Advanced Logic

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2021/AL/

Martin Avanzini

B MASTER 7
5 I N Fo RM ATI QU E informatiques g#”mathématiques

UNIVERSITE COTE DAZUR 8% A —

Summer Semester 2021

http://www-sop.inria.fr/members/Martin.Avanzini/teaching/2021/AL/

Last Lecture

1. The class REG(X) of regular languages is the smallest class (i.e., set of) languages s.t.
11 @ € REG(X) and {a} € REG(X) for every a € ¥; and
12 ifL,M € REG(X) then L UM € REG(X),L - M € REG(Z) and L* € REG(Z).
2. Kleene's Theorem: The class of languages recognized by NFAs (DFAs) coincide with REG

3. finite automata yield decidable decision procedures

Word Emptyness Universality Inclusion Equivalence

DFA PTIME PTIME PTIME PTIME PTIME
NFA PTIME PTIME PSPACE PSPACE PSPACE

— state-space explosion through determinisation cannot be avoided

Today'’s Lecture

First Order-Logic Recap

* structures, formulas and satisfiability
Monadic Second-Order Logic

1. weak monadic second-order (WMSO0) logic
2. Regularity and WMSO definability

3. Decision problems

First-Order Logic Recap

First-Order Logic

*

*

*

*

letV = {x,y,...} beasetofvariables

letR ={P,Q,...}and F = {f,g,...} beavocabulary of predicate/function symbols

predicate and function symbols are equipped with an arityar: R U F - N

first-order terms and formulas over V, R and F are given by the following grammar:

s,tu=x | f(t, ... tan)
gy =T | L
| P(tr,....taepy) | s=t
| ovy | -¢
| 3x.¢

(terms)

(atomic truth values)
(predicates and equality)
(Boolean connectives)

(existential quantification)

First-Order Logic

* letV ={x,y,...} beasetofvariables
* letR ={P,Q,...}and F = {f,g,...} beavocabulary of predicate/function symbols
* predicate and function symbols are equipped with an arityar: R U F - N
* first-order terms and formulas over V, R and F are given by the following grammar:
s,tu=x | fltr, ta(p) (terms)
o =T | 1 (atomic truth values)

| P(ta,....tar(p)) | s=t (predicates and equality)

| GV Y | —¢ (Boolean connectives)

| Ix.¢ (existential quantification)

* further connectives definable:

pouEagvy sEtE(s=t) $AUE(=pV-y) VxoE-(Ixg)

First-Order Logic

* letV ={x,y,...} beasetofvariables
* letR ={P,Q,...}and F = {f,g,...} beavocabulary of predicate/function symbols
* predicate and function symbols are equipped with an arityar: R U F - N
* first-order terms and formulas over V, R and F are given by the following grammar:
s,tu=x | fltr, ta(p) (terms)
o =T | 1 (atomic truth values)

| P(ta,....tar(p)) | s=t (predicates and equality)

| GV Y | —¢ (Boolean connectives)

| Ix.¢ (existential quantification)

* further connectives definable:
Py =apVvy sELEa(s=t) pAYEa(=pV-y) Vxg = -(3x-9)

* toavoid parenthesis, we fix precedence - > A,v > IV

Free Variables, Open and Closed Formulas

* aquantifier 3x.¢ binds the variable x within ¢
* variables not bound are called free

* the set of variables free in ¢ is denoted by fv(¢)

fv(E(x.y)) = {xy} tv(@Ey.E(x.y)) ={x} fv(Vx3yE(x.y)) =2

Free Variables, Open and Closed Formulas

*

a quantifier Ix.¢ binds the variable x within ¢

variables not bound are called free

*

* the set of variables free in ¢ is denoted by fv(¢)
fv(E(x,y)) = {x,y} fv(Jy.E(x,y)) = {x} fv(Vx.3y.E(x,y)) = @

* the formulas without free variables are called sentences (or closed formulas)

*

otherwise they are called open

Free Variables, Open and Closed Formulas

*

a quantifier Ix.¢ binds the variable x within ¢
* variables not bound are called free

* the set of variables free in ¢ is denoted by fv(¢)
fv(E(x,y)) = {x,y} fv(Jy.E(x,y)) = {x} fv(Vx.3y.E(x,y)) = @

* the formulas without free variables are called sentences (or closed formulas)
* otherwise they are called open

* we consider formulas equal up to renaming of bound variables
— dy.E(x,y) isequal to 3z.E(x, z) but neither to Jy.E(x, z) nor Jy.E(z, y)

Satisfiability, Informally

* aformulais evaluated to a truth value by assigning meaning to predicates and
functions

Satisfiability, Informally

* aformulais evaluated to a truth value by assigning meaning to predicates and
functions

* a (first-order) structure (or model) M = (D,Z) on a vocabulary R consists of
- anon-empty domain D; and

- aninterpretation Z(P) c D*"
- aninterpretation Z(f) : 0*”

) for each predicate P e R
— D for each functionf € F

Satisfiability, Informally

* aformulais evaluated to a truth value by assigning meaning to predicates and
functions

* a (first-order) structure (or model) M = (D,Z) on a vocabulary R consists of
- anon-empty domain D; and

- aninterpretation Z(P) c D*"
- aninterpretation Z(f) : 0*”

) for each predicate P e R
— D for each functionf e F
* sentences describes properties of structures, consider e.g,, Vx.3y.E(x,y):

- ondirected graphs, with E interpreted as “edge": every node has a successor
— on natural numbers, with E interpreted as “<": for every number there is a strictly bigger one

Satisfiability, Informally

* aformulais evaluated to a truth value by assigning meaning to predicates and
functions

* a (first-order) structure (or model) M = (D,Z) on a vocabulary R consists of
- anon-empty domain D; and

- aninterpretation Z(P) c D*"
- aninterpretation Z(f) : 0*”

) for each predicate P e R
— D for each functionf € F

* sentences describes properties of structures, consider e.g,, Vx.3y.E(x,y):

- ondirected graphs, with E interpreted as “edge": every node has a successor
— on natural numbers, with E interpreted as “<": for every number there is a strictly bigger one

* ifaformula ¢ holds true in a model M, we write
ME ¢

and say M models ¢, or that ¢ is satisfiable with M

Examples

1. consider the formula ¢ = Vx.3y.E(x,y) and E interpreted by ...

