Advanced Logic

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2021/AL/

Martin Avanzini

Summer Semester 2021

Last Lecture

1. the set of WMSO formulas over V_1 , V_2 is given by the following grammar:

 $\phi, \psi ::= \top \mid \perp \mid x < y \mid X(x) \mid \phi \lor \psi \mid \neg \phi \mid \exists x.\phi \mid \exists X.\phi$

- first-order variables \mathcal{V}_1 range over $\mathbb N$ and second-order variables \mathcal{V}_2 range over finite sets over $\mathbb N$
- 2. a WMSO formula ϕ over second-order variables $\{P_a \mid a \in \Sigma\}$ defines a language

$$L(\phi) \triangleq \{ w \in \Sigma^* \mid \underline{w} \vDash \phi \}$$

- 3. WMSO definable languages are regular, and vice verse
- Satisfiability and validity decidable in 2^{2^{-2^c}}, the height of this tower essentially depends on quantifiers; this bound cannot be improved
 - in practice, satisfiability/validity often feasible, even for bigger formulas

Today's Lecture

- ★ Presburger arithmetic
- ★ the tool MONA

Presburger Arithmetic

Presburger Arithmetic

- ★ Presburger Arithmetic refers to the first-order theory over (\mathbb{N} , {0, +, <})
- ★ named in honor of Mojżesz Presburger, who introduced it in 1929
- ★ formulas in this logic are derivable from the following grammar:

where *x* is a first-order variable

 \star valuations map first-order variables to $\mathbb N$

Presburger Arithmetic

- ★ Presburger Arithmetic refers to the first-order theory over (\mathbb{N} , {0, +, <})
- ★ named in honor of Mojżesz Presburger, who introduced it in 1929
- ★ formulas in this logic are derivable from the following grammar:

where *x* is a first-order variable

 \star valuations map first-order variables to $\mathbb N$

Applications

Presburger Arithmetic employed — due to the balance between expressiveness and algorithmic properties — e.g. in automated theorem proving and static program analysis

inventeurs du monde numérique

★ *m* is even: ?

- * *m* is even: $\exists n.m = n + n$, or shorthand $\exists n.m = 2 \cdot n$
 - generally, multiplication by constant $c \in \mathbb{N}$ permissible

- * *m* is even: $\exists n.m = n + n$, or shorthand $\exists n.m = 2 \cdot n$
 - generally, multiplication by constant $c \in \mathbb{N}$ permissible
- ★ *m* equals 1: ?

- * *m* is even: $\exists n.m = n + n$, or shorthand $\exists n.m = 2 \cdot n$
 - generally, multiplication by constant $c \in \mathbb{N}$ permissible
- ★ m = 0 equals 1: $\forall n.n < m \rightarrow n = 0$

- * *m* is even: $\exists n.m = n + n$, or shorthand $\exists n.m = 2 \cdot n$
 - generally, multiplication by constant $c \in \mathbb{N}$ permissible
- * $m \text{ equals 1: } \forall n.n < m \rightarrow n = 0$
- ★ m = r mod 5: ?

- * *m* is even: $\exists n.m = n + n$, or shorthand $\exists n.m = 2 \cdot n$
 - generally, multiplication by constant $c \in \mathbb{N}$ permissible
- ★ m = 0 equals 1: $\forall n.n < m \rightarrow n = 0$
- * $m = r \mod 5$: $\exists n.r < 5 \land m = 5 \cdot n + r$

- * *m* is even: $\exists n.m = n + n$, or shorthand $\exists n.m = 2 \cdot n$
 - generally, multiplication by constant $c \in \mathbb{N}$ permissible
- * $m \text{ equals 1: } \forall n.n < m \rightarrow n = 0$
- * $m = r \mod 5$: $\exists n.r < 5 \land m = 5 \cdot n + r$
- ★ the system of linear equations

m + n = 13m - n = 1

has a solution: ?

- * *m* is even: $\exists n.m = n + n$, or shorthand $\exists n.m = 2 \cdot n$
 - generally, multiplication by constant $c \in \mathbb{N}$ permissible
- ★ m = 0 equals 1: $\forall n.n < m \rightarrow n = 0$
- * $m = r \mod 5$: $\exists n.r < 5 \land m = 5 \cdot n + r$
- ★ the system of linear equations

m + n = 13m - n = 1

has a solution: $\exists m. \exists n. m + n = 13 \land m = 1 + n$

A Decision Procedure for Presburger Arithmetic

General Idea

- 1. encode natural numbers as binary words (lsb-first order)
 - assignments $\alpha : \mathcal{V} \to \{0, \dots, 2^m\}$ over $\{x_1, \dots, x_n\}$ become binary matrices $\underline{\alpha} \in \{0, 1\}^{(m,n)}$

