer i + 1, labeled by $q_1, ..., q_k$, respectively:

 $\{q_1,\ldots,q_k\} \models \delta(q,\mathtt{a}_{\mathtt{i}+\mathtt{1}})$

Runs in an AFA

- let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ be an AFA
- * an execution for a word $w = a_1 \dots a_n \in \Sigma^*$ is a tree T_w whose nodes are labeled by states Q s.t.:
 - 1. the root node of T_w is labeled by the initial state q_I
 - 2. for all nodes v on the *i*th layer (i = 0, ..., n 1) with successors $v_1, ..., v_k$ on layer i + 1, labeled by $q_1, ..., q_k$, respectively:

 $\{q_1,\ldots,q_k\} \models \delta(q,\mathtt{a}_{\mathtt{i}+\mathtt{1}})$

★ an execution is accepting if all leafs are labeled by final states

Runs in an AFA

- let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$ be an AFA
- * an execution for a word $w = a_1 \dots a_n \in \Sigma^*$ is a tree T_w whose nodes are labeled by states Q s.t.:
 - 1. the root node of T_W is labeled by the initial state q_I
 - 2. for all nodes v on the *i*th layer (i = 0, ..., n 1) with successors $v_1, ..., v_k$ on layer i + 1, labeled by $q_1, ..., q_k$, respectively:

 $\{q_1,\ldots,q_k\} \models \delta(q,a_{i+1})$

- ★ an execution is accepting if all leafs are labeled by final states
- \star the language recognized by \mathcal{A} is given by

 $L(A) \triangleq \{w \mid \text{there exists an accepting execution } T_w \text{ for } w\}$

δ	а	Ь	С
q 0	$q_0 \lor q_1$	q_{\perp}	q_{\perp}
q 1	q_{\perp}	$q_1 \wedge q_2$	q 1
q 2	q_{\perp}	q ₂	q 1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

δ	а	Ь	С
q 0	$q_0 \vee q_1$	q_{\perp}	q_{\perp}
q 1	q_{\perp}	$q_1 \wedge q_2$	q 1
q 2	q_{\perp}	q ₂	q 1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

 $\{q_1\} \models q_0 \lor q_1$

δ	а	Ь	С
q 0	$q_0 \lor q_1$	q_{\perp}	q_{\perp}
q 1	q_{\perp}	$q_1 \wedge q_2$	q 1
q 2	q_{\perp}	q ₂	q 1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

 $\{q_1,q_2\} \models q_1 \land q_2$

δ	а	Ь	С
q 0	$q_0 \lor q_1$	q_{\perp}	q_{\perp}
q 1	q_{\perp}	$q_1 \wedge q_2$	q 1
q 2	q_{\perp}	q ₂	q 1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

 $\{q_1,q_2\} \models q_1 \land q_2$

δ	а	Ь	С
9 0	$q_0 \lor q_1$	q_{\perp}	q_{\perp}
q 1	q_{\perp}	$q_1 \wedge q_2$	q 1
q 2	q_{\perp}	9 2	q 1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

δ	а	Ь	С
9 0	$q_0 \lor q_1$	q_{\perp}	q_{\perp}
q 1	q_{\perp}	$q_1 \wedge q_2$	9 1
q 2	q_{\perp}	q ₂	9 1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

δ	а	Ь	С
9 0	$q_0 \lor q_1$	q_{\perp}	q_{\perp}
q 1	q_{\perp}	$q_1 \wedge q_2$	q 1
q 2	q_{\perp}	q ₂	q 1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

 $\{q_1, q_1, q_1\} \subseteq F$

Extended Transition Function

the extended transition function

 $\hat{\delta}: \mathbb{B}^+(Q) \times \Sigma^* \to \mathbb{B}^+(Q)$

is recursively defined by:

$$\hat{\delta}(q,\epsilon) \triangleq q$$

 $\hat{\delta}(q, \mathbf{a} \cdot w) \triangleq \hat{\delta}(\delta(q, \mathbf{a}), w)$

$$\begin{split} \hat{\delta}(\phi \lor \psi, w) &= \hat{\delta}(\phi, w) \lor \hat{\delta}(\psi, w) \\ \hat{\delta}(\phi \land \psi, w) &= \hat{\delta}(\phi, w) \land \hat{\delta}(\psi, w) \end{split}$$