@) @) O @)
I T
O<«<—0O O<«<—0O

Gy Gs Gs

- wehave G, F ¢, G, ¥ pand Gs i ¢

Examples

1. consider the formula ¢ = Vx.3y.E(x,y) and E interpreted by ...

@) @) O @)
I T
O<«<—0O O<«<—0O

Gy Gs Gs

- wehave G, F ¢, G, # pand G ¥ ¢

2. consider the formula Jxq, x2, X3.(X1 # X2 A Xz # X3 A X3 # Xq)

— the formula is satisfiable by all models with three objects in the domain

Consequence, Equivalence and Validity

DE ¢

if all models satisfying all ¢; € @ also satisfy ¢
- Vx.P(x) = Q(x); Ix.P(x) E Ix.Q(x)

Consequence, Equivalence and Validity

DE ¢

if all models satisfying all ¢; € @ also satisfy ¢
- Vx.P(x) = Q(x); Ix.P(x) E Ix.Q(x)

* two formulas ¢ and ¢ are equivalent, in notation
P=y

ifg Fyandy F ¢
- Vx.P(x) = Q(x) = Vx.=Q(x) — =P(x)

Consequence, Equivalence and Validity

DE ¢

if all models satisfying all ¢; € @ also satisfy ¢
- Vx.P(x) = Q(x); Ax.P(x) E Ix.Q(x)

* two formulas ¢ and ¢ are equivalent, in notation
P=y
ifg Fyandy F ¢
- Vx.P(x) = Q(x) = Vx.=Q(x) — =P(x)
* aformula ¢ is valid if it is satisfiable for all models, in notation

F¢

— this is to say that —¢ is unsatisfiable
— theformula Vx.x =x istrivially valid

Satisfiability, Formally

* an assignment (or valuation) for ¢ wrt. a model M = (D,7) is a function @ : fv(¢) — D

Satisfiability, Formally

* an assignment (or valuation) for ¢ wrt. a model M = (D,7) is a function @ : fv(¢) — D
* together with a model, we can now interpret open terms t in its domain D

Zo(x) 2a(x) Zo(f(t..... 1)) = Z(A(Za(t)... .. Za(tn))

Satisfiability, Formally

* an assignment (or valuation) for ¢ wrt. a model M = (D,7) is a function @ : fv(¢) — D
* together with a model, we can now interpret open terms t in its domain D

Zo(x) 2a(x) Z(f(tr,....tn)) 2 Z(A(Za(tr), Za(tn))
* forasentence ¢, we can now define M E ¢ formally as M; @ F ¢ where
M,aET M;a L

M;a EP(ty,....t,) = (Zo(ty),....I,u(ty)) € Z(P)
M;aEs=t = T,(t) =Z,(t)

M;aFE ¢Vvy = MiaEdorM,aFy

M;a E —¢ = Mal g

M;a E dx.¢ = M;a[x— d]E ¢forsomede D

Satisfiability, Formally

* an assignment (or valuation) for ¢ wrt. a model M = (D,7) is a function @ : fv(¢) — D
* together with a model, we can now interpret open terms t in its domain D

Zo(x) 2 a(x) Zo(f(tr,....t5)) 2 Z(A(Za(tr), Zo(ts))
* forasentence ¢, we can now define M E ¢ formally as M; @ F ¢ where
M,aET M;a L

M;a EP(ty,....ty) = (Zo(t), ... To(ts)) € Z(P)
M;aEs=t = T,(t) =Z,(t)
M;aFE ¢Vvy = MiaEdorM,aFy
M;a F —¢ = Mal g
M;a E Ix.¢ < M;a[x— d]E ¢forsomedeD
Example
(a)—(b) GE Ix.3y.E(xy) = G: @ F Ix.3y.E(x.y)

I g l <= G;x—akF Jy.E(x,y)
=G x—ay-bEEXY)

@%@ & (a,b) € Z(E)

Monadic Second-Order Logic

Monadic Second-Order Logic

Second Order-Logic
* in first-order logic, quantification confined to elements of the domain

* in second-order logic, quantification is permitted on relations
- Vx.IXVyX(x,y) @ x=y

Monadic Second-Order Logic

Second Order-Logic
* in first-order logic, quantification confined to elements of the domain

* in second-order logic, quantification is permitted on relations
- Vx.IXVyX(x,y) @ x=y

Monadic Second-Order Logic
* A predicate symbol P is monadic if its arity is 1

Monadic Second-Order Logic

Second Order-Logic
* in first-order logic, quantification confined to elements of the domain

* in second-order logic, quantification is permitted on relations
- Vx.IXVyX(x,y) @ x=y

Monadic Second-Order Logic
* A predicate symbol P is monadic if its arity is 1

* monadic second-order logic (MSO) confines second-order quantification to monadic
predicates

