Advanced Logic

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2021/AL/

Martin Avanzini

B MASTER 7
5 I N Fo RM ATI QU E informatiques g#”mathématiques

UNIVERSITE COTE DAZUR 8% A —

Summer Semester 2021

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2021/AL/

Last Lecture

1. the set of WMSO formulas over V;, V5 is given by the following grammar:

pu=T | L | x<y | X | ovyl|-¢ | Ixe | IXg

- first-order variables V; range over N and second-order variables V; range over finite sets
over N

2. aWMSO formula ¢ over second-order variables {P, | a € X} defines a language

L(¢) 2 {wex" |wF ¢}

3. WMSO definable languages are regular, and vice verse

2('

4, Satisfiability and validity decidable in 2 , the height of this tower essentially
depends on quantifiers; this bound cannot be improved

- in practice, satisfiability/validity often feasible, even for bigger formulas

Today'’s Lecture

* Presburger arithmetic

* the tool MONA

Presburger Arithmetic

Presburger Arithmetic

* Presburger Arithmetic refers to the first-order theory over (N, {0, +, <})
* named in honor of Mojzesz Presburger, who introduced it in 1929
* formulas in this logic are derivable from the following grammar:
s,t::=0 | X | s+t
pp=T | L|s=t]|s<t]| oy | v | Ixo¢

where x is a first-order variable
* valuations map first-order variables to N

Presburger Arithmetic

* Presburger Arithmetic refers to the first-order theory over (N, {0, +, <})
* named in honor of Mojzesz Presburger, who introduced it in 1929
* formulas in this logic are derivable from the following grammar:
s,t::=0 | X | s+t
pp=T | L|s=t]|s<t]| oy | v | Ixo¢
where x is a first-order variable

* valuations map first-order variables to N

Applications

Presburger Arithmetic employed — due to the balance between expressiveness and
algorithmic properties — e.g. in automated theorem proving and static program analysis

Examples

* miseven:?

Examples

* miseven: 3n.m = n + n, or shorthand 3n.m =2-n

- generally, multiplication by constant ¢ € N permissible

Examples

* miseven: 3n.m = n + n, or shorthand 3n.m =2-n

- generally, multiplication by constant ¢ € N permissible

* mequals1:?

Examples

* miseven: dn.m = n + n, or shorthand 3n.m =2 -n

- generally, multiplication by constant ¢ € N permissible

* mequalsT: YVn.n<m—-n=0

Examples

* miseven: dn.m = n + n, or shorthand 3n.m =2 -n

- generally, multiplication by constant ¢ € N permissible
* mequalsT: YVn.n<m—-n=0

* m=rmod5:?

Examples

* miseven: dn.m = n + n, or shorthand 3n.m =2 -n

- generally, multiplication by constant ¢ € N permissible
* mequalsT: YVn.n<m—-n=0

* m=rmod5 dnr<5Am=5-n+r

Examples

* miseven: 3n.m = n + n, or shorthand 3n.m =2-n

- generally, multiplication by constant ¢ € N permissible
* mequalsl: Vn.n<m—->n=0
* m=rmod5 An.r<5Am=5-n+r

* the system of linear equations

m+n=13
m-—n=

has a solution: ?

Examples

* miseven: 3n.m = n + n, or shorthand 3n.m =2-n

- generally, multiplication by constant ¢ € N permissible
* mequalsl: Vn.n<m—->n=0
* m=rmod5 An.r<5Am=5-n+r

* the system of linear equations

m+n=13
m-n=1

has a solution: Am.An.m+n=13Am=1+n

A Decision Procedure for Presburger Arithmetic

General Idea
1. encode natural numbers as binary words (Isb-first order)
~ assignmentsa : V — {0,...,2™} over {xi, ..., x,} become binary matrices a € {0, 1}{™"
a(x;) @
xx 7 1\/0\/1\/1
X> 1 11100}l O

X3 3 1/\1/)\o/\o

A Decision Procedure for Presburger Arithmetic

General Idea
1. encode natural numbers as binary words (Isb-first order)

~ assignmentsa : V — {0,...,2™} over {xi, ..., x,} become binary matrices a € {0, 1}{™"
a(x;) @
X7 1N/0\/1\/1
X2 1 1 0
x5 3 1)U1 Vo)l 0o

2. forformula ¢, define a DFA A, recognizing precisely codings a of valuations @ making ¢
become true

Language of a Formula

let us denote by L(¢) the language of coded valuations making ¢ true:

L(¢) 2 {alak g}

Language of a Formula
let us denote by L(¢) the language of coded valuations making ¢ true:

L(¢) 2 {alak g}

Lemma
For any formula ¢ in Presburger Arithmetic, L(¢) is regular.