Extended Transition Function

the extended transition function

 $\hat{\delta}: \mathbb{B}^+(Q) \times \Sigma^* \to \mathbb{B}^+(Q)$

is recursively defined by:

 $\hat{\delta}(q,\epsilon) \triangleq q$ $\hat{\delta}(q,a\cdot w) \triangleq \hat{\delta}(\delta(q,a),w)$

$$\begin{split} \hat{\delta}(\phi \lor \psi, w) &= \hat{\delta}(\phi, w) \lor \hat{\delta}(\psi, w) \\ \hat{\delta}(\phi \land \psi, w) &= \hat{\delta}(\phi, w) \land \hat{\delta}(\psi, w) \end{split}$$

Lemma

 $\mathsf{L}(\mathcal{A}) = \{ w \mid F \vDash \hat{\delta}(q_l, w) \}$

δ	а	Ь	С
9 0	$q_0 \lor q_1$	q_{\perp}	q_{\perp}
q 1	q_{\perp}	$q_1 \wedge q_2$	q 1
q 2	q_{\perp}	q ₂	q 1
q_{\perp}	q_{\perp}	q_{\perp}	q_{\perp}

$$\begin{split} \hat{\delta}(q_0, abbc) &= \hat{\delta}(q_0 \lor q_1, bbc) \\ &= \hat{\delta}(q_0, bbc) \lor \hat{\delta}(q_1, bbc) \\ &= \hat{\delta}(q_{\perp}, bc) \lor (\hat{\delta}(q_1, bc) \land \hat{\delta}(q_2, bc)) \\ &= \hat{\delta}(q_{\perp}, c) \lor (\hat{\delta}(q_1, c) \land \hat{\delta}(q_2, c)) \\ &= \hat{\delta}(q_{\perp}, \epsilon) \lor \hat{\delta}(q_1, \epsilon) \\ &= q_{\perp} \lor q_1 \\ \{q_1\} \vDash q_{\perp} \lor q_1 \end{split}$$

Comparison to NFAs and DFAs

- ★ AFAs generalise NFAs
 - every DFA is a NFA is an AFA

- ★ AFAs generalise NFAs
 - every DFA is a NFA is an AFA
- * AFAs allow often more succinct encoding / automata constructions

- ★ AFAs generalise NFAs
 - every DFA is a NFA is an AFA
- ★ AFAs allow often more succinct encoding / automata constructions

Example

- * let $\mathcal{A}^{(m)}m = (Q^{(m)}, \{a\}, \delta^{(m)}, q_I^{(m)}, F^{(m)})$ be an NFA such that $L(\mathcal{A}_i) = \{w \mid |w| = 0 \mod m\}$
 - this NFA has at least *m* states

- ★ AFAs generalise NFAs
 - every DFA is a NFA is an AFA
- * AFAs allow often more succinct encoding / automata constructions

Example

- ★ let $\mathcal{A}^{(m)}m = (Q^{(m)}, \{a\}, \delta^{(m)}, q_i^{(m)}, F^{(m)})$ be an NFA such that $L(\mathcal{A}_i) = \{w \mid |w| = 0 \mod m\}$
 - this NFA has at least *m* states
- ★ consider the AFA A defined from $A^{(m)}$ for primes m = 7, 13, 17, 19 by

- ★ AFAs generalise NFAs
 - every DFA is a NFA is an AFA
- ★ AFAs allow often more succinct encoding / automata constructions

Example

- * let $\mathcal{A}^{(m)}m = (Q^{(m)}, \{a\}, \delta^{(m)}, q_i^{(m)}, F^{(m)})$ be an NFA such that $L(\mathcal{A}_i) = \{w \mid |w| = 0 \mod m\}$
 - this NFA has at least *m* states
- ★ consider the AFA A defined from $A^{(m)}$ for primes m = 7, 13, 17, 19 by

 q_1

- ★ AFAs generalise NFAs
 - every DFA is a NFA is an AFA
- * AFAs allow often more succinct encoding / automata constructions