- monadic: Vx.3Y.Vy.Y(y) o x=y
- non-monadic: Vx.IX.VyX(x,y) & x=y

Monadic Second-Order Logic

Second Order-Logic
* in first-order logic, quantification confined to elements of the domain

* in second-order logic, quantification is permitted on relations
- Vx.IXVyX(x,y) @ x=y

Monadic Second-Order Logic
* A predicate symbol P is monadic if its arity is 1

* monadic second-order logic (MSO) confines second-order quantification to monadic
predicates

- monadic: Vx.3Y.Vy.Y(y) o x=y
- non-monadic: Vx.IX.VyX(x,y) & x=y

* quantification over sets, but not over arbitrary predicates
— on graphs: quantification over nodes but not edges

Theories

* Atheoryisaset T of sentences such that for any sentence ¢, if TF ¢,theng¢ € T

— atheory is closed under logical consequence

Theories

* Atheoryisaset T of sentences such that for any sentence ¢, if TF ¢,theng¢ € T

— atheory is closed under logical consequence

* Atheoryis decidable if the problem of belonging to T is decidable

— we have a decision procedure for reasoning about T

Theories

* Atheoryisaset T of sentences such that for any sentence ¢, if TF ¢,theng¢ € T

— atheory is closed under logical consequence

* Atheoryis decidable if the problem of belonging to T is decidable

— we have a decision procedure for reasoning about T

* Atheory Tis complete if for any sentence ¢ we have ¢ € Tor —=¢ € T.

— atheory complete theory speaks about all formulas

Theories

* Atheoryisaset T of sentences such that for any sentence ¢, if TF ¢,theng¢ € T

— atheory is closed under logical consequence

* Atheoryis decidable if the problem of belonging to T is decidable

— we have a decision procedure for reasoning about T

* Atheory Tis complete if for any sentence ¢ we have ¢ € Tor —=¢ € T.

— atheory complete theory speaks about all formulas

* foraclass of structure C, the theory of C is the set of sentences which are valid on all
MecC

Examples

1. The theory of Presburger Arithmetic, i.e, the theory of natural numbers with addition
only is decidable

- Vndm.(n=m+m)v(n=m+m+1)
— Presburger Arithmetic admits a quantifier elimination procedure

Examples

1. The theory of Presburger Arithmetic, i.e,, the theory of natural numbers with addition
only is decidable

- Vndm.(n=m+m)v(n=m+m+1)
— Presburger Arithmetic admits a quantifier elimination procedure

2. The theory of Peano Arithmetic, i.e, the theory of natural numbers is undecidable

— Godels incompleteness theorem!

Examples

1. The theory of Presburger Arithmetic, i.e,, the theory of natural numbers with addition
only is decidable
- Vndm.(n=m+m)v(n=m+m+1)
— Presburger Arithmetic admits a quantifier elimination procedure

2. The theory of Peano Arithmetic, i.e, the theory of natural numbers is undecidable

— Godels incompleteness theorem!

3. The theory of graphs is undecidable

Examples

1. The theory of Presburger Arithmetic, i.e,, the theory of natural numbers with addition
only is decidable

- Vndm(n=m+m)v(in=m+m+1)

— Presburger Arithmetic admits a quantifier elimination procedure

2. The theory of Peano Arithmetic, i.e, the theory of natural numbers is undecidable

— Godels incompleteness theorem!

3. The theory of graphs is undecidable

Theorem (Biichi)

The theory of monadic second-order logic over (N, <) is decidable

Theorem (Rabin)

The theory of monadic second-order logic over trees is decidable

A First Step Towards Rabin’s and Biichi’s Result

consider only models over N,

ordered by <

Theorem (Blichi-Elgot-Trakhtenbrot)

The theory of weak monadic second-order logic over (N, <) is decidable

quantification over finite sets

Weak Monadic Second-Order Logic

Weak Monadic Second-Order Logic (WMSO)

* letV; = {x,y,...} beasetof first-order variables (ranging over N)
* letV, = {X,Y,...} be monadic second-order variables (ranging over finite sets of N)
* R ={<}and F = @ is fixed, with ar(<) =2

* the set of WMSO formulas over V;, V; is given by the following grammar:

gy =T | L | x<y | X) | gvul-¢ | 3xo | IXg

Weak Monadic Second-Order Logic (WMSO)

let V) = {x,y,...} beasetof first-order variables (ranging over N)

*

let V> = {X,Y,...} be monadic second-order variables (ranging over finite sets of N)

*

* R ={<}and F = @ is fixed, with ar(<) =2

* the set of WMSO formulas over V;, V; is given by the following grammar:
oy =T | L | X<y | X(x) | dVY | = | dx.¢ | aX.¢

further definable connectives

*

VX.p 2 =(IX=p) x=0=2=(Jyy<x) x<y=a(y<x) x=y= (exercise)

Weak Monadic Second-Order Logic (WMSO)

* letV; = {x,y,...} beasetof first-order variables (ranging over N)
* letV, = {X,Y,...} be monadic second-order variables (ranging over finite sets of N)
* R ={<}and F = @ is fixed, with ar(<) =2

* the set of WMSO formulas over V;, V; is given by the following grammar:
oy =T | L | X<y | X(x) | dVY | = | dx.¢ | aX.¢

further definable connectives

*

VX.p 2 =(IX=p) x=0=2=(Jyy<x) x<y=a(y<x) x=y= (exercise)

weak: second-order variables refer to finite sets

»*

- X(y) means informally y € X where X is finite set over N
- FaIXVxX(x) - yx<yAX(y) a(X) =
- FAX(Vxx=0 - X)) A (VxX(x) > dyx<ynaX(y))

