Advanced Logic http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2021/AL/

Martin Avanzini

Summer Semester 2021

Last Lecture

1. the set of WMSO formulas over $\mathcal{V}_1, \mathcal{V}_2$ is given by the following grammar:

b, $\psi ::= \top \mid \bot \mid x < y \mid X(x) \mid \phi \vee \psi \mid \neg \phi \mid \exists x. \phi \mid \exists X. \phi$

- $-$ first-order variables V_1 range over N and second-order variables V_2 range over finite sets over N
- 2. a WMSO formula φ over second-order variables {P_a | a ∈ ∑} defines a language

 $L(\phi) \triangleq \{w \in \Sigma^* \mid \underline{w} \models \phi\}$

- 3. WMSO definable languages are regular, and vice verse
- 4. Satisfiability and validity decidable in 2 2 *. . .* 2 *c* , the height of this tower essentially depends on quantifiers; this bound cannot be improved
	- $-$ in practice, satisfiability/validity often feasible, even for bigger formulas

Today's Lecture

- \star Presburger arithmetic
- \star the tool MONA

Presburger Arithmetic

Presburger Arithmetic

- ⋆ Presburger Arithmetic refers to the first-order theory over (N*,* {0*,* +*,* <})
- \star named in honor of Mojżesz Presburger, who introduced it in 1929
- \star formulas in this logic are derivable from the following grammar:

^s,^t ∶∶⁼ ⁰ ∣ *^x* ∣ *^s* ⁺ *^t* $\phi, \psi ::= \top \mid \bot \mid s = t \mid s < t \mid \phi \wedge \psi \mid \neg \psi \mid \exists x. \phi$

where *x* is a first-order variable

 $\,\star\,$ valuations map first-order variables to $\mathbb N$

Presburger Arithmetic

- ⋆ Presburger Arithmetic refers to the first-order theory over (N*,* {0*,* +*,* <})
- \star named in honor of Mojżesz Presburger, who introduced it in 1929
- \star formulas in this logic are derivable from the following grammar:

^s,^t ∶∶⁼ ⁰ ∣ *^x* ∣ *^s* ⁺ *^t* $\phi, \psi ::= \top \mid \bot \mid s = t \mid s < t \mid \phi \wedge \psi \mid \neg \psi \mid \exists x. \phi$

where *x* is a first-order variable

 $\,\star\,$ valuations map first-order variables to $\mathbb N$

Applications

Presburger Arithmetic employed — due to the balance between expressiveness and algorithmic properties $-e.g.$ in automated theorem proving and static program analysis

 \star *m* is even: ?

- ⋆ *m* is even: ∃*n.m* = *n* + *n*, or shorthand ∃*n.m* = 2 ⋅ *n*
	- generally, multiplication by constant *c* ∈ N permissible

- ⋆ *m* is even: ∃*n.m* = *n* + *n*, or shorthand ∃*n.m* = 2 ⋅ *n*
	- generally, multiplication by constant *c* ∈ N permissible
- \star *m* equals 1: ?

- ⋆ *m* is even: ∃*n.m* = *n* + *n*, or shorthand ∃*n.m* = 2 ⋅ *n*
	- generally, multiplication by constant *c* ∈ N permissible
- ⋆ *m* equals 1: ∀*n.n* < *m* → *n* = 0

- ⋆ *m* is even: ∃*n.m* = *n* + *n*, or shorthand ∃*n.m* = 2 ⋅ *n*
	- generally, multiplication by constant *c* ∈ N permissible
- ⋆ *m* equals 1: ∀*n.n* < *m* → *n* = 0
- \star *m* = *r* mod 5: ?

- ⋆ *m* is even: ∃*n.m* = *n* + *n*, or shorthand ∃*n.m* = 2 ⋅ *n*
	- generally, multiplication by constant *c* ∈ N permissible
- $★$ *m* equals 1: $∀n.n < m → n = 0$
- ⋆ *m* = *r* mod 5: ∃*n.r* < 5 ∧ *m* = 5 ⋅ *n* + *r*

- ⋆ *m* is even: ∃*n.m* = *n* + *n*, or shorthand ∃*n.m* = 2 ⋅ *n*
	- generally, multiplication by constant *c* ∈ N permissible
- $★$ *m* equals 1: $∀n.n < m → n = 0$
- ⋆ *m* = *r* mod 5: ∃*n.r* < 5 ∧ *m* = 5 ⋅ *n* + *r*
- \star the system of linear equations

 $m + n = 13$ $m - n = 1$

has a solution: ?