Example

- * let $\mathcal{A}^{(m)}m = (Q^{(m)}, \{a\}, \delta^{(m)}, q_i^{(m)}, F^{(m)})$ be an NFA such that $L(\mathcal{A}_i) = \{w \mid |w| = 0 \mod m\}$
 - this NFA has at least *m* states
- ★ consider the AFA A defined from $A^{(m)}$ for primes m = 7, 13, 17, 19 by

- $L(A) = \{w \mid |w| = 1 \mod 29393\}$ since 29393 = 7 · 13 · 17 · 19
- AFA A has 57 = 1 + 7 + 13 + 17 + 19, whereas a corresponding NFA needs 29393 states

* recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFA A there exists an AFA \overline{A} of equal size such that $L(\overline{A}) = \overline{L(A)}$

★ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFA A there exists an AFA \overline{A} of equal size such that $L(\overline{A}) = \overline{L(A)}$

Proof Outline.

- * let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- ★ define the dual formula $\overline{\phi}$ of $\phi \in \mathbb{B}^+(Q)$ following De Morgans rules

 $\overline{q} \triangleq q \qquad \overline{\phi \lor \psi} \triangleq \overline{\phi} \land \overline{\psi} \qquad \overline{\phi \land \psi} \triangleq \overline{\phi} \lor \overline{\psi}$

- morally, $q \in Q$ re-used for their "negation"; we have (i) $M \models \phi$ iff $Q \setminus M \notin \overline{\phi}$

★ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFA A there exists an AFA \overline{A} of equal size such that $L(\overline{A}) = \overline{L(A)}$

Proof Outline.

- * let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- ★ define the dual formula $\overline{\phi}$ of $\phi \in \mathbb{B}^+(Q)$ following De Morgans rules $\overline{q} \triangleq q$ $\overline{\phi \lor \psi} \triangleq \overline{\phi} \land \overline{\psi}$ $\overline{\phi \land \psi} \triangleq \overline{\phi} \lor \overline{\psi}$
 - morally, $q \in Q$ re-used for their "negation"; we have (i) $M \models \phi$ iff $Q \setminus M \notin \overline{\phi}$

* we now define $\overline{\mathcal{A}} \triangleq (Q, \Sigma, \overline{\delta}, q_I, Q \setminus F)$ where $\overline{\delta}(q, a) \triangleq \overline{\delta(q, a)}$ for all $q \in Q, a \in \Sigma$

★ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFA A there exists an AFA \overline{A} of equal size such that $L(\overline{A}) = \overline{L(A)}$

Proof Outline.

- * let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- ★ define the dual formula $\overline{\phi}$ of $\phi \in \mathbb{B}^+(Q)$ following De Morgans rules $\overline{q} \triangleq q$ $\overline{\phi \lor \psi} \triangleq \overline{\phi} \land \overline{\psi}$ $\overline{\phi \land \psi} \triangleq \overline{\phi} \lor \overline{\psi}$
 - morally, $q \in Q$ re-used for their "negation"; we have (i) $M \models \phi$ iff $Q \setminus M \notin \overline{\phi}$
- * we now define $\overline{\mathcal{A}} \triangleq (Q, \Sigma, \overline{\delta}, q_I, Q \setminus F)$ where $\overline{\delta}(q, a) \triangleq \overline{\delta(q, a)}$ for all $q \in Q, a \in \Sigma$
 - by induction on |w| it can now be shown that (ii) $\hat{\overline{\delta}}(q_I, w) = \hat{\delta}(q, w)$

★ recall: NFA-complementation may blow-up automata sizes by an exponential

Lemma

For every AFA A there exists an AFA \overline{A} of equal size such that $L(\overline{A}) = \overline{L(A)}$

Proof Outline.

- * let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- ★ define the dual formula $\overline{\phi}$ of $\phi \in \mathbb{B}^+(Q)$ following De Morgans rules $\overline{q} \triangleq q$ $\overline{\phi \lor \psi} \triangleq \overline{\phi} \land \overline{\psi}$ $\overline{\phi \land \psi} \triangleq \overline{\phi} \lor \overline{\psi}$
 - morally, $q \in Q$ re-used for their "negation"; we have (i) $M \models \phi$ iff $Q \setminus M \notin \overline{\phi}$
- * we now define $\overline{\mathcal{A}} \triangleq (Q, \Sigma, \overline{\delta}, q_I, Q \setminus F)$ where $\overline{\delta}(q, a) \triangleq \overline{\delta(q, a)}$ for all $q \in Q, a \in \Sigma$
 - by induction on |w| it can now be shown that (ii) $\hat{\overline{\delta}}(q_l, w) = \hat{\delta}(q, w)$
 - overall, we have