Satisfiability

* since the model (N, {<}) is fixed, the valuation of a formula depends only on an
assignment «

* « maps first-order variables x € V; to N, and second-order variables X € V- to finite
subsets of N

Satisfiability

* since the model (N, {<}) is fixed, the valuation of a formula depends only on an
assignment «

* « maps first-order variables x € V; to N, and second-order variables X € V- to finite
subsets of N

* satisfiability relation takes the form a F ¢ and is inductively defined as expected:

aET alf L

aEx<y = a(x) < aly)

a E X(x) = a(x) € a(X)

aEoVy = akFgoraky

akF —¢ = alg

a E Ix.¢ = a[x— n]E ¢forsomeneN

a E3IX.P = a[x+— M]E ¢forsomefiniteM C N

Connections to Formal Languages

* to encode words w € ¥ over alphabet X we use to kinds of variables
— first-order variables x € V) refer to positions within w
— for each letter a € X, second-order variables P, €)% indicate the positions of ain w

w abba

P, {0, 3
Py { 1,2

Connections to Formal Languages

* to encode words w € ¥ over alphabet X we use to kinds of variables
— first-order variables x € V) refer to positions within w
— for each letter a € X, second-order variables P, €)% indicate the positions of ain w

w abba
P, {O, 3 } abba
Py { 1,2 }

* thereby each word w € =¥ uniquely determines an assignment, in notation w

Connections to Formal Languages

* to encode words w € ¥ over alphabet X we use to kinds of variables
— first-order variables x € V) refer to positions within w
— for each letter a € X, second-order variables P, €)% indicate the positions of ain w

w abba
P, {O, 3 } abba
Py { 1,2 }

* thereby each word w € =™ uniquely determines an assignment, in notation w
Examples
* ab F Ix.P,(x)

* ab # 3x.Pc(x)

* ablf Ix.3y.3z.(z2#y) A (y#2) A (Z2#X)

* ab ¥ Ix.Ay.x <y A Py(x) A P,(y)

* ab K IX.Vx.(X(x) = Py(x)) Ady.y =0 A X(y)

Language of a WMSO Formula
» foralphabet ¥ and WMSO formula ¢ sit. fv(¢) € {P, | a € 2}, we let
L(g) 2 {we " |wF ¢}

denote the language of ¢
* alanguage L is WMSO definable iff there is some ¢ as above st. L = L(¢)

Language of a WMSO Formula

» foralphabet ¥ and WMSO formula ¢ sit. fv(¢) € {P, | a € 2}, we let
L(¢) 2 {wex" | wk ¢}

denote the language of ¢
* alanguage L is WMSO definable iff there is some ¢ as above sit. L = L(¢)

Examples

¢ L(¢)

Ax.P,(x)

Ax.y.3z.(z+y)A(y #2) A (2 # X)
Ax.Ay.x <y A Pp(x) A Py(y)
AXVX.(X(X) = Py(x)) A Jy.y = 0 A X(y)

Language of a WMSO Formula

» foralphabet ¥ and WMSO formula ¢ sit. fv(¢) € {P, | a € 2}, we let
L(¢) 2 {wex" | wk ¢}

denote the language of ¢
* alanguage L is WMSO definable iff there is some ¢ as above sit. L = L(¢)

Examples
¢ L(¢)
Ax.P,(x) {vaw | v,w € =%}
Ix.y.3z.(z+y)A(y#2) A (z2# X) ?
Ix.Ay.x <y A Py(x) A P.(y) ?

AXVX.(X(x) = Py(x)) Ady.y =0 A X(y) ?

Language of a WMSO Formula

» foralphabet ¥ and WMSO formula ¢ sit. fv(¢) € {P, | a € 2}, we let
L(¢) 2 {wex" | wk ¢}

denote the language of ¢
* alanguage L is WMSO definable iff there is some ¢ as above sit. L = L(¢)

Examples
¢ L(¢)
Ax.P,(x) {vaw | v,w € =%}
Ix.y.3z.(z+y)A(y#2) A (z2# X) {w]| |w| =3}
Ix.Ay.x <y A Py(x) A P.(y) ?

AXVX.(X(x) = Py(x)) Ady.y =0 A X(y) ?

Language of a WMSO Formula

» foralphabet ¥ and WMSO formula ¢ sit. fv(¢) € {P, | a € 2}, we let
L(¢) 2 {we L™ | wk ¢}

denote the language of ¢
* alanguage L is WMSO definable iff there is some ¢ as above sit. L = L(¢)

Examples
¢ L(¢)
Ax.P,(x) {vaw | v,w € =%}
Ax.Jy.Az.(z+y) A (y#2) A (2 #X) {w] |w| =3}
Ix.Ay.x <y A Py(x) AP, (y) {ubvaw | u,v,w € 2}

AXVX.(X(x) = Ppy(x)) Ady.y =0 A X(y) ?

