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Last Lecture

1. The class REG(Σ) of regular languages is the smallest class (i.e., set of ) languages s.t.
1.1 ∅ ∈ REG(Σ) and {a} ∈ REG(Σ) for every a ∈ Σ; and

1.2 if L,M ∈ REG(Σ) then L ∪M ∈ REG(Σ), L ⋅M ∈ REG(Σ) and L∗ ∈ REG(Σ).
2. Kleene’s Theorem: The class of languages recognized by NFAs (DFAs) coincide with REG

3. finite automata yield decidable decision procedures

Word Emptyness Universality Inclusion Equivalence

DFA PTIME PTIME PTIME PTIME PTIME
NFA PTIME PTIME PSPACE PSPACE PSPACE

– state-space explosion through determinisation cannot be avoided



Today’s Lecture

First Order-Logic Recap

⋆ structures, formulas and satisfiability

Monadic Second-Order Logic

1. weak monadic second-order (WMSO) logic

2. Regularity and WMSO definability

3. Decision problems



First-Order Logic Recap



First-Order Logic

⋆ let V = {x, y, . . . } be a set of variables
⋆ letR = {P,Q, . . . } and F = {f, g, . . . } be a vocabulary of predicate/function symbols
⋆ predicate and function symbols are equipped with an arity ar ∶ R ∪ F → N

⋆ first-order terms and formulas over V ,R and F are given by the following grammar:

s, t ∶∶= x ∣ f(t1, . . . , tar(f)) (terms)

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ (atomic truth values)∣ P(t1, . . . , tar(P)) ∣ s = t (predicates and equality)∣ 𝜙 ∨ 𝜓 ∣ ¬𝜙 (Boolean connectives)∣ ∃x.𝜙 (existential quantification)

⋆ further connectives definable:

𝜙 → 𝜓 ≜ ¬𝜙 ∨ 𝜓 s ≠ t ≜ ¬(s = t) 𝜙 ∧ 𝜓 ≜ ¬(¬𝜙 ∨ ¬𝜓) ∀x.𝜙 ≜ ¬(∃x.¬𝜙) . . .

⋆ to avoid parenthesis, we fix precedence ¬ > ∧,∨ > ∃,∀
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Free Variables, Open and Closed Formulas

⋆ a quantifier ∃x.𝜙 binds the variable x within 𝜙

⋆ variables not bound are called free

⋆ the set of variables free in 𝜙 is denoted by fv(𝜙)
fv(E(x, y)) = {x, y} fv(∃y.E(x, y)) = {x} fv(∀x.∃y.E(x, y)) = ∅

⋆ the formulas without free variables are called sentences (or closed formulas)

⋆ otherwise they are called open

⋆ we consider formulas equal up to renaming of bound variables

– ∃y.E(x, y) is equal to ∃z.E(x, z) but neither to ∃y.E(x, z) nor ∃y.E(z, y)
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Satisfiability, Informally

⋆ a formula is evaluated to a truth value by assigning meaning to predicates and
functions

⋆ a (first-order) structure (or model)M = (D, I) on a vocabularyR consists of

– a non-empty domain D; and

– an interpretation I(P) ⊆ Dar(P) for each predicate P ∈ R
– an interpretation I(f) ∶ Dar(P) → D for each function f ∈ F

⋆ sentences describes properties of structures, consider e.g., ∀x.∃y.E(x, y):
– on directed graphs, with E interpreted as “edge”: every node has a successor
– on natural numbers, with E interpreted as “<”: for every number there is a strictly bigger one

⋆ if a formula 𝜙 holds true in a modelM, we write

M ⊧ 𝜙

and sayMmodels 𝜙, or that 𝜙 is satisfiable withM
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Examples

1. consider the formula 𝜙 = ∀x.∃y.E(x, y) and E interpreted by …

G1 G2 G3
– we have G1 ⊧ 𝜑, G2 /⊧ 𝜑 and G3 /⊧ 𝜑

2. consider the formula ∃x1, x2, x3.(x1 ≠ x2 ∧ x2 ≠ x3 ∧ x3 ≠ x1)
– the formula is satisfiable by all models with three objects in the domain
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Consequence, Equivalence and Validity