A Decision Procedure for Presburger Arithmetic

General Idea

- 1. encode natural numbers as binary words (lsb-first order)
 - assignments $\alpha : \mathcal{V} \to \{0, \dots, 2^m\}$ over $\{x_1, \dots, x_n\}$ become binary matrices $\underline{\alpha} \in \{0, 1\}^{(m,n)}$

	$\alpha(\mathbf{x}_i)$	$\underline{\alpha}$
<i>x</i> ₁	7	(1)(0)(1)(1)
Х ₂	1	$ \begin{pmatrix} 1\\1\\1 \end{pmatrix} \begin{pmatrix} 0\\0\\1 \end{pmatrix} \begin{pmatrix} 1\\0\\0 \end{pmatrix} \begin{pmatrix} 1\\0\\0 \end{pmatrix} $
<i>x</i> 3	3	(1)(1)(0)(0)

2. for formula ϕ , define a DFA A_{ϕ} recognizing precisely codings $\underline{\alpha}$ of valuations α making ϕ become true

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

 $\hat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

 $\hat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

Lemma

For any formula ϕ in Presburger Arithmetic, $\hat{L}(\phi)$ is regular.

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

 $\hat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

Lemma

For any formula ϕ in Presburger Arithmetic, $\hat{L}(\phi)$ is regular.

Proof Outline.

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

 $\hat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

Lemma

For any formula ϕ in Presburger Arithmetic, $\hat{L}(\phi)$ is regular.

Proof Outline.

- * $\phi = \top, \phi = \bot$: In these cases $\hat{L}(\phi)$ is easily seen to be regular.
- * $\phi = (s < t)$ or $\phi = (s = t)$: A corresponding automaton can be constructed (next slide).

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

 $\hat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

Lemma

For any formula ϕ in Presburger Arithmetic, $\hat{L}(\phi)$ is regular.

Proof Outline.

- * $\phi = \top, \phi = \bot$: In these cases $\hat{L}(\phi)$ is easily seen to be regular.
- * $\phi = (s < t)$ or $\phi = (s = t)$: A corresponding automaton can be constructed (next slide).
- * $\phi = \neg \phi$ or $\phi = \psi_1 \land \psi_2$ From the induction hypothesis, using DFA-complementation and DFA-union.

let us denote by $\hat{L}(\phi)$ the language of coded valuations making ϕ true:

 $\hat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

Lemma

For any formula ϕ in Presburger Arithmetic, $\hat{L}(\phi)$ is regular.

Proof Outline.

- ★ $\phi = \top$, $\phi = \bot$: In these cases $\hat{L}(\phi)$ is easily seen to be regular.
- * $\phi = (s < t)$ or $\phi = (s = t)$: A corresponding automaton can be constructed (next slide).
- * $\phi = \neg \phi$ or $\phi = \psi_1 \land \psi_2$ From the induction hypothesis, using DFA-complementation and DFA-union.
- ★ φ = ∀x.ψ: From induction hypothesis, using homomorphism application to project out x and "repairing final states", as in the case of WMSO.

★ an inequality $s \le t$ can be represented as $\sum_i a_i \cdot x_i \le b$ where $a_i, b \in \mathbb{Z}$

★ an inequality $s \le t$ can be represented as $\sum_i a_i \cdot x_i \le b$ where $a_i, b \in \mathbb{Z}$

- ★ the automaton $A_{s \leq t}$ recognizing $s \leq t$ is defined as follows
 - states Q are inequalities of the form $\sum_{i} a_i \cdot x_i \le d$ Intuition: $L(\sum_{i} a_i \cdot x_i \le d, A_{s \le t}) = \{\underline{\alpha} \mid \alpha \models \sum_{i} a_i \cdot x_i \le d\}$

★ an inequality $s \le t$ can be represented as $\sum_i a_i \cdot x_i \le b$ where $a_i, b \in \mathbb{Z}$

- ★ the automaton $A_{s \leq t}$ recognizing $s \leq t$ is defined as follows
 - states Q are inequalities of the form $\sum_{i} a_i \cdot x_i \le d$ Intuition: $L(\sum_{i} a_i \cdot x_i \le d, A_{s \le t}) = \{\underline{\alpha} \mid \alpha \models \sum_{i} a_i \cdot x_i \le d\}$
 - the initial state q_l is given by the representation of $s \le t$

★ an inequality $s \le t$ can be represented as $\sum_i a_i \cdot x_i \le b$ where $a_i, b \in \mathbb{Z}$