Language of a WMSO Formula

» foralphabet ¥ and WMSO formula ¢ sit. fv(¢) € {P, | a € 2}, we let
L(¢) 2 {we L™ | wk ¢}

denote the language of ¢
* alanguage L is WMSO definable iff there is some ¢ as above sit. L = L(¢)

Examples
¢ L(¢)
Ax.P,(x) {vaw | v,w € =%}
Ax.Jy.Az.(z+y) A (y#2) A (2 #X) {w] |w| =3}
Ix.Ay.x <y A Py(x) AP, (y) {ubvaw | u,v,w € 2}

AXVX.(X(X) = Po(x)) Adyy=0AX(Yy) {ow]|weZX"}

Regularity and WMSO Definability

Bluchi-Elgot-Trakhtenbrot

Theorem

Let L < =¥ be a language. The following are equivalent:
* Lisregular
* L is recognizable by a finite automata

* L is WMSO definable

Proof Outline.
* (1) & (2) Kleene's Theorem.
* (2) = (3) Given an Automata A, we define a WMSO formula ¢ 4 st. L(A) = L(¢4)
* (3) = (1) Given a WMSO formula ¢, define a regular Language L, sit. L(¢) = L,

Bluchi-Elgot-Trakhtenbrot

Theorem

Let L < =¥ be a language. The following are equivalent:
* Lisregular
* L is recognizable by a finite automata

* L is WMSO definable

Proof Outline.

* (1) < (2) Kleene's Theorem.

* (2) = (3) Given an Automata A, we define a WMSO formula ¢ 4 sit. L(A) = L(¢4)
* (3) = (1) Given a WMSO formula ¢, define a regular Language L, sit. L(¢) = L,

From Automatons to Formulas

Encoding for given A = (Q, X, q,, 6, F)
* first-order m, n, ... variables refer to positions in input words w

* for a € X: second-order variables P, encode words: as before

» for g € Q: second-order variables X, encode run: X,(m) < g, =

ap

From Automatons to Formulas

Encoding for given A = (Q, X, q,, 6, F)
* first-order m, n, ... variables refer to positions in input words w

* for a € X: second-order variables P, encode words: as before

» for g € Q: second-order variables X, encode run: X,(m) < g, =

Example example run piqi)plr
Pa { 0 }
Py { 1, 2 }
Xp {(_1) 1 }
X, { 0 }
X { 2}

ap

From Automatons to Formulas

Encoding for given A = (Q, X, q,, 6, F)
* first-order m, n, ... variables refer to positions in input words w

* for a € X: second-order variables P, encode words: as before

ap

» for g € Q: second-order variables X, encode run: X,(m) < g, 20 q

Example example run piqi)plr
Pa { 0 }
Py { 1, 2 }
Xp {(_1) 1 }
X, { 0 }
X { 2}

* ultimately, ¢ 4 = 3X;,....3X,, w4 with ¢ 4 linking X, to A and word variables P,.

Linking Run-Variables

for all word lengths len, we define:

* Wsetp = Ym.m < len — (\/ o Xg(m)) A (A4 ~(Xg(m) A X,(m)))

— reading m < len symbols ends up in a state, and this state is unique

Linking Run-Variables

for all word lengths len, we define:

* Wsetp = Ym.m < len — (\/ o Xg(m)) A (A4 ~(Xg(m) A X,(m)))

— reading m < len symbols ends up in a state, and this state is unique

* Yinitial = len =0 v \/aez,pea(q,,a)(Pa(O) A Xp(o))

- encoding of the initial transition

Linking Run-Variables

for all word lengths len, we define:

* Wsetp = Ym.m < len — (\/ o Xg(m)) A (A4 ~(Xg(m) A X,(m)))

— reading m < len symbols ends up in a state, and this state is unique

* Yinitial = len =0 v \/aez,pea(q,,a)(Pa(O) A Xp(o))

- encoding of the initial transition

* Ypn 2Vmm<len > VYnn=m+1-\/ Xq(m) A Py(n) A Xp(n))

aez,qeo,peé(q,a)(
— encoding of intermediate transitions

Linking Run-Variables

for all word lengths len, we define:

* Wsetp = Ym.m < len — (\/ o Xg(m)) A (A4 ~(Xg(m) A X,(m)))

— reading m < len symbols ends up in a state, and this state is unique

* Yinitial = len =0 v \/aez,pea(q,,a)(Pa(O) A Xp(o))

- encoding of the initial transition

* Ypn 2Vmm<len > VYnn=m+1-\/ Xq(m) A Py(n) A Xp(n))

an,qu,ped(q,a)(
— encoding of intermediate transitions
* ¢accept = (len=0A"g € F')vdmlen=m+1A \/qu(Xq(m))

- encoded transition of word ag . . . a), of length m + 1lands in a final state

¢4 2 Ay, -3,

Vlen. (/\ =P.(len) A Ym. \/ P,(m) > m<len|— Ysetup N Vinitial N Yrun N Yaccept

aeX a€eXx

Bluchi-Elgot-Trakhtenbrot

Theorem

Let L < =¥ be a language. The following are equivalent:
* Lisregular
* L is recognizable by a finite automata

* L is WMSO definable

Proof Outline.

* (1) < (2) Kleene's Theorem.
* (2) = (3) Given an Automata .4, we define a WMSO formula ¢ 4 st. L(A) = L(¢4)

— ¢4 given on previous slide satisfies the case

* (3) = (1) Given a WMSO formula ¢, define aregular Language L, st. L(¢) = L

Bluchi-Elgot-Trakhtenbrot

Theorem

Let L < =¥ be a language. The following are equivalent:
* Lisregular
* L is recognizable by a finite automata

* L is WMSO definable

Proof Outline.