⋆ a sentence 𝜙 is a consequence of sentencesΦ = 𝜓1; . . . ;𝜓n, in notation

Φ ⊧ 𝜙

if all models satisfying all 𝜓i ∈ Φ also satisfy 𝜙
– ∀x.P(x) → Q(x);∃x.P(x) ⊧ ∃x.Q(x)

⋆ two formulas 𝜙 and 𝜓 are equivalent, in notation

𝜙 ≡ 𝜓

if 𝜙 ⊧ 𝜓 and 𝜓 ⊧ 𝜙

– ∀x.P(x) → Q(x) ≡ ∀x.¬Q(x) → ¬P(x)
⋆ a formula 𝜙 is valid if it is satisfiable for all models, in notation

⊧ 𝜙

– this is to say that ¬𝜙 is unsatisfiable
– the formula ∀x.x = x is trivially valid
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Satisfiability, Formally

⋆ an assignment (or valuation) for 𝜙 wrt. a modelM = (D, I) is a function 𝛼 ∶ fv(𝜙) → D

⋆ together with a model, we can now interpret open terms t in its domain D

I𝛼(x) ≜ 𝛼(x) I𝛼(f(t1, . . . , tn)) ≜ I(f)(I𝛼(t1), . . . , I𝛼(tn))
⋆ for a sentence 𝜙, we can now defineM ⊧ 𝜙 formally asM;∅ ⊧ 𝜙 where

M;𝛼 ⊧ ⊤ M;𝛼 /⊧ ⊥

M;𝛼 ⊧ P(t1, . . . , tn) ∶⇔ (I𝛼(t1), . . . , I𝛼(tn)) ∈ I(P)
M;𝛼 ⊧ s = t ∶⇔ I𝛼(t) = I𝛼(t)
M;𝛼 ⊧ 𝜙 ∨ 𝜓 ∶⇔ M;𝛼 ⊧ 𝜙 orM;𝛼 ⊧ 𝜓

M;𝛼 ⊧ ¬𝜙 ∶⇔ M;𝛼 /⊧ 𝜙

M;𝛼 ⊧ ∃x.𝜙 ∶⇔ M;𝛼[x↦ d] ⊧ 𝜙 for some d ∈ D
Example

a b

c d

G

G ⊧ ∃x.∃y.E(x, y) ⇔ G;∅ ⊧ ∃x.∃y.E(x, y)
⇐ G; x↦ a ⊧ ∃y.E(x, y)
⇐ G; x↦ a; y↦ b ⊧ E(x, y)
⇔ (a, b) ∈ I(E)
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Monadic Second-Order Logic



Monadic Second-Order Logic

Second Order-Logic
⋆ in first-order logic, quantification confined to elements of the domain

⋆ in second-order logic, quantification is permitted on relations

– ∀x.∃X.∀y.X(x, y) ↔ x = y

Monadic Second-Order Logic
⋆ A predicate symbol P is monadic if its arity is 1

⋆ monadic second-order logic (MSO) confines second-order quantification to monadic
predicates

– monadic: ∀x.∃Y.∀y.Y(y) ↔ x = y
– non-monadic: ∀x.∃X.∀y.X(x, y) ↔ x = y

⋆ quantification over sets, but not over arbitrary predicates
– on graphs: quantification over nodes but not edges
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Theories

⋆ A theory is a set T of sentences such that for any sentence 𝜙, if T ⊧ 𝜙, then 𝜙 ∈ T
– a theory is closed under logical consequence

⋆ A theory is decidable if the problem of belonging to T is decidable

– we have a decision procedure for reasoning about T

⋆ A theory T is complete if for any sentence 𝜙 we have 𝜙 ∈ T or ¬𝜙 ∈ T.
– a theory complete theory speaks about all formulas

⋆ for a class of structure C , the theory of C is the set of sentences which are valid on all
M ∈ C
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Examples

1. The theory of Presburger Arithmetic, i.e., the theory of natural numbers with addition
only is decidable

– ∀n.∃m.(n = m +m) ∨ (n = m +m + 1)
– Presburger Arithmetic admits a quantifier elimination procedure

2. The theory of Peano Arithmetic, i.e., the theory of natural numbers is undecidable

– Gödels incompleteness theorem!