- ★ the automaton $A_{s \leq t}$ recognizing $s \leq t$ is defined as follows
 - states Q are inequalities of the form $\sum_{i} a_i \cdot x_i \le d$ Intuition: $L(\sum_{i} a_i \cdot x_i \le d, A_{s \le t}) = \{\underline{\alpha} \mid \alpha \models \sum_{i} a_i \cdot x_i \le d\}$
 - the initial state q_i is given by the representation of $s \le t$
 - the transition function δ is given by

$$\delta\left(\sum_{i} a_{i} \cdot x_{i} \leq d, \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix}\right) \triangleq \sum_{i} a_{i} \cdot x_{i} \leq \left\lfloor \frac{1}{2} \left(d - \sum_{i} a_{i} \cdot b_{i} \right) \right\rfloor$$

since $\sum_{i} a_{i} \cdot (b_{i} + 2 \cdot x_{i}') \leq d \iff \sum_{i} a_{i} \cdot x_{i}' \leq \frac{1}{2} \cdot \left(d - \sum_{i} a_{i} \cdot b_{i} \right)$

★ an inequality $s \le t$ can be represented as $\sum_i a_i \cdot x_i \le b$ where $a_i, b \in \mathbb{Z}$

 $2 \cdot x_1 \le x_2 + 2 \implies 2 \cdot x_1 - 1 \cdot x_2 \le 2$

- ★ the automaton $A_{s \leq t}$ recognizing $s \leq t$ is defined as follows
 - states Q are inequalities of the form $\sum_{i} a_i \cdot x_i \le d$ Intuition: $L(\sum_{i} a_i \cdot x_i \le d, A_{s \le t}) = \{\underline{\alpha} \mid \alpha \models \sum_{i} a_i \cdot x_i \le d\}$
 - the initial state q_i is given by the representation of $s \le t$
 - the transition function δ is given by

$$\delta\left(\sum_{i} a_{i} \cdot x_{i} \leq d, \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix}\right) \triangleq \sum_{i} a_{i} \cdot x_{i} \leq \left\lfloor \frac{1}{2} \left(d - \sum_{i} a_{i} \cdot b_{i} \right) \right\rfloor$$

since $\sum_{i} a_{i} \cdot (b_{i} + 2 \cdot x_{i}') \leq d \iff \sum_{i} a_{i} \cdot x_{i}' \leq \frac{1}{2} \cdot \left(d - \sum_{i} a_{i} \cdot b_{i} \right)$

- final states are all those states $\sum_i a_i \cdot x_i \le d$ with $0 \le d$

★ an inequality $s \le t$ can be represented as $\sum_i a_i \cdot x_i \le b$ where $a_i, b \in \mathbb{Z}$

 $2 \cdot x_1 \le x_2 + 2 \implies 2 \cdot x_1 - 1 \cdot x_2 \le 2$

- ★ the automaton $A_{s \leq t}$ recognizing $s \leq t$ is defined as follows
 - states Q are inequalities of the form $\sum_{i} a_i \cdot x_i \le d$ Intuition: $L(\sum_{i} a_i \cdot x_i \le d, A_{s \le t}) = \{\underline{\alpha} \mid \alpha \models \sum_{i} a_i \cdot x_i \le d\}$
 - the initial state q_l is given by the representation of $s \le t$
 - the transition function δ is given by

$$\delta\left(\sum_{i}a_{i}\cdot x_{i}\leq d, \begin{pmatrix}b_{1}\\\vdots\\b_{n}\end{pmatrix}\right)\triangleq\sum_{i}a_{i}\cdot x_{i}\leq \left\lfloor\frac{1}{2}\left(d-\sum_{i}a_{i}\cdot b_{i}\right)\right\rfloor$$

since $\sum_{i} a_{i} \cdot (b_{i} + 2 \cdot x_{i}') \leq d \iff \sum_{i} a_{i} \cdot x_{i}' \leq \frac{1}{2} \cdot (d - \sum_{i} a_{i} \cdot b_{i})$

- final states are all those states $\sum_{i} a_i \cdot x_i \le d$ with $0 \le d$
- ★ finiteness: from initial state $\sum_i a_i \cdot x_i \leq d$, only $\sum_i a_i + d$ states reachable, hence the overall construction is finite

Recognizing *s* < *t*

★ an inequality s < t can be represented as $\sum_i a_i \cdot x_i < b$ where $a_i, b \in \mathbb{Z}$

 $2 \cdot x_1 < x_2 + 2 \implies 2 \cdot x_1 - 1 \cdot x_2 < 2$

- ★ the automaton $A_{s < t}$ recognizing s < t is defined as follows
 - states Q are inequalities of the form $\sum_{i} a_i \cdot x_i < d$ Intuition: $L(\sum_{i} a_i \cdot x_i < d, A_{s < t}) = \{\underline{\alpha} \mid \alpha \models \sum_{i} a_i \cdot x_i < d\}$
 - the initial state q_l is given by the representation of s < t
 - the transition function δ is given by

$$\delta\left(\sum_{i}a_{i}\cdot x_{i} < d, \begin{pmatrix}b_{1}\\\vdots\\b_{n}\end{pmatrix}\right) \triangleq \sum_{i}a_{i}\cdot x_{i} < \left\lceil \frac{1}{2}\left(d - \sum_{i}a_{i}\cdot b_{i}\right)\right\rceil$$

since $\sum_i a_i \cdot (b_i + 2 \cdot x'_i) < d \iff \sum_i a_i \cdot x'_i < \frac{1}{2} \cdot (d - \sum_i a_i \cdot b_i)$