- ⋆ *m* is even: ∃*n.m* = *n* + *n*, or shorthand ∃*n.m* = 2 ⋅ *n*
	- generally, multiplication by constant *c* ∈ N permissible
- $★$ *m* equals 1: $∀n.n < m → n = 0$
- ⋆ *m* = *r* mod 5: ∃*n.r* < 5 ∧ *m* = 5 ⋅ *n* + *r*
- \star the system of linear equations

 $m + n = 13$ $m - n = 1$

has a solution: ∃*m.*∃*n.m* + *n* = 13 ∧ *m* = 1 + *n*

A Decision Procedure for Presburger Arithmetic

General Idea

- 1. encode natural numbers as binary words (lsb-first order)
	- $-$ assignments $α: V → {0, ..., 2^m}$ over ${x_1, ..., x_n}$ become binary matrices $α ∈ {0, 1}^{(m,n)}$ </u>

A Decision Procedure for Presburger Arithmetic

General Idea

- 1. encode natural numbers as binary words (lsb-first order)
	- $-$ assignments $α: V → {0, ..., 2^m}$ over ${x_1, ..., x_n}$ become binary matrices $α ∈ {0, 1}^{(m,n)}$ </u>

2. for formula ϕ , define a DFA A_{ϕ} recognizing precisely codings α of valuations α making ϕ become true

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

 $\hat{L}(\phi) \triangleq {\alpha \mid \alpha \models \phi}$

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

 $\hat{L}(\phi) \triangleq {\alpha | \alpha \models \phi}$

Lemma

For any formula ϕ *in Presburger Arithmetic,* $\hat{L}(\phi)$ *is regular.*

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

 $\hat{L}(\phi) \triangleq {\alpha \mid \alpha \models \phi}$

Lemma

For any formula ϕ *in Presburger Arithmetic,* $\hat{L}(\phi)$ *is regular.*

Proof Outline.

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

 $\hat{L}(\phi) \triangleq {\alpha \mid \alpha \models \phi}$

Lemma

For any formula ϕ *in Presburger Arithmetic,* $\hat{L}(\phi)$ *is regular.*

Proof Outline.

- $\star \phi = \top$, $\phi = \bot$: In these cases $\hat{L}(\phi)$ is easily seen to be regular.
- $\star \phi = (s < t)$ or $\phi = (s = t)$: A corresponding automaton can be constructed (next slide).

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

 $\hat{L}(\phi) \triangleq {\alpha \mid \alpha \models \phi}$

Lemma

For any formula ϕ *in Presburger Arithmetic,* $\hat{L}(\phi)$ *is regular.*

Proof Outline.

- $\star \phi = \top$, $\phi = \bot$: In these cases $\hat{L}(\phi)$ is easily seen to be regular.
- $\star \phi = (s < t)$ or $\phi = (s = t)$: A corresponding automaton can be constructed (next slide).
- ★ $\phi = \neg \phi$ or $\phi = \psi_1 \wedge \psi_2$ From the induction hypothesis, using DFA-complementation and DFA-union.

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

 $\hat{L}(\phi) \triangleq {\alpha \mid \alpha \models \phi}$

Lemma

For any formula ϕ *in Presburger Arithmetic,* $\hat{L}(\phi)$ *is regular.*

Proof Outline.

- $\star \phi = \top$, $\phi = \bot$: In these cases $\hat{L}(\phi)$ is easily seen to be regular.
- $\star \phi = (s < t)$ or $\phi = (s = t)$: A corresponding automaton can be constructed (next slide).
- ★ $\phi = \neg \phi$ or $\phi = \psi_1 \wedge \psi_2$ From the induction hypothesis, using DFA-complementation and DFA-union.
- ⋆ = ∀*x.*: From induction hypothesis, using homomorphism application to project out *x* and "repairing final states", as in the case of WMSO.

