Advanced Logic

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2021/AL/

Martin Avanzini

Summer Semester 2021

Last Lecture

1. The class $REG(\Sigma)$ of regular languages is the *smallest* class (i.e., set of) languages s.t.

1.1 $\emptyset \in REG(\Sigma)$ and $\{a\} \in REG(\Sigma)$ for every $a \in \Sigma$; and

1.2 if $L, M \in REG(\Sigma)$ then $L \cup M \in REG(\Sigma), L \cdot M \in REG(\Sigma)$ and $L^* \in REG(\Sigma)$.

- 2. Kleene's Theorem: The class of languages recognized by NFAs (DFAs) coincide with REG
- 3. finite automata yield decidable decision procedures

	Word	Emptyness	Universality	Inclusion	Equivalence
DFA	PTIME	PTIME	PTIME	PTIME	PTIME
NFA	PTIME	PTIME	PSPACE	PSPACE	PSPACE

- state-space explosion through determinisation cannot be avoided

Today's Lecture

First Order-Logic Recap

* structures, formulas and satisfiability

Monadic Second-Order Logic

- 1. weak monadic second-order (WMSO) logic
- 2. Regularity and WMSO definability
- 3. Decision problems

First-Order Logic Recap

First-Order Logic

- ★ let $\mathcal{V} = \{x, y, ...\}$ be a set of variables
- ★ let $\mathcal{R} = \{P, Q, ...\}$ and $\mathcal{F} = \{f, g, ...\}$ be a vocabulary of predicate/function symbols
- * predicate and function symbols are equipped with an arity ar : $\mathcal{R} \cup \mathcal{F} \rightarrow \mathbb{N}$
- * first-order terms and formulas over \mathcal{V} , \mathcal{R} and \mathcal{F} are given by the following grammar:

 $s, t ::= x \mid f(t_1, \dots, t_{ar(f)})$ $\phi, \psi ::= \top \mid \bot$ $\mid P(t_1, \dots, t_{ar(P)}) \mid s = t$ $\mid \phi \lor \psi \mid \neg \phi$ $\mid \exists x.\phi$ (terms)

(atomic truth values)

(predicates and equality)

(Boolean connectives)

(existential quantification)

First-Order Logic

- ★ let $\mathcal{V} = \{x, y, ...\}$ be a set of variables
- ★ let $\mathcal{R} = \{P, Q, ...\}$ and $\mathcal{F} = \{f, g, ...\}$ be a vocabulary of predicate/function symbols
- $\star\,$ predicate and function symbols are equipped with an arity ar : $\mathcal{R}\cup\mathcal{F}\rightarrow\mathbb{N}$
- * first-order terms and formulas over \mathcal{V} , \mathcal{R} and \mathcal{F} are given by the following grammar:

 $s, t ::= x | f(t_1, \dots, t_{ar(f)})$ $\phi, \psi ::= \top | \bot$ $| P(t_1, \dots, t_{ar(P)}) | s = t$ $| \phi \lor \psi | \neg \phi$ $| \exists x.\phi$

(terms) (atomic truth values)

(predicates and equality)

(Boolean connectives)

(existential quantification)

★ further connectives definable:

 $\phi \to \psi \triangleq \neg \phi \lor \psi \quad \mathbf{s} \neq \mathbf{t} \triangleq \neg (\mathbf{s} = \mathbf{t}) \quad \phi \land \psi \triangleq \neg (\neg \phi \lor \neg \psi) \quad \forall \mathbf{x}.\phi \triangleq \neg (\exists \mathbf{x}.\neg \phi) \quad \dots$

nventeurs du monde numérique

First-Order Logic

- ★ let $\mathcal{V} = \{x, y, ...\}$ be a set of variables
- ★ let $\mathcal{R} = \{P, Q, ...\}$ and $\mathcal{F} = \{f, g, ...\}$ be a vocabulary of predicate/function symbols
- $\star\,$ predicate and function symbols are equipped with an arity ar : $\mathcal{R}\cup\mathcal{F}\rightarrow\mathbb{N}$
- * first-order terms and formulas over \mathcal{V} , \mathcal{R} and \mathcal{F} are given by the following grammar:

 $s, t ::= x | f(t_1, \dots, t_{ar(f)})$ $\phi, \psi ::= \top | \bot$ $| P(t_1, \dots, t_{ar(P)}) | s = t$ $| \phi \lor \psi | \neg \phi$ $| \exists x.\phi$

(terms) (atomic truth values)

(predicates and equality)

(Boolean connectives)

(existential quantification)

★ further connectives definable:

 $\phi \to \psi \triangleq \neg \phi \lor \psi \quad \mathbf{s} \neq \mathbf{t} \triangleq \neg (\mathbf{s} = \mathbf{t}) \quad \phi \land \psi \triangleq \neg (\neg \phi \lor \neg \psi) \quad \forall \mathbf{x}.\phi \triangleq \neg (\exists \mathbf{x}.\neg \phi) \quad \dots$

 \star to avoid parenthesis, we fix precedence \neg > \land, \lor > \exists, \forall

Free Variables, Open and Closed Formulas

- * a quantifier $\exists x.\phi$ binds the variable x within ϕ
- ★ variables not bound are called free
- \star the set of variables free in ϕ is denoted by fv(ϕ)

 $\mathsf{fv}(E(x,y)) = \{x,y\} \qquad \mathsf{fv}(\exists y.E(x,y)) = \{x\} \qquad \mathsf{fv}(\forall x.\exists y.E(x,y)) = \emptyset$

Free Variables, Open and Closed Formulas

- * a quantifier $\exists x.\phi$ binds the variable x within ϕ
- ★ variables not bound are called free
- \star the set of variables free in ϕ is denoted by fv(ϕ)

 $\mathsf{fv}(E(x,y)) = \{x,y\} \qquad \mathsf{fv}(\exists y.E(x,y)) = \{x\} \qquad \mathsf{fv}(\forall x.\exists y.E(x,y)) = \emptyset$

- ★ the formulas without free variables are called sentences (or closed formulas)
- ★ otherwise they are called open

Free Variables, Open and Closed Formulas

- * a quantifier $\exists x.\phi$ binds the variable x within ϕ
- ★ variables not bound are called free
- \star the set of variables free in ϕ is denoted by fv(ϕ)

 $\mathsf{fv}(E(x,y)) = \{x,y\} \qquad \mathsf{fv}(\exists y.E(x,y)) = \{x\} \qquad \mathsf{fv}(\forall x.\exists y.E(x,y)) = \emptyset$

- ★ the formulas without free variables are called sentences (or closed formulas)
- ★ otherwise they are called open
- ★ we consider formulas equal up to renaming of bound variables
 - $\exists y.E(x, y)$ is equal to $\exists z.E(x, z)$ but neither to $\exists y.E(x, z)$ nor $\exists y.E(z, y)$

★ a formula is evaluated to a truth value by assigning meaning to predicates and functions

- ★ a formula is evaluated to a truth value by assigning meaning to predicates and functions
- ★ a (first-order) structure (or model) $\mathcal{M} = (D, \mathcal{I})$ on a vocabulary \mathcal{R} consists of
 - a non-empty domain D; and
 - an interpretation $\mathcal{I}(P) \subseteq D^{\operatorname{ar}(P)}$ for each predicate $P \in \mathcal{R}$
 - an interpretation $\mathcal{I}(f): D^{\operatorname{ar}(P)} \to D$ for each function $f \in \mathcal{F}$

- ★ a formula is evaluated to a truth value by assigning meaning to predicates and functions
- * a (first-order) structure (or model) $\mathcal{M} = (D, \mathcal{I})$ on a vocabulary \mathcal{R} consists of
 - a non-empty domain D; and
 - an interpretation $\mathcal{I}(P) \subseteq D_{(P)}^{\operatorname{ar}(P)}$ for each predicate $P \in \mathcal{R}$
 - an interpretation $\mathcal{I}(f) : D^{\operatorname{ar}(P)} \to D$ for each function $f \in \mathcal{F}$
- ★ sentences describes properties of structures, consider e.g., $\forall x. \exists y. E(x, y)$:
 - on directed graphs, with E interpreted as "edge": every node has a successor
 - on natural numbers, with E interpreted as "<": for every number there is a strictly bigger one

- ★ a formula is evaluated to a truth value by assigning meaning to predicates and functions
- ★ a (first-order) structure (or model) $\mathcal{M} = (D, \mathcal{I})$ on a vocabulary \mathcal{R} consists of
 - a non-empty domain D; and
 - an interpretation $\mathcal{I}(P) \subseteq D^{\operatorname{ar}(P)}$ for each predicate $P \in \mathcal{R}$
 - an interpretation $\mathcal{I}(f) : D^{\operatorname{ar}(P)} \to D$ for each function $f \in \mathcal{F}$
- ★ sentences describes properties of structures, consider e.g., $\forall x. \exists y. E(x, y)$:
 - on directed graphs, with E interpreted as "edge": every node has a successor
 - on natural numbers, with E interpreted as "<": for every number there is a strictly bigger one
- \star if a formula ϕ holds true in a model \mathcal{M} , we write

 $\mathcal{M} \models \phi$

and say $\mathcal M$ models ϕ , or that ϕ is satisfiable with $\mathcal M$

1. consider the formula $\phi = \forall x. \exists y. E(x, y)$ and *E* interpreted by ...