3. The theory of graphs is undecidable

Theorem (Büchi)

The theory of monadic second-order logic over (N,<) is decidable
Theorem (Rabin)

The theory of monadic second-order logic over trees is decidable



Examples

1. The theory of Presburger Arithmetic, i.e., the theory of natural numbers with addition
only is decidable

– ∀n.∃m.(n = m +m) ∨ (n = m +m + 1)
– Presburger Arithmetic admits a quantifier elimination procedure

2. The theory of Peano Arithmetic, i.e., the theory of natural numbers is undecidable

– Gödels incompleteness theorem!

3. The theory of graphs is undecidable

Theorem (Büchi)

The theory of monadic second-order logic over (N,<) is decidable
Theorem (Rabin)

The theory of monadic second-order logic over trees is decidable



Examples

1. The theory of Presburger Arithmetic, i.e., the theory of natural numbers with addition
only is decidable

– ∀n.∃m.(n = m +m) ∨ (n = m +m + 1)
– Presburger Arithmetic admits a quantifier elimination procedure

2. The theory of Peano Arithmetic, i.e., the theory of natural numbers is undecidable

– Gödels incompleteness theorem!

3. The theory of graphs is undecidable

Theorem (Büchi)

The theory of monadic second-order logic over (N,<) is decidable
Theorem (Rabin)

The theory of monadic second-order logic over trees is decidable



Examples

1. The theory of Presburger Arithmetic, i.e., the theory of natural numbers with addition
only is decidable

– ∀n.∃m.(n = m +m) ∨ (n = m +m + 1)
– Presburger Arithmetic admits a quantifier elimination procedure

2. The theory of Peano Arithmetic, i.e., the theory of natural numbers is undecidable

– Gödels incompleteness theorem!

3. The theory of graphs is undecidable

Theorem (Büchi)

The theory of monadic second-order logic over (N,<) is decidable
Theorem (Rabin)

The theory of monadic second-order logic over trees is decidable



A First Step Towards Rabin’s and Büchi’s Result

Theorem (Büchi-Elgot-Trakhtenbrot)

The theory of weak monadic second-order logic over (N,<) is decidable
quantification over finite sets

consider only models over N,
ordered by <



Weak Monadic Second-Order Logic



WeakMonadic Second-Order Logic (WMSO)

⋆ let V1 = {x, y, . . . } be a set of first-order variables (ranging over N)
⋆ let V2 = {X, Y, . . . } be monadic second-order variables (ranging over finite sets of N)
⋆ R = {<} and F = ∅ is fixed, with ar(<) = 2
⋆ the set of WMSO formulas over V1,V2 is given by the following grammar:

𝜙, 𝜓 ∶∶= ⊤ ∣ ⊥ ∣ x < y ∣ X(x) ∣ 𝜙 ∨ 𝜓 ∣ ¬𝜙 ∣ ∃x.𝜙 ∣ ∃X.𝜙

⋆ further definable connectives

∀X.𝜙 ≜ ¬(∃X.¬𝜙) x = 0 ≜ ¬(∃y.y < x) x ≤ y ≜ ¬(y < x) x = y ≜ (exercise)

⋆ weak: second-order variables refer to finite sets

– X(y) means informally y ∈ X where X is finite set over N
– ⊧ ∃X.∀x.X(x) → ∃y.x < y ∧ X(y) 𝛼(X) = ∅
– /⊧ ∃X.(∀x.x = 0→ X(x)) ∧ (∀x.X(x) → ∃y.x < y ∧ X(y))
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Satisfiability

⋆ since the model (N, {<}) is fixed, the valuation of a formula depends only on an
assignment 𝛼

⋆ 𝛼maps first-order variables x ∈ V1 to N, and second-order variables X ∈ V2 to finite
subsets of N

⋆ satisfiability relation takes the form 𝛼 ⊧ 𝜙 and is inductively defined as expected:

𝛼 ⊧ ⊤ 𝛼 /⊧ ⊥

𝛼 ⊧ x < y ∶⇔ 𝛼(x) < 𝛼(y)
𝛼 ⊧ X(x) ∶⇔ 𝛼(x) ∈ 𝛼(X)
𝛼 ⊧ 𝜙 ∨ 𝜓 ∶⇔ 𝛼 ⊧ 𝜙 or 𝛼 ⊧ 𝜓

𝛼 ⊧ ¬𝜙 ∶⇔ 𝛼 /⊧ 𝜙

𝛼 ⊧ ∃x.𝜙 ∶⇔ 𝛼[x↦ n] ⊧ 𝜙 for some n ∈ N
𝛼 ⊧ ∃X.𝜙 ∶⇔ 𝛼[x↦ M] ⊧ 𝜙 for some finite M ⊂ N
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Connections to Formal Languages