 $w \notin \mathsf{L}(\mathcal{A}) \stackrel{\text{def.}}{\longleftrightarrow} F \notin \hat{\delta}(q_{l}, w) \stackrel{(i)}{\longleftrightarrow} Q \setminus F \vDash \overline{\hat{\delta}(q_{l}, w)} \stackrel{(ii)}{\longleftrightarrow} Q \setminus F \vDash \overline{\hat{\delta}(q_{l}, w)} \stackrel{\text{def.}}{\longleftrightarrow} w \in \mathsf{L}(\overline{\mathcal{A}})$

Example

complement

Relationship with Regular Languages

Theorem

For every AFA A there exist a DFA B with $O(2^{2^{|A|}})$ states such that L(A) = L(B).

Theorem

For every AFA A there exist a DFA B with $O(2^{2^{|A|}})$ states such that L(A) = L(B).

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Idea:

- \star the states of $\mathcal B$ are formulas
- $\star \phi \xrightarrow{\mathbf{a}} \psi \text{ in } \mathcal{B} \text{ if } \hat{\delta}(\phi, \mathbf{a}) = \psi$
 - Example: $\delta(p, \mathbf{a}) = q \wedge r$ and $\delta(q, \mathbf{a}) = r \implies p \lor q \xrightarrow{\mathbf{a}} (q \wedge r) \lor r$
 - $\text{ a run } q_I \xrightarrow{a_1} \cdots \xrightarrow{a_n} \phi \text{ thus models } \hat{\delta}(q_I, a_1 \dots a_n) = \phi$
- * the formula q_1 is the initial state
- ★ the formulas modeled by *F* are final

Theorem

For every AFA A there exist a DFA B with $O(2^{2^{|A|}})$ states such that L(A) = L(B).

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Idea:

- \star the states of $\mathcal B$ are formulas
- $\star \phi \xrightarrow{\mathbf{a}} \psi \text{ in } \mathcal{B} \text{ if } \hat{\delta}(\phi, \mathbf{a}) = \psi$
 - Example: $\delta(p, \mathbf{a}) = q \wedge r$ and $\delta(q, \mathbf{a}) = r \implies p \lor q \xrightarrow{\mathbf{a}} (q \wedge r) \lor r$
 - $\text{ a run } q_I \xrightarrow{a_1} \cdots \xrightarrow{a_n} \phi \text{ thus models } \hat{\delta}(q_I, a_1 \dots a_n) = \phi$
- * the formula q_1 is the initial state
- ★ the formulas modeled by *F* are final
- ★ to keep the construction finite, we'll identify equivalent formulas

Theorem

For every AFA A there exist a DFA B with $O(2^{2^{|A|}})$ states such that L(A) = L(B).

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Formally:

* the equivalence ~ on $\mathbb{B}^+(Q)$ is given by $\phi \sim \psi$ if $\{M \mid M \vDash \phi\} = \{M \mid M \vDash \psi\}$

 $- q \sim q \lor q \sim q \land q \text{ but } q \neq p \lor q \neq p \land q$

Theorem

For every AFA A there exist a DFA B with $O(2^{2^{|A|}})$ states such that L(A) = L(B).

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Formally:

* the equivalence ~ on $\mathbb{B}^+(Q)$ is given by $\phi \sim \psi$ if $\{M \mid M \vDash \phi\} = \{M \mid M \vDash \psi\}$

 $- q \sim q \lor q \sim q \land q \text{ but } q \not= p \lor q \not= p \land q$

★ the equivalence class [\$\phi\$]_~ can be simply conceived as the formula \$\phi\$, with equivalent formulas \$\phi\$ ~ \$\psi\$ identified

 $- [q \lor q]_{\sim} = \{q, q \lor q, q \land q, \dots\}$

Theorem

For every AFA A there exist a DFA B with $O(2^{2^{|A|}})$ states such that L(A) = L(B).