- we have $G_1 \vDash \varphi$, $G_2 \not\models \varphi$ and $G_3 \not\models \varphi$

1. consider the formula $\phi = \forall x. \exists y. E(x, y)$ and *E* interpreted by ...

- we have $G_1 \models \varphi$, $G_2 \notin \varphi$ and $G_3 \notin \varphi$
- 2. consider the formula $\exists x_1, x_2, x_3.(x_1 \neq x_2 \land x_2 \neq x_3 \land x_3 \neq x_1)$
 - the formula is satisfiable by all models with three objects in the domain

Consequence, Equivalence and Validity

* a sentence ϕ is a consequence of sentences $\Phi = \psi_1; \ldots; \psi_n$, in notation

 $\Phi \models \phi$

if all models satisfying all $\psi_i \in \Phi$ also satisfy ϕ

 $- \quad \forall x. P(x) \rightarrow Q(x); \exists x. P(x) \vDash \exists x. Q(x)$

Consequence, Equivalence and Validity

* a sentence ϕ is a consequence of sentences $\Phi = \psi_1; \ldots; \psi_n$, in notation

 $\Phi \models \phi$

if all models satisfying all $\psi_i \in \Phi$ also satisfy ϕ

- $\quad \forall x. P(x) \rightarrow Q(x); \exists x. P(x) \vDash \exists x. Q(x)$
- \star two formulas ϕ and ψ are equivalent, in notation

 $\phi\equiv\psi$

if $\phi \models \psi$ and $\psi \models \phi$

 $- \quad \forall x. P(x) \to Q(x) \equiv \forall x. \neg Q(x) \to \neg P(x)$

Consequence, Equivalence and Validity

* a sentence ϕ is a consequence of sentences $\Phi = \psi_1; \ldots; \psi_n$, in notation

 $\Phi \models \phi$

if all models satisfying all $\psi_i \in \Phi$ also satisfy ϕ

- $\quad \forall x. P(x) \rightarrow Q(x); \exists x. P(x) \vDash \exists x. Q(x)$
- \star two formulas ϕ and ψ are equivalent, in notation

 $\phi\equiv\psi$

if $\phi \models \psi$ and $\psi \models \phi$

- $\quad \forall x. P(x) \rightarrow Q(x) \equiv \forall x. \neg Q(x) \rightarrow \neg P(x)$
- \star a formula ϕ is valid if it is satisfiable for all models, in notation

 $\models \phi$

- this is to say that $\neg \phi$ is unsatisfiable
- the formula $\forall x.x = x$ is trivially valid

* an assignment (or valuation) for ϕ wrt. a model $\mathcal{M} = (D, \mathcal{I})$ is a function $\alpha : fv(\phi) \to D$

- ★ an assignment (or valuation) for ϕ wrt. a model $\mathcal{M} = (D, \mathcal{I})$ is a function α : fv(ϕ) $\rightarrow D$
- * together with a model, we can now interpret open terms t in its domain D

 $\mathcal{I}_{\alpha}(x) \triangleq \alpha(x) \qquad \mathcal{I}_{\alpha}(f(t_1,\ldots,t_n)) \triangleq \mathcal{I}(f)(\mathcal{I}_{\alpha}(t_1),\ldots,\mathcal{I}_{\alpha}(t_n))$

- ★ an assignment (or valuation) for ϕ wrt. a model $\mathcal{M} = (D, \mathcal{I})$ is a function α : fv(ϕ) → D
- ★ together with a model, we can now interpret open terms *t* in its domain *D*

 $\mathcal{I}_{\alpha}(x) \triangleq \alpha(x) \qquad \mathcal{I}_{\alpha}(f(t_1,\ldots,t_n)) \triangleq \mathcal{I}(f)(\mathcal{I}_{\alpha}(t_1),\ldots,\mathcal{I}_{\alpha}(t_n))$

★ for a sentence ϕ , we can now define $\mathcal{M} \models \phi$ formally as \mathcal{M} ; $\emptyset \models \phi$ where

 $\begin{array}{lll} \mathcal{M}; \alpha \models \top & \mathcal{M}; \alpha \not\models \bot \\ \mathcal{M}; \alpha \models \mathcal{P}(t_1, \dots, t_n) & : \Leftrightarrow & (\mathcal{I}_{\alpha}(t_1), \dots, \mathcal{I}_{\alpha}(t_n)) \in \mathcal{I}(\mathcal{P}) \\ \mathcal{M}; \alpha \models s = t & : \Leftrightarrow & \mathcal{I}_{\alpha}(t) = \mathcal{I}_{\alpha}(t) \\ \mathcal{M}; \alpha \models \phi \lor \psi & : \Leftrightarrow & \mathcal{M}; \alpha \models \phi \text{ or } \mathcal{M}; \alpha \models \psi \\ \mathcal{M}; \alpha \models \neg \phi & : \Leftrightarrow & \mathcal{M}; \alpha \not\models \phi \\ \mathcal{M}; \alpha \models \exists x.\phi & : \Leftrightarrow & \mathcal{M}; \alpha \mid x \mapsto d \mid \models \phi \text{ for some } d \in D \end{array}$

- ★ an assignment (or valuation) for ϕ wrt. a model $\mathcal{M} = (D, \mathcal{I})$ is a function α : fv(ϕ) → D
- ★ together with a model, we can now interpret open terms *t* in its domain *D*

 $\mathcal{I}_{\alpha}(x) \triangleq \alpha(x) \qquad \mathcal{I}_{\alpha}(f(t_1,\ldots,t_n)) \triangleq \mathcal{I}(f)(\mathcal{I}_{\alpha}(t_1),\ldots,\mathcal{I}_{\alpha}(t_n))$

★ for a sentence ϕ , we can now define $\mathcal{M} \models \phi$ formally as \mathcal{M} ; $\emptyset \models \phi$ where

 $\mathcal{M}; \alpha \models \top \qquad \mathcal{M}; \alpha \not\models \bot$ $\mathcal{M}; \alpha \models \mathcal{P}(t_1, \ldots, t_n) \qquad : \Leftrightarrow \quad (\mathcal{I}_{\alpha}(t_1), \ldots, \mathcal{I}_{\alpha}(t_n)) \in \mathcal{I}(\mathcal{P})$ \mathcal{M} ; $\alpha \models \mathbf{s} = \mathbf{t}$ $: \Leftrightarrow \mathcal{I}_{\alpha}(t) = \mathcal{I}_{\alpha}(t)$ $: \Leftrightarrow \mathcal{M}; \alpha \models \phi \text{ or } \mathcal{M}; \alpha \models \psi$ \mathcal{M} : $\alpha \models \phi \lor \psi$ $\mathcal{M}: \alpha \models \neg \phi$ $: \Leftrightarrow \mathcal{M}; \alpha \not\models \phi$ $\mathcal{M}; \alpha \models \exists x.\phi$ $: \Leftrightarrow \mathcal{M}; \alpha[x \mapsto d] \models \phi \text{ for some } d \in D$ **a**) b $\mathcal{G} \models \exists x. \exists y. E(x, y) \Leftrightarrow \mathcal{G}; \emptyset \models \exists x. \exists y. E(x, y)$ $\leftarrow \mathcal{G}; x \mapsto a \models \exists y. E(x, y)$ G $\leftarrow \mathcal{G}; x \mapsto a; y \mapsto b \models E(x, y)$ \Leftrightarrow (a, b) $\in \mathcal{I}(E)$ u monde numérique

Example

Second Order-Logic

- ★ in first-order logic, quantification confined to elements of the domain
- * in second-order logic, quantification is permitted on relations
 - $\quad \forall x. \exists X. \forall y. X(x, y) \leftrightarrow x = y$