Language of a Formula

let us denote by L(¢) the language of coded valuations making ¢ true:
L(¢) 2 {a|ak ¢}

Lemma

For any formula ¢ in Presburger Arithmetic, L(¢) is regular.

Proof Outline.
By induction on the structure of ¢, we construct a DFA A, recognizing L(a).

Language of a Formula

let us denote by L(¢) the language of coded valuations making ¢ true:
L(¢) 2 {a|ak ¢}

Lemma

For any formula ¢ in Presburger Arithmetic, L(¢) is regular.

Proof Outline.
By induction on the structure of ¢, we construct a DFA A, recognizing L(a).

* ¢ =T,¢ = _L:Inthese cases L(¢) is easily seen to be regular.

* ¢ =(s<t)or¢ = (s=t) Acorresponding automaton can be constructed (next slide).

Language of a Formula

let us denote by L(¢) the language of coded valuations making ¢ true:
L(¢) 2 {a|ak ¢}

Lemma

For any formula ¢ in Presburger Arithmetic, L(¢) is regular.

Proof Outline.
By induction on the structure of ¢, we construct a DFA A, recognizing L(a).
* ¢ =T,¢ = L:Inthese cases L(¢) is easily seen to be regular.
* ¢ =(s<t)or¢ =(s=t): Acorresponding automaton can be constructed (next slide).

* ¢ = —¢or¢ =iy Ay, Fromthe induction hypothesis, using DFA-complementation and
DFA-union.

Language of a Formula

let us denote by L(¢) the language of coded valuations making ¢ true:
L(¢) 2 {a|ak ¢}

Lemma

For any formula ¢ in Presburger Arithmetic, L(¢) is regular.

Proof Outline.
By induction on the structure of ¢, we construct a DFA A, recognizing L(a).
* ¢ =T,¢ = L:Inthese cases L(¢) is easily seen to be regular.
* ¢ =(s<t)or¢ =(s=t): Acorresponding automaton can be constructed (next slide).

* ¢ = —¢or¢ =iy Ay, Fromthe induction hypothesis, using DFA-complementation and
DFA-union.

* ¢ = Vx.: From induction hypothesis, using homomorphism application to project out
x and “repairing final states”, as in the case of WMSO.

Recognizing s<t
* aninequality s < t can be representedas) ;a; - x; < bwherea;,b € Z

2:X1<X+2 = 2-xy—-1-x%<2

Recognizing s<t

* aninequality s < t can be representedas) ;a; - x; < bwherea;,b € Z

2:X1<X+2 = 2-xy—-1-x%<2

* the automaton A; < ; recognizing s < t is defined as follows

— states Q are inequalities of the form) . a; - x; < d
Intuition: L(} ;a; - xi<d, As < ¢) ={a | aF) ,;a;-x; < d}

Recognizing s<t

* aninequality s < t can be representedas) ;a; - x; < bwherea;,b € Z
2:X1<X+2 = 2-xy—-1-x%<2

* the automaton A; < ; recognizing s < t is defined as follows

— states Q are inequalities of the form) . a; - x; < d
Intuition: L(} ;a; - xi<d, As < ¢) ={a | aF) ,;a;-x; < d}

- theinitial state g is given by the representation of s < t

Recognizing s<t
* aninequality s < t can be representedas) ;a; - x; < bwherea;,b € Z
2:X1<X+2 = 2-xy—-1-x%<2

* the automaton A; < ; recognizing s < t is defined as follows
— states Q are inequalities of the form) . a; - x; < d
Intuition: L(} ;a; - xi<d, As < ¢) ={a | aF) ,;a;-x; < d}
- theinitial state g is given by the representation of s < t

— the transition function ¢ is given by

6<Za,~x;sd,<2))é2a,~-x,-s E(d—za,.bi”

sincez,-ai~(b,-+2~x§)sd4:>Z,a;~x§s%-(d—zia,~-b,~)

Recognizing s<t

* aninequality s < t can be representedas) ;a; - x; < bwherea;,b € Z
2:X1<X+2 = 2-xy—-1-x%<2

* the automaton A; < ; recognizing s < t is defined as follows
— states Q are inequalities of the form) . a; - x; < d
Intuition: L(} ;a; - xi<d, As < ¢) ={a | aF) ,;a;-x; < d}
- theinitial state g is given by the representation of s < t

— the transition function ¢ is given by

6<Za,~x;sd,<2))é2a,~-x,-s E(d—za,.bi”

sincez,-ai~(b,-+2~x§)sd4:>Z,a;~x§s%-(d—zia,~-b,~)