⋆ to encode words w ∈ Σ∗ over alphabet Σ we use to kinds of variables
– first-order variables x ∈ V1 refer to positions within w
– for each letter a ∈ Σ, second-order variables Pa ∈ V2 indicate the positions of a in w

w a b b a

Pa {0, 3 }
Pb { 1, 2 }

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ abba

⋆ thereby each word w ∈ Σ∗ uniquely determines an assignment, in notation w
Examples
⋆ ab ⊧ ∃x.Pa(x)
⋆ ab /⊧ ∃x.Pc(x)
⋆ ab /⊧ ∃x.∃y.∃z.(z /= y) ∧ (y /= z) ∧ (z /= x)
⋆ ab /⊧ ∃x.∃y.x < y ∧ Pb(x) ∧ Pa(y)
⋆ ab /⊧ ∃X.∀x.(X(x) → Pb(x)) ∧ ∃y.y = 0 ∧ X(y)
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Language of aWMSO Formula

⋆ for alphabet Σ and WMSO formula 𝜙 s.t. fv(𝜙) ⊆ {Pa ∣ a ∈ Σ}, we let
L(𝜙) ≜ {w ∈ Σ∗ ∣ w ⊧ 𝜙}

denote the language of 𝜙
⋆ a language L is WMSO definable iff there is some 𝜙 as above s.t. L = L(𝜙)

Examples

𝜙 L(𝜙)
∃x.Pa(x) ?
∃x.∃y.∃z.(z /= y) ∧ (y /= z) ∧ (z /= x) ?
∃x.∃y.x < y ∧ Pb(x) ∧ Pa(y) ?
∃X.∀x.(X(x) → Pb(x)) ∧ ∃y.y = 0 ∧ X(y) ?
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Regularity and WMSO Definability



Büchi-Elgot-Trakhtenbrot

Theorem

Let L ⊆ Σ∗ be a language. The following are equivalent:

⋆ L is regular

⋆ L is recognizable by a finite automata

⋆ L is WMSO definable

Proof Outline.

⋆ (1) ⇔ (2) Kleene’s Theorem.
⋆ (2) ⇒ (3) Given an AutomataA, we define a WMSO formula 𝜙A s.t. L(A) = L(𝜙A)
⋆ (3) ⇒ (1) Given a WMSO formula 𝜙, define a regular Language L𝜙 s.t. L(𝜙) = L𝜙
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From Automatons to Formulas

Encoding for givenA = (Q,Σ, qI, 𝛿, F)
⋆ first-orderm, n, . . . variables refer to positions in input words w

⋆ for a ∈ Σ: second-order variables Pa encode words: as before

⋆ for q ∈ Q: second-order variables Xq encode run: Xq(m) ⟺ qI
a0−→ . . .

am−→ q

Example example run p
a
−→ q

b
−→p

b
−→ r

Pa { 0 }
Pb { 1, 2 }
Xp { (−1) 1 }
Xq { 0 }
Xr { 2 }

⋆ ultimately, 𝜙A ≜ ∃Xq1 . . . .∃Xqn .𝜓A with 𝜓A linking Xqi toA and word variables Pa.
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Linking Run-Variables

for all word lengths len, we define:

⋆ 𝜓setup ≜ ∀m.m < len→ (⋁q∈Q Xq(m)) ∧ (⋀p/=q¬(Xq(m) ∧ Xp(m)))
– readingm < len symbols ends up in a state, and this state is unique

⋆ 𝜓initial ≜ len = 0 ∨⋁a∈Σ,p∈𝛿(qI,a)(Pa(0) ∧ Xp(0))
– encoding of the initial transition

⋆ 𝜓run ≜ ∀m.m < len→ ∀n.n = m + 1→ ⋁a∈Σ,q∈Q,p∈𝛿(q,a)(Xq(m) ∧ Pa(n) ∧ Xp(n))
– encoding of intermediate transitions

⋆ 𝜙accept ≜ (len = 0 ∧ ⌜qI ∈ F⌝) ∨ ∃m.len = m + 1 ∧⋁q∈F(Xq(m))
– encoded transition of word a0 . . . am of lengthm + 1 lands in a final state

𝜙A ≜ ∃Xq1 .⋯∃Xqn .