Second Order-Logic

- ★ in first-order logic, quantification confined to elements of the domain
- ★ in second-order logic, quantification is permitted on relations
 - $\quad \forall x. \exists X. \forall y. X(x, y) \leftrightarrow x = y$

Monadic Second-Order Logic

* A predicate symbol *P* is monadic if its arity is 1

Second Order-Logic

- ★ in first-order logic, quantification confined to elements of the domain
- ★ in second-order logic, quantification is permitted on relations
 - $\quad \forall x. \exists X. \forall y. X(x, y) \leftrightarrow x = y$

Monadic Second-Order Logic

- ★ A predicate symbol *P* is monadic if its arity is 1
- monadic second-order logic (MSO) confines second-order quantification to monadic predicates
 - monadic: $\forall x. \exists Y. \forall y. Y(y) \leftrightarrow x = y$
 - non-monadic: $\forall x. \exists X. \forall y. X(x, y) \leftrightarrow x = y$

Second Order-Logic

- ★ in first-order logic, quantification confined to elements of the domain
- ★ in second-order logic, quantification is permitted on relations
 - $\quad \forall x. \exists X. \forall y. X(x, y) \leftrightarrow x = y$

Monadic Second-Order Logic

- ★ A predicate symbol *P* is monadic if its arity is 1
- monadic second-order logic (MSO) confines second-order quantification to monadic predicates
 - monadic: $\forall x. \exists Y. \forall y. Y(y) \leftrightarrow x = y$
 - non-monadic: $\forall x. \exists X. \forall y. X(x, y) \leftrightarrow x = y$
- ★ quantification over sets, but not over arbitrary predicates
 - on graphs: quantification over nodes but not edges

- * A theory is a set T of sentences such that for any sentence ϕ , if $T \models \phi$, then $\phi \in T$
 - a theory is closed under logical consequence

- * A theory is a set T of sentences such that for any sentence ϕ , if $T \models \phi$, then $\phi \in T$
 - a theory is closed under logical consequence
- ★ A theory is decidable if the problem of belonging to *T* is decidable
 - we have a decision procedure for reasoning about T

- * A theory is a set T of sentences such that for any sentence ϕ , if $T \models \phi$, then $\phi \in T$
 - a theory is closed under logical consequence
- ★ A theory is decidable if the problem of belonging to *T* is decidable
 - we have a decision procedure for reasoning about T
- ★ A theory *T* is complete if for any sentence ϕ we have $\phi \in T$ or $\neg \phi \in T$.
 - a theory complete theory speaks about all formulas

- * A theory is a set T of sentences such that for any sentence ϕ , if $T \models \phi$, then $\phi \in T$
 - a theory is closed under logical consequence
- ★ A theory is decidable if the problem of belonging to *T* is decidable
 - we have a decision procedure for reasoning about T
- ★ A theory *T* is complete if for any sentence ϕ we have $\phi \in T$ or $\neg \phi \in T$.
 - a theory complete theory speaks about all formulas
- ★ for a class of structure C, the theory of C is the set of sentences which are valid on all $M \in C$

- 1. The theory of Presburger Arithmetic, i.e., the theory of natural numbers with addition only is decidable
 - $\forall n. \exists m. (n = m + m) \lor (n = m + m + 1)$
 - Presburger Arithmetic admits a quantifier elimination procedure

- 1. The theory of Presburger Arithmetic, i.e., the theory of natural numbers with addition only is decidable
 - $\forall n. \exists m. (n = m + m) \lor (n = m + m + 1)$
 - Presburger Arithmetic admits a quantifier elimination procedure
- 2. The theory of Peano Arithmetic, i.e., the theory of natural numbers is undecidable
 - Gödels incompleteness theorem!

- 1. The theory of Presburger Arithmetic, i.e., the theory of natural numbers with addition only is decidable
 - $\forall n. \exists m. (n = m + m) \lor (n = m + m + 1)$
 - Presburger Arithmetic admits a quantifier elimination procedure
- 2. The theory of Peano Arithmetic, i.e., the theory of natural numbers is undecidable
 - Gödels incompleteness theorem!
- 3. The theory of graphs is undecidable

- 1. The theory of Presburger Arithmetic, i.e., the theory of natural numbers with addition only is decidable
 - $\forall n. \exists m. (n = m + m) \lor (n = m + m + 1)$
 - Presburger Arithmetic admits a quantifier elimination procedure
- 2. The theory of Peano Arithmetic, i.e., the theory of natural numbers is undecidable
 - Gödels incompleteness theorem!
- 3. The theory of graphs is undecidable

Theorem (Büchi)

The theory of monadic second-order logic over $(\mathbb{N}, <)$ is decidable

Theorem (Rabin)

The theory of monadic second-order logic over trees is decidable
A First Step Towards Rabin's and Büchi's Result

consider only models over $\mathbb{N},$ ordered by <

Theorem (Büchi-Elgot-Trakhtenbrot)

The theory of weak monadic second-order logic over $(\mathbb{N}, <)$ is decidable

Weak Monadic Second-Order Logic

Weak Monadic Second-Order Logic (WMSO)

- ★ let $V_1 = \{x, y, ...\}$ be a set of first-order variables (ranging over \mathbb{N})
- ★ let $V_2 = \{X, Y, ...\}$ be monadic second-order variables (ranging over finite sets of \mathbb{N})
- ★ $\mathcal{R} = \{<\}$ and $\mathcal{F} = \emptyset$ is fixed, with ar(<) = 2
- * the set of WMSO formulas over $\mathcal{V}_1, \mathcal{V}_2$ is given by the following grammar:

 $\phi, \psi ::= \top \ \left| \ \bot \ \right| \ x < y \ \left| \ X(x) \ \right| \ \phi \lor \psi \ \left| \ \neg \phi \ \right| \ \exists x.\phi \ \left| \ \exists X.\phi \right| \ \exists X.\phi$

Weak Monadic Second-Order Logic (WMSO)

- ★ let $V_1 = \{x, y, ...\}$ be a set of first-order variables (ranging over \mathbb{N})
- ★ let $V_2 = \{X, Y, ...\}$ be monadic second-order variables (ranging over finite sets of \mathbb{N})
- ★ $\mathcal{R} = \{<\}$ and $\mathcal{F} = \emptyset$ is fixed, with ar(<) = 2
- * the set of WMSO formulas over $\mathcal{V}_1, \mathcal{V}_2$ is given by the following grammar:

$$\phi, \psi ::= \top \mid \perp \mid x < y \mid X(x) \mid \phi \lor \psi \mid \neg \phi \mid \exists x.\phi \mid \exists X.\phi$$

★ further definable connectives

 $\forall X.\phi \triangleq \neg (\exists X.\neg \phi) \quad x = 0 \triangleq \neg (\exists y.y < x) \quad x \le y \triangleq \neg (y < x) \quad x = y \triangleq (exercise)$

Weak Monadic Second-Order Logic (WMSO)

- ★ let $V_1 = \{x, y, ...\}$ be a set of first-order variables (ranging over \mathbb{N})
- ★ let $V_2 = \{X, Y, ...\}$ be monadic second-order variables (ranging over finite sets of \mathbb{N})
- ★ $\mathcal{R} = \{<\}$ and $\mathcal{F} = \emptyset$ is fixed, with ar(<) = 2
- * the set of WMSO formulas over $\mathcal{V}_1, \mathcal{V}_2$ is given by the following grammar:

$$\phi, \psi ::= \top \mid \perp \mid x < y \mid X(x) \mid \phi \lor \psi \mid \neg \phi \mid \exists x.\phi \mid \exists X.\phi$$

★ further definable connectives

 $\forall X.\phi \triangleq \neg (\exists X.\neg \phi) \quad x = 0 \triangleq \neg (\exists y.y < x) \quad x \le y \triangleq \neg (y < x) \quad x = y \triangleq (exercise)$

- ★ weak: second-order variables refer to finite sets
 - X(y) means informally $y \in X$ where X is finite set over \mathbb{N}
 - $\models \exists X. \forall x. X(x) \rightarrow \exists y. x < y \land X(y)$
 - $\notin \exists X.(\forall x.x = 0 \rightarrow X(x)) \land (\forall x.X(x) \rightarrow \exists y.x < y \land X(y))$

$$\alpha(X) = \emptyset$$
 inventeurs du monde numérique

Satisfiability

- $\star\,$ since the model (N, {<}) is fixed, the valuation of a formula depends only on an assignment $\alpha\,$
- ★ α maps first-order variables $x \in \mathcal{V}_1$ to \mathbb{N} , and second-order variables $X \in \mathcal{V}_2$ to finite subsets of \mathbb{N}