* (1) < (2) Kleene's Theorem.
* (2) = (3) Given an Automata A, we define a WMSO formula ¢ 4 st. L(A) = L(¢ 4)

— ¢4 given on previous slide satisfies the case

* (3) = (1) Given a WMSO formula ¢, define a regular Language L, st. L(¢) = L,

From Formulas to Regular Languages

Encoding for given ¢ over Vo = {X1,.... Xp}tand V; = {Vms1s .. s Ymant

n+m

= thealphabet X, is given by m + n bit-vectors, i.e, £, = {0,1}

From Formulas to Regular Languages

Encoding for given ¢ over Vs = {X1,.... Xntand Vi = {Ymats- -+ Ymant
» the alphabet = is given by m + n bit-vectors, i.e, X, £ {0,1}"""

* word Z}‘, can then be seen as a bit-matrix, encoding a valuation a:
- rows 1 < i< mencodevaluations of X; € V>: 1atcolumni1<j < |w| & je a(X))

- rowsm +1<i<m+ nencodevaluationsof y; € V;: 1atcolumni<j< |w| < j=a(y)

% a(v) w[0] w[1] w[2] w[3] w[4]
X {0,2} 1 0 1 0 0
X, {1,3,4} = 0 1 0 1 1
y3 3 0 ol |o 1 0
v, O 1 0 0 0 0

From Formulas to Regular Languages

Encoding for given ¢ over Vs = {X1,.... Xntand Vi = {Ymats- -+ Ymant
» the alphabet = is given by m + n bit-vectors, i.e, X, £ {0,1}"""

* word Z}‘, can then be seen as a bit-matrix, encoding a valuation a:
- rows 1 < i< mencodevaluations of X; € V>: 1atcolumni1<j < |w| & je a(X))

- rowsm +1<i<m+ nencodevaluationsof y; € V;: 1atcolumni<j< |w| < j=a(y)

% a(v) w[0] w[1] w[2] w[3] w[4]
X {0,2} 1 0 1 0 0
X, {1,3,4} = 0 1 0 1 1
y3 3 0 ol |o 1 0
v, O 1 0 0 0 0

» foravaluation « for ¢, let us write @ € X, for its encoding

The Main Lemma

let us denote by [(¢) € > the language of coded valuations making ¢ true:

L(g) 2 {a|aF ¢}

The Main Lemma

let us denote by [(¢) € > the language of coded valuations making ¢ true:
L) 2 {a|aF ¢}

Lemma

For any WMSO formula ¢, L(¢) is reqular

The Main Lemma

let us denote by [(¢) € > the language of coded valuations making ¢ true:
L) 2 {a|aF ¢}

Lemma
For any WMSO formula ¢, L(¢) is reqular

Proof Outline.
By induction on the structure of ¢.

The Main Lemma

let us denote by [(¢) € > the language of coded valuations making ¢ true:
L) 2 {a|aF ¢}

Lemma
For any WMSO formula ¢, L(¢) is reqular

Proof Outline.
By induction on the structure of ¢.
* ¢ =T,¢ = L:Inthese cases L(¢) is 2; or @, thus regular.

The Main Lemma

let us denote by [(¢) € > the language of coded valuations making ¢ true:
L) 2 {a|aF ¢}

Lemma
For any WMSO formula ¢, L(¢) is reqular

Proof Outline.
By induction on the structure of ¢.
* ¢ =T,¢ = L:Inthese cases L(¢) is 2; or @, thus regular.

o= teermentio) = (2) (2)2) () (Deritor=(2) ()" (3) (2

of them regular.

e o=tpnen o) =(2)(2)) (2)((2) 2)) s v

The Main Lemma

let us denote by L(¢) ¢ > the language of coded valuations making ¢ true:
L) 2 {a|aF ¢}

Lemma
For any WMSO formula ¢, L(¢) is reqular

Proof Outline.
By induction on the structure of ¢.
* ¢ =T,¢ = L:Inthese cases L(¢) is 2;} or @, thus regular.

o= teermentio) = (2) (2)2) () (Deritor=(2) ()" (3) (2

of them regular.

e o=tpnen o) =(2)(2)) (2)((2) 2)) s v

* to be continued ...

Homomorphisms

Consider h : ¥ — I'" and extend it to words w by replacing each letter a in w by h(w):
h(e) £ € h(aw) £ h(a) - h(w)

= each function h : ©* — I'" defined this way is called a homomorphism

Homomorphisms

Consider h : ¥ — I'" and extend it to words w by replacing each letter a in w by h(w):
h(e) £ € h(aw) £ h(a) - h(w)

= each function h : ©* — I'" defined this way is called a homomorphism

» foralanguage L € =" welet h(L) 2 {h(w) | w € L} be the application of hto L

Homomorphisms

Consider h : ¥ — I'" and extend it to words w by replacing each letter a in w by h(w):
h(e) £ € h(aw) £ h(a) - h(w)

= each function h : ©* — I'" defined this way is called a homomorphism
» foralanguage L € =" welet h(L) 2 {h(w) | w € L} be the application of hto L

= foralanguage L € ' we let h_1(L) 2 {w | h(w) € L} be the inverse application of h to
L

Homomorphisms

Consider h : ¥ — I'" and extend it to words w by replacing each letter a in w by h(w):
h(e) £ € h(aw) £ h(a) - h(w)

= each function h : ©* — I'" defined this way is called a homomorphism

» foralanguage L € =" welet h(L) 2 {h(w) | w € L} be the application of hto L

» foralanguage L < I'" we let h_1(L) 2 {w | h(w) € L} be the inverse application of h to
L

Lemma (Closure of REG(X) under homomorphism)

The set of reqular languages is closed under (inverse) applications of homomorphisms.