∀len. (⋀
a∈Σ

¬Pa(len) ∧∀m. ⋁
a∈Σ

Pa(m) → m ≤ len) → 𝜓setup ∧ 𝜓initial ∧ 𝜓run ∧ 𝜓accept
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⋆ L is WMSO definable
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⋆ (1) ⇔ (2) Kleene’s Theorem.
⋆ (2) ⇒ (3) Given an AutomataA, we define a WMSO formula 𝜙A s.t. L(A) = L(𝜙A)

– 𝜙A given on previous slide satisfies the case

⋆ (3) ⇒ (1) Given a WMSO formula 𝜙, define a regular Language L𝜙 s.t. L(𝜙) = L𝜙
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⋆ (2) ⇒ (3) Given an AutomataA, we define a WMSO formula 𝜙A s.t. L(A) = L(𝜙A)

– 𝜙A given on previous slide satisfies the case

⋆ (3) ⇒ (1) Given a WMSO formula 𝜙, define a regular Language L𝜙 s.t. L(𝜙) = L𝜙



From Formulas to Regular Languages

Encoding for given 𝜙 over V2 = {X1, . . . , Xm} and V1 = {ym+1, . . . , ym+n}
⋆ the alphabet Σ𝜙 is given bym + n bit-vectors, i.e., Σ𝜙 ≜ {0, 1}n+m

⋆ word Σ∗𝜙 can then be seen as a bit-matrix, encoding a valuation 𝛼:

– rows 1 ≤ i ≤ m encode valuations of Xi ∈ V2: 1 at column 1 ≤ j ≤ ∣w∣ ⟺ j ∈ 𝛼(Xi)
– rowsm + 1 ≤ i ≤ m + n encode valuations of yi ∈ V1: 1 at column 1 ≤ j ≤ ∣w∣ ⟺ j = 𝛼(yi)

v 𝛼(v)
X1 {0, 2}
X2 {1, 3, 4}
y3 3
y4 0

≡

w[0] w[1] w[2] w[3] w[4]⎛⎜⎜⎜⎜⎜⎜⎝
1
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
0
1
1
0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎠
⋆ for a valuation 𝛼 for 𝜙, let us write 𝛼 ∈ Σ𝜙 for its encoding
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TheMain Lemma

let us denote by L̂(𝜙) ⊆ Σ∗𝜙 the language of coded valuations making 𝜙 true:

L̂(𝜙) ≜ {𝛼 ∣ 𝛼 ⊧ 𝜙}

Lemma

For any WMSO formula 𝜙, L̂(𝜙) is regular
Proof Outline.

By induction on the structure of 𝜙.
⋆ 𝜙 = ⊤, 𝜙 = ⊥: In these cases L̂(𝜙) is Σ∗𝜙 or∅, thus regular.
⋆ 𝜙 = (x < y): Then L̂(𝜙) = ( 0

0)∗ ( 1
0) ( 0

0)∗ ( 0
1) ( 0

0) or L̂(𝜙) = ( 0
0)∗ ( 0

1) ( 0
0)∗ ( 1

0) ( 0
0), both

of them regular.

⋆ 𝜙 = X(y): Then L̂(𝜙) = (( 0
0) ∪ ( 1

0))∗ ( 1
1) (( 0

0) ∪ ( 1
0))∗ is regular.

⋆ to be continued …
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Homomorphisms

Consider h ∶ Σ → Γ∗ and extend it to words w by replacing each letter a in w by h(w):
h(𝜖) ≜ 𝜖 h(aw) ≜ h(a) ⋅ h(w)

⋆ each function h ∶ Σ∗ → Γ∗ defined this way is called a homomorphism

⋆ for a language L ⊆ Σ∗ we let h(L) ≜ {h(w) ∣ w ∈ L} be the application of h to L
⋆ for a language L ⊆ Γ∗ we let h−1(L) ≜ {w ∣ h(w) ∈ L} be the inverse application of h to
L