Satisfiability

- ★ since the model (ℕ, {<}) is fixed, the valuation of a formula depends only on an assignment α
- ★ α maps first-order variables $x \in \mathcal{V}_1$ to \mathbb{N} , and second-order variables $X \in \mathcal{V}_2$ to finite subsets of \mathbb{N}
- * satisfiability relation takes the form $\alpha \models \phi$ and is inductively defined as expected:

$\alpha \models \top \qquad \alpha \not\models \bot$		
$\alpha \vDash x < y$:⇔	$\alpha(\mathbf{x}) < \alpha(\mathbf{y})$
$\alpha \models X(x)$:⇔	$\alpha(\mathbf{X}) \in \alpha(\mathbf{X})$
$\alpha \vDash \phi \lor \psi$:⇔	$\alpha \vDash \phi \text{ or } \alpha \vDash \psi$
$\alpha \vDash \neg \phi$:⇔	$\alpha \not\models \phi$
$\alpha \vDash \exists x.\phi$:⇔	$\alpha[\mathbf{x} \mapsto \mathbf{n}] \models \phi \text{ for some } \mathbf{n} \in \mathbb{N}$
$\alpha \vDash \exists X.\phi$:⇔	$\alpha[x \mapsto M] \vDash \phi \text{ for some finite } M \subset \mathbb{N}$

Connections to Formal Languages

- ★ to encode words $w \in \Sigma^*$ over alphabet Σ we use to kinds of variables
 - first-order variables $x \in V_1$ refer to positions within w
 - for each letter $a \in \Sigma$, second-order variables $P_a \in V_2$ indicate the positions of a in w

W	a b	ba	
Pa	{ 0,	3	}
$P_{\rm b}$	{ 1,	2	}

Connections to Formal Languages

- ★ to encode words $w \in \Sigma^*$ over alphabet Σ we use to kinds of variables
 - first-order variables $x \in \mathcal{V}_1$ refer to positions within w
 - for each letter $a \in \Sigma$, second-order variables $P_a \in V_2$ indicate the positions of a in w

$$\begin{array}{c|c}
W & a b b a \\
\hline
P_a & \{0, 3\} \\
P_b & \{1, 2\}
\end{array}$$
abba

★ thereby each word $w \in \Sigma^*$ uniquely determines an assignment, in notation <u>w</u>

Connections to Formal Languages

- ★ to encode words $w \in \Sigma^*$ over alphabet Σ we use to kinds of variables
 - first-order variables $x \in \mathcal{V}_1$ refer to positions within w
 - for each letter $a \in \Sigma$, second-order variables $P_a \in V_2$ indicate the positions of a in w

$$\begin{array}{c|c}
W & a b b a \\
\hline
P_a & \{0, 3\} \\
P_b & \{1, 2\}
\end{array}$$
abba

★ thereby each word $w \in \Sigma^*$ uniquely determines an assignment, in notation \underline{w} Examples

- ★ <u>ab</u> $\models \exists x.P_{a}(x)$
- ★ <u>ab</u> $\notin \exists x.P_{c}(x)$
- $\star \underline{ab} \notin \exists x. \exists y. \exists z. (z \neq y) \land (y \neq z) \land (z \neq x)$
- * <u>ab</u> $\notin \exists x. \exists y. x < y \land P_{b}(x) \land P_{a}(y)$
- * <u>ab</u> $\notin \exists X. \forall x. (X(x) \rightarrow P_{b}(x)) \land \exists y. y = 0 \land X(y)$

★ for alphabet Σ and WMSO formula ϕ s.t. $fv(\phi) \subseteq \{P_a \mid a \in \Sigma\}$, we let

 $\mathsf{L}(\phi) \triangleq \{ w \in \Sigma^* \mid \underline{w} \vDash \phi \}$

denote the language of ϕ

* a language L is WMSO definable iff there is some ϕ as above s.t. $L = L(\phi)$

★ for alphabet Σ and WMSO formula ϕ s.t. $fv(\phi) \subseteq \{P_a \mid a \in \Sigma\}$, we let

 $\mathsf{L}(\phi) \triangleq \{ w \in \Sigma^* \mid \underline{w} \vDash \phi \}$

denote the language of ϕ

* a language L is WMSO definable iff there is some ϕ as above s.t. $L = L(\phi)$

Examples

-

ϕ	$L(\phi)$	
$\exists x. P_{a}(x)$?	
$\exists x. \exists y. \exists z. (z \neq y) \land (y \neq z) \land (z \neq x)$?	
$\exists x. \exists y. x < y \land P_{\rm b}(x) \land P_{\rm a}(y)$?	
$\exists X. \forall x. (X(x) \rightarrow P_{\rm b}(x)) \land \exists y. y = 0 \land X(y)$?	

★ for alphabet Σ and WMSO formula ϕ s.t. $fv(\phi) \subseteq \{P_a \mid a \in \Sigma\}$, we let

 $\mathsf{L}(\phi) \triangleq \{ w \in \Sigma^* \mid \underline{w} \vDash \phi \}$

denote the language of ϕ

★ a language L is WMSO definable iff there is some ϕ as above s.t. $L = L(\phi)$

Examples

$\{ vaw \mid v, w \in \Sigma^* \}$
?
?
?

nventeurs du monde numérique

★ for alphabet Σ and WMSO formula ϕ s.t. $fv(\phi) \subseteq \{P_a \mid a \in \Sigma\}$, we let

 $\mathsf{L}(\phi) \triangleq \{ w \in \Sigma^* \mid \underline{w} \vDash \phi \}$

denote the language of ϕ

★ a language L is WMSO definable iff there is some ϕ as above s.t. $L = L(\phi)$

Examples

φ	$L(\phi)$
$\exists x. P_{a}(x)$	$\{vaw \mid v, w \in \Sigma^*\}$
$\exists x. \exists y. \exists z. (z \neq y) \land (y \neq z) \land (z \neq x)$	$\{w \mid w \ge 3\}$
$\exists x. \exists y. x < y \land P_{\rm b}(x) \land P_{\rm a}(y)$?
$\exists X. \forall x. (X(x) \rightarrow P_{\rm b}(x)) \land \exists y. y = 0 \land X(y)$?

nventeurs du monde numérique

★ for alphabet Σ and WMSO formula ϕ s.t. fv(ϕ) \subseteq { P_a | $a \in \Sigma$ }, we let

 $\mathsf{L}(\phi) \triangleq \{ w \in \Sigma^* \mid w \models \phi \}$

denote the language of ϕ

 \star a language L is WMSO definable iff there is some ϕ as above s.t. $L = L(\phi)$

Examples

$L(\phi)$
$\{vaw \mid v, w \in \Sigma^*\}$
$\{w \mid w \ge 3\}$
$\{ubvaw \mid u, v, w \in \Sigma^*\}$
?

★ for alphabet Σ and WMSO formula ϕ s.t. $fv(\phi) \subseteq \{P_a \mid a \in \Sigma\}$, we let

 $\mathsf{L}(\phi) \triangleq \{ w \in \Sigma^* \mid \underline{w} \vDash \phi \}$

denote the language of ϕ

★ a language L is WMSO definable iff there is some ϕ as above s.t. $L = L(\phi)$

Examples

ϕ	$L(\phi)$
$\exists x.P_{a}(x)$	$\{VaW \mid V, W \in \Sigma^*\}$
$\exists x. \exists y. \exists z. (z \neq y) \land (y \neq z) \land (z \neq x)$	$\{w \mid w \ge 3\}$
$\exists x. \exists y. x < y \land P_{\rm b}(x) \land P_{\rm a}(y)$	$\{ubvaw \mid u, v, w \in \Sigma^*\}$
$\exists X. \forall x. (X(x) \rightarrow P_{\rm b}(x)) \land \exists y. y = 0 \land X(y)$	$\{\mathbf{b}w \mid w \in \Sigma^*\}$
	1991

inventeurs du monde numérique

Regularity and WMSO Definability

Büchi-Elgot-Trakhtenbrot

Theorem

Let $L \subseteq \Sigma^*$ be a language. The following are equivalent:

- ★ L is regular
- ★ L is recognizable by a finite automata
- ★ L is WMSO definable

Proof Outline.