 \star an inequality $s \le t$ can be represented as $\sum_{i} a_i \cdot x_i \le b$ where $a_i, b \in \mathbb{Z}$

 $2 \cdot x_1 \le x_2 + 2 \implies 2 \cdot x_1 - 1 \cdot x_2 \le 2$

 \star an inequality $s \le t$ can be represented as $\sum_{i} a_i \cdot x_i \le b$ where $a_i, b \in \mathbb{Z}$

 $2 \cdot x_1 \leq x_2 + 2 \implies 2 \cdot x_1 - 1 \cdot x_2 \leq 2$

- \star the automaton $A_{s \leq t}$ recognizing $s \leq t$ is defined as follows
	- $-$ states Q are inequalities of the form $\sum_{i} a_i \cdot x_i \leq d$ Intuition: $L(\sum_{i} a_i \cdot x_i \leq d, \mathcal{A}_{s \leq t}) = {\alpha \mid \alpha \models \sum_{i} a_i \cdot x_i \leq d}$

 \star an inequality $s \le t$ can be represented as $\sum_{i} a_i \cdot x_i \le b$ where $a_i, b \in \mathbb{Z}$

 $2 \cdot x_1 \leq x_2 + 2 \implies 2 \cdot x_1 - 1 \cdot x_2 \leq 2$

- \star the automaton $A_{s \leq t}$ recognizing $s \leq t$ is defined as follows
	- $-$ states Q are inequalities of the form $\sum_{i} a_i \cdot x_i \leq d$ Intuition: $L(\sum_{i} a_i \cdot x_i \leq d, \mathcal{A}_{s \leq t}) = {\alpha \mid \alpha \models \sum_{i} a_i \cdot x_i \leq d}$
	- $-$ the initial state q_{I} is given by the representation of $s\leq t$

 \star an inequality $s \le t$ can be represented as $\sum_{i} a_i \cdot x_i \le b$ where $a_i, b \in \mathbb{Z}$

 $2 \cdot x_1 \leq x_2 + 2 \implies 2 \cdot x_1 - 1 \cdot x_2 \leq 2$

- \star the automaton $A_{s \leq t}$ recognizing $s \leq t$ is defined as follows
	- $-$ states Q are inequalities of the form $\sum_{i} a_i \cdot x_i \leq d$ Intuition: $L(\sum_{i} a_i \cdot x_i \leq d, \mathcal{A}_{s \leq t}) = {\alpha \mid \alpha \models \sum_{i} a_i \cdot x_i \leq d}$
	- $-$ the initial state q_{I} is given by the representation of $s\leq t$
	- the transition function δ is given by

$$
\delta\left(\sum_{i} a_{i} \cdot x_{i} \leq d, \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix}\right) \triangleq \sum_{i} a_{i} \cdot x_{i} \leq \left\lfloor \frac{1}{2} \left(d - \sum_{i} a_{i} \cdot b_{i}\right) \right\rfloor
$$

since $\sum_{i} a_{i} \cdot (b_{i} + 2 \cdot x_{i}^{\prime}) \leq d \Leftrightarrow \sum_{i} a_{i} \cdot x_{i}^{\prime} \leq \frac{1}{2} \cdot (d - \sum_{i} a_{i} \cdot b_{i})$

 \star an inequality $s \le t$ can be represented as $\sum_{i} a_i \cdot x_i \le b$ where $a_i, b \in \mathbb{Z}$

 $2 \cdot x_1 \leq x_2 + 2 \implies 2 \cdot x_1 - 1 \cdot x_2 \leq 2$

- \star the automaton $A_{s \leq t}$ recognizing $s \leq t$ is defined as follows
	- $-$ states Q are inequalities of the form $\sum_{i} a_i \cdot x_i \leq d$ Intuition: $L(\sum_{i} a_i \cdot x_i \leq d, \mathcal{A}_{s \leq t}) = {\alpha \mid \alpha \models \sum_{i} a_i \cdot x_i \leq d}$
	- $-$ the initial state q_{I} is given by the representation of $s\leq t$
	- the transition function δ is given by