Lemma (Closure of REG(Σ) under homomorphism)
The set of regular languages is closed under (inverse) applications of homomorphisms.
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Example
For 1 ≤ i ≤ k, let deli,k ∶ {0, 1}k → {0, 1}k−1 delete the i-th entry of its argument, e.g.,

del1,3
⎛⎜⎝⎛⎜⎝ abc ⎞⎟⎠⎞⎟⎠ ≜ ( bc ) del2,3

⎛⎜⎝⎛⎜⎝ abc ⎞⎟⎠⎞⎟⎠ ≜ ( ac ) del3,3
⎛⎜⎝⎛⎜⎝ abc ⎞⎟⎠⎞⎟⎠ ≜ ( ab )

and thus

del1,3
⎛⎜⎜⎝⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗⎞⎟⎟⎠ = ( 1

0 ) ( 0
1 )∗ del−11,3 (( 1

0 ) ( 0
1 )∗) =

⎛⎜⎝ 0
1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 0

1
0

⎞⎟⎠⎛⎜⎝ 1
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 1

1
0

⎞⎟⎠⎛⎜⎝ 0
0
1

⎞⎟⎠
∗

∪
⎛⎜⎝ 1

1
0

⎞⎟⎠⎛⎜⎝ 1
0
1

⎞⎟⎠
∗

Concretely, for WMSO formulas 𝜙 over V2 = {X1, . . . , Xm}, V1 = {ym+1, . . . , ym+n}:
⋆ for 1 ≤ i ≤ n, deli,n+m(L̂(𝜙))= deli,n+m({𝛼 ∣ 𝛼 ⊧ 𝜙})

≈ {𝛽 ∣ 𝛽[Xi ↦ S] ⊧ 𝜙 for some S ⊆ N} = L̂(∃Xi.𝜙)
⋆ inversely, del−1i,1+n+m(L̂(𝜙)) = {𝛼[X↦ S] ∣ 𝛼 ⊧ 𝜙 and S ⊆ N} extends valid assignments
⋆ similar for first order variables yi (m + 1 ≤ i ≤ m + n)
⋆ Attention: One has to be slightly more careful with codings.

𝜙 ↝
X
Y ( a1b1 )⋯ ( anbn ) ( an+11 ) ( 1

0 ) ∃X.𝜙 ↝ ( b1 )⋯ ( bn ) ( 1 ) ( 0 )
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TheMain Lemma (Continued)

Lemma

For any WMSO formula 𝜙, L̂(𝜙) is regular
Proof Outline.

⋆ 𝜙 = 𝜓1 ∨ 𝜓2:

– by induction hypothesis, L1 ≜ L̂(𝜓1) and L2 ≜ L̂(𝜓2) are regular
– L1 and L2 speak about assignments to variables in 𝜓1 and 𝜓2
– inverse applications of deli,∗ extends these codings to valuations over fv(𝜓1 ∨ 𝜓2)
– their union yields L̂(𝜓1 ∨ 𝜓2) and is thus regular

⋆ 𝜙 = ¬𝜓: Then L̂(𝜙) = L̂(𝜓) ∩ Lvalid.
– Lvalid ∈ REG constrains Σ𝜙 to valid codings (e.g., for FO variables, only one bit is set)

– by induction hypothesis and closure properties of REG, L̂(𝜙) is valid
⋆ 𝜙 = ∃Xi.𝜓 or 𝜙 = ∃yj.𝜓: from induction hypothesis, using homomorphism deli,∗ to drop
the rows referring to Xi or yj; taking care of trailing zero-vectors (see previous slide)



TheMain Lemma (Continued)

Lemma

For any WMSO formula 𝜙, L̂(𝜙) is regular
Proof Outline.

⋆ 𝜙 = 𝜓1 ∨ 𝜓2:

– by induction hypothesis, L1 ≜ L̂(𝜓1) and L2 ≜ L̂(𝜓2) are regular
– L1 and L2 speak about assignments to variables in 𝜓1 and 𝜓2
– inverse applications of deli,∗ extends these codings to valuations over fv(𝜓1 ∨ 𝜓2)
– their union yields L̂(𝜓1 ∨ 𝜓2) and is thus regular

⋆ 𝜙 = ¬𝜓: Then L̂(𝜙) = L̂(𝜓) ∩ Lvalid.
– Lvalid ∈ REG constrains Σ𝜙 to valid codings (e.g., for FO variables, only one bit is set)

– by induction hypothesis and closure properties of REG, L̂(𝜙) is valid

⋆ 𝜙 = ∃Xi.𝜓 or 𝜙 = ∃yj.𝜓: from induction hypothesis, using homomorphism deli,∗ to drop
the rows referring to Xi or yj; taking care of trailing zero-vectors (see previous slide)



TheMain Lemma (Continued)

Lemma

For any WMSO formula 𝜙, L̂(𝜙) is regular
Proof Outline.