- ★ (1) \Leftrightarrow (2) Kleene's Theorem.
- * (2) \Rightarrow (3) Given an Automata A, we define a WMSO formula ϕ_A s.t. $L(A) = L(\phi_A)$
- ★ (3) \Rightarrow (1) Given a WMSO formula ϕ , define a regular Language L_{ϕ} s.t. $L(\phi) = L_{\phi}$

Büchi-Elgot-Trakhtenbrot

Theorem

Let $L \subseteq \Sigma^*$ be a language. The following are equivalent:

- ★ L is regular
- ★ L is recognizable by a finite automata
- ★ L is WMSO definable

Proof Outline.

- ★ (1) \Leftrightarrow (2) Kleene's Theorem.
- ★ (2) \Rightarrow (3) Given an Automata A, we define a WMSO formula ϕ_A s.t. L(A) = L(ϕ_A)
- ★ (3) \Rightarrow (1) Given a WMSO formula ϕ , define a regular Language L_{ϕ} s.t. $L(\phi) = L_{\phi}$

From Automatons to Formulas

Encoding for given $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

- * first-order m, n, \ldots variables refer to positions in input words w
- ★ for $a \in \Sigma$: second-order variables P_a encode words: as before
- ★ for $q \in Q$: second-order variables X_q encode run: $X_q(m) \iff q_1 \xrightarrow{a_0} \ldots \xrightarrow{a_m} q$

From Automatons to Formulas

Encoding for given $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

- * first-order m, n, \ldots variables refer to positions in input words w
- ★ for $a \in \Sigma$: second-order variables P_a encode words: as before
- * for $q \in Q$: second-order variables X_a encode run: $X_a(m) \iff q_1 \xrightarrow{a_0} \dots \xrightarrow{a_m} q$ Example $p \xrightarrow{a} q \xrightarrow{b} p \xrightarrow{b} r$ example run $P_{\rm a}$ { 0 } { 1. 2 } $P_{\rm b}$

From Automatons to Formulas

Encoding for given $\mathcal{A} = (Q, \Sigma, q_I, \delta, F)$

- * first-order m, n, \ldots variables refer to positions in input words w
- ★ for $a \in \Sigma$: second-order variables P_a encode words: as before
- * for $q \in Q$: second-order variables X_q encode run: $X_q(m) \iff q_I \xrightarrow{a_0} \dots \xrightarrow{a_m} q$ Example $\begin{array}{c} example run \qquad p \xrightarrow{a} q \xrightarrow{b} p \xrightarrow{b} r \\ \hline P_a \qquad \{ 0 \qquad \} \\ P_b \qquad \{ 1, 2 \} \\ \hline X_p \qquad \{ (-1) \qquad 1 \} \\ X_q \qquad \{ 0 \qquad \} \\ X_r \qquad \{ 0 \qquad \} \\ \hline X_r \qquad \{ 2 \} \end{array}$

* ultimately, $\phi_{\mathcal{A}} \triangleq \exists X_{q_1} \dots \exists X_{q_n} \psi_{\mathcal{A}}$ with $\psi_{\mathcal{A}}$ linking X_{q_i} to \mathcal{A} and word variables P_a .

nventeurs du monde numérique

- $\star \ \psi_{setup} \triangleq \forall m.m < len \rightarrow (\bigvee_{q \in Q} X_q(m)) \land \left(\bigwedge_{p \neq q} \neg (X_q(m) \land X_p(m)) \right)$
 - reading *m* < *len* symbols ends up in a state, and this state is unique

- $\star \ \psi_{setup} \triangleq \forall m.m < len \rightarrow (\bigvee_{q \in Q} X_q(m)) \land \left(\bigwedge_{p \neq q} \neg (X_q(m) \land X_p(m)) \right)$
 - reading *m* < *len* symbols ends up in a state, and this state is unique
- $\star \ \psi_{initial} \triangleq len = 0 \lor \bigvee_{a \in \Sigma, p \in \delta(q_l, a)} (P_a(0) \land X_p(0))$
 - encoding of the initial transition

- $\star \ \psi_{setup} \triangleq \forall m.m < len \rightarrow (\bigvee_{q \in Q} X_q(m)) \land \left(\bigwedge_{p \neq q} \neg (X_q(m) \land X_p(m)) \right)$
 - reading *m* < *len* symbols ends up in a state, and this state is unique
- $\star \ \psi_{initial} \triangleq len = 0 \lor \bigvee_{\mathsf{a} \in \Sigma, p \in \delta(q_l, \mathsf{a})} (P_\mathsf{a}(0) \land X_p(0))$
 - encoding of the initial transition
- $\star \ \psi_{run} \triangleq \forall m.m < len \rightarrow \forall n.n = m + 1 \rightarrow \bigvee_{\mathtt{a} \in \Sigma, q \in Q, p \in \delta(q,\mathtt{a})} (X_q(m) \land P_\mathtt{a}(n) \land X_p(n))$
 - encoding of intermediate transitions

- $\star \ \psi_{setup} \triangleq \forall m.m < len \rightarrow (\bigvee_{q \in Q} X_q(m)) \land \left(\bigwedge_{p \neq q} \neg (X_q(m) \land X_p(m)) \right)$
 - reading *m* < *len* symbols ends up in a state, and this state is unique
- $\star \ \psi_{initial} \triangleq len = 0 \lor \bigvee_{\mathsf{a} \in \Sigma, p \in \delta(q_l, \mathsf{a})} (P_\mathsf{a}(0) \land X_p(0))$
 - encoding of the initial transition
- $\star \ \psi_{run} \triangleq \forall m.m < len \rightarrow \forall n.n = m + 1 \rightarrow \bigvee_{\mathtt{a} \in \Sigma, q \in Q, p \in \delta(q, \mathtt{a})} (X_q(m) \land P_\mathtt{a}(n) \land X_p(n))$
 - encoding of intermediate transitions
- * $\phi_{accept} \triangleq (len = 0 \land \lceil q_l \in F \rceil) \lor \exists m.len = m + 1 \land \bigvee_{q \in F} (X_q(m))$
 - encoded transition of word $a_0 \dots a_m$ of length m + 1 lands in a final state

$$\phi_{\mathcal{A}} \triangleq \exists X_{q_{1}} \cdots \exists X_{q_{n}}.$$

$$\forall len. \left(\bigwedge_{a \in \Sigma} \neg P_{a}(len) \land \forall m. \bigvee_{a \in \Sigma} P_{a}(m) \rightarrow m \leq len \right) \rightarrow \psi_{setup} \land \psi_{initial} \land \psi_{run} \land \psi_{accept}$$

Büchi-Elgot-Trakhtenbrot

Theorem

Let $L \subseteq \Sigma^*$ be a language. The following are equivalent:

- ★ L is regular
- ★ L is recognizable by a finite automata
- ★ L is WMSO definable

Proof Outline.

- ★ (1) \Leftrightarrow (2) Kleene's Theorem.
- ★ (2) \Rightarrow (3) Given an Automata A, we define a WMSO formula ϕ_A s.t. L(A) = L(ϕ_A)
 - $-\phi_{\mathcal{A}}$ given on previous slide satisfies the case
- * (3) \Rightarrow (1) Given a WMSO formula ϕ , define a regular Language L_{ϕ} s.t. $L(\phi) = L_{\phi}$

Büchi-Elgot-Trakhtenbrot

Theorem

Let $L \subseteq \Sigma^*$ be a language. The following are equivalent:

- ★ L is regular
- ★ L is recognizable by a finite automata
- ★ L is WMSO definable

Proof Outline.