- final states are all those states $\sum_i a_i \cdot x_i < d$ with 0 < d
- ★ finiteness: from initial state ∑_i a_i · x_i < d, only ∑_i a_i + d states reachable, hence the overall construction is finite

Recognizing s = t

★ an inequality s = t can be represented as $\sum_i a_i \cdot x_i = b$ where $a_i, b \in \mathbb{Z}$

$$2 \cdot x_1 = x_2 + 2 \implies 2 \cdot x_1 - 1 \cdot x_2 = 2$$

- * the automaton $A_{s = t}$ recognizing s = t is defined as follows
 - states Q are inequalities of the form $\sum_{i} a_i \cdot x_i = d$ plus trap-state q_{fail} Intuition: $L(\sum_{i} a_i \cdot x_i = d, A_{s=t}) = \{\underline{\alpha} \mid \alpha \models \sum_{i} a_i \cdot x_i = d\}$
 - the initial state q_1 is given by the representation of s = t
 - the transition function δ is given by

$$\delta\left(\sum_{i}a_{i}\cdot x_{i}=d,\begin{pmatrix}b_{1}\\\vdots\\b_{n}\end{pmatrix}\right)\triangleq\begin{cases}\sum_{i}a_{i}\cdot x_{i}=\frac{1}{2}\left(d-\sum_{i}a_{i}\cdot b_{i}\right) & \text{if } d-\sum_{i}a_{i}\cdot b_{i} \text{ even,}\\ q_{fail} & \text{otherwise.}\end{cases}$$

since $\sum_i a_i \cdot (b_i + 2 \cdot x'_i) = d \iff \sum_i a_i \cdot x'_i = \frac{1}{2} \cdot (d - \sum_i a_i \cdot b_i)$

- final states are all those states $\sum_i a_i \cdot x_i = d$ with 0 = d
- * finiteness: from initial state $\sum_i a_i \cdot x_i = d$, only $\sum_i a_i + d$ states reachable, hence the overall construction is finite

Decision Problems for Presburger Arithmetic

The Satisfiability Problem

- \star Given: formula ϕ
- ★ Question: is there α s.t $\alpha \models \phi$?

The Validity Problem

- \star Given: formula ϕ
- ★ Question: $\alpha \models \phi$ for all assignments α ?

Decision Problems for Presburger Arithmetic

The Satisfiability Problem

- **\star** Given: formula ϕ
- ★ Question: is there α s.t $\alpha \models \phi$?

The Validity Problem

- \star Given: formula ϕ
- ★ Question: $\alpha \models \phi$ for all assignments α ?

Theorem

Satisfiability and Validity are decidable for Presburger Arithmetic.

Theorem

For any formula ϕ , the constructed DFA recognizing $\hat{L}(\phi)$ has size $O(2^{2''})$.

Peano Arithmetic

* Peano's arithmetic is the first-order theory natural integers with vocabulary {+, ×, <}

Peano Arithmetic

- ★ Peano's arithmetic is the first-order theory natural integers with vocabulary {+, ×, <}
- ★ its existential fragment corresponds to the Diophantine equations, i.e., polynomial equations on integers
- ★ Hilbert's 10th problem was to solve Diophantine equations

Peano Arithmetic

- ★ Peano's arithmetic is the first-order theory natural integers with vocabulary {+, ×, <}
- its existential fragment corresponds to the Diophantine equations, i.e., polynomial equations on integers
- ★ Hilbert's 10th problem was to solve Diophantine equations
- ★ Youri Matiassevitch, drawing on the work of Julia Robinson, demonstrated that this was an undecidable problem

Skolem Arithmetic

* Skolem's arithmetic is the first order theory natural integers with the vocabulary {×, =}

Skolem Arithmetic

- ★ Skolem's arithmetic is the first order theory natural integers with the vocabulary {×, =}
- ★ Skolem's arithmetic is also decidable
- proof goes via reduction to tree automata, closely resembling the proof we have just seen for Presburger's arithmetic

The tool MONA

The MONA Project

https://www.brics.dk/mona/index.html

- ★ MONA is a WMSO (and more) model checker
 - determines validity of formula
 - or prints counter example
- * implemented through the outlined translation to finite automata