⋆ 𝜙 = 𝜓1 ∨ 𝜓2:

– by induction hypothesis, L1 ≜ L̂(𝜓1) and L2 ≜ L̂(𝜓2) are regular
– L1 and L2 speak about assignments to variables in 𝜓1 and 𝜓2
– inverse applications of deli,∗ extends these codings to valuations over fv(𝜓1 ∨ 𝜓2)
– their union yields L̂(𝜓1 ∨ 𝜓2) and is thus regular

⋆ 𝜙 = ¬𝜓: Then L̂(𝜙) = L̂(𝜓) ∩ Lvalid.
– Lvalid ∈ REG constrains Σ𝜙 to valid codings (e.g., for FO variables, only one bit is set)

– by induction hypothesis and closure properties of REG, L̂(𝜙) is valid
⋆ 𝜙 = ∃Xi.𝜓 or 𝜙 = ∃yj.𝜓: from induction hypothesis, using homomorphism deli,∗ to drop
the rows referring to Xi or yj; taking care of trailing zero-vectors (see previous slide)



Büchi-Elgot-Trakhtenbrot

Theorem

Let L ⊆ Σ∗ be a language. The following are equivalent:

⋆ L is regular

⋆ L is recognizable by a finite automata

⋆ L is WMSO definable

Proof Outline.

⋆ (1) ⇔ (2) Kleene’s Theorem.
⋆ (2) ⇒ (3) Given an AutomataA, we define a WMSO formula 𝜙A s.t. L(A) = L(𝜙A)
⋆ (3) ⇒ (1) Given a WMSO formula 𝜙, define a regular Language L𝜙 s.t. L(𝜙) = L𝜙

– we can define a homomorphism h ∶ {0, 1}∣Σ∣ → Σ, and thereby a function from codings 𝛼 to
codings w

– this homomorphismmaps L̂(𝜙) to L(𝜙) (exercise)

– as the former is regular and REG(Σ) closed under homomorphisms, the direction follows
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Decision Problems



Decision Problems for WMSO

The Satisfiability Problem
⋆ Given: WMSO formula 𝜙
⋆ Question: is there 𝛼 s.t 𝛼 ⊧ 𝜙?

The Validity Problem
⋆ Given: WMSO formula 𝜙
⋆ Question: 𝛼 ⊧ 𝜙 for all assignments 𝛼?

Theorem

Satisfiability and Validity are decidable for WMSO.

Proof Outline.

through the construction of corresponding DFAs, checking emptiness
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Complexity

⋆ Emptiness for an DFAA𝜙 is in PTIME (in the number ∣A𝜙∣ of nodes ofA𝜙)

⋆ the complexity of satisfiability/validity thus essentially depends on the size ofA𝜙

⋆ A𝜙 is constructed recursively on the structure of 𝜙
– base cases 𝜙 = ⊤,⊥, (x < y), X(y): DFAs of constant size O(1)
– disjunction 𝜙 = 𝜓1 ∨ 𝜓2: A𝜙 DFA-union ofA𝜓1 andA𝜓2 O(∣A𝜓1∣ + ∣A𝜓2∣)
– negations 𝜙 = ¬𝜓: A𝜙 DA-complement ofA𝜓 O(∣B∣)
– existentials 𝜙 = ∃x.𝜓 or 𝜙 = ∃X.𝜓: homomorphism application and determinisation 2∣A𝜓∣

Theorem (Hardness)

Satisfiability and validity are in DTIME(2cO(n)), where 2ck is a tower of exponentials 22. . .2c of
height k.

Theorem (Completeness)

Any language L decidable in time DTIME(2cO(n)) can be reduced (within polynomial time)
to the satisfiability of formulas 𝜙w (w ∈ L) of size polynomial in ∣w∣.
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