- ★ (1) \Leftrightarrow (2) Kleene's Theorem.
- * (2) \Rightarrow (3) Given an Automata A, we define a WMSO formula ϕ_A s.t. $L(A) = L(\phi_A)$
 - $\phi_{\mathcal{A}}$ given on previous slide satisfies the case
- ★ (3) \Rightarrow (1) Given a WMSO formula ϕ , define a regular Language L_{ϕ} s.t. $L(\phi) = L_{\phi}$

From Formulas to Regular Languages

Encoding for given ϕ over $\mathcal{V}_2 = \{X_1, \dots, X_m\}$ and $\mathcal{V}_1 = \{y_{m+1}, \dots, y_{m+n}\}$

★ the alphabet Σ_{ϕ} is given by m + n bit-vectors, i.e., $\Sigma_{\phi} \triangleq \{0, 1\}^{n+m}$

From Formulas to Regular Languages

Encoding for given ϕ over $\mathcal{V}_2 = \{X_1, \dots, X_m\}$ and $\mathcal{V}_1 = \{y_{m+1}, \dots, y_{m+n}\}$

- ★ the alphabet Σ_{ϕ} is given by m + n bit-vectors, i.e., $\Sigma_{\phi} \triangleq \{0, 1\}^{n+m}$
- * word Σ_{ϕ}^{*} can then be seen as a bit-matrix, encoding a valuation α :
 - − rows $1 \le i \le m$ encode valuations of $X_i \in V_2$: 1 at column $1 \le j \le |w| \iff j \in \alpha(X_i)$
 - − rows $m + 1 \le i \le m + n$ encode valuations of $y_i \in V_1$: 1 at column $1 \le j \le |w| \iff j = \alpha(y_i)$

From Formulas to Regular Languages

Encoding for given ϕ over $\mathcal{V}_2 = \{X_1, \dots, X_m\}$ and $\mathcal{V}_1 = \{y_{m+1}, \dots, y_{m+n}\}$

- ★ the alphabet Σ_{ϕ} is given by m + n bit-vectors, i.e., $\Sigma_{\phi} \triangleq \{0, 1\}^{n+m}$
- * word Σ_{ϕ}^{*} can then be seen as a bit-matrix, encoding a valuation α :
 - − rows $1 \le i \le m$ encode valuations of $X_i \in V_2$: 1 at column $1 \le j \le |w| \iff j \in \alpha(X_i)$
 - − rows $m + 1 \le i \le m + n$ encode valuations of $y_i \in V_1$: 1 at column $1 \le j \le |w| \iff j = \alpha(y_i)$

★ for a valuation α for ϕ , let us write $\underline{\alpha} \in \Sigma_{\phi}$ for its encoding

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

 $\widehat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^*$ the language of coded valuations making ϕ true:

 $\widehat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

Lemma

For any WMSO formula ϕ , $\hat{L}(\phi)$ is regular

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

 $\widehat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

Lemma

For any WMSO formula ϕ , $\hat{L}(\phi)$ is regular

Proof Outline.

By induction on the structure of ϕ .

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^*$ the language of coded valuations making ϕ true:

 $\widehat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

Lemma

For any WMSO formula ϕ , $\hat{L}(\phi)$ is regular

Proof Outline.

By induction on the structure of ϕ .

★ $\phi = \top$, $\phi = \bot$: In these cases $\hat{L}(\phi)$ is Σ_{ϕ}^{*} or \emptyset , thus regular.

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

 $\widehat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

Lemma

For any WMSO formula ϕ , $\hat{L}(\phi)$ is regular

Proof Outline.

By induction on the structure of ϕ .

- * $\phi = \top, \phi = \bot$: In these cases $\hat{L}(\phi)$ is Σ_{ϕ}^{*} or \emptyset , thus regular.
- * $\phi = (x < y)$: Then $\hat{L}(\phi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, both of them regular.

★
$$\phi = X(y)$$
: Then $\hat{L}(\phi) = \left(\begin{pmatrix} 0\\0 \end{pmatrix} \cup \begin{pmatrix} 1\\0 \end{pmatrix}\right)^* \begin{pmatrix} 1\\1 \end{pmatrix} \left(\begin{pmatrix} 0\\0 \end{pmatrix} \cup \begin{pmatrix} 1\\0 \end{pmatrix}\right)^*$ is regular.
The Main Lemma

let us denote by $\hat{L}(\phi) \subseteq \Sigma_{\phi}^{*}$ the language of coded valuations making ϕ true:

 $\widehat{\mathsf{L}}(\phi) \triangleq \{\underline{\alpha} \mid \alpha \vDash \phi\}$

Lemma

For any WMSO formula ϕ , $\hat{L}(\phi)$ is regular

Proof Outline.

By induction on the structure of ϕ .

- * $\phi = \top, \phi = \bot$: In these cases $\hat{L}(\phi)$ is Σ_{ϕ}^* or \emptyset , thus regular.
- * $\phi = (x < y)$: Then $\hat{L}(\phi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, both of them regular.
- * $\phi = X(y)$: Then $\hat{L}(\phi) = \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix} \cup \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right)^* \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix} \cup \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right)^*$ is regular.
- ★ to be continued ...

Consider $h : \Sigma \to \Gamma^*$ and extend it to words w by replacing each letter a in w by h(w):

 $h(\epsilon) \triangleq \epsilon$ $h(aw) \triangleq h(a) \cdot h(w)$

★ each function $h: \Sigma^* \to \Gamma^*$ defined this way is called a homomorphism

Consider $h : \Sigma \to \Gamma^*$ and extend it to words w by replacing each letter a in w by h(w):

 $h(\epsilon) \triangleq \epsilon$ $h(aw) \triangleq h(a) \cdot h(w)$

- ★ each function $h: \Sigma^* \to \Gamma^*$ defined this way is called a homomorphism
- ★ for a language $L \subseteq \Sigma^*$ we let $h(L) \triangleq \{h(w) \mid w \in L\}$ be the application of h to L

Consider $h : \Sigma \to \Gamma^*$ and extend it to words w by replacing each letter a in w by h(w):

 $h(\epsilon) \triangleq \epsilon$ $h(aw) \triangleq h(a) \cdot h(w)$

- ★ each function $h: \Sigma^* \to \Gamma^*$ defined this way is called a homomorphism
- ★ for a language $L \subseteq \Sigma^*$ we let $h(L) \triangleq \{h(w) \mid w \in L\}$ be the application of h to L
- ★ for a language $L \subseteq \Gamma^*$ we let $h^{-1}(L) \triangleq \{w \mid h(w) \in L\}$ be the inverse application of h to L

Consider $h : \Sigma \to \Gamma^*$ and extend it to words w by replacing each letter a in w by h(w):

 $h(\epsilon) \triangleq \epsilon$ $h(aw) \triangleq h(a) \cdot h(w)$

- ★ each function $h: \Sigma^* \to \Gamma^*$ defined this way is called a homomorphism
- ★ for a language $L \subseteq \Sigma^*$ we let $h(L) \triangleq \{h(w) \mid w \in L\}$ be the application of h to L
- ★ for a language $L \subseteq \Gamma^*$ we let $h^{-1}(L) \triangleq \{w \mid h(w) \in L\}$ be the inverse application of h to L

Lemma (Closure of $REG(\Sigma)$ under homomorphism)

The set of regular languages is closed under (inverse) applications of homomorphisms.

For $1 \le i \le k$, let $del_{i,k} : \{0,1\}^k \to \{0,1\}^{k-1}$ delete the *i*-th entry of its argument, e.g., $del_{1,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}b\\c\end{pmatrix} \qquad del_{2,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\c\end{pmatrix} \qquad del_{3,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\b\end{pmatrix}$

For $1 \le i \le k$, let $del_{i,k} : \{0,1\}^k \to \{0,1\}^{k-1}$ delete the *i*-th entry of its argument, e.g.,

$$del_{1,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}b\\c\end{pmatrix} \qquad del_{2,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\c\end{pmatrix} \qquad del_{3,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\b\end{pmatrix}$$

and thus

$$del_{1,3}\left(\begin{pmatrix}0\\1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^*\right) = \begin{pmatrix}1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* \qquad del_{1,3}^{-1}\left(\begin{pmatrix}1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^*\right) = \begin{pmatrix}0\\1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* \cup \begin{pmatrix}0\\1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* \cup \begin{pmatrix}1\\0\\1\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* \cup \begin{pmatrix}1\\1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}^* \cup \begin{pmatrix}1\\0\\0\end{pmatrix}(0)^* (0)^* \cup \begin{pmatrix}1\\0\\0\end{pmatrix}(0)^* (0)^*$$

For $1 \le i \le k$, let $del_{i,k} : \{0,1\}^k \to \{0,1\}^{k-1}$ delete the *i*-th entry of its argument, e.g.,

$$del_{1,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}b\\c\end{pmatrix} \qquad del_{2,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\c\end{pmatrix} \qquad del_{3,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\b\end{pmatrix}$$

and thus

Concretely, for WMSO formulas ϕ over $V_2 = \{X_1, \dots, X_m\}, V_1 = \{y_{m+1}, \dots, y_{m+n}\}$:

For $1 \le i \le k$, let $del_{i,k} : \{0, 1\}^k \to \{0, 1\}^{k-1}$ delete the *i*-th entry of its argument, e.g.,

$$del_{1,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}b\\c\end{pmatrix} \qquad del_{2,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\c\end{pmatrix} \qquad del_{3,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\b\end{pmatrix}$$

and thus

Concretely, for WMSO formulas ϕ over $\mathcal{V}_2 = \{X_1, \dots, X_m\}, \mathcal{V}_1 = \{y_{m+1}, \dots, y_{m+n}\}$:

★ for $1 \le i \le n$, $del_{i,n+m}(\hat{\mathsf{L}}(\phi)) = del_{i,n+m}(\{\underline{\alpha} \mid \alpha \models \phi\})$

 $\approx \{ \underline{\beta} \mid \beta[X_i \mapsto S] \models \phi \text{ for some } S \subseteq \mathbb{N} \} = \hat{\mathsf{L}}(\exists X_i, \phi)$

For $1 \le i \le k$, let $del_{i,k} : \{0, 1\}^k \to \{0, 1\}^{k-1}$ delete the *i*-th entry of its argument, e.g.,

$$del_{1,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}b\\c\end{pmatrix} \qquad del_{2,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\c\end{pmatrix} \qquad del_{3,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\b\end{pmatrix}$$

and thus

Concretely, for WMSO formulas ϕ over $\mathcal{V}_2 = \{X_1, \dots, X_m\}, \mathcal{V}_1 = \{y_{m+1}, \dots, y_{m+n}\}$:

★ for 1 ≤ i ≤ n, $del_{i,n+m}(\hat{L}(\phi)) = del_{i,n+m}(\{\underline{\alpha} \mid \alpha \models \phi\})$ ≈ {β | β[X_i ↦ S] ⊨ φ for some S ⊆ ℕ} = $\hat{L}(\exists X_i, \phi)$

★ inversely, $del_{i,1+n+m}^{-1}(\hat{L}(\phi)) = \{ \underline{\alpha[X \mapsto S]} \mid \alpha \models \phi \text{ and } S \subseteq \mathbb{N} \}$ extends valid assignments

For $1 \le i \le k$, let $del_{i,k} : \{0, 1\}^k \to \{0, 1\}^{k-1}$ delete the *i*-th entry of its argument, e.g.,

$$del_{1,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}b\\c\end{pmatrix} \qquad del_{2,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\c\end{pmatrix} \qquad del_{3,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\b\end{pmatrix}$$

and thus

Concretely, for WMSO formulas ϕ over $\mathcal{V}_2 = \{X_1, \dots, X_m\}, \mathcal{V}_1 = \{y_{m+1}, \dots, y_{m+n}\}$:

- ★ for 1 ≤ i ≤ n, $del_{i,n+m}(\hat{L}(\phi)) = del_{i,n+m}(\{\underline{\alpha} \mid \alpha \models \phi\})$ ≈ {β | β[X_i ↦ S] ⊨ φ for some S ⊆ ℕ} = $\hat{L}(\exists X_i, \phi)$
- ★ inversely, $del_{i,1+n+m}^{-1}(\hat{L}(\phi)) = \{\alpha[X \mapsto S] \mid \alpha \models \phi \text{ and } S \subseteq \mathbb{N}\}$ extends valid assignments
- ★ similar for first order variables y_i ($m + 1 \le i \le m + n$)

For $1 \le i \le k$, let $del_{i,k} : \{0, 1\}^k \to \{0, 1\}^{k-1}$ delete the *i*-th entry of its argument, e.g.,

$$del_{1,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}b\\c\end{pmatrix} \qquad del_{2,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\c\end{pmatrix} \qquad del_{3,3}\left(\begin{pmatrix}a\\b\\c\end{pmatrix}\right) \triangleq \begin{pmatrix}a\\b\end{pmatrix}$$

and thus

Concretely, for WMSO formulas ϕ over $\mathcal{V}_2 = \{X_1, \dots, X_m\}, \mathcal{V}_1 = \{y_{m+1}, \dots, y_{m+n}\}$:

- ★ for 1 ≤ i ≤ n, $del_{i,n+m}(\hat{L}(\phi)) = del_{i,n+m}(\{\underline{\alpha} \mid \alpha \models \phi\})$ ≈ {β | β[X_i ↦ S] ⊨ φ for some S ⊆ ℕ} = $\hat{L}(\exists X_i.\phi)$
- ★ inversely, $del_{i,1+n+m}^{-1}(\hat{L}(\phi)) = \{\alpha[X \mapsto S] \mid \alpha \models \phi \text{ and } S \subseteq \mathbb{N}\}$ extends valid assignments
- ★ similar for first order variables y_i ($m + 1 \le i \le m + n$)
- Attention: One has to be slightly more careful with codings.

$$\phi \rightsquigarrow \begin{array}{c} X \\ Y \end{array} \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} \cdots \begin{pmatrix} a_n \\ b_n \end{pmatrix} \begin{pmatrix} a_{n+1} \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

 $) \quad \exists X.\phi \rightsquigarrow (b_1)\cdots (b_n)(1)(0)$

The Main Lemma (Continued)

Lemma

For any WMSO formula ϕ , $\hat{L}(\phi)$ is regular

- $\star \phi = \psi_1 \vee \psi_2$
 - by induction hypothesis, $L_1 \triangleq \hat{L}(\psi_1)$ and $L_2 \triangleq \hat{L}(\psi_2)$ are regular
 - L_1 and L_2 speak about assignments to variables in ψ_1 and ψ_2
 - inverse applications of $del_{i,*}$ extends these codings to valuations over $fv(\psi_1 \lor \psi_2)$
 - their union yields $\hat{L}(\psi_1 \lor \psi_2)$ and is thus regular

The Main Lemma (Continued)

Lemma

For any WMSO formula ϕ , $\hat{L}(\phi)$ is regular

- $\star \phi = \psi_1 \vee \psi_2$
 - by induction hypothesis, $L_1 \triangleq \hat{L}(\psi_1)$ and $L_2 \triangleq \hat{L}(\psi_2)$ are regular
 - L_1 and L_2 speak about assignments to variables in ψ_1 and ψ_2
 - inverse applications of $del_{i,*}$ extends these codings to valuations over fv($\psi_1 \lor \psi_2$)
 - their union yields $\hat{L}(\psi_1 \lor \psi_2)$ and is thus regular
- * $\phi = \neg \psi$: Then $\hat{L}(\phi) = \hat{L}(\psi) \cap L_{valid}$.
 - $L_{valid} \in REG$ constrains Σ_{ϕ} to valid codings (e.g., for FO variables, only one bit is set)
 - by induction hypothesis and closure properties of REG, $\hat{L}(\phi)$ is valid

The Main Lemma (Continued)

Lemma

For any WMSO formula ϕ , $\hat{L}(\phi)$ is regular

- $\star \phi = \psi_1 \vee \psi_2$
 - by induction hypothesis, $L_1 \triangleq \hat{L}(\psi_1)$ and $L_2 \triangleq \hat{L}(\psi_2)$ are regular
 - L_1 and L_2 speak about assignments to variables in ψ_1 and ψ_2
 - inverse applications of $del_{i,*}$ extends these codings to valuations over $fv(\psi_1 \lor \psi_2)$
 - their union yields $\hat{L}(\psi_1 \lor \psi_2)$ and is thus regular
- * $\phi = \neg \psi$: Then $\hat{L}(\phi) = \overline{\hat{L}(\psi)} \cap L_{valid}$.
 - $L_{valid} \in REG$ constrains Σ_{ϕ} to valid codings (e.g., for FO variables, only one bit is set)
 - by induction hypothesis and closure properties of REG, $\hat{L}(\phi)$ is valid
- * $\phi = \exists X_i.\psi$ or $\phi = \exists y_j.\psi$: from induction hypothesis, using homomorphism $del_{i,*}$ to drop the rows referring to X_i or y_j ; taking care of trailing zero-vectors (see previous slide)

Büchi-Elgot-Trakhtenbrot

Theorem

Let $L \subseteq \Sigma^*$ be a language. The following are equivalent:

- ★ L is regular
- ★ L is recognizable by a finite automata
- ★ L is WMSO definable

- ★ (1) \Leftrightarrow (2) Kleene's Theorem.
- * (2) \Rightarrow (3) Given an Automata A, we define a WMSO formula ϕ_A s.t. $L(A) = L(\phi_A)$
- ★ (3) \Rightarrow (1) Given a WMSO formula ϕ , define a regular Language L_{ϕ} s.t. $L(\phi) = L_{\phi}$
 - − we can define a homomorphism $h : \{0, 1\}^{|\Sigma|} \to \Sigma$, and thereby a function from codings <u>w</u> to codings <u>w</u>
 - this homomorphism maps $\hat{L}(\phi)$ to $L(\phi)$ (exercise)