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Formally:

* the equivalence ~ on $\mathbb{B}^+(Q)$ is given by $\phi \sim \psi$ if $\{M \mid M \vDash \phi\} = \{M \mid M \vDash \psi\}$

 $- q \sim q \lor q \sim q \land q \text{ but } q \not= p \lor q \not= p \land q$

* the equivalence class $[\phi]_{\sim}$ can be simply conceived as the formula ϕ , with equivalent formulas $\phi \sim \psi$ identified

 $- [q \lor q]_{\sim} = \{q, q \lor q, q \land q, \dots\}$

* the set of all such equivalence classes $\mathbb{B}^+(Q)/\sim \text{contains } O(2^{2^{|Q|}})$ elements

Theorem

For every AFA A there exist a DFA B with $O(2^{2^{|A|}})$ states such that L(A) = L(B).

Proof Outline.

let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

Formally:

* the equivalence ~ on $\mathbb{B}^+(Q)$ is given by $\phi \sim \psi$ if $\{M \mid M \vDash \phi\} = \{M \mid M \vDash \psi\}$

 $- q \sim q \lor q \sim q \land q \text{ but } q \not= p \lor q \not= p \land q$

★ the equivalence class [\$\phi\$]_~ can be simply conceived as the formula \$\phi\$, with equivalent formulas \$\phi\$ ~ \$\psi\$ identified

 $- [q \lor q]_{\sim} = \{q, q \lor q, q \land q, \dots\}$

- * the set of all such equivalence classes $\mathbb{B}^+(Q)/\sim \text{contains } O(2^{2^{|Q|}})$ elements
- * $\mathcal{B} \triangleq (\mathbb{B}^+(Q)/\sim, \Sigma, q_l, \delta_\sim, \{[\phi]_\sim \mid F \vDash \phi\})$ where $\delta_\sim([\phi]_\sim, a) \triangleq [\hat{\delta}(\phi, a)]_\sim$ recognises $L(\mathcal{A})$

Example

 \rightarrow 0 a $1 \lor 2$ b $(3 \land 4)$ $(5 \land 6)$

the translated DFA

the initial AFA

From AFAs to NFA

Theorem

For every AFA A there exist a NFA B with $O(2^{|A|})$ states such that L(A) = L(B).

Proof Outline.

- * let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- ★ idea: rather then "recording" to be validated formulas as in the DFA construction, the corresponding NFA "records" valuations
 - the construction is simpler, at the expense of non-determinism

From AFAs to NFA

Theorem

For every AFA A there exist a NFA B with $O(2^{|A|})$ states such that L(A) = L(B).

Proof Outline.

- * let $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$
- ★ idea: rather then "recording" to be validated formulas as in the DFA construction, the corresponding NFA "records" valuations
 - the construction is simpler, at the expense of non-determinism
- ★ the NFA is given by $\mathcal{B} \triangleq (2^Q, \Sigma, \{q_I\}, \delta', \{M \mid M \subseteq F\})$ where

$$N \in \delta'(M, a)$$
 : \Leftrightarrow $N \models \bigwedge_{q \in M} \delta(q, a)$

Example (II)

 \rightarrow 0 a $1 \lor 2$ b $(3 \land 4)$ $(5 \land 6)$

the translated DFA

the initial AFA

Discussion

- ★ What if we translate wMSO formulas to AFAs?
 - for basic formulas x < y and X(y), the construction is as seen previously
 - Boolean connectives are reflected directly in the transition
 - Quantifier elimination through projection homomorphisms

Discussion

- ★ What if we translate wMSO formulas to AFAs?
 - for basic formulas x < y and X(y), the construction is as seen previously
 - Boolean connectives are reflected directly in the transition
 - Quantifier elimination through projection homomorphisms
- ★ this suggests resulting automaton is linear in size of formula
 ⇒ wMSO model-checking in exponential time, contradicting the lower-bound result!

Projections and AFAs

Discussion

★ What if we translate wMSO formulas to AFAs?

- for basic formulas x < y and X(y), the construction is as seen previously
- Boolean connectives are reflected directly in the transition
- Quantifier elimination through projection homomorphisms
- $\star\,$ this suggests resulting automaton is linear in size of formula
 - ⇒ wMSO model-checking in exponential time, contradicting the lower-bound result!

Problem:

We do not have a polytime algorithm for homorphism applications on AFAs