Example

For1<i<k,letdel; : {0, 1}k - {0, 1}"—1 delete the i-th entry of its argument, e.g,,

R SN RO

Example

For1<i<k,letdel; : {0, 1}k - {0, 1}"—1 delete the i-th entry of its argument, e.g,,

R Y R
i) -GG

and thus

N

O = O

Example

For1<i<k,letdel; : {0, 1}k - {0, 1}k_1 delete the i-th entry of its argument, e.g,,

R SN RO

R R R DR R

Concretely, for WMSO formulas ¢ over Vo = {X1, ..., X}, Vi = {Vms1s- - > Yman}:

*

o

0
1
0

O O

Example

For1<i<k,letdel; : {0, 1}k - {0, 1}k_1 delete the i-th entry of its argument, e.g,,

R SN RO

and thus
oo*lo* (1) [0V 0* 1* /1\/0\" /1\/1
wnl [£)2) I w0 ()
Concretely, for WMSO formulas ¢ over Vo = {X1, ..., X}, Vi = {Vms1s- - > Yman}:
x for1<i=<n, de’i,n+m(£(¢))= delinim({a | @ F ¢})

~ {B | B[X; = S]F ¢ forsome S c N} = L(3X:.0)

*

o

0
1
0

O O

Example

For1<i<k,letdel; : {0, 1}k - {0, 1}k_1 delete the i-th entry of its argument, e.g,,

R SN RO

and thus
oo*lo* (1) [0V 0* 1* /1\/0\" /1\/1
wnl [£)2) I w0 ()
Concretely, for WMSO formulas ¢ over Vo = {X1, ..., X}, Vi = {Vms1s- - > Yman}:
x for1<i=<n, de’i,n+m(£(¢))= delinim({a | @ F ¢})

~ {B | B[X; = S]F ¢ forsome S € N} = L(3X;.¢)

*

o
O O

0
1
0

* inversely, del[11+n+m(f(¢)) = {a[X~ S] | a E ¢ and S c N} extends valid assignments

Example

For1<i<k,letdel; : {0, 1}k - {0, 1}k_1 delete the i-th entry of its argument, e.g,,

R SN RO

and thus
oo*lo* (1) [0V 0* 1* /1\/0\" /1\/1
wnl [£)2) I w0 ()
Concretely, for WMSO formulas ¢ over Vo = {X1, ..., X}, Vi = {Vms1s- - > Yman}:
x for1<i=<n, de’i,n+m(£(¢))= delinim({a | @ F ¢})

~ {B | B[X; = S]F ¢ forsome S € N} = L(3X;.¢)

*

o
O O

0
1
0

* inversely, del[11+n+m(f(¢)) = {a[X~ S] | a E ¢ and S c N} extends valid assignments

* similar for first order variablesy; (m+1<i<m+n)

Example

For1<i<k,letdel; : {0, 1}k - {0, 1}k_1 delete the i-th entry of its argument, e.g,,

R SN RO

and thus
oo*lo* (1) [0V 0* 1* /1\/0\" /1\/1
wnl [£)2) I w0 ()
Concretely, for WMSO formulas ¢ over Vo = {X1, ..., X}, Vi = {Vms1s- - > Yman}:
x for1<i=<n, de’i,n+m(£(¢))= delinim({a | @ F ¢})

~ {B | B[X; = S]F ¢ forsome S € N} = L(3X;.¢)

*

o
O O

0
1
0

* inversely, del[11+n+m(f(¢)) = {a[X~ S] | a E ¢ and S c N} extends valid assignments

* similar for first order variablesy; (m+1<i<m+n)
* Attention: One has to be slightly more careful with codings.

@) e oot

The Main Lemma (Continued)

Lemma
For any WMSO formula ¢, L(¢) is reqular

Proof Outline.

* =y Vi
~ by induction hypothesis, L £ () and L, 2 L(¢>) are regular
— Ly and L, speak about assignments to variables in ¢4 and v

inverse applications of del; . extends these codings to valuations over fv(y; Vv y;)

their union yields L(y4 v ¢,) and is thus regular

The Main Lemma (Continued)

Lemma
For any WMSO formula ¢, L(¢) is reqular

Proof Outline.

* =y Vi
~ by induction hypothesis, L £ () and L, 2 L(¢>) are regular
— Ly and L, speak about assignments to variables in ¢4 and v

inverse applications of del; . extends these codings to valuations over fv(y; Vv y;)
— their union yields L(y; v ¢,) and is thus regular

* ¢ = =y Then [(¢) = L(y) N Lyaiia
= Lyalid € REG constrains X4 to valid codings (e.g, for FO variables, only one bit is set)

— by induction hypothesis and closure properties of REG, L(¢) is valid

The Main Lemma (Continued)

Lemma

For any WMSO formula ¢, L(¢) is reqular

Proof Outline.

* =y Vi
~ by induction hypothesis, L £ () and L, 2 L(¢>) are regular
— Ly and L, speak about assignments to variables in ¢4 and v

inverse applications of del; . extends these codings to valuations over fv(y; Vv y;)
— their union yields L(y; v ¢,) and is thus regular

* ¢ = =y Then [(¢) = L(y) N Lyaiia
= Lyalid € REG constrains X4 to valid codings (e.g, for FO variables, only one bit is set)
— by induction hypothesis and closure properties of REG, L(¢) is valid

*x ¢ = 3AX;.y or ¢ = y;.y: from induction hypothesis, using homomorphism del; . to drop
the rows referring to X; or y;; taking care of trailing zero-vectors (see previous slide)

Bluchi-Elgot-Trakhtenbrot

Theorem
Let L ¢ 2" be a language. The following are equivalent:

* Lisregular
* L is recognizable by a finite automata

* L is WMSO definable

Proof Outline.

* (1) < (2) Kleene's Theorem.