$$
\delta\left(\sum_{i} a_{i} \cdot x_{i} \leq d, \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix}\right) \triangleq \sum_{i} a_{i} \cdot x_{i} \leq \left\lfloor \frac{1}{2} \left(d - \sum_{i} a_{i} \cdot b_{i}\right) \right\rfloor
$$

since $\sum_{i} a_{i} \cdot (b_{i} + 2 \cdot x_{i}^{\prime}) \leq d \Leftrightarrow \sum_{i} a_{i} \cdot x_{i}^{\prime} \leq \frac{1}{2} \cdot (d - \sum_{i} a_{i} \cdot b_{i})$

 $-$ final states are all those states $\sum_{i} a_i \cdot x_i \leq d$ with 0 $\leq d$

 \star an inequality $s \le t$ can be represented as $\sum_{i} a_i \cdot x_i \le b$ where $a_i, b \in \mathbb{Z}$

 $2 \cdot x_1 \leq x_2 + 2 \implies 2 \cdot x_1 - 1 \cdot x_2 \leq 2$

- \star the automaton $A_{s \leq t}$ recognizing $s \leq t$ is defined as follows
	- $-$ states Q are inequalities of the form $\sum_{i} a_i \cdot x_i \leq d$ Intuition: $L(\sum_{i} a_i \cdot x_i \leq d, \mathcal{A}_{s \leq t}) = {\alpha \mid \alpha \models \sum_{i} a_i \cdot x_i \leq d}$
	- $-$ the initial state q_{I} is given by the representation of $s\leq t$
	- the transition function δ is given by

$$
\delta\left(\sum_i a_i\cdot x_i\leq d,\begin{pmatrix}b_1\\ \vdots\\ b_n\end{pmatrix}\right)\triangleq\sum_i a_i\cdot x_i\leq\left\lfloor\frac{1}{2}\left(d-\sum_i a_i\cdot b_i\right)\right\rfloor
$$

 $\textsf{since } \sum_i a_i \cdot (b_i + 2 \cdot x_i') \le d \Leftrightarrow \sum_i a_i \cdot x_i' \le \frac{1}{2}$ $\frac{1}{2} \cdot (d - \sum_i a_i \cdot b_i)$

- $-$ final states are all those states $\sum_{i} a_i \cdot x_i \leq d$ with 0 $\leq d$
- \star finiteness: from initial state $\sum_{i} a_i \cdot x_i \leq d$, only $\sum_{i} a_i + d$ states reachable, hence the overall construction is finite

 \star an inequality $s < t$ can be represented as $\sum_{i} a_i \cdot x_i < b$ where $a_i, b \in \mathbb{Z}$

 $2 \cdot x_1 < x_2 + 2 \implies 2 \cdot x_1 - 1 \cdot x_2 < 2$

- \star the automaton $A_{s \, \langle \, t \rangle}$ recognizing $s \, \langle \, t \rangle$ is defined as follows
	- states *Q* are inequalities of the form ∑*ⁱ ai* ⋅ *xⁱ* < *d* Intuition: $L(\sum_{i} a_i \cdot x_i < d, A_{s} < t) = {\alpha \mid \alpha \models \sum_{i} a_i \cdot x_i < d}$
	- $-$ the initial state q_{ℓ} is given by the representation of $s < t$
	- the transition function δ is given by

$$
\delta\left(\sum_{i} a_i \cdot x_i < d, \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}\right) \triangleq \sum_{i} a_i \cdot x_i < \left\lceil \frac{1}{2} \left(d - \sum_{i} a_i \cdot b_i\right) \right\rceil
$$

since $\sum_i a_i \cdot (b_i + 2 \cdot x'_i) < d \Leftrightarrow \sum_i a_i \cdot x'_i < \frac{1}{2}$ $\frac{1}{2} \cdot (d - \sum_i a_i \cdot b_i)$

- final states are all those states ∑*ⁱ ai* ⋅ *xⁱ* < *d* with 0 < *d*
- ⋆ finiteness: from initial state ∑*ⁱ ai* ⋅ *xⁱ* < *d*, only ∑*ⁱ aⁱ* + *d* states reachable, hence the overall construction is finite