Büchi-Elgot-Trakhtenbrot

Theorem

Let $L \subseteq \Sigma^*$ be a language. The following are equivalent:

- ★ L is regular
- ★ L is recognizable by a finite automata
- ★ L is WMSO definable

- ★ (1) \Leftrightarrow (2) Kleene's Theorem.
- * (2) \Rightarrow (3) Given an Automata A, we define a WMSO formula ϕ_A s.t. $L(A) = L(\phi_A)$
- ★ (3) \Rightarrow (1) Given a WMSO formula ϕ , define a regular Language L_{ϕ} s.t. $L(\phi) = L_{\phi}$
 - − we can define a homomorphism $h : \{0, 1\}^{|\Sigma|} \to \Sigma$, and thereby a function from codings <u>w</u> to codings <u>w</u>
 - this homomorphism maps $\hat{L}(\phi)$ to $L(\phi)$ (exercise)
 - as the former is regular and $REG(\Sigma)$ closed under homomorphisms, the direction follows

Decision Problems

Decision Problems for WMSO

The Satisfiability Problem

- ★ Given: WMS0 formula ϕ
- ★ Question: is there α s.t $\alpha \models \phi$?

The Validity Problem

- ★ Given: WMS0 formula ϕ
- ★ Question: $\alpha \models \phi$ for all assignments α ?

Decision Problems for WMSO

The Satisfiability Problem

- ★ Given: WMS0 formula ϕ
- ★ Question: is there α s.t $\alpha \models \phi$?

The Validity Problem

- ★ Given: WMS0 formula ϕ
- ★ Question: $\alpha \models \phi$ for all assignments α ?

Theorem

Satisfiability and Validity are decidable for WMSO.

Proof Outline.

through the construction of corresponding DFAs, checking emptiness

- ★ Emptiness for an DFA A_{ϕ} is in PTIME (in the number $|A_{\phi}|$ of nodes of A_{ϕ})
- $\star\,$ the complexity of satisfiability/validity thus essentially depends on the size of ${\cal A}_{\phi}$

- ★ Emptiness for an DFA A_{ϕ} is in PTIME (in the number $|A_{\phi}|$ of nodes of A_{ϕ})
- $\star\,$ the complexity of satisfiability/validity thus essentially depends on the size of ${\cal A}_{\phi}$
- $\star~\mathcal{A}_{\phi}$ is constructed recursively on the structure of ϕ

- ★ Emptiness for an DFA A_{ϕ} is in PTIME (in the number $|A_{\phi}|$ of nodes of A_{ϕ})
- $\star\,$ the complexity of satisfiability/validity thus essentially depends on the size of ${\cal A}_{\phi}$
- $\star~\mathcal{A}_{\phi}$ is constructed recursively on the structure of ϕ
 - base cases $\phi = \top$, \bot , (x < y), X(y): DFAs of constant size

0(1)

- ★ Emptiness for an DFA A_{ϕ} is in PTIME (in the number $|A_{\phi}|$ of nodes of A_{ϕ})
- $\star\,$ the complexity of satisfiability/validity thus essentially depends on the size of ${\cal A}_{\phi}$
- $\star \; \mathcal{A}_{\phi}$ is constructed recursively on the structure of ϕ
 - base cases $\phi = \top$, \bot , (x < y), X(y): DFAs of constant size
 - disjunction $\phi = \psi_1 \lor \psi_2$: \mathcal{A}_{ϕ} DFA-union of \mathcal{A}_{ψ_1} and \mathcal{A}_{ψ_2}

Chría inventeurs du monde numérique

0(1)

 $0(|A_{l/1}| + |A_{l/2}|)$

- ★ Emptiness for an DFA A_{ϕ} is in PTIME (in the number $|A_{\phi}|$ of nodes of A_{ϕ})
- $\star\,$ the complexity of satisfiability/validity thus essentially depends on the size of ${\cal A}_{\phi}$
- $\star~\mathcal{A}_{\phi}$ is constructed recursively on the structure of ϕ
 - base cases $\phi = \top$, \bot , (x < y), X(y): DFAs of constant size
 - disjunction $\phi = \psi_1 \lor \psi_2$: \mathcal{A}_{ϕ} DFA-union of \mathcal{A}_{ψ_1} and \mathcal{A}_{ψ_2}
 - negations $\phi = \neg \psi$: \mathcal{A}_{ϕ} DA-complement of \mathcal{A}_{ψ}

0(1) $0(|A_{ll_1}| + |A_{ll_2}|)$ O(|B|

- ★ Emptiness for an DFA A_{ϕ} is in PTIME (in the number $|A_{\phi}|$ of nodes of A_{ϕ})
- $\star\,$ the complexity of satisfiability/validity thus essentially depends on the size of ${\cal A}_{\phi}$
- $\star \hspace{0.1 in} \mathcal{A}_{\phi}$ is constructed recursively on the structure of ϕ
 - base cases $\phi = \top$, \bot , (x < y), X(y): DFAs of constant size
 - disjunction $\phi = \psi_1 \lor \psi_2$: \mathcal{A}_{ϕ} DFA-union of \mathcal{A}_{ψ_1} and \mathcal{A}_{ψ_2}
 - negations $\phi = \neg \psi$: \mathcal{A}_{ϕ} DA-complement of \mathcal{A}_{ψ}
 - existentials $\phi = \exists x.\psi$ or $\phi = \exists X.\psi$: homomorphism application and determinisation $2^{|A_{\psi}|}$

0(1)

 $O(|\mathcal{B}|)$

 $0(|A_{ll_1}| + |A_{ll_2}|)$

- ★ Emptiness for an DFA A_{ϕ} is in PTIME (in the number $|A_{\phi}|$ of nodes of A_{ϕ})
- $\star\,$ the complexity of satisfiability/validity thus essentially depends on the size of ${\cal A}_{\phi}$
- $\star~\mathcal{A}_{\phi}$ is constructed recursively on the structure of ϕ
 - base cases $\phi = \top$, \bot , (x < y), X(y): DFAs of constant size
 - disjunction $\phi = \psi_1 \lor \psi_2$: \mathcal{A}_{ϕ} DFA-union of \mathcal{A}_{ψ_1} and \mathcal{A}_{ψ_2} $O(|\mathcal{A}_{\psi_1}| + |\mathcal{A}_{\psi_2}|)$
 - negations $\phi = \neg \psi$: \mathcal{A}_{ϕ} DA-complement of \mathcal{A}_{ψ}
 - existentials $\phi = \exists x.\psi$ or $\phi = \exists X.\psi$: homomorphism application and determinisation $2^{|A_{\psi}|}$

Theorem (Hardness)

Satisfiability and validity are in DTIME($2_{0(n)}^{c}$), where 2_{k}^{c} is a tower of exponentials $2^{2^{c}}$ o height k.

0(1)

 $O(|\mathcal{B}|)$

- ★ Emptiness for an DFA A_{ϕ} is in PTIME (in the number $|A_{\phi}|$ of nodes of A_{ϕ})
- $\star\,$ the complexity of satisfiability/validity thus essentially depends on the size of ${\cal A}_{\phi}$
- $\star~\mathcal{A}_{\phi}$ is constructed recursively on the structure of ϕ
 - base cases $\phi = \top$, \bot , (x < y), X(y): DFAs of constant size

0(1)

 $O(|\mathcal{B}|)$

- disjunction $\phi = \psi_1 \lor \psi_2$: \mathcal{A}_{ϕ} DFA-union of \mathcal{A}_{ψ_1} and \mathcal{A}_{ψ_2} $O(|\mathcal{A}_{\psi_1}| + |\mathcal{A}_{\psi_2}|)$
- negations $\phi = \neg \psi$: \mathcal{A}_{ϕ} DA-complement of \mathcal{A}_{ψ}
- existentials $\phi = \exists x.\psi$ or $\phi = \exists X.\psi$: homomorphism application and determinisation $2^{|A_{\psi}|}$

Theorem (Hardness)

Satisfiability and validity are in DTIME($2_{0(n)}^{c}$), where 2_{k}^{c} is a tower of exponentials $2^{2^{2^{c}}}$ o height k.

Theorem (Completeness)

Any language L decidable in time $DTIME(2_{O(n)}^{c})$ can be reduced (within polynomial time) to the satisfiability of formulas ϕ_w ($w \in L$) of size polynomial in |w|.