* (2) = (3) Given an Automata .4, we define a WMSO formula ¢ 4 s.t. L(A) = L(¢4)
* (3) = (1) Given a WMSO formula ¢, define aregular Language L, st. L(¢) = L,

— we can define a homomorphism h : {0, 1}IEI — X, and thereby a function from codings « to
codings w
— this homomorphism maps L(¢) to L(¢) (exercise)

Bluchi-Elgot-Trakhtenbrot

Theorem
Let L ¢ 2" be a language. The following are equivalent:

* L isregular
* L is recognizable by a finite automata
* L is WMSO definable

Proof Outline.

* (1) < (2) Kleene's Theorem.

* (2) = (3) Given an Automata A, we define a WMSO formula ¢ 4 s.t. L(A) = L(¢ 4)
* (3) = (1) Given a WMSO formula ¢, define a regular Language L st. L(¢) = L,

— we can define a homomorphism h : {0, 1}IEI — X, and thereby a function from codings « to
codings w

— this homomorphism maps L(¢) to L(¢) (exercise)

— as the former is regular and REG(X) closed under homomorphisms, the direction follows

Decision Problems

Decision Problems for WMSO

The Satisfiability Problem The Validity Problem
* Given: WMSO formula ¢ * Given: WMSO formula ¢
* Question: isthereasta F ¢? * Question: a F ¢ for all assignments a?

Decision Problems for WMSO

The Satisfiability Problem The Validity Problem

* Given: WMSO formula ¢ * Given: WMSO formula ¢

* Question: isthereasta E ¢? * Question: @ F ¢ for all assignments a?
Theorem

Satisfiability and Validity are decidable for WMSO.

Proof Outline.
through the construction of corresponding DFAs, checking emptiness

Complexity

» Emptiness foran DFA A, is in PTIME (in the number |.A,| of nodes of A,)
» the complexity of satisfiability/validity thus essentially depends on the size of A,

Complexity

» Emptiness foran DFA A, is in PTIME (in the number |.A,| of nodes of A,)

» the complexity of satisfiability/validity thus essentially depends on the size of A,
* A, is constructed recursively on the structure of ¢

Complexity

» Emptiness foran DFA A, is in PTIME (in the number |.A,| of nodes of A,)

» the complexity of satisfiability/validity thus essentially depends on the size of A,

* A, is constructed recursively on the structure of ¢
- basecases¢ = T, L, (x < y), X(y): DFAs of constant size o(1)

Complexity

» Emptiness foran DFA A, is in PTIME (in the number |.A,| of nodes of A,)

» the complexity of satisfiability/validity thus essentially depends on the size of A,

* A, is constructed recursively on the structure of ¢
- basecases¢ = T, L, (x < y), X(y): DFAs of constant size o(1)

- disjunction ¢ = y» V ¢: A, DFA-union of A, and A, O(| Ay, | + [Ay,)

Complexity

» Emptiness foran DFA A, is in PTIME (in the number |.A,| of nodes of A,)

» the complexity of satisfiability/validity thus essentially depends on the size of A,

* A, is constructed recursively on the structure of ¢
- basecases¢ = T, L, (x < y), X(y): DFAs of constant size o(1)
- disjunction ¢ = y» V ¢: A, DFA-union of A, and A, O(| Ay, | + [Ay,)
- negations ¢ = —: A, DA-complement of 4, o(|8])

Complexity

» Emptiness foran DFA A, is in PTIME (in the number |.A,| of nodes of A,)

» the complexity of satisfiability/validity thus essentially depends on the size of A,
* A, is constructed recursively on the structure of ¢

- basecases¢ = T, L, (x < y), X(y): DFAs of constant size o(1)
- disjunction ¢ = y» V ¢: A, DFA-union of A, and A, O(| Ay, | + [Ay,)
- negations ¢ = —: A, DA-complement of 4, o(|8])

- existentials ¢ = Ax.yy or ¢ = IX.y: homomorphism application and determinisation 214l

Complexity

» Emptiness foran DFA A, is in PTIME (in the number |.A,| of nodes of A,)

» the complexity of satisfiability/validity thus essentially depends on the size of A,
* A, is constructed recursively on the structure of ¢

- basecases¢ = T, L, (x < y), X(y): DFAs of constant size o(1)
- disjunction ¢ = y» V ¢: A, DFA-union of A, and A, O(| Ay, | + Ay, 1)
- negations ¢ = —: A, DA-complement of 4, o(|8])

- existentials ¢ = Ax.yy or ¢ = IX.y: homomorphism application and determinisation 214l

Theorem (Hardness)

2C

Satisfiability and validity are in DTIM E(ZB(,,)), where 2, is a tower of exponentials 22 of
height k.

Complexity

» Emptiness foran DFA A, is in PTIME (in the number |.A,| of nodes of A,)

» the complexity of satisfiability/validity thus essentially depends on the size of A,
* A, is constructed recursively on the structure of ¢

- basecases¢ = T, L, (x < y), X(y): DFAs of constant size 0(1)
- disjunction ¢ = y» V ¢: A, DFA-union of A, and A, O(| Ay, | + Ay, 1)
- negations ¢ = —: A, DA-complement of 4, o(|8])

- existentials ¢ = Ax.yy or ¢ = IX.y: homomorphism application and determinisation 214l

Theorem (Hardness)

2C

Satisfiability and validity are in DTIM E(ZB(,,)), where 2, is a tower of exponentials 22 of
height k.

Theorem (Completeness)

Any language L decidable in time DTIME(ZE,(,,)) can be reduced (within polynomial time)
to the satisfiability of formulas ¢,, (w € L) of size polynomial in |w/|.