 \star an inequality $s = t$ can be represented as $\sum_{i} a_i \cdot x_i = b$ where $a_i, b \in \mathbb{Z}$

 $2 \cdot x_1 = x_2 + 2 \implies 2 \cdot x_1 - 1 \cdot x_2 = 2$

- \star the automaton A_{s} = *t* recognizing *s* = *t* is defined as follows
	- states *Q* are inequalities of the form ∑*ⁱ ai* ⋅ *xⁱ* = *d* plus trap-state *qfail* Intuition: L($\sum_i a_i \cdot x_i = d$, $A_{s = t}$) = { $\underline{\alpha} \mid \alpha \models \sum_i a_i \cdot x_i = d$ }
	- $-$ the initial state q_{I} is given by the representation of s = t
	- the transition function δ is given by

$$
\delta\left(\sum_{i} a_{i} \cdot x_{i} = d, \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix}\right) \triangleq \begin{cases} \sum_{i} a_{i} \cdot x_{i} = \frac{1}{2} \left(d - \sum_{i} a_{i} \cdot b_{i}\right) & \text{if } d - \sum_{i} a_{i} \cdot b_{i} \text{ even,} \\ q_{fail} & \text{otherwise.} \end{cases}
$$

 $\textsf{since } \sum_i a_i \cdot (b_i + 2 \cdot x_i^l) = d \iff \sum_i a_i \cdot x_i^l = \frac{1}{2}$ $\frac{1}{2} \cdot (d - \sum_i a_i \cdot b_i)$

- $-$ final states are all those states $\sum_{i} a_{i} \cdot x_{i} = d$ with 0 = *d*
- \star finiteness: from initial state $\sum_{i} a_i \cdot x_i = d$, only $\sum_{i} a_i + d$ states reachable, hence the overall construction is finite

Decision Problems for Presburger Arithmetic

The Satisfiability Problem

- \star Given: formula ϕ
- ★ Question: is there α s.t $\alpha \models \phi$?

The Validity Problem

- \star Given: formula ϕ
- ★ Question: $\alpha \models \phi$ for all assignments α ?

Decision Problems for Presburger Arithmetic

The Satisfiability Problem

- \star Given: formula ϕ
- ★ Question: is there α s.t $\alpha \models \phi$?

The Validity Problem

- \star Given: formula ϕ
- \star Question: $\alpha \models \phi$ for all assignments α ?

Theorem

Satisfiability and Validity are decidable for Presburger Arithmetic.

Theorem

For any formula ϕ , the constructed DFA recognizing $\hat{\mathsf{L}}(\phi)$ has size $\mathsf{O}(\mathsf{2}^{2^n})$.

Peano Arithmetic

⋆ Peano's arithmetic is the first-order theory natural integers with vocabulary {+*,* ×*,* <}

Peano Arithmetic

- \star Peano's arithmetic is the first-order theory natural integers with vocabulary { $+$, \times , \lt }
- \star its existential fragment corresponds to the Diophantine equations, i.e., polynomial equations on integers
- \star Hilbert's 10th problem was to solve Diophantine equations

Peano Arithmetic

- \star Peano's arithmetic is the first-order theory natural integers with vocabulary $\{+, \times, \lt\}$
- \star its existential fragment corresponds to the Diophantine equations, i.e., polynomial equations on integers
- \star Hilbert's 10th problem was to solve Diophantine equations
- \star Youri Matiassevitch, drawing on the work of Julia Robinson, demonstrated that this was an undecidable problem

Skolem Arithmetic

 \star Skolem's arithmetic is the first order theory natural integers with the vocabulary { \times , =}

Skolem Arithmetic

- \star Skolem's arithmetic is the first order theory natural integers with the vocabulary { \times , = }
- \star Skolem's arithmetic is also decidable
- \star proof goes via reduction to tree automata, closely resembling the proof we have just seen for Presburger's arithmetic

The tool MONA

The MONA Project

https://www.brics.dk/mona/index.html

- ⋆ MONA is a WMSO (and more) model checker
	- determines validity of formula
	- or prints counter example
- \star implemented through the outlined translation to finite automata