- final states are all those states) ;a; - x; < dwith 0 < d

Recognizing s<t

* aninequality s < t can be representedas) ;a; - x; < bwherea;,b € Z
2:X1<X+2 = 2-xy—-1-x%<2

* the automaton A; < ; recognizing s < t is defined as follows
— states Q are inequalities of the form) . a; - x; < d
Intuition: L(} ;a; - xi<d, As < ¢) ={a | aF) ,;a;-x; < d}
- theinitial state g is given by the representation of s < t

— the transition function ¢ is given by

6<Za,~x;sd,<§:’))é2a,~-x;s E(d—za,.bi”

since Y- (bj+2-x)sd = Y 0-x<5-(d=Y,a-b)
- final states are all those states) ;a; - x; < dwith 0 < d

» finiteness: from initial state) . a; - x; < d, only) ; a; + d states reachable, hence the
overall construction is finite

Recognizing s<t

* aninequality s < t can be representedas) ;a; - x; < bwherea;,b € Z
2:X1<x2+2 = 2-x1—-1-x<2

* the automaton A; . ; recognizing s < t is defined as follows
— states Q are inequalities of the form) . a; - x; < d
Intuition: L(} ;a; - x; <d, As < ¢) ={a | a F) ,;a;-x; < d}
- theinitial state g is given by the representation of s < t

— the transition function ¢ is given by

ogoncel) parnealezen)

sincez,-ai~(b,-+2~x;)<d4:» Z,-a,-~x:-<%-(d—zia,--b,-)
- final states are all those states) ;a; - x; < d with 0 < d

» finiteness: from initial state) . a; - x; < d, only) ; a; + d states reachable, hence the
overall construction is finite

Recognizing s=t

* aninequality s = t can be represented as) ; a; - x; = bwherea;,b € Z

2:X1=X2+2 = 2-xy—-1-x=2

* the automaton A; - ; recognizing s = t is defined as follows
- states Q are inequalities of the form) . a; - x; = d plus trap-state g
Intuition: L(} ;a; - xi=d, As _ ¢) ={a | a F) ;a;-x; = d}
- theinitial state g is given by the representation of s = t

— the transition function ¢ is given by

6<Za;~x;:d,<b§1)) R {Zia,-x,-:%(d—zia,--b,-) ifd—Y;a;-bjeven,
i

b, Qfail otherwise.

>

sincez,-ai~(b,-+2~x;):d4:» Z,-a,wx:-:%-(d—zia,--b,-)
- final states are all those states) ;a; - x; = d with 0 = d

» finiteness: from initial state) . a; - x; = d, only) ; a; + d states reachable, hence the
overall construction is finite

Decision Problems for Presburger Arithmetic

The Satisfiability Problem The Validity Problem
* Given: formula ¢ * Given: formula ¢
* Question: isthereasta F ¢? * Question: a F ¢ for all assignments a?

Decision Problems for Presburger Arithmetic

The Satisfiability Problem The Validity Problem

* Given: formula ¢ * Given: formula ¢

* Question: isthereasta F ¢? * Question: a F ¢ for all assignments a?
Theorem

Satisfiability and Validity are decidable for Presburger Arithmetic.

Theorem
For any formula ¢, the constructed DFA recognizing L(¢) has size 0(2%).

Peano Arithmetic

* Peano’s arithmetic is the first-order theory natural integers with vocabulary {+, x, <}

Peano Arithmetic

* Peano’s arithmetic is the first-order theory natural integers with vocabulary {+, x, <}

* its existential fragment corresponds to the Diophantine equations, i.e., polynomial
equations on integers

* Hilbert's 10th problem was to solve Diophantine equations

Peano Arithmetic

* Peano’s arithmetic is the first-order theory natural integers with vocabulary {+, x, <}

* its existential fragment corresponds to the Diophantine equations, i.e., polynomial
equations on integers

* Hilbert's 10th problem was to solve Diophantine equations

* Youri Matiassevitch, drawing on the work of Julia Robinson, demonstrated that this was
an undecidable problem

Skolem Arithmetic

* Skolem’s arithmetic is the first order theory natural integers with the vocabulary {x, =}

Skolem Arithmetic

* Skolem’s arithmetic is the first order theory natural integers with the vocabulary {x, =}
* Skolem's arithmetic is also decidable

* proof goes via reduction to tree automata, closely resembling the proof we have just
seen for Presburger’s arithmetic

The tool MONA

The MONA Project

https://www.brics.dk/mona/index.html FE:PML‘g

Free as in Freedom

* MONA is a WMSO (and more) model checker

- determines validity of formula
— or prints counter example

* implemented through the outlined translation to finite automata

https://www.brics.dk/mona/index.